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Proportional Hazard Models

Peter Szolovits


• based on 

• Kleinbaum DG, Klein M. Survival analysis: a self-learning text. 

2nd ed. New York, NY: Springer; 2005. Available (free) via MIT-
Springer: https://link.springer.com/book/10.1007/0-387-29150-4  
[beware typos]


• lecture by David Sontag
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https://link.springer.com/book/10.1007/0-387-29150-4


You’ve Seen Survival Models Already

• Outcome can be good (recovery from surgery) or bad (death)
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Survival and Hazard

• In absence of censoring, survival is easy to compute:

• Just fraction of subjects still “alive” at some time


•  is a random variable denoting the survival time of an individual;  
 is a specific value of 


• Survival, 

• Hazard:


• , or


• 


• Empirical survival curves  are step functions


• If instantaneous risk of death (density of S) = ,  

T T ≥ 0
t T

S(t) = P(T > t) ∈ [0,1]

h(t) = − [dS(t)/dt
S(t) ] ∈ [0,∞]

h(t) = lim
Δt→0

P(t ≤ T < t + Δt ∣ T ≥ t)
Δt

̂S(t)
f(t)

S(t) = P(T > t) = ∫
∞

u=t
f(u)du
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Parametric Hazard Functions 
(if we know something about what to expect)

• Exponential: , i.e., constant hazard

• E.g., healthy subject, with constant risk of getting run over, murdered, etc.

• ;  density function of survival function: 


• Increasing Weibull: ; 

• E.g., leukemia patient unresponsive to therapy


• Decreasing Weibull

• E.g., patient recovering from surgery


• Lognormal: ; 

• E.g., TB patient 

h(t) = λ

S(t) = e−λt f(t) = λe−λt

h(t) = λϕtϕ−1 S(t) = e−λtϕ

h(t) = f(t)/S(t) S(t) = 1 − Φ{(ln t − μ)/σ}
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Commonly used parametric survival models
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We obtain conditional models  by letting, e.g.,  𝑓(𝑡 ∣ 𝒙; 𝛽) 𝜆 = exp(𝜷 ⋅ 𝒙)

Wang P, Li Y, Reddy CK. Machine Learning for Survival Analysis: A Survey. arXiv; 2017. Available 
from: http://arxiv.org/abs/1708.04649

http://arxiv.org/abs/1708.04649


Illustrative Example of Survival Analysis

• Freireich et al. The Effect of 6-Mercaptopurine on the Duration of Steroid-Induced 
Remissions in Acute Leukemia: A Model for Evaluation of Other Potentially Useful 
Therapy. Blood, 21: 699-716, 1963

• Example from Kleinbaum DG, Klein M. Survival analysis: a self-learning text. 2nd 

ed. New York, NY: Springer; 2005

• All patients were induced into remission, 

then half were treated with 
6-Mercaptopurine to see whether it 
helped maintain remission


• Example shows the week in which each 
patient failed (or was censored, 
indicated by “+”)


• First, we consider Group 2 (placebo)

• No censored data
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Alternative Representations of the Data 
(for now, just Group 2, no censoring)

• All the placebo patients failed remission by 
23 weeks of the trial


• Subjects ordered by failure time

•  means censored,  means failed

•  means placebo,  means 

treated by 6-Mercaptopurine

• E.g., patient 32 failed remission in week 8

δ = 0 δ = 1
X = 0 X = 1
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Transform to Show How Many Patients Fail (or Are 
Censored) at Each Time Anyone Fails
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Ordered 
failure times 

tj 

# at risk 

nj

# of failures 

mj

# censored 
in [tj, tj+1) 

qj 
0 21 0 0
1 21 2 0
2 19 2 0
3 17 1 0
4 16 2 0
5 14 2 0
8 12 4 0

11 8 2 0
12 6 2 0
15 4 1 0
17 3 1 0
22 2 1 0
23 1 1 0

0
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Censoring
• Right-censoring: lost track of subject before the event occurs


• switched insurance carrier, study ended before event, moved away, withdrew 



• Left-censoring: event occurs before start of study/data collection/test 

Censoring: end of study
Censoring: lost to followup

Event occurred
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• Typical assumption: censoring is 
independent of outcome given 
covariates



How to Deal with Censored Data: Kaplan-Meier
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Ordered 
failure times 

tj 

# at risk 

nj

# of failures 

mj

# censored 
in [tj, tj+1) 

qj 

0 21 0 0

6 21 3 1

7 17 1 1



How to Deal with Censored Data: Kaplan-Meier

12

Ordered 
failure times 

tj 

# at risk 

nj

# of failures 

mj

# censored 
in [tj, tj+1) 

qj 

0 21 0 0

6 21 3 1

7 17 1 1

10 15 1 2

13 12 1 0

16 11 1 3

22 7 1 0

23 6 1 5

0



Aside: Overall Statistics Already Favor Treatment

• Ignoring censoring,

• Mean survival of placebo group = 182/21 = 8.7 weeks

• Mean survival of treatment group = 359/21 = 17.1 weeks

• The treatment group stays in remission about twice as long


• Because censored patients very likely were in remission even longer, this 
underestimates their remission duration


