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Survival Analysis, Censoring,
Proportional Hazard Models
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+ Kleinbaum DG, Klein M. Survival analysis: a self-learning text.

2nd ed. New York, NY: Springer; 2005. Available (free) via MIT-
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You've Seen Survival Models Already cAlt

Japan DeathRates(2015)

Share of persons surviving to successive ages for persons born 1851 to 2031, England and Wales <

according to mortality rates experienced or projected, (on a cohort basis)
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Data source: Office for National Statistics (ONS). Note: Life expectancy figures are not available for the UK before 1951; for long historic trends England and Wales data are used
The interactive data visualization is available at OurWorldinData.org. There you find the raw data and more visualizations on this topic. Licensed under CC-BY-SA by the author Max Roser.
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Survival Curve Hazard Curve

« Outcome can be good (recovery from surgery) or bad (death)



Survival and Hazard

 In absence of censoring, survival is easy to compute:

- Just fraction of subjects still “alive” at some time

- T'is a random variable denoting the survival time of an individual; 7" > 0O

t is a specific value of T

. Survival, S(¢) = P(T > t) € [0,1]

 Hazard:
dS(1)/dt
() =—| | € 10,001, or
S(¢)
Pe<T<t+At|T >t
. h(t) = lim (1S 720
At—0 At

- Empirical survival curves S’(t) are step functions

- If instantaneous risk of death (density of S) = f(7),

S@O)=P(T >1) = "00 f(u)du

U=

S(t)

S@)

S(0)=1

/

t
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Parametric Hazard Functions
(if we know something about what to expect)

- Exponential: h(t) = A, i.e., constant hazard

- E.g., healthy subject, with constant risk of getting run over, murdered, etc.

. S(f) = e™*: density function of survival function: f(f) = le ™"

+ Increasing Weibull: h(¢) = 1¢pt?~1; S(¢) = oM
« E.g., leukemia patient unresponsive to therapy
* Decreasing Weibull
- E.g., patient recovering from surgery
- Lognormal: h(t) = f(1)/S(#); S(t) = 1 — ®{(Int — u)/o}

- E.g., TB patient
T | lognormal

T Weibull

_

t
! Weibull




Commonly used parametric survival models

e

CSAIL

Table IV: Density, Survival and Hazard functions for the distributions commonly used
in the parametric methods in survival analysis.

Distribution PDF f(t) Survival S(t) Hazard h(t)
Exponential dexp(—At) exp(—At) A
Weibull Akt~ Lexp(—AtF) exp(—At*) AktFk—1
Logistic a(lj_;(—t(_ti)u/)(;ap 1i;£t(;lj);i/)a/o a(1+e—%t—u)/o)
Log-logistic GESTIoE ESYL fEaTia
Normal L eap(— 1)) 1—() | /a))emp( t=m?)
2
Lognormal | L eap(~loslzm?) | | _ g(loat=u Viroi f‘i (% P;> /27

We obtain conditional models f(7 | x; p) by letting, e.g., 2 =

exp(p - x)

Wang P, Li Y, Reddy CK. Machine Learning for Survival Analysis: A Survey. arXiv; 2017. Available
from: http://arxiv.org/abs/1708.04649
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llustrative Example of Survival Analysis

 Freireich et al. The Effect of 6-Mercaptopurine on the Duration of Steroid-Induced
Remissions in Acute Leukemia: A_ Model for Evaluation of Other Potentially Useful
Therapy. Blood, 21: 699-716(1963)

- Example from Kleinbaum DG, Klein M. Survival analysis: a self-learning text. 2nd

ed. New York, NY: Springer; 2005 EXAMPLE (continued)

+ All patients were induced into remission,

- Group 1 Group 2
then half were treated with
: : T =21} (Pl =21
6-Mercaptopurine to see whether it (Treatment) n (Placebo) n
helped maintain remission 6,6, 6,7, 10, 1,1,2,2,3,

