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Outline for today’s class

1. Using ML for risk stratification (continued) 
– Alternative framing: survival modeling 

– Evaluation: metrics, interpretability 

2. Physiological time-series: application to 
detecting irregular heart arrythmias 
– Small data approach 

– Big data approach 

– Current research 



Reminder: (One) framing for ML as binary 
classification

2009 2010 2011 2012 2013

Feature 
construction Derive outcome

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]

Exclusion criteria: 
• Diabetes diagnosis (according to our rule) observed prior to 

January 1, 2009 

• Less than 6 months of enrollment in feature construction 
window 

• Member left health insurance prior to Jan. 1, 2011



Alternative framing: ML with survival 
models

• Regression (i.e., predict time to event) with right-
censored data

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]

Event occurrence 
e.g., death, college graduation, diabetes onset

Censoring

T



Alternative framing: ML with survival 
models

• Advantages over window-based classification 
– More data for training (fewer exclusions) 
– Allows for more fine-grained metrics in evaluation 

• Why not just minimize mean-squared error with 
observed events using least squares linear regression? 
– Time-to-event is non-negative (and non-Gaussian) 
– Naively removed censored events could introduce substantial 

bias
Event occurrence

Censoring



ML with survival models (more on this later 
in the semester)

• f(t) = P(t) be the probability of death at time t 

• Learn (conditional) survival function: S(t) = P(T > t) = ∫
∞

t
f(x)dx

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]
[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]



Outline for today’s class

1. Using ML for risk stratification 
– Alternative framing: survival modeling 

– Evaluation: metrics, interpretability 

2. Physiological time-series: application to 
detecting irregular heart arrythmias 
– Small data approach 

– Big data approach 

– Current research 



“Table 1” – who did this study include?

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]

But what about… Past hospitalizations? Race/ethnicity? Lab values? 
Radiology results?



“Table 1”, better example

[Blecker et al., Comparison of Approaches for Heart Failure Case Identification From Electronic Health 
Record Data, JAMA Cardiology 2016]



Logistic regression with L1 regularization

• Penalizing the L1 norm of the weight vector 
leads to sparse (read: many 0’s) solutions for w. 

 

• Let’s understand why…

instead of



• Penalizing the L1 norm of the weight vector 
leads to sparse (read: many 0’s) solutions for w. 

• Why? Level set of  
(sum of) loss 
functions: minimize 

Using L1 normUsing L2 norm

Logistic regression with L1 regularization
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• 769 variables have non-zero weight, of >42K. Look at 
most positive & most negative 

• Positively weighted diagnosis codes include 
 
Pituitary dwarfism (253.3), Hepatomegaly(789.1), Chronic Hepatitis C 
(070.54), Hepatitis (573.3), Calcaneal Spur(726.73), Thyrotoxicosis without 
mention of goiter(242.90), Sinoatrial Node dysfunction(427.81), Acute 
frontal sinusitis (461.1 ), Hypertrophic and atrophic conditions of 
skin(701.9), Irregular menstruation(626.4), … 

• Positively weighted laboratory features include 
 
Albumin/Globulin (Increasing -Entire history), Urea nitrogen/Creatinine -
(high - Entire History), Specific gravity (Increasing, Past 2 years), Bilirubin 
(high -Past 2 years), …

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]

Logistic regression with L1 regularization



Interpreting high-dimensional linear models

• How do we interpret such high dimensional models…? 

• A useful trick to build intuition: use higher value of  (i.e., 
more regularization) than needed 

• What will the effect be? 
• Intuition: often many predictive yet highly correlated 

features. Selects a representative set which still performs 
well

𝜆



How Much Regularization?

• Choice of  depends on application: how much performance are you willing  
to give up for a simpler (more explainable) model?