• Average hazard rate is number of failures / total remission days

• 21/182 for placebo = 0.115

• 9/359 for treatment = 0.025


• So, this seems like a “no brainer”


• But we really should analyze survival using what we know about censoring
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Kaplan-Meier Idea

• There is some conditional probability that a subject who has survived to time  
will survive to 


• That conditional probability can be estimated by the empirical fraction of subjects 
who survive from  to 


• But we don’t count subjects who have been censored in 


• The probability that a subject survives at least to  is then the probability that they 
survive to  times that conditional probability


•

tj−1
tj

tj−1 tj
[tj−1, tj)

tj
tj−1

̂S(tj) = ̂S(tj−1) × ̂P(T > tj ∣ T ≥ tj) =
j

∏
i=1

̂P(T > ti ∣ T ≥ ti)
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Calculating Survival for Censored Data (Kaplan-Meier)
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Ordered failure 
times 

tj 

# at risk 

nj

# of failures 

mj

# censored in 
[tj, tj+1) 

qj 

0 21 0 0 1

6 21 3 1 1 x 18/21 = .8571

7 17 1 1 .8571 x 16/17 = .8067

10 15 1 2 0.8067 x 14/15 = .7529

13 12 1 0 .7529 x 11/12 = .6902

16 11 1 3 0.6902 x 10/11 = .6275

22 7 1 0 .6275 x 6/7 = .5378

23 6 1 5 .5378 x 5/6 = .4482

0

̂S(tj)



Same Method also Works for Uncensored Data

16

Ordered 
failure 
times 

tj 

# at risk 

nj

# of failures 

mj

# censored 
in [tj, tj+1) 

qj 

fraction 
surviving

0 21 0 0 1 1
1 21 2 0 1 x 19/21 =  .9048 19/21
2 19 2 0 .9048 x 17/19 = .8095 17/21
3 17 1 0 .8095 x 16/17 = .7619 16/21
4 16 2 0 .7619 x 14/16 = .6667 14/21
5 14 2 0 .6667 x 12/14 = .5714 12/21
8 12 4 0 .5714 x 8/12 = .3810 8/21
11 8 2 0 .3810 x 6/8 = .2857 6/21
12 6 2 0 .2857 x 4/6 = .1905 4/21
15 4 1 0 .1905 x 3/4 = .1429 3/21
17 3 1 0 .1429 x 2/3 = .0952 2/21
22 2 1 0 .0952 x 1/2 = .0476 1/21
23 1 1 0 .0476 x 0/1 = 0 0/21

0

̂S(tj)



Comparison of Treatment vs. Placebo Groups
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Are Two Kaplan-Meier Curves Significantly Different? 
The Log-Rank Test

• A chi-square test using observed vs. expected 
cell counts for different categories of outcomes


• If the two curves are not different, the expected 
failure counts at each failure time should be in 
proportion to the number of patients at risk


• 


•

e1j = (
n1j

n1j + n2j
) × (m1j + m2j)

e2j = (
n2j

n1j + n2j
) × (m1j + m2j)

19
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Log-Rank Test
• 


• Arbitrarily, choose the second distribution


• Log-rank statistic LR = 


• 


• Null hypothesis : no difference between survival curves


• LR  with 1 degree of freedom under 

• For our example, using Python’s lifelines package


• , , so LR = 16.793


• ; in fact, 


• Thus,  is soundly rejected, so the treatment is effective

• Alternatives to Log-Rank test: 


• Wilcoxon, Tarone-Ware, Peto, Flemington-Harrington, …

O1 − E1 = − 10.26; O2 − E2 = 10.26

(O2 − E2)2

Var(O2 − E2)

Var(Oi − Ei) =
∑j n1jn2j(m1j + m2j)(n1j + n2j − m1j − m2j)

(n1j + n2j)2(n1j + n2j − 1)
H0

∼ χ2 H0

O2 − E2 = 10.26 Var(O2 − E2) = 6.2685
p < .0001 log2(p) = − 14.55

H0

21https://medium.com/analytics-vidhya/log-rank-test-kaplan-meier-survival-curve-python-code-3fc78da644d5



Dealing with Covariates

• So far, groups determined by a single factor; 
e.g., treatment vs. placebo


• Outcomes often depend on factors: 
demographics, comorbidities, lab data, 
geography, etc.


• How do we deal with these additional factors?

• Confounding: 


• Interaction:  for synergistic
X2

X3 = X1 × X2

22



Similar to Linear Regression Models
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Checking for Confounding

• Is the treatment still a significant effect?

• Yes; 


• What is the best estimate for that effect?