- Example shows the week in which each 13, 16, 22, 23, 4,4,5, 5,
patient failed (or was censored, 6+ 9+ 10+ 11+, |8 8 8 8,
indicated by “+”

. y . ) 17+, 19+, 20+, 11,11, 12,12,
* First, we consider Group 2 (placebo)
25+, 32+, 324, 15, 17, 22, 23
* No censored data
34+, 35+
# failed # censored Total
Group 1 9 12 21

Group 2 21 0 21




Alternative Representations of the Data
(for now, just Group 2, N0 censoring)

d

Indiv. i . . L
I@" (wefe ks) C(gilifgecg; (Grfup) - All the placebo patients failed remission by

23 weeks of the trial

22 1 1 0
23 1 1 0 « Subjects ordered by failure time
;: ‘; i g « 0 = 0 means censored, 6 = 1 means failed
26 3 1 0 « X = 0 means placebo, X = 1 means
= 4 1 0 treated by 6-Mercaptopurine

GROUP s 4 1 0 . . o

2 - - ’ X - E.g., patient 32 failed remission in week 8

30 5 1 0
21 o | 0 # 0t 8 X XX,
32 8 1 0 1t 8 Xy X"t Xy
33 8 1 0 2 1, 8, Xy X't Xy
34 8 1 0 . .
35 11 1 0 .
36 11 1 0 .
37 12 1 0 G 4t & Xy Xp°°°X, )
38 12 1 0 ‘ ’
39 15 1 0
40 17 1 0 n L s X Xy
41 22 1 0 n n nl n2 np .
42 23 1 0




Transform to Show How Many Patients Fail (or Are
Censored) at Each Time Anyone Fails

Ordered # at risk | # of failures | # censored Group 2

failure times in [t t+1) _
" n m o (Placebo) n =21
0 21 0 0
; . 5 n 1,1, 2,2, 3,
2 19 2 O 4, 4’ 5’ 5’
3 17 1 0
T N S R 3,8, 8,8,
5 14 2 0
8 12 4 0 11, 11,12, 12,
11 8 2 0
12 6 0 0 15, 17, 22, 23
15 4 1 0
17 3 1 0
22 2 1 0
23 1 1 0

0




# In remission

Survival in remission of Placebo group
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Censoring

 Right-censoring: lost track of subject before the event occurs
- switched insurance carrier, study ended before event, moved away, withdrew

S6 4— Event occurred
$5
o .
S 54 Censoring: end of study
:§ $3 Censoring: lost to foIIowup/
“ =

) |

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

- Left-censoring: event occurs before start of study/data collection/test
True survival time

- - ™ , , : : : :
Observed survival time  Typical assumption: censoring is

____________ e . .

- R independent of outcome given

4 4 4 covariates

Study start  HIV exposure HIV + test 10



Ordered # at risk | # of fallures | # censored
failure times in [, t+1)
i n; m;j o]
0 21 0 0
§) 21 3 1
7 17 1 1

How to Deal with Censored Data: Kaplan-Meier

Group 1
(Treatment) n = 21

6,6, 6,7, 10,
13, 16, 22, 23,
6+, 9+, 10+, 11+,
17+, 19+, 20+,
25+, 32+, 32+,
34+, 35+

11



Ordered # atrisk | # of fallures | # censored
failure times in [, t+1)

i n; m;j qj
0 21 0 0
6 21 3 1

14 17 1 1

10 15 1 2
13 12 1 O
10 11 1 3
22 7 1 0
23 6 1 5

How to Deal with Censored Data: Kaplan-Meier

Group 1
(Treatment) n = 21

6,6, 6,7, 10,
13, 16, 22, 23,
6+, 9+, 10+, 11+,
17+, 19+, 20+,
25+, 32+, 32+,
34+, 35+

12



Aside: Overall Statistics Already Favor Treatment

lgnoring censoring,
« Mean survival of placebo group = 182/21 = 8.7 weeks
- Mean survival of treatment group = 359/21 = 17.1 weeks
- The treatment group stays in remission about twice as long

