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High dimensional Observational data

Reminder: Causal inference



• Two approaches to use machine learning for 
causal inference
– Predict outcome given features and treatment – i.e., 

E[Y | X, T] – then use to impute counterfactuals 
(covariate adjustment)

– Predict treatment using features (propensity score) – 
i.e., Pr(T|X) – then use to reweight outcomes

Consistency of estimates depend on:
– Causal graph being correct (i.e., no unobserved 

confounding)
– Identifiability of causal effect (i.e., overlap or correctly 

specified model)

Reminder: Causal inference



Same ideas can be used to evaluate 
policies using observational data

• Suppose someone gave us a policy         that outputs a
1
 vs a

2

 Patient has a urinary
 tract infection (UTI)

Affects 1 in 2 women 
during lifetime; 3rd 
most common cause for 
antibiotic treatment

Example: which antibiotic to prescribe?

[Kanjilal et al., A decision algorithm to promote outpatient antimicrobial stewardship for uncomplicated 
urinary tract infection. Science Translational Medicine, 2020.]



Same ideas can be used to evaluate 
policies using observational data

• Suppose someone gave us a policy         that outputs a
1
 vs a

2

Example: which antibiotic to prescribe?

At MGH & BWH, 
resistance 
prevalence to SXT 
does exceed 20%: 
always avoid SXT

Resistance or exposure to 
NIT in past 90 days?

YesNo

Prescribe CIP
(Ciprofloxacin)

Prescribe NIT
(Nitrofurantoin)

Simplifies to

[Gupta et al., Clinical Infections Diseases, 2011.]

Infectious Disease Society of 
America (IDSA) guidelines



Same ideas can be used to evaluate 
policies using observational data

• Suppose someone gave us a policy         that outputs a
1
 vs a

2

• How do we evaluate it?

• We give two approaches, one based on potential outcomes 
and the other based on propensity scores

• In both cases, we have to first consider the causal graph that 
underlies the observational data

 

 

 

 

Switched notation to 
what’s more typically 

used in RL
action A:   Treatment T
reward R:  Outcome Y

 State



• First, use machine learning to 
obtain a model that can 
predict potential outcomes 
(we need ignorability, overlap)

• Then, use this model to 
impute policy outcomes:

Evaluating policies using potential 
outcomes

 
 

 
 

…  

 

Regression 
model

Outcome / 
reward

Features



•  

Evaluating policies using inverse 
propensity scores

 
 

 
…  

 

Regression 
model

TreatmentFeatures

Aside: is this the right goal? What if we wanted to control 
worst-case reward instead of average?



• Consider our first estimator:

• Create data set {(l
i
, o

i
)} where

• Use an (interpretable) ML algorithm to fit this new dataset

• The resulting policy may be a much simpler function than f!

Learning policies from observational 
data

Notice relationship to CATE

(Makar, Swaminathan, Kiciman. A distillation approach to data efficient individual treatment 
effect estimation. AAAI, 2019)



Does gastric bypass surgery prevent
onset of diabetes?

• Gastric bypass surgery is the highest negative weight (9th 
most predictive feature)
– Does this mean it would be a good intervention?

• Yes, if….
– Interpret ‘gastric bypass surgery’ feature as T

– Interpret all the other features as X; assume they all include all 
relevant confounders and do not include anything post-treatment 

– True potential outcome function is linear

1994 2000

<4.5%         4.5%–5.9%        6.0%–7.4%      7.5%–8.9%          >9.0%

2013



What is the likelihood this patient, with 
breast cancer, will survive 5 years?

 

 
Diagnosis Death

Time

“Mary”

Treatment

A long survival time may be because of treatment!

• Group into K categories of treatment strategies T (one of which might 
be “no treatment”)

• Gather data on confounding factors C that might influence both 
treatment decision and outcome

• Learn f(X,C,T) to predict Y (survival time)
• Assess overlap* by looking at p(X,C|T) or p(T|X,C)
• Predict survival under a specific treatment regime k using f(X,C,k)
• Will survive 5 years when treated optimally if max

k
 f(X,C, k) > 5

* See, e.g., Oberst, Johansson, Wei, Gao, Brat, Sontag, Varshney. Characterization of Overlap in Observational 
Studies, Conference on Artificial Intelligence and Statistics (AI-STATS), 2020.



A path to personalized medicine

• Clinical practice: Clinicians make (a series of) 
treatment decision(s) over the course of a patient’s 
disease or disorder
– Key decision points in the disease process

– Could be a fixed schedule, a milestone in the disease 
process, or an event necessitating a decision

– Several treatment options at each decision point

• Thus: treatment in practice involves sequential 
decision-making based on accruing information

(Marie Davidian, An Introduction to Dynamic Treatment Regimes)



Dynamic treatment regime

• Sequential decision rules, each corresponding to a 
key decision point

• Each rule tells us treatment to be given from among 
the available options based on the accrued 
information on the patient to that point

• Taken together, the rules define an algorithm for 
making treatment decisions

• Dynamic because the treatment action can vary 
depending on the accrued information

(Marie Davidian, An Introduction to Dynamic Treatment Regimes)



Example: ADHD therapy

• Decision 1: Low-dose therapy – 2 options: medication or 
behavior modification

• Subsequent monthly decisions:
– Responders: Continue initial therapy

– Non-responders – 2 options: add the other therapy or increase dose of 
current therapy

• Objective: maximize end-of-school-year performance

(Material from Marie Davidian, An Introduction to Dynamic Treatment Regimes; example from 
Susan Murphy)



Example: ADHD therapy

(Material from Marie Davidian, An Introduction to Dynamic Treatment Regimes; example from 
Susan Murphy)

• This is a dynamic treatment strategy because of the 
decision when to stop



Example: First-line treatment for 
multiple myeloma

• Decision 1: Induction chemotherapy (options C
1
, C

2
)

• Decision 2:
– Maintenance treatment for patients who respond (options M

1
, M

2
)

– Start a different cancer treatment for those who don’t respond 
(options S

1
, S

2
)

• Objective: maximize survival time

• Example rules for decision 1:
– C

1
: If “age < 65 and in excellent physical health”, give bortezomib, 

lenalidomide, dexamethasone chemotherapy followed by autologous 
stem cell transplant. Otherwise, treat with daratumumab, bortezomib, 
melphalan, & prednisone.

