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Outline for today’s class

1. Using ML for risk stratification (continued)

— Alternative framing: survival modeling
— Evaluation: metrics, interpretability
2. Physiological time-series: application to
detecting irregular heart arrythmias
— Small data approach
— Big data approach
— Current research



Reminder: (One) framing for ML as binary
classification

Feature

' Derive outcome
construction

| | |
2009 2010 2011 2012 2013

Exclusion criteria:

« Diabetes diagnosis (according to our rule) observed prior to
January 1, 2009

« Less than 6 months of enrollment in feature construction
window

« Member left health insurance prior to Jan. 1, 2011

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]



Alternative framing: ML with survival

models
« Regression (i.e., predict time to event) with right-
censored data

Event occurrence
‘/ e.g., death, college graduation, diabetes onset
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[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]



Alternative framing: ML with survival
models

« Advantages over window-based classification

— More data for training (fewer exclusions)
— Allows for more fine-grained metrics in evaluation

« Why not just minimize mean-squared error with
observed events using least squares linear regression?

— Time-to-event is non-negative (and non-Gaussian)

— Naively removed censored events could introduce substantial
bias
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ML with survival models (more on this later

in the semester)
f(t) = P(t) be the probability of death at time t

Learn (conditional) survival function: S(t) = P(T > t) = [ f(x)dx
1

t
F(t) or proportion dead
0.8

f{t) or death density

e
o

5(t) or proportion surviving to ¢
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Fig. 2: Relationship among different entities f(t), F(f) and S(t).

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]
[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]



Outline for today’s class

1. Using ML for risk stratification

— Alternative framing: survival modeling
— Evaluation: metrics, interpretability
2. Physiological time-series: application to
detecting irregular heart arrythmias
— Small data approach
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“Table 1”7 — who did this study include?

Table 1. Subjects' characteristics of the cohort included in training and validation

Characteristic Total population Population with diabetes
Average age (SD) 47.69 (17.1) 58.57 (13.3)
Female ratio 55% 51%

Average length of data in years (SD) 3.3(1.0) 3.4(1.0)
Hypertension (ICD9 401) 30.2% 62%
Hypercholesterolemia (ICD9 272.0) 18.7% 33.6%

SD, standard deviation.

But what about... Past hospitalizations? Race/ethnicity? Lab values?
Radiology results?

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]



“Table 1”, better example

Table 1. Characteristics of 47 119 Hospitalized Patients

Characteristic Finding”

Age, mean (SE), y 60.9 (18.15)
Female 23952 (50.8)
Black/African American race 5258 (11.2)
Hispanic/Latino ethnicity 3667 (7.8)
Medicaid 8303 (17.6)
Heart failure in problem list 3630 (7.7)
Prior diagnaosis of any heart failure 2985 (6.3)
Prior diagnaosis of primary heart failure 615 (1.3)

Prior echocardiography
Loop diuretics
Inpatient
Outpatient
ACE inhibitors or ARB
Inpatient
Qutpatient
B-Blockers
Inpatient
Outpatient
Heart failure with B-blockers
Inpatient

Outpatient

15938 (33.8)

6837 (14.5)
6427 (13.6)

13166 (27.9)
14797 (31.4)

19748 (41.9)
14870 (31.6)

6310 (13.4)
8644 (18.4)

Blood pressure, mean (SE), mm Hg
Systolic
Diastolic
Creatinine, mean (SE), mg/dL
Sodium, mean (SE), mEg/L
BNP, pg/mL
<500
500-999
1000-4999
5000-9999
10000-19 999
220000
Blood pressure
Any systolic
Any diastolic
Any creatinine
Any sodium
Any BNP
Problem list
Acute MI
Atherosclerosis
Final discharge diagnosis of heart failure
Any diagnosis

Principal diagnosis

123.3 (18.3)
67.8 (12.8)
1.01(1.1)

138.4 (3.7)

1721 (23.4)
878 (12.0)
2498 (34.0)
931 (12.7)
652 (8.9)
667 (9.1)

46982 (99.7)
46982 (99.7)
46 598 (98.9)
46613 (98.9)

7347 (15.6)

952 (2.0)
6147 (13.0)

6549 (13.9)
1214 (2.6)

[Blecker et al., Comparison of Approaches for Heart Failure Case Identification From Electronic Health
Record Data, JAMA Cardiology 2016]



Logistic regression with L1 regularization

« Penalizing the L1 norm of the weight vector
leads to sparse (read: many 0’s) solutions for w.

mmZE Ly Yiy W —|_)‘HwH1 Hu_jHl :Z’wd’
d

instead of

« Let’s understand why...



