

Survival Analysis, Censoring, Proportional Hazard Models

Peter Szolovits

- based on
 - Kleinbaum DG, Klein M. Survival analysis: a self-learning text. 2nd ed. New York, NY: Springer; 2005. Available (free) via MIT-Springer: <u>https://link.springer.com/book/10.1007/0-387-29150-4</u> [beware typos]
 - lecture by David Sontag

You've Seen Survival Models Already

Survival Curve

Hazard Curve

• Outcome can be good (recovery from surgery) or bad (death)

Survival and Hazard

- In absence of censoring, survival is easy to compute:
 - Just fraction of subjects still "alive" at some time
- *T* is a random variable denoting the survival time of an individual; $T \ge 0$ *t* is a specific value of *T* S(0) = 1
- Survival, $S(t) = P(T > t) \in [0,1]$
- Hazard:

$$h(t) = -\left[\frac{dS(t)/dt}{S(t)}\right] \in [0,\infty], \text{ or}$$
$$h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t \mid T \ge t)}{\Delta t}$$

- Empirical survival curves $\hat{S}(t)$ are step functions
- If instantaneous risk of death (density of S) = f(t), $S(t) = P(T > t) = \int_{u=t}^{\infty} f(u) du$

Parametric Hazard Functions (if we know something about what to expect)

- Exponential: $h(t) = \lambda$, i.e., constant hazard
 - E.g., healthy subject, with constant risk of getting run over, murdered, etc.
 - $S(t) = e^{-\lambda t}$; density function of survival function: $f(t) = \lambda e^{-\lambda t}$
- Increasing Weibull: $h(t) = \lambda \phi t^{\phi-1}$; $S(t) = e^{-\lambda t^{\phi}}$
 - · E.g., leukemia patient unresponsive to therapy
- Decreasing Weibull
 - E.g., patient recovering from surgery
- Lognormal: h(t) = f(t)/S(t); $S(t) = 1 \Phi\{(\ln t \mu)/\sigma\}$
 - E.g., TB patient

Commonly used parametric survival models

Table IV: Density, Survival and Hazard functions for the distributions commonly used in the parametric methods in survival analysis.

Distribution	PDF $f(t)$	Survival $S(t)$	Hazard $h(t)$
Exponential	$\lambda exp(-\lambda t)$	$exp(-\lambda t)$	λ
Weibull	$\lambda k t^{k-1} exp(-\lambda t^k)$	$exp(-\lambda t^k)$	$\lambda k t^{k-1}$
Logistic	$\frac{e^{-(t-\mu)/\sigma}}{\sigma(1+e^{-(t-\mu)/\sigma})^2}$	$\frac{e^{-(t-\mu)/\sigma}}{1\!+\!e^{-(t-\mu)/\sigma}}$	$\frac{1}{\sigma(1+e^{-(t-\mu)/\sigma})}$
Log-logistic	$rac{\lambda k t^{k-1}}{(1+\lambda t^k)^2}$	$rac{1}{1+\lambda t^k}$	$rac{\lambda k t^{k-1}}{1+\lambda t^k}$
Normal	$rac{1}{\sqrt{2\pi}\sigma}exp(-rac{(t-\mu)^2}{2\sigma^2})$	$1 - \Phi(rac{t-\mu)}{\sigma})$	$\left rac{1}{\sqrt{2\pi}\sigma(1-\Phi((t-\mu)/\sigma))}exp(-rac{(t-\mu)^2}{2\sigma^2}) ight.$
Log-normal	$\frac{1}{\sqrt{2\pi}\sigma t}exp(-rac{(log(t)-\mu)^2}{2\sigma^2})$	$1 - \Phi(\frac{\log(t) - \mu}{\sigma})$	$\frac{\frac{1}{\sqrt{2\pi}\sigma t}exp(-(\log(t)-\mu)^2/2\sigma^2)}{1-\Phi(\frac{\log(t)-\mu}{\sigma})}$

We obtain **conditional** models $f(t | x; \beta)$ by letting, e.g., $\lambda = \exp(\beta \cdot x)$

Wang P, Li Y, Reddy CK. Machine Learning for Survival Analysis: A Survey. arXiv; 2017. Available from: <u>http://arxiv.org/abs/1708.04649</u>

Illustrative Example of Survival Analysis

- Freireich et al. The Effect of 6-Mercaptopurine on the Duration of Steroid-Induced Remissions in Acute Leukemia: A Model for Evaluation of Other Potentially Useful Therapy. Blood, 21: 699-716, 1963
 - Example from Kleinbaum DG, Klein M. Survival analysis: a self-learning text. 2nd ed. New York, NY: Springer; 2005