Because censored patients very likely were in remission even longer, this
underestimates their remission duration

Average hazard rate is number of failures / total remission days
« 21/182 for placebo = 0.115
« 9/359 for treatment = 0.025

So, this seems like a “no brainer”

But we really should analyze survival using what we know about censoring

13



Kaplan-Meler |dea

- There is some conditional probability that a subject who has survived to time li_q

will survive to t]

- That conditional probability can be estimated by the empirical fraction of subjects

who survive from f;_; 1o ;

. But we don’t count subjects who have been censored in [tj_l, tj)

. The probability that a subject survives at least to l; Is then the probability that they

survive to f;_; times that conditional probability

j
CS@) =84 )X P> 4| T2)=||PT>41T>0)
=1

14



Calculating Survival for Censored Data (Kaplan-Meier)

Ordered failure # at risk # of failures # censored in
times [t t+7) 3
e e | S
0 21 0 0 1
6 21 3 1 1x18/21 = .8571
7 17 1 1 8571 x16/17 = .8067
10 15 1 2 0.8067 x 14/15 = .7529
13 12 1 0 7529 x 11/12 = .6902
16 11 1 3 0.6902 x 10/11 = .6275
22 7 1 0 6275 x 6/7 = .5378
23 6 1 5 5378 x 5/6 = .4482
0

15



Same Method also Works for Uncensored Data

Ordered | # atrisk | # of failures | # censored A fraction
failure in [t, ) S ( t.) surviving
times n; mj qi ]

0 21 0 0 1 1
1 21 2 0 1 x19/21 = .9048 19/21
2 19 2 0 9048 x 17/19 = .8095 17/21
3 17 1 0 8095 x 16/17 = .7619 16/21
4 16 2 0 /619 x 14/16 = .6667 14/21
5 14 2 0 6667 x 12/14 = 5714 12/21
8 12 4 0 5714 x8/12 = .3810 8/21
11 8 2 0 3810 x 6/8 = .2857 6/21
12 6 2 0 2857 x 4/6 = . 1905 4/21
15 4 1 0 1905 x 3/4 = . 1429 3/21
17 3 1 0 1429 x 2/3 = .0952 2/21
22 2 1 0 0952 x 1/2 = .0476 1/21
23 1 1 0 0476 x0/1 =0 0/21
0

16



Comparison of Treatment vs. Placebo Groups
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% In remission

Survival in remission of Treatment vs. Placebo groups
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Are Two Kaplan-Meier Curves Significantly Different?
The Log-Rank Test

Remission data: n = 42

# failures # in risk set A chi-square test using observed vs. expected
L7 my;  My; ny; My cell counts for different categories of outcomes
1 0 2 21 21 - If the two curves are not different, the expected
2 0 2 21 19 failure counts at each failure time should be in
3 0 1 21 17 proportion to the number of patients at risk
4 o 2 21 16 ny;
5 0 2 21 14 VA ( ) X (my+ )
nlj + nzj
6 3 0 21 12 1,
7 1 0 17 12 e = ( J ) X (my; + )
8 0 4 16 12 nyj + Ny;
i 1 o0 15 8
11 0 2 13 8
12 0 2 12 6
13 1 0 12 4
15 0 1 11 4
16 1 0 11 3
17 0 1 10 3
22 1 1 7 2
23 1 1 6 1 10




Expanded Table (Remission Data)