Logistic regression with L1 regularization

« Penalizing the L1 norm of the weight vector
leads to sparse (read: many 0’s) solutions for w.

@ Level set of
(sum of) loss
functions: minimize
S\ Z U4, yis w)
Jwll3 =1

Using L2 norm Using L1 norm
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Logistic regression with L1 regularization

« 769 variables have non-zero weight, of >42K. Look at
most positive & most negative

- Positively weighted diagnosis codes include

Pituitary dwarfism (253.3), Hepatomegaly(789.1), Chronic Hepatitis C
(070.54), Hepatitis (573.3), Calcaneal Spur(726.73), Thyrotoxicosis without
mention of goiter(242.90), Sinoatrial Node dysfunction(427.81), Acute
frontal sinusitis (461.1 ), Hypertrophic and atrophic conditions of
skin(701.9), Irregular menstruation(626.4), ...

- Positively weighted laboratory features include

Albumin/Globulin (Increasing -Entire history), Urea nitrogen/Creatinine -
(high - Entire History), Specific gravity (Increasing, Past 2 years), Bilirubin
(high -Past 2 years), ...

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]



Interpreting high-dimensional linear models

« How do we interpret such high dimensional models...?

. A useful trick to build intuition: use higher value of A (i.e.,
more regularization) than needed

mmZE zi, i w) + AlJwl]:

« What will the effect be?

 Intuition: often many predictive yet highly correlated
features. Selects a representative set which still performs
well



How Much Regularization?

# non-0 erformance
weight P

on
Parameters \

training data

validation dat

YRR A A A

e Choice of A depends on application: how much performance are you willing
to give up for a simpler (more explainable) model?



Features selected using model learned with more L1
regularization

History of Disease

Impaired (elevated) Fasting Glucose (Code 790.21)

Top Lab Factors

Abnormal Glucose NEC (790.29)

Hemoglobin A1c /Hemoglobin.Total (High - past 2 years)

Glucose (High- Past 6 months)

Hypertension (401)

Cholesterol.In VLDL (Increasing - Past 2 years)

Obstructive Sleep Apnea (327.23)

Potassium (Low - Entire History)

Obesity (278)

Cholesterol.Total/Cholesterol.In HDL (High - Entire History)

Abnormal Blood Chemistry (790.6)

Erythrocyte mean corpuscular hemoglobin concentration -(Low -
Entire History)

Hyperlipidemia (272.4)

Eosinophils (High - Entire History)

Shortness Of Breath (786.05)

Glomerular filtration rate/1.73 sq M.Predicted (Low -Entire History)

Esophageal Reflux (530.81)

Alanine aminotransferase (High Entire History)

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]




Debugging ML setup through model
Interpretation

« Suppose a highly weighted positive feature is for “injection
of aflibercept”, a treatment for diabetic macular edema.
What could we infer?

« Suppose we see many features for flu vaccines with high
positive and negative weights. Looking up the NDC code for
one of them, we see it is “influenza A virus A/Hong Kong/
4801/2014 (H3N2) antigen 0.03 MG”. What could we infer?

« Note, these would have been much harder to diagnose
using the deep model



Receiver-operator characteristic curve
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Comparison with the deep models

We consider three prediction tasks. Over a horizon of 3 to 9 months into the future, predict:

S

End of Life Surgical Likelihood of
Procedures AR
(EOL) (Surgery) Hospitalization
gery (LoH)

Evaluate using de-identified dataset of 120K Medicare
Advantage members

Kodialam et al., Deep Contextual Clinical Prediction with Reverse Distillation, AAAl 21



ML methods that we compare

« SARD (Kodialam et al. 2021)

« BEHRT (Li et al. 2020): another transformer-based
neural network for claims data

« RETAIN (Choi et al. 2016): a recurrent neural network
designed with interpretability in mind

« Windowed linear model (Razavian et al. 2015)

Kodialam et al., Deep Contextual Clinical Prediction with Reverse Distillation, AAAl 21