– C
2
: treat everyone with daratumumab, bortezomib, melphalan, & 

prednisone 

(Marie Davidian, An Introduction to Dynamic Treatment Regimes)



Example: First-line treatment for 
multiple myeloma

• Which is the best treatment regime (policy)?

• Evaluate each of the following 8 dynamic regimes:
1. Give C

1
 followed by (M

1
 if response, S

1
 if no response)

2. Give C
1
 followed by (M

1
 if response, S

2
 if no response)

3. Give C
1
 followed by (M

2
 if response, S

1
 if no response)

4. Give C
1
 followed by (M

2
 if response, S

2
 if no response)

5. Give C
2
 followed by (M

1
 if response, S

1
 if no response)

6. Give C
2
 followed by (M

1
 if response, S

2
 if no response)

7. Give C
2
 followed by (M

2
 if response, S

1
 if no response)

8. Give C
2
 followed by (M

2
 if response, S

2
 if no response)

• Goal: evaluate the average outcome if all patients in the 
population were to follow each regime

(Marie Davidian, An Introduction to Dynamic Treatment Regimes)



Warm up: Evaluating dynamic 
treatment regimes

•  
 

 

 

 

 

 

  

 



•  
 

 

 

 

 

 

  

 

Warm up: Evaluating dynamic 
treatment regimes



Evaluating dynamic treatment regimes

 

 

 

 

 

 

• Notice that the same estimator does not
make sense when, e.g., S

2
 depends on A

1

• The distribution of states S
2
 will be

affected by the policy’s choice of actions A
1

– Cannot use the observational distribution

 



Evaluating dynamic treatment regimes: 
parametric G-formula

 

 

 

 

 

 

Concern: Errors may compound; also, may be insufficient data for any one time step.

[James Robins. A new approach to causal inference in mortality studies with a sustained exposure period—application to 
control of the healthy worker survivor effect. Mathematical Modelling, 1986.

For recent work, see: Rui Li et al., G-Net: a Recurrent Network Approach to G-Computation for Counterfactual Prediction Under 
a Dynamic Treatment Regime. Proceedings of Machine Learning Research 158:282–297, 2021.]



Many more ideas and methods

• Doubly robust estimators that combine both 
regression and IPW

• Natural experiments & regression 
discontinuity

• Instrumental variables

• Sensitivity analyses



Many more ideas and methods –
Natural experiments

• Does stress during pregnancy affect later child 
development?

• Confounding: genetic, mother personality, 
economic factors…

• Natural experiment: the Cuban missile crisis of 
October 1962. Many people were afraid a nuclear 
war is about to break out.

• Compare children who were in utero during the 
crisis with children from immediately before and 
after



Many more ideas and methods –
Instrumental variables 

• Informally: a variable which affects treatment 
assignment but not the outcome

• Example: are private schools better than public 
schools? Which students would benefit the most?

• Confounding: different student population, 
different teacher population

• Can’t force people which school to go to



Many more ideas and methods –
Instrumental variables

• Informally: a variable which affects treatment 
assignment but not the outcome

• Example: are private schools better than public 
schools? Which students would benefit the most?

• Can’t force people which school to go to
• Can randomly give out vouchers to some children, 

giving them an opportunity to attend private 
schools

• The voucher assignment is the instrumental 
variable



Estimation using an instrumental variable

Goal: estimation in setting where there are unobserved 
confounders, U, not captured in X
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Estimation using an instrumental variable

First, assume no patient covariates (with this, we will only be 
able to estimate ATE not CATE)
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Estimation using an instrumental variable

First, assume no patient covariates (with this, we will only be 
able to estimate ATE not CATE)

 

 

?

 

Note: this is without loss of 
generality (since U could 
include all of X)



Estimation using an instrumental variable

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Estimation using an instrumental variable

Instrument (e.g., voucher)

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Assumption 1: Relevance

Z has a causal effect on T

What is an Instrument?

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Assumption 2: Exclusion Restriction

The causal effect of Z on Y is fully mediated by T

What is an Instrument?

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Assumption 3: Instrumental 
Unconfoundedness

Z is unconfounded (in the setting of no X, this simply 
means U and Z are independent)

What is an Instrument?

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Warm-up: linear potential outcome, no 
X

Z doesn’t appear because of 
the exclusion restriction 
assumption

Linear

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)

Assume potential outcomes given by the linear model,

  



Warm-up: linear potential outcome, no 
X

(exclusion restriction and linear outcome assumptions)

(instrumental unconfoundedness assumption)

(non-zero due to relevance assumption)

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)

 



Estimation using (conditional) instruments

 

Assume potential outcomes given by:
 

 



Estimation using (conditional) instruments
Assume potential outcomes given by:

 

Theorem: 

 

 



Summary

• Close connection between causal inference 
and off-policy evaluation

• Same ideas can be used to evaluate dynamic 
treatment regimes when there are multiple 
timepoints / actions

• Instrumental variables can be used to estimate 
ATE and CATE when there is unobserved 
confounding
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