# failures # in risk set # expected Observed—expected

] L) my; my ny Ny e1j i A= = G
1 1 0 2 21 21 (21/42) x2  (21/42) x 2 —-1.00 1.00
2 2 0 2 21 19 (21/40)x2 (19/40) x 2 -1.05 1.05
3 3 0 1 21 17  (21/38)x1 (17/38) x 1 —0.55 0.55
4 4 0 2 21 16 (21/37) x2  (16/37) x 2 -1.14 1.14
5 5 0 2 21 14 (21/35) x2  (14/35)x 2 -1.20 1.20
6 6 3 0 21 12 (21/33)x3 (12/33)x 3 1.09 -1.09
7 7 1 0 17 12 (17/29) x1  (12/29) x 1 0.41 -0.41
8 8 0 4 16 12 (16/28) x4  (12/28) x 4 -2.29 2.29
9 10 1 0 15 8 (15/23)x1 (8/23) x 1 0.35 -0.35
10 11 0 2 13 8 (13/21) x 2 (8/21) x 2 -1.24 1.24
11 12 0 2 12 6 (12/18) x 2 (6/18) x 2 -1.33 1.33
12 13 1 0 12 4  (12/16) x 1 (4/16) x 1 0.25 -0.25
13 15 0 1 11 4 (11/15) x 1 (4/15) x 1 -0.73 0.73
14 16 1 0 11 3 (11/14) x 1 (3/14) x 1 0.21 -0.21
15 17 0 1 10 3  (10/13) x1 (3/13) x 1 —0.77 0.77
16 22 1 1 2 (7/9) x 2 (2/9) x 2 —-0.56 0.56
17 23 1 1 1 (6/7) x 2 (1/7) x 2 -0.71 0.71

Totals 9 QD 19.26 ~10.26



Log-Rank Test
. 0, —E, =-1026,0,— E, =10.26

* Arbitrarily, choose the second distribution
(0, — E,)*
Var(O, — E>)
ZJ- ny i (my; + my)(ny; + ny; — my; — my;)

. Log-rank statistic LR =

_ Var(O; — E) =

(ny; + npp)*(ny + ny; — 1)
- Null hypothesis H,: no difference between survival curves

. LR ~ y* with 1 degree of freedom under H,
« For our example, using Python’s 1ifelines package

- 0, — E, =10.26, Var(O, — E,) = 6.2685, so LR = 16.793
. p < .0001; in fact, log,(p) = — 14.55

- Thus, H, is soundly rejected, so the treatment is effective

 Alternatives to Log-Rank test:
« Wilcoxon, Tarone-Ware, Peto, Flemington-Harrington, ...

https://medium.com/analytics-vidhya/log-rank-test-kaplan-meier-survival-curve-python-code-3fc78dac44d5

21




Leukemia Remission Data

Group 1(n =21) Group 2(n =21) [Tl
t(weeks) log WBC | t(weeks) log WBC D e a|lﬂ g W|th C OV arl a.t es CSAIlL
6 2.31 1 2.80
6 4.06 1 5.00
6 3.28 2 491 . 5o far, groups determined by a single factor;
7 4.43 2 4.43 e.g., treatment vs. placebo
1(3) j:zz i ::(3); « Qutcomes gften depenc_j on factors:
16 260 A 5 4 demographics, comorbidities, lab data,
22 2.32 5 3.49 geography, etc.
23 5 57 5 3.97 « How do we deal with these additional factors?
6+ 3.20 8 3.52 - Confounding: X,
ot 2.80 8 3:05 - Interaction: X5 = X; X X, for synergistic
10+ 2.70 8 2.32
11+ 2.60 8 3.26
17+ 2.16 11 3.49
19+ 2.05 11 2.12
20+ 2.01 12 1.50
25+ 1.78 12 3.06
32+ 2.20 15 2.30
32+ 2.53 17 2.95
34+ 1.47 22 2.73
35+ 1.45 23 1.97

20
+ denotes censored observation
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Similar to Linear Regression Models CSAIL

Model 1: r N

Coef. Std. Err. Z p > |z| | Haz. Ratio [95% Contf. Interval]
Rx 1.509 0.410 3.68  0.000 4.523 2.027 10.094
No. of subjects = 42 Log likelihood = —86.380 Prob >t chi2 = 0.0001
Model 2:

Coef. Std. Err. Z p > |z| | Haz. Ratio [[95% Contf. Interval]
Rx 1.294 0.422 3.07  0.002 3.648 1.595 8.343
log WBC 1.604 0.329 4.87  0.000 4.975 2.609 9.486
No. of subjects = 42 Log likelihood = —72.280 Prob 3 chi2 = 0.0000

Std. Err. Z p > |z| | Haz. RatioWe@#C0nt. Interval]

Rx 2.355  1.681 - =K 10.537 0.391  284.201
log WBC 1.80 : 4.04  0.00U a6 2.528 14.561
Rx x log B U.342  0.520 —0.66 0.710 U 25 1.967

No. of subjects = 42 Log likelihood = —72.066 Prob > chi2 = 0.0000




Checking for Confounding

Model 2:
Coef. Std. Err. Z p > lzl Haz. Ratio [95% Contf. Interval]
Rx 1.294 0.422 3.07 0.002 3.648 1.595 8.343
log WBC 1.604 0.329 4.87 0.000 4.975 2.609 9.486
No. of subjects = 42 Log likelihood = -72.280 Prob > chi2 = 0.0000

- Is the treatment still a significant effect?

- Yes; p < .002
« What is the best estimate for that effect?

. HR = ¢!2% = 3.648
« Confidence interval does not include 1.0

. ﬁﬁs are different for Rx in Model 1 (4.523) and Model 2 (3.648)
- log WBC “explains away” part of the effect of Rx, so Model 2 should be used

« Confidence interval for ﬁﬁ in Model 2 is (a little) narrower than in Model 1

24






Cox Proportional Hazard Model

- The hazard depends on the covariates

. h(t,X) = hy()e i P¥ifor X = (X1, X5, ..., X,,) as explanatory/predictor variables
- Multiplicative contribution of each X; this term is parametric

- hy(?) is the time-dependent baseline hazard, not dependent on X
- Its form is not specified; thus Cox model is semi-parametric

P
. ¢ 2i=1P¥iis the adjustment for covariates, which are time-independent

- Therefore, time-dependent hazards due to covariates make this model
Inappropriate

« There is an “extended Cox model” that allows time-dependent X

- Can estimate the f; without specifying the form of /()
« Contrast with Weibull model, which is parametric:

« h(t,X) = Apt’~ ! where A = ¢ i1 Pii
+ ho(t) = ptP~!

26
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How to Train a Cox Model?

Py Coef.” Std.Err. p > |z Haz. Ratio
- Cox model: A(t, X) = hy(1)e Lt PX Rx 1294 ] 0422 0.002  3.648
log WBC [1.604 | 0329 0.000  4.975

No. of subjects = 42 Log likelihood = -72.280

- Estimate for our leukemia remission example
. i’\l(l‘ (X)) — ilO(t)e1.294Rx+1.60410gWBC

- ML estimate: maximize likelihood function
- L = joint probability of observed data = L(/)

- For each failure time, we compute likelihood of the data Ll-

k
L=L/ XL, X - XL, = HLj for k failure times
J=1
- L; considers only subjects who fail, but censored subjects are used in computing
Liforj <i

| | dln L
. Iterative solution over p parameters for =0

l

27



What is the Cox Likelihood Function?
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- Likelihood at each failure time that we see the events in the data given the estimated

hazard function

- Adjust the betas of that function to maximize the likelihood

« Simple example:

h(t) = ho(t)efrsvoke L=

ID TIME STATUS SMOKE 1p Hazard

Barry 2 1 1 Barry ho(t )e A1
Gary 3 1 0 Gary  ho(t)e®
Harry 5 0 0 Harry  hg(t)e®
Larry 8 1 1 Larry  ho(t)e?!