Group 2

- All patients were induced into remission, then half were treated with
 6-Mercaptopurine to see whether it helped maintain remission
- Example shows the week in which each patient failed (or was censored, indicated by "+")
- First, we consider Group 2 (placebo)
 - No censored data

	5	0			
EXAMP	LE (conti	nued)			
Group 1 (Treatme	nt) <i>n</i> = 21	Group 2 (Placebo) <i>r</i>	ı = 21		
6, 6, 6, 7,	10,	1, 1, 2, 2, 3	,		
13, 16, 22	2, 23,	4, 4, 5, 5,			
6+, 9+, 10	0+, 11+,	8, 8, 8, 8,			
17+, 19+,	20+,	11, 11, 12, 12,			
25+, 32+,	32+,	15, 17, 22, 23			
34+, 35+					
	# failed	# censored	Total		
Group 1	9	12	21		

21

21

0

Alternative Representations of the Data (for now, just Group 2, no censoring)

	Indiv. #	t (weeks)	δ (failed or censored)	X (Group)
	22	1	1	0
	23	1	1	0
	24	2	1	0
	25	2	1	0
	26	3	1	0
	27	4	1	0
GROUP	28	4	1	0
2	29	5	1	0
	30	5	1	0
	31	8	1	0
	32	8	1	0
	33	8	1	0
	34	8	1	0
	35	11	1	0
	36	11	1	0
	37	12	1	0
	38	12	1	0
	39	15	1	0
	40	17	1	0
	41	22	1	0
	42	23	1	0

- All the placebo patients failed remission by 23 weeks of the trial
- Subjects ordered by failure time
- + $\delta=0$ means censored, $\delta=1$ means failed
- X = 0 means placebo, X = 1 means treated by 6-Mercaptopurine
- E.g., patient 32 failed remission in week 8

7

Transform to Show How Many Patients Fail (or Are Censored) at Each Time Anyone Fails

Ordered failure times	# at risk	# of failures	# censored in [<i>tj, tj+1</i>)
tj	nj	<i>m</i> j	q j
0	21	0	0
1	21	2	0
2	19	2	0
3	17	1	0
4	16	2	0
5	14	2	0
8	12	4	0
11	8	2	0
12	6	2	0
15	4	1	0
17	3	1	0
22	2	1	0
23	1	1	0
	0		

Survival in remission of Placebo group

Censoring

- Right-censoring: lost track of subject before the event occurs
 - switched insurance carrier, study ended before event, moved away, withdrew

 Left-censoring: event occurs before start of study/data collection/test True survival time

• Typical assumption: *censoring is independent of outcome given covariates*

How to Deal with Censored Data: Kaplan-Meier

Ordered failure times t j	# at risk n j	# of failures <i>m</i> j	# censored in [<i>t_j, t_{j+1}</i>) <i>q_j</i>
0	21	0	0
6	21	3	1
7	17	1	1

Group 1 (Treatment) n = 216, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+

How to Deal with Censored Data: Kaplan-Meier

Ordered failure times t j	# at risk n j	# of failures <i>m</i> j	# censored in [<i>t_j, t_{j+1}</i>) <i>q_j</i>
0	21	0	0
6	21	3	1
7	17	1	1
10	15	1	2
13	12	1	0
16	11	1	3
22	7	1	0
23	6	1	5
	0		

Group 1 (Treatment) n = 216, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+

Aside: Overall Statistics Already Favor Treatment

- Ignoring censoring,
 - Mean survival of placebo group = 182/21 = 8.7 weeks
 - Mean survival of treatment group = 359/21 = 17.1 weeks
 - The treatment group stays in remission about twice as long
- Because censored patients very likely were in remission even longer, this underestimates their remission duration
- Average hazard rate is number of failures / total remission days
 - 21/182 for placebo = 0.115
 - 9/359 for treatment = 0.025
- So, this seems like a "no brainer"
- But we really should analyze survival using what we know about censoring

Kaplan-Meier Idea

- There is some conditional probability that a subject who has survived to time t_{j-1} will survive to t_j
- That conditional probability can be estimated by the empirical fraction of subjects who survive from t_{j-1} to t_j
 - But we don't count subjects who have been censored in $[t_{j-1}, t_j)$
- The probability that a subject survives at least to t_j is then the probability that they survive to t_{j-1} times that conditional probability

$$\hat{S}(t_j) = \hat{S}(t_{j-1}) \times \hat{P}(T > t_j \mid T \ge t_j) = \prod_{i=1}^j \hat{P}(T > t_i \mid T \ge t_i)$$