Results on the 3 prediction tasks

AUC-ROC scores on test set

Task Name Fol Surgery  LoH
Model

Li-reg. logistic regression [Razavian et

a1, 2015] 83.4 79.2 73.1
RETAIN [Choi et al. 2016] 82.2 79.8 72.5
BEHRT [Li et al. 2020] 83.1 80.3 71.2
SARD 85.6 83.1 74.3

SARD uses “reverse distillation” (RD) for pre-training (see Kodialam et al. 21)

Kodialam et al., Deep Contextual Clinical Prediction with Reverse Distillation, AAAl 21



Closing reflections for risk stratification

« How can we build models that work with multi-
modal data?
— Multiple choices for neural network architectures
— Will often be missing one or more modalities

« How do we choose which target to predict? Has
implications for health equity

« Whatis a “good” result? Depends on the use case —
high PPV for targeting interventions, high NPV
(negative predictive value) for screening
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Detecting atrial fibrillation

AEAVRRRRE
LN
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o
b .

AliveCore ECG
device

ECG = electrocardiogram



Detecting atrial fibrillation

10:09

< Back ECG Detail

Sinus Rhythm

Aug 4, 2019 at 10:09 AM

¥ 71BPM Average

This ECG does not show signs of atrial
fibrillation.

Export a PDF for Your Doctor

If you believe you're having a heart attack or a medical
emergency, call emergency services.

Apple Watch

Start Time
Aug 4, 2019 at 10:09:26 AM

Summary Browse




What type of heart rhythm?
A Os——

Normal rhythm

Amplitude (mV)

AF rhythm

Amplitude (mV)
(] —

Other rhythm

Amplitude (mV)

Noisy recording

Amplitude (mV)
h o

1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Time (s)

[Clifford, Liu, Moody, Mark. PhysioNet Computing in Cardiology Challenge 2017]



R-R interval
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Traditional approach

Preprocessing Stage

FEEmEEmm—— : :
| |
ecg | + Linear | | Nonlinear |
——» | Filtering | | Filtering | >
x(n) | o |

g
g

Decision Stage

2. Common structure of the QRS detectors.

[Kohler, Hennig, Orglmeister. The Principles of Software QRS Detection, IEEE

Engineering in Medicine & Biology, 2002]




Feature Signal
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Time Points Where a Peak Is Detected

3. Peak detector proposed in [41].

[Kohler, Hennig, Orglmeister. The Principles of Software QRS Detection, IEEE
Engineering in Medicine & Biology, 2002]
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Fig. 1 Time series showing RR intervals from subject 202 from
MIT-BIH arvhvthmia database. (——) Assessment of atrial
fibrillation (AF) or non-atrial fibrillation (N) as reported in
database

[Tateno & Glass, Automatic detection of atrial fibrillation using the coefficient of variation and density
histograms of RR and ARR intervals. MBEC, 2001]



COMPUTERS AND BIOMEDICAL RESEARCH 4, 385-392 (1970)

Cardiac Arrhythmia Classification:
A Heart-Beat Interval-Markov Chain Approach *

Wi GERSCH,t Davio M. Epbpy.i ano Evcene DONG. JrS§

Division of Cardiovascular Surgery, Department of Surgery, Stanford University
Medical Center, Stanford, California 94305

Received March 2, 1970

A sequence of heart-beat intervals (R-R - wave intervals) is automatically trans-
formed into a three-symbol Markov chain sequence. For convenience the symbols
used may be thought of as S-R-L for short, regular, and long heart-beat intervals,
respectively. The probability that the observed sequence was generated by each of a
set of prototype models characteristic of different cardiac disorders is computed.
That prototype corresponding 1o the largest probability of observed sequence gener-
ation is designated as the disorder. This procedure is the equivalent of Kullback's
classification by the minimization of directed divergence procedure,

In a preliminary experiment primarily using data sequences of 100 heart-beat
intervals, 35 different known cases were automatically classified into six cardiac
disorders  without error. The disorders considered were atrjal fibrillattion, APC and
VPC, bigeminy, sinus tachycardia with occasional bigeminy. sinus tachycardia,
and  ventncular  tachycardia.