• 

• Confidence interval does not include 1.0


• s are different for Rx in Model 1 (4.523) and Model 2 (3.648)

• log WBC “explains away” part of the effect of Rx, so Model 2 should be used

• Confidence interval for  in Model 2 is (a little) narrower than in Model 1

p < .002

̂HR = e1.294 = 3.648

̂HR

̂HR

24
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Cox Proportional Hazard Model

• The hazard depends on the covariates


•  for  as explanatory/predictor variables


• Multiplicative contribution of each ; this term is parametric


•  is the time-dependent baseline hazard, not dependent on 

• Its form is not specified; thus Cox model is semi-parametric


•  is the adjustment for covariates, which are time-independent

• Therefore, time-dependent hazards due to covariates make this model 

inappropriate

• There is an “extended Cox model” that allows time-dependent 


• Can estimate the  without specifying the form of 

• Contrast with Weibull model, which is parametric:


•  where 

•

h(t, X) = h0(t)e
∑p

i=1 βiXi X = (X1, X2, …, Xp)
Xi

h0(t) X

e ∑p
i=1 βiXi

X
βi h0(t)

h(t, X) = λptp−1 λ = e ∑p
i=1 βiXi

h0(t) = ptp−1
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How to Train a Cox Model?

• Cox model: 

• Estimate for our leukemia remission example


• 

• ML estimate: maximize likelihood function 


•  = joint probability of observed data = 

• For each failure time, we compute likelihood of the data 


 for  failure times


•  considers only subjects who fail, but censored subjects are used in computing 
 for 


• Iterative solution over  parameters for 

h(t, X) = h0(t)e
∑p

i=1 βiXi

ĥ(t, (X)) = ĥ0(t)e1.294 Rx+1.604 logWBC

L L(β)
Li

L = L1 × L2 × ⋯ × Lk =
k

∏
j=1

Lj k

Li
Lj j < i

p
∂ ln L

∂βi
= 0

27



What is the Cox Likelihood Function?

• Likelihood at each failure time that we see the events in the data given the estimated 
hazard function

• Adjust the betas of that function to maximize the likelihood


• Simple example:


   

•  does not depend on , or 

• Only the order of events matters

L h0(t) t

28



Evaluation for survival modeling

• Concordance-index (also called C-statistic): look at model’s ability to predict relative 
survival times (notation here uses  instead of ):


 where  and 




• Black dots are observed, red at censored; compare only


• all pairs of observed events

• censored events that come after observed events


• Equivalent to AUC for binary variables and no censoring

yi ti

̂c =
1
nc ∑

i:di=1
∑
ti<tj

1[ ̂yi < ̂yj] nc = ∑
i:di=1

∑
ti<tj

1 ̂yi = 𝔼f(T∣xi;β)[T ]
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Wang P, Li Y, Reddy CK. Machine Learning for Survival Analysis: A Survey. arXiv; 2017. Available 
from: http://arxiv.org/abs/1708.04649

http://arxiv.org/abs/1708.04649


Taxonomy of the 
methods 
developed for 
survival analysis 
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Wang P, Li Y, Reddy CK. Machine Learning for 
Survival Analysis: A Survey. arXiv; 2017. Available 
from: http://arxiv.org/abs/1708.04649

http://arxiv.org/abs/1708.04649


Deep Cox Mixture Model
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Nagpal C, Yadlowsky S, Rostamzadeh N, Heller K. Deep Cox Mixtures for Survival Regression. In: Proceedings of the 6th 
Machine Learning for Healthcare Conference, PMLR; 2021 p. 674–708. Available from: https://proceedings.mlr.press/v149/
nagpal21a.html

https://proceedings.mlr.press/v149/nagpal21a.html
https://proceedings.mlr.press/v149/nagpal21a.html


Deep Cox Mixture Model
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Nagpal C, Yadlowsky S, Rostamzadeh N, Heller K. Deep Cox Mixtures for Survival Regression. In: Proceedings of the 6th 
Machine Learning for Healthcare Conference, PMLR; 2021 p. 674–708. Available from: https://proceedings.mlr.press/v149/
nagpal21a.html

https://proceedings.mlr.press/v149/nagpal21a.html
https://proceedings.mlr.press/v149/nagpal21a.html


Final Thoughts and References

• Strong assump6on (censoring 6me independent of survival 6me) allow us to 
develop (rela6vely) simple solu6ons 
• But how realis6c is this? 
• Can we relax this assump6on? 

• Recommended star.ng place: Kleinbaum & Klein. Survival Analysis: A Self-
Learning Text. Springer Sta6s6cs for biology and Health, 2005 

• Addi.onal detail:  Kalbfleisch & Pren6ce, The Sta6s6cal Analysis of 
Failure Time Data, Wiley 2002 [MIT proxy] 

• Ishwaran et al., Random Survival Forests. The Annals of Applied 
Statistics, 2008


• Alaa and van der Schaar. Deep multi-task gaussian processes for 
survival analysis with competing risks. NeurIPS, 2017
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https://projecteuclid.org/journals/annals-of-applied-statistics/volume-2/issue-3/Random-survival-forests/10.1214/08-AOAS169.pdf
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