Calculating Survival for Censored Data (Kaplan-Meier)

Ordered failure times t j	# at risk n j	# of failures m j	# censored in [<i>t_j, t_{j+1}</i>) q j	$\hat{S}(t_j)$
0	21	0	0	1
6	21	3	1	1 x 18/21 = .8571
7	17	1	1	.8571 x 16/17 = .8067
10	15	1	2	0.8067 x 14/15 = .7529
13	12	1	0	.7529 x 11/12 = .6902
16	11	1	3	0.6902 x 10/11 = .6275
22	7	1	0	.6275 x 6/7 = .5378
23	6	1	5	.5378 x 5/6 = .4482
	0			

Same Method also Works for Uncensored Data

Ordered failure	# at risk	# of failures	# censored in [<i>t_j</i> , <i>t_{j+1})</i>	$\hat{S}(t_i)$	fraction surviving
limes	nj	<u> </u>	q j	J	
0	21	0	0	1	1
1	21	2	0	1 x 19/21 = .9048	19/21
2	19	2	0	.9048 x 17/19 = .8095	17/21
3	17	1	0	.8095 x 16/17 = .7619	16/21
4	16	2	0	.7619 x 14/16 = .6667	14/21
5	14	2	0	.6667 x 12/14 = .5714	12/21
8	12	4	0	.5714 x 8/12 = .3810	8/21
11	8	2	0	.3810 x 6/8 = .2857	6/21
12	6	2	0	.2857 x 4/6 = .1905	4/21
15	4	1	0	.1905 x 3/4 = .1429	3/21
17	3	1	0	.1429 x 2/3 = .0952	2/21
22	2	1	0	.0952 x 1/2 = .0476	1/21
23	1	1	0	.0476 x 0/1 = 0	0/21
	0				

Comparison of Treatment vs. Placebo Groups

Are Two Kaplan-Meier Curves Significantly Different? The Log-Rank Test

Remission data: $n = 42$						
#	failure	# in r	isk set			
$t_{(j)}$	m_{1j}	m_{2j}	n_{1j}	n _{2j}		
1	0	2	21	21		
2	0	2	21	19		
3	0	1	21	17		
4	0	2	21	16		
5	0	2	21	14		
6	3	0	21	12		
7	1	0	17	12		
8	0	4	16	12		
10	1	0	15	8		
11	0	2	13	8		
12	0	2	12	6		
13	1	0	12	4		
15	0	1	11	4		
16	1	0	11	3		
17	0	1	10	3		
22	1	1	7	2		
23	1	1	6	1		

- A chi-square test using observed vs. expected cell counts for different categories of outcomes
- If the two curves are *not* different, the expected failure counts at each failure time should be in proportion to the number of patients at risk

•
$$e_{1j} = \left(\frac{n_{1j}}{n_{1j} + n_{2j}}\right) \times (m_{1j} + m_{2j})$$

• $e_{2j} = \left(\frac{n_{2j}}{n_{1j} + n_{2j}}\right) \times (m_{1j} + m_{2j})$

Expanded Table (Remission Data)

		# failı	# failures		isk set	# expe	ected	Observed-	-expected
j	$t_{(j)}$	m_{1j}	<i>m</i> _{2j}	n_{1j}	n_{2j}	$\overline{e_{1j}}$	e_{2j}	$m_{1j}-e_{1j}$	$m_{2j} - e_{2j}$
1	1	0	2	21	21	(21/42) × 2	(21/42) × 2	-1.00	1.00
2	2	0	2	21	19	$(21/40) \times 2$	(19/40) × 2	-1.05	1.05
3	3	0	1	21	17	(21/38) × 1	(17/38) × 1	-0.55	0.55
4	4	0	2	21	16	(21/37) × 2	$(16/37) \times 2$	-1.14	1.14
5	5	0	2	21	14	(21/35) × 2	$(14/35) \times 2$	-1.20	1.20
6	6	3	0	21	12	(21/33) × 3	(12/33) × 3	1.09	-1.09
7	7	1	0	17	12	(17/29) × 1	(12/29) × 1	0.41	-0.41
8	8	0	4	16	12	$(16/28) \times 4$	$(12/28) \times 4$	-2.29	2.29
9	10	1	0	15	8	(15/23) × 1	(8/23) × 1	0.35	-0.35
10	11	0	2	13	8	$(13/21) \times 2$	$(8/21) \times 2$	-1.24	1.24
11	12	0	2	12	6	$(12/18) \times 2$	$(6/18) \times 2$	-1.33	1.33
12	13	1	0	12	4	(12/16) × 1	$(4/16) \times 1$	0.25	-0.25
13	15	0	1	11	4	$(11/15) \times 1$	$(4/15) \times 1$	-0.73	0.73
14	16	1	0	11	3	$(11/14) \times 1$	$(3/14) \times 1$	0.21	-0.21
15	17	0	1	10	3	(10/13) × 1	$(3/13) \times 1$	-0.77	0.77
16	22	1	1	7	2	(7/9) × 2	$(2/9) \times 2$	-0.56	0.56
17	23	1	1	6	1	$(6/7) \times 2$	$(1/7) \times 2$	-0.71	0.71
Tota	uls	9	(21)			19.26	10.74	-10.26	+10.26