An automatic procedure to classify cardiac arrhythmias using a Markov chain
interpretation of heart-beat interval data is reported. A sequence of heart-beat



Proceedings Computers in Cardiology (1991)

Detection of Atrial Fibrillation Using Artificial Neural Networks

SG Artis, RG Mark, GB Moody

Harvard-MIT
Division of Health Sciences and Technology, Cambridge, MA

Abstract

Artificial neural networks (ANNs) were used as pat-
tern detectors to detect atrial fibrillation (AF) in the
MIT-BIH Arrhythmia Database. ECG data was repre-
sented using generalized interval transition matrices, as
in Markov model AF detectors[1]. A training file was
developed, using these transition matrices, for a back-
propagation ANN. This file consisted of approzimately
15 minutes each of AF and non-AF data. The ANN
was succesfully trained using this data. Three standard
databases were used Lo test network performance. Post-
processing of the ANN ouipul yielded an AF sensitivily
of 92.86% and an AF positive predictive accuracy of
92.34%.

1 Introduction

~ " 1 " . ] ] -~ 2 - -1

on R-R interval sequences using a variety of statistical
methods [1] but there is room for improvement in these
techniques.

Pattern classifiers exist in many forms, and artificial
neural networks (ANNs) represent an important sub-
set of these classifiers. ANNs are attractive for solving
pattern recognition problems because few assumptions
about the underlying data need to be made. The task
of the operator of an ANN is to separate the data into
subsets. The network will be able classify these sub-
sets according to type as long as they are distinct. Neun-
ral network training requires appropriate training data,
pre-processing and post-processing algorithms, an ap-
propriate network topology, and a training algorithm,
as well as evaluation databases. This document will
present the design and evaluation of a technique which
detects AF in the presence of other cardiac arrhythmiss
using & backpropagation artificial neural network.



Winning approach in 2017 Physionet

challenge
 Training data: 8500 ECGs

« Best algorithms use a combination of expert-derived

features and machine learning

Rhythm level
Interpretation

\ /\
Conduction level \ ‘.' Vi
Interpretation '|| [" /\ - '.\ f\\/\/\fv\’v\
LR \RRRI|

Initial evidence

[Teijeiro, Garcia, Castro, Felix. arXiv:1802.05998, 2018]




Table 1: Set of features used to train the global classifier

tSR: Proportion of the record length interpreted as
a regular rhythm (Normal rhythm, tachycardia or
bradycardia),

tib: Number of milliseconds from the beginning of the
record to the first interpreted heartbeat.

tOR: Number of milliseconds interpreted as a non-regular
rhythm.

longTch: Longest period of time with heart rate over
100bpm.

RR: Median RR interval of regular rhythms.

RRd_std: Standard deviation of the instant RR variation.

RRd: Median Absolute Deviation (MAD) of the RR
interval in regular rhythms,

MRRd: Max. absolute variation of the RR interval in
regular rhythms.

RR_MIrr: Max. RR irregularity measure.

RR_Irr: Median RR irregularity measure.

PNN{10,50,100}: Global PNNx measures,

o_PNNS0: PNN50 of non-regular rhythms.

mRR: Min. RR interval of regular rhythms.

o_mRR: Min. RR interval of non-regular rhythms.

n_nP: Proportion of heartbeats with detected P-wave
inside regular rhythms.

n_aT: Median of the amplitude of the T waves inside
regular rhythms.

n_PR: Median PR duration inside regular rhythms,

Psmooth: Median of the ratio between the standard
deviation and the mean value of P-waves' derivative
signal.

Pdistd: MAD of the measure given by the P wave
delineation method.

MPdist: Max. of the measure given by the P wave
delineation method.

prof: Profile of the full signal.

pw_profd: MAD of pw_prof.

xcorr: Median of the maximum cross-correlation
between QQRS complexes interpreted in regular rhythms.

o_xcorr: Median of the maximum cross-correlation
between QRS complexes interpreted in non-regular
rhythms.

PRd: Global MAD of the PR durations,

QT: Median of the corrected QT measure,

TP: Median of the prevailing frequency in the TP
intervals.

TPfreq: Median of the frequency entropy in the TP

intervals.

pu_prof: Profile measure of the signal in the P-wave area.

nT: Proportion of QRS complexes with detected T waves.

n_Txcorr: Median of the maximum cross-correlation
between T-waves inside regular rhythms.

n_Pxcorr: Median of the maximum cross-correlation
between P-waves inside regular rhythms.

baseline: Profile of the baseline in regular rhythms. o_baseline: Profile of the baseline in non-regular
rhythms.
wORS: Proportion of wide QRS complexes (duration | wQRS_xc: Median of the maximum cross-correlation

longer than 110ms).

between wide QRS complexes.