- L does not depend on £ (), or ¢
« Only the order of events matters

L1

L,

L1XL2XL3

) ho(t)e'Bl

ho(t)ePr 4+ ho(t)e® + ho(t)e + ho(t)ebr

I ho(t)e®
_ho(t)eo + ho(t)el + ho(t)ehr

_ho(l‘)e'Bl
_ho(t)ePr ]

eﬁl
efr 4+ el + el —|—eﬁl]

eO eﬁl
X X | —
eV +e0 +eh ebr |

|
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Evaluation for survival modeling

- Concordance-index (also called C-statistic): look at model’s ability to predict relative
survival times (notation here uses y; instead of 7)):

o NN A
C = — Z Z 1[y; < y;] where n, = Z Z land y; = Eqqy.plT]
€ id=1 <t id=1 t<t,
V| y2 (Vs Va Vs Y2 QL .y4 ‘.J’S

¢ o o o e o o o

- Black dots are observed, red at censored; compare only
- all pairs of observed events
« censored events that come after observed events

- Equivalent to AUC for binary variables and no censoring

Wang P, Li Y, Reddy CK. Machine Learning for Survival Analysis: A Survey. arXiv; 2017. Available
from: http://arxiv.org/abs/1708.04649 29
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weex  Jgxonomy of the
methods
developed for
survival analysis

— Basic Cox
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Survival Analysis
Methods

—  Early Prediction

Wang P, Li Y, Reddy CK. Machine Learning for

) lf)ata _ I neensoring Survival Analysis: A Survey. arXiv; 2017. Available
> Related Topics — oo Calibration from: http://arxiv.org/abs/1708.04649
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Deep Cox Mixture Model

.......................................................

o I

Hazard Ratios . r '|':
| 0. — ABA 6 - T ."‘_,M
@(9; :B) exp( ) f( ! w) \\ - ‘*\.\1\1 \’ 02

BT > 1 X) — S(t]a)

|

Figure 1: Deep Cox Mixtures: Representation of the individual covariates @ are generated
using an encoding neural network. The output representation x then interacts with linear
functions f and g that determine the proportional hazards within each cluster Z € {1,2,...K}
and the mixing weights P(Z|X) respectively. For each cluster, baseline survival rates Sk (t)
are estimated non-parametrically. The final individual survival curve S(t|x) is an average
over the cluster specific individual survival curves weighted by the mixing probabilities
P(Z|X = ).

Nagpal C, Yadlowsky S, Rostamzadeh N, Heller K. Deep Cox Mixtures for Survival Regression. In: Proceedings of the 6th
Machine Learning for Healthcare Conference, PMLR; 2021 p. 674—708. Available from: https://proceedings.mlr.press/v149/

nagpal21a.html 31
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Deep Cox Mixture Model

I

Hazard Ratios N B -
5(6:2) exp(.) f(6;%) S it
Encoder : B(T > 1 X) = §(t|)
T =softmax(.)=
[r— —/ 9(6;2)
............................... =
Representation ]P)(Z | X

2(0,Ax) =[] /Z (A (ui|z:))" Sk (us|a)P(Z = Klaz;).
1=1

where, A(u;|®;) = Ag(us) exp (fr(0, i), Sk(uiles) = Sk(us)™® (£x(8:0))
and, P(Z = k| X = x;) = softmax(g(0; x;))

Nagpal C, Yadlowsky S, Rostamzadeh N, Heller K. Deep Cox Mixtures for Survival Regression. In: Proceedings of the 6th
Machine Learning for Healthcare Conference, PMLR; 2021 p. 674—708. Available from: https://proceedings.mlr.press/v149/

nagpal21a.html 30
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Final Thoughts and References

e Strong assumption (censoring time independent of survival time) allow us to
develop (relatively) simple solutions

e But how realistic is this?
e (Can we relax this assumption?

e Recommended starting place:  Kleinbaum & Klein. Survival Analysis: A Self-
Learning Text. Springer Statistics for biology and Health, 2005

e Additional detail: Kalbfleisch & Prentice, The Statistical Analysis of
Failure Time Data, Wiley 2002 [MIT proxy]

- |Ishwaran et al., Random Survival Forests. The Annals of Applied
Statistics, 2008

- Alaa and van der Schaar. Deep multi-task gaussian processes for
survival analysis with competlnq risks. NeurIPS 2017
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