Log-Rank Test

- $O_1 E_1 = -10.26; O_2 E_2 = 10.26$
 - Arbitrarily, choose the second distribution

• Log-rank statistic LR =
$$\frac{(O_2 - E_2)^2}{\operatorname{Var}(O_2 - E_2)}$$
•
$$\operatorname{Var}(O_i - E_i) = \frac{\sum_j n_{1j} n_{2j} (m_{1j} + m_{2j}) (n_{1j} + n_{2j} - m_{1j} - m_{2j})}{(n_{1j} + n_{2j})^2 (n_{1j} + n_{2j} - 1)}$$

- Null hypothesis H_0 : no difference between survival curves
- LR ~ χ^2 with 1 degree of freedom under H_0
- For our example, using Python's lifelines package
 - $O_2 E_2 = 10.26$, $Var(O_2 E_2) = 6.2685$, so LR = 16.793
 - p < .0001; in fact, $\log_2(p) = -14.55$
 - Thus, H_0 is soundly rejected, so the treatment is effective
- Alternatives to Log-Rank test:
 - Wilcoxon, Tarone-Ware, Peto, Flemington-Harrington, ...

https://medium.com/analytics-vidhya/log-rank-test-kaplan-meier-survival-curve-python-code-3fc78da644d5

Leukemia Remission Data

Group	l (<i>n</i> = 21)	Group	2(n = 21)
<i>t</i> (weeks)	log WBC	t(weeks)	log WBC
6	2.31	1	2.80
6	4.06	1	5.00
6	3.28	2	4.91
7	4.43	2	4.48
10	2.96	3	4.01
13	2.88	4	4.36
16	3.60	4	2.42
22	2.32	5	3.49
23	2.57	5	3.97
6+	3.20	8	3.52
9+	2.80	8	3.05
10+	2.70	8	2.32
11+	2.60	8	3.26
17+	2.16	11	3.49
19+	2.05	11	2.12
20+	2.01	12	1.50
25+	1.78	12	3.06
32+	2.20	15	2.30
32+	2.53	17	2.95
34+	1.47	22	2.73
35+	1.45	23	1.97

+ denotes censored observation

Dealing with Covariates

- So far, groups determined by a single factor;
 e.g., treatment vs. placebo
- Outcomes often depend on factors: demographics, comorbidities, lab data, geography, etc.
- How do we deal with these additional factors?
 - Confounding: X_2
 - Interaction: $X_3 = X_1 \times X_2$ for synergistic

Similar to Linear Regression Models

Model 1:					\frown		
	Coef.	Std. Err.	Z	p > z	Haz. Ratio	[95% Conf.	Interval]
Rx	1.509	0.410	3.68	0.000	4.523	2.027	10.094
No. of subjects =	= 42	Log likelil	nood =	-86.380	Prob >	chi2 = 0.0	0001
Model 2:							
	Coef.	Std. Err.	Z	p > z	Haz. Ratio	[95% Conf.	Interval]
Rx	1.294	0.422	3.07	0.002	3.648	1.595	8.343
log WBC	1.604	0.329	4.87	0.000	4.975	2.609	9.486
No. of subjects =	= 42	Log likelil	nood =	-72.280	Prob >	chi2 = 0.0	0000
Jol 3:							
	Coef	Std. Err.	Z	p > z	Haz. Ratio	Cont.	Interval]
Rx	2.355	1.681			10.537	0.391	284.201
log WBC	1.803	0.117/	4.04	0.000	6.067	2.528	14.561
$Rx \ge \log WPC$	-0.342	0.520	-0.66	0.510	0.710	0.250	1.967
No. of subjects =	= 42	Log likelil	nood =	-72.066	Prob >	- chi2 = 0.0	0000