WQRS_prof: MNedian of the signal profile in the 300ms
before each wide QRS complex.

w_PR: Proportion of heartbeats with long PR interval
(longer than 210 ms).

x_xc: Median of the maximum cross-correlation between
ectopic beats.

x_rrel: Median of the ratio between the previous and
next RR intervals for each ectopic beat.

[Teijeiro, Garcia, Castro, Felix. arXiv:1802.05998, 2018]




Not enough data for deep learning?
Wrong architectures?

“However, the fact that a standard random
forest with well chosen features performed as
well as more complex approaches, indicates
that perhaps a set of 8,528 training patterns
was nhot enough to give the more complex
approaches an advantage. With so many
parameters and hyperparameters to tune, the
search space can be enormous and significant
overtraining was seen...”

[Clifford et al. AF Classification from a Short Single Lead ECG Recording: the
PhysioNet/Computing in Cardiology Challenge, Computing in Cardiology 2017]



C | & Secure | https://stanfordmligroup.github.io/projects/ecg/ Q w2

Stanford ML Group

Cardiologist-Level Arrhythmia Detection
With Convolutional Neural Networks

Pranav Rajpurkar®, Awni Hannun*, Masoumeh Haghpanahi, Codie Bourn,
and Andrew Ng

A collaboration between Stanford University and iRhythm Technologies

We develop a model which can diagnose SN
irreqular heart rhythms, also known as
arrhythmias, from single-lead ECG signals
better than a cardiologist.

Key to exceeding expert performance is a deep convolutional
network which can map a sequence of ECG samples to a sequence
of arrhythmia annotations along with a novel dataset two orders of
magnitude larger than previous datasets of its kind.

———N i,

[Rajpurkar et al., arXiv:1707.01836, 2017; Hannun et al. Nature Medicine ‘19]



Differences with previous work

« Sensor is a Zio patch — conceivably much less noisy:

« ~90K ECG records annotated (from ~50K patients)

« ldentify 12 heart arrhythmias, sinus rhythm and
noise for a total of 14 output classes



Train + Val Test
Class Description Example Patients Patients
Atrial Fibrilla- [ Il
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Train + Val Test

Class Description Example Patients Patients
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conv

Deep convolutional

BN

network

 1-D signal sampled at 200Hz, =
labeled at 1 sec intervals

« 34 layers :

« Shortcut connections (ala o
residual networks) with max- o
pooling -

« Subsampled every other layer (28
in total) !

RelU

dense

[Rajpurkar et al., arXiv:1707.01836, 2017; Nature Medicine ‘19] <~ Output

Softmax



Example of 1D convolution

=<1,0,1>*<2,3,1>=1*2 + 0*3 + 1*1 = 3.

mmmu
Filter PRmERIEI
C N NP O N COME NN 't

Output

‘ ’ Stride=1
+=1" "=~ (Not showing
padding)

4




Evaluation: beat-level (‘Seq’) vs. patient-level (‘Set’)

Seq Sct
Model Cardiol. Model Cardiol.

Class-level F1 Score

AFIB 0.604 0.515 0.667 0.544
AFL 0.687 0.635 0.679 0.646
AVB . TYPE2 0.689 0.535 0.656 0.529
BIGEMINY 0.897 (0.837 0.870 (0.849
CHB 0.843 0.701 0.852 (.685
EAR 0.519 0.476 0.571 0.529
IVR 0.761 0.632 0.774 0.720
JUNCTIONAL 0.670 0.684 0.783 0.674
NOISE 0.823 0.768 0.704 0.689
SINUS 0.879 (.847 0.939 0.907
SVT 0.477 ().449 0.658 0.556
TRIGEMINY 0.908 (0.843 0.870 0.816
VT 0.506 0.566 0.694 0.769

WENCKEBACH 0.709 0.593 0.806 0.736

7o 2 _ 4 precision - recall tp Recall = sensitivity
' recall + precision—! precision +recall  tp 4 %(fp + fn) Precision = PPV




True label

Evaluation: confusion matrix
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1. Using ML for risk stratification

— Alternative framing: survival modeling
— Evaluation: metrics, interpretability
2. Physiological time-series: application to
detecting irregular heart arrythmias
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Predicting 1-year mortality using
12-lead ECGs

>2 million ECGs from 500k “Table 1"

patient S seen at Geisi nger N T
(in Pennsylvania) over 30 &+ o S S
years o e —
Comparison of predictive = — — —
performance (AUC): . leadV2 ) Lead V3
' Patient
— .876—Deep model ECG + .\ - with
age, gender o anterior
. - 04 STEMI
— .86 — XGBoost using ECG o - who
-1.0 :
measures + age, gender Bl B oaf 11 died
.« ge within 1
— .816 - Charlson C0m0rbldlty Gradient-CAM (Selvaraju et al., IICV ‘19) year
index

[Figures from: Raghunath et al., Prediction of mortality from 12-lead electro-cardiogram voltage
data using a deep neural network, Nature Medicine 2020.