Checking for Confounding

Model 2:

	Coef.	Std. Err.	Z	p > z	Haz. Ratio	[95% Conf. Interval]
Rx	1.294	0.422	3.07	0.002	3.648	1.595 8.343
log WBC	1.604	0.329	4.87	0.000	4.975	2.609 9.486
No. of subjects = 42		Log likelihood = –72.280			Prob > chi2 = 0.0000	

- Is the treatment still a significant effect?
 - Yes; *p* < .002
- What is the best estimate for that effect?
 - $\widehat{\text{HR}} = e^{1.294} = 3.648$
 - Confidence interval does not include 1.0
- HRs are different for Rx in Model 1 (4.523) and Model 2 (3.648)
 - log WBC "explains away" part of the effect of *Rx*, so Model 2 should be used
 - Confidence interval for \widehat{HR} in Model 2 is (a little) narrower than in Model 1

Cox Proportional Hazard Model

- The hazard depends on the covariates
- $h(t, \mathbf{X}) = h_0(t)e^{\sum_{i=1}^p \beta_i X_i}$ for $\mathbf{X} = (X_1, X_2, \dots, X_p)$ as explanatory/predictor variables
 - Multiplicative contribution of each X_i ; this term is parametric
- $h_0(t)$ is the time-dependent baseline hazard, not dependent on ${f X}$
 - Its form is not specified; thus Cox model is semi-parametric
- $e^{\sum_{i=1}^{p} \beta_i X_i}$ is the adjustment for covariates, which are time-independent
 - Therefore, time-dependent hazards due to covariates make this model inappropriate
 - There is an "extended Cox model" that allows time-dependent ${\bf X}$
- Can estimate the β_i without specifying the form of $h_0(t)$
- Contrast with Weibull model, which is parametric:

•
$$h(t, \mathbf{X}) = \lambda p t^{p-1}$$
 where $\lambda = e^{\sum_{i=1}^{p} \beta_i X_i}$

•
$$h_0(t) = pt^{p-1}$$

How to Train a Cox Model?

- Cox model: $h(t, \mathbf{X}) = h_0(t)e^{\sum_{i=1}^p \beta_i X_i}$
- Estimate for our leukemia remission example \hat{i} (1) \hat{i} (1) \hat{i} (2) \hat{i} (
 - $\hat{h}(t, (X)) = \hat{h}_0(t)e^{1.294Rx + 1.604\log WBC}$
- ML estimate: maximize likelihood function
 - $L = \text{joint probability of observed data} = L(\beta)$
 - For each failure time, we compute likelihood of the data L_i

$$L = L_1 \times L_2 \times \cdots \times L_k = \prod_{j=1}^k L_j$$
 for *k* failure times

- L_i considers only subjects who fail, but censored subjects are used in computing L_j for j < i
- . Iterative solution over p parameters for $\frac{\partial \ln L}{\partial \beta_i} = 0$

	Coef.	Std.Err.	p > z	Haz. Ratio	
Rx	1.294	0.422	0.002	3.648	
log WBC	1.604	0.329	0.000	4.975	
No. of sul	ojects = 42	Log likelihood = -72.280			

What is the Cox Likelihood Function?

- Likelihood at each failure time that we see the events in the data given the estimated hazard function
 - Adjust the betas of that function to maximize the likelihood
- Simple example:

				h(t) =	$h_0(t)e^{\beta_1 SMOKH}$	$E L = L_1 \times L_2 \times L_3$
ID	TIME	STATUS	SMOKE	ID	Hazard	$L_{1} = \left[\frac{h_{0}(t)e^{\beta_{1}}}{h_{0}(t)e^{\beta_{1}} + h_{0}(t)e^{0} + h_{0}(t)e^{0} + h_{0}(t)e^{\beta_{1}}}\right]$
Barry	2	1	1	Barry	$h_0(t)e^{\beta_1}$	
Gary	3	1	0	Gary	$h_0(t)e^0$	$h_0(t)e^0$
Harry	5	0	0	Harry	$h_0(t)e^0$	$L_2 = \left[\frac{h_0(t)e^0 + h_0(t)e^0 + h_0(t)e^{\beta_1}}{h_0(t)e^0 + h_0(t)e^{\beta_1}} \right]$
Larry	8	1	1	Larry	$h_0(t)e^{\beta_1}$	
• <i>L</i> does not depend on $h_0(t)$, or <i>t</i>					$L_3 = \left[\frac{h_0(t)e^{\beta_1}}{h_0(t)e^{\beta_1}}\right]$	
 Only the order of events matters 					Γ _ β1 _ ¬	