For related work, see also: Ribeiro et al., Automatic diagnosis of the 12-lead ECG using a deep
neural network, Nature Communications 2020]



Can we ‘push’ deep networks to discover
new features?

Feature
Extraction

HSIC §

Ax

LOSS

+ G e

Feature Set

Accuracy  F1

RR feature set 93.9% 0.91
P-Wave feature set R7.3% 0.86
All feature set 95.5% 0.95
Model Accuracy F1  Avg. R? (Independence) Rep2Label Accuracy
Baseline Model 89.8% 0.90 (0.51, 0.1) 94%
RR Model 94.5% 0.94 0.018 2T%
P-Wave Model 89.7% 0.90 -0.082 58%
0.7 p——
06 P v Windon
Zos S o Class activation maps
Zoa (Zhou et al. 2016)
=PP /\’ followed by alignment
o2 S\ /-/ .. &averaging
0.1

-600 -400 -200 O 200 400 600
Time [ms])

(d) RR constrained

[Beer, Eini-Porat, Goodfellow, Eytan, Shalit. Using deep networks for scientific discovery
in physiological signals, Machine Learning in Healthcare 2020]



Datasets

Do models generalize across institutions?

Validation
Set

Hidden
CPSC Set

Hidden
G1l2EC Set

Hidden
Undisclosed
Set

Test Set
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[Alday et al., Classification of 12-lead ECGs: The
PhysioNet/Computing in Cardiology Challenge 2020,
Physiological Measurement, 2020]
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Fig. 4: Effect of tansfer leaming from PTB-XL to
ICBEB2018 upon varying the size of the ICBEB2018 training
sel.

[Strodthoff, Wagner, Schaeffter, Samek. Deep learning for
ECG Analysis: Benchmarks and Insights from PTB-XL, IEEE
Journal of Biomedical and Health Informatics, 2020]



Obermeyer Talk last week

« "Machine Learning About Sudden Cardiac Death from ECG Wa'vefrms”
« 300K people/year (US) drop dead
« Wearable monitors can detect arrhythmias

« Fancy implantable cardioversion devices can shock heart to restore
rhythm

« False negatives: many don’t get this treatment
- False positives: 73% of these devices never fire
« Predict risk from waveform; stratify to high and low risk groups
« Used best algorithms from Physionet Challenge
« 64-layer ResNet, AUC>90%
« Will patient die? If so, from SCD?



Predicting Risk of Cardiac Sudden Death

Swedish Data (2014-18)
« 401,765 ECGs from 119,724 patients

. Every patient linked to EHR data, death certificates (if

any)
0.7% have 1-yr SCD (14.8% of all deaths)

Best current predictor: ejection fraction
« 83.3% of SCD have EF<35%

« but, 75.2% of SCD have no EF recorded; so, only 20% of
SCD appear high-risk
Train: 30%, Validation: 30%, Test: 40%



« Beyond the AUC
« High risk = doctor inserts defibrillator (4.4%)
« These account for ~24.5% of SCD
« |Is predictable risk preventable?
« Proximal cause of SCD: VF/VT
« Happily, model worked well in Taiwan!
« Despite different definition of SCD, different population

« Matched case-control study, Swedish model can
distinguish cases and controls, with AUC = 0.804 (vs.
0.846)

« Adding clinical variables made transferred model AUC =
0.615 (')

« How to incorporate into clinical workflow

https://www.broadinstitute.org/videos/ewsc-machine-learning-about-sudden-cardiac-death-
ecg-waveforms-ziad-obermeyer



Closing reflections for ML on
physiological data

« We are often in realm of “not enough data”

— Modeling and incorporating prior knowledge can
be critical to good performance

 Is machine learning actually picking up new
features?

« How can we improve the interpretability and
generalizability of the learned models?