 $L = \left[\frac{e^{\beta_1}}{e^{\beta_1} + e^0 + e^0 + e^{\beta_1}}\right]$ $\times \left[\frac{e^0}{e^0 + e^0 + e^{\beta_1}} \right] \times \left[\frac{e^{\beta_1}}{e^{\beta_1}} \right]$

Evaluation for survival modeling

 Concordance-index (also called C-statistic): look at model's ability to predict relative survival times (notation here uses y_i instead of t_i):

- Black dots are observed, red at censored; compare only
 - all pairs of observed events
 - censored events that come after observed events
- Equivalent to AUC for binary variables and no censoring

C SAIL

Taxonomy of the methods developed for survival analysis

Wang P, Li Y, Reddy CK. Machine Learning for Survival Analysis: A Survey. arXiv; 2017. Available from: <u>http://arxiv.org/abs/1708.04649</u>

Deep Cox Mixture Model

Figure 1: Deep Cox Mixtures: Representation of the individual covariates \boldsymbol{x} are generated using an encoding neural network. The output representation $\tilde{\boldsymbol{x}}$ then interacts with linear functions f and g that determine the proportional hazards within each cluster $Z \in \{1, 2, ..., K\}$ and the mixing weights $\mathbb{P}(Z|X)$ respectively. For each cluster, baseline survival rates $\boldsymbol{S}_k(t)$ are estimated non-parametrically. The final individual survival curve $S(t|\boldsymbol{x})$ is an average over the cluster specific individual survival curves weighted by the mixing probabilities $\mathbb{P}(Z|X = \boldsymbol{x})$.

Nagpal C, Yadlowsky S, Rostamzadeh N, Heller K. Deep Cox Mixtures for Survival Regression. In: Proceedings of the 6th Machine Learning for Healthcare Conference, PMLR; 2021 p. 674–708. Available from: <u>https://proceedings.mlr.press/v149/nagpal21a.html</u>

Deep Cox Mixture Model

$$\begin{split} \mathscr{L}(oldsymbol{ heta},oldsymbol{\Lambda}_k) &= \prod_{i=1}^{|\mathscr{D}|} \int_Z \left(oldsymbol{\lambda}(u_i|oldsymbol{x}_i))^{\delta_i} \, oldsymbol{S}_k(u_i|oldsymbol{x}_i) \mathbb{P}(Z=k|oldsymbol{x}_i). \end{split}$$

where, $oldsymbol{\lambda}(u_i|oldsymbol{x}_i) &= oldsymbol{\lambda}_k(u_i) \exp\left(f_k(oldsymbol{ heta},oldsymbol{x}_i)
ight), \quad oldsymbol{S}_k(u_i|oldsymbol{x}_i) = oldsymbol{S}_k(u_i)^{\exp\left(f_k(oldsymbol{ heta};oldsymbol{x}_i)
ight)}$
and, $\mathbb{P}(Z=k|X=oldsymbol{x}_i) = ext{softmax}ig(g(oldsymbol{ heta};oldsymbol{x}_i)ig)$

Nagpal C, Yadlowsky S, Rostamzadeh N, Heller K. Deep Cox Mixtures for Survival Regression. In: Proceedings of the 6th Machine Learning for Healthcare Conference, PMLR; 2021 p. 674–708. Available from: <u>https://proceedings.mlr.press/v149/nagpal21a.html</u>

Final Thoughts and References

- Strong assumption (censoring time independent of survival time) allow us to develop (relatively) simple solutions
 - But how realistic is this?
 - Can we relax this assumption?
- Recommended starting place: Kleinbaum & Klein. <u>Survival Analysis: A Self-Learning Text</u>. Springer Statistics for biology and Health, 2005
- Additional detail: Kalbfleisch & Prentice, <u>The Statistical Analysis of</u> <u>Failure Time Data</u>, Wiley 2002 [<u>MIT proxy</u>]
- Ishwaran et al., <u>Random Survival Forests</u>. The Annals of Applied Statistics, 2008
- Alaa and van der Schaar. <u>Deep multi-task gaussian processes for</u> <u>survival analysis with competing risks</u>. NeurIPS, 2017