λ



Features selected using model learned with more L1 
regularization

History of Disease
Impaired (elevated) Fasting Glucose (Code 790.21)

Abnormal Glucose NEC (790.29)

Hypertension (401)

Obstructive Sleep Apnea (327.23)

Obesity (278)

Abnormal Blood Chemistry (790.6)

Hyperlipidemia (272.4)

Shortness Of Breath (786.05)

Esophageal Reflux (530.81)

Top Lab Factors
Hemoglobin A1c /Hemoglobin.Total (High - past 2 years)

Glucose (High- Past 6 months)

Cholesterol.In VLDL (Increasing - Past 2 years)  

Potassium (Low  - Entire History)

Cholesterol.Total/Cholesterol.In HDL (High  - Entire History)
Erythrocyte mean corpuscular hemoglobin concentration -(Low - 
Entire History) 
Eosinophils (High  - Entire History)

Glomerular filtration rate/1.73 sq M.Predicted (Low -Entire History)

Alanine aminotransferase (High  Entire History)

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]



Debugging ML setup through model 
interpretation

• Suppose a highly weighted positive feature is for “injection 
of aflibercept”, a treatment for diabetic macular edema. 
What could we infer? 

• Suppose we see many features for flu vaccines with high 
positive and negative weights. Looking up the NDC code for 
one of them, we see it is “influenza A virus A/Hong Kong/
4801/2014 (H3N2) antigen 0.03 MG”. What could we infer? 

• Note, these would have been much harder to diagnose 
using the deep model



Receiver-operator characteristic curve

Full model  AUC=0.78
Traditional risk factors 
AUC = 0.74

False positive rate

True 
positive 
rate

Random AUC = 0.5

Diabetes 
1-year gap

Recall the 
23andme results:



Comparison with the deep models

We consider three prediction tasks. Over a horizon of 3 to 9 months into the future, predict:

End of Life

(EOL)

Surgical 
Procedures


(Surgery)
Likelihood of 

Hospitalization

(LoH)

Evaluate using de-identified dataset of ~120K Medicare 
Advantage members

Kodialam et al., Deep Contextual Clinical Prediction with Reverse Distillation, AAAI ‘21



ML methods that we compare

• SARD (Kodialam et al. 2021) 

• BEHRT (Li et al. 2020): another transformer-based 
neural network for claims data 

• RETAIN (Choi et al. 2016): a recurrent neural network 
designed with interpretability in mind 

• Windowed linear model (Razavian et al. 2015)

Kodialam et al., Deep Contextual Clinical Prediction with Reverse Distillation, AAAI ‘21



Results on the 3 prediction tasks

AUC-ROC scores on test set 

SARD uses “reverse distillation” (RD) for pre-training (see Kodialam et al. ‘21) 

Kodialam et al., Deep Contextual Clinical Prediction with Reverse Distillation, AAAI ‘21



Closing reflections for risk stratification

• How can we build models that work with multi-
modal data? 
– Multiple choices for neural network architectures 

– Will often be missing one or more modalities 

• How do we choose which target to predict? Has 
implications for health equity 

• What is a “good” result? Depends on the use case – 
high PPV for targeting interventions, high NPV 
(negative predictive value) for screening
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1. Using ML for risk stratification 
– Alternative framing: survival modeling 

– Evaluation: metrics, interpretability 
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Detecting atrial fibrillation

AliveCore ECG 
device 
 
ECG = electrocardiogram



Detecting atrial fibrillation

Apple Watch



What type of heart rhythm?
Normal rhythm

AF rhythm

Other rhythm

Noisy recording

[Clifford, Liu, Moody, Mark. PhysioNet Computing in Cardiology Challenge 2017]





[Kohler, Hennig, Orglmeister. The Principles of Software QRS Detection, IEEE 
Engineering in Medicine & Biology, 2002]

Traditional approach



[Kohler, Hennig, Orglmeister. The Principles of Software QRS Detection, IEEE 
Engineering in Medicine & Biology, 2002]



[Tateno & Glass, Automatic detection of atrial fibrillation using the coefficient of variation and density 
histograms of RR and ΔRR intervals. MBEC, 2001]





Proceedings Computers in Cardiology (1991)



Winning approach in 2017 Physionet 
challenge

• Training data: ~8500 ECGs 
• Best algorithms use a combination of expert-derived 

features and machine learning

[Teijeiro, Garcia, Castro, Felix. arXiv:1802.05998, 2018]



[Teijeiro, Garcia, Castro, Felix. arXiv:1802.05998, 2018]



Not enough data for deep learning? 
Wrong architectures?

“However, the fact that a standard random 
forest with well chosen features performed as 
well as more complex approaches, indicates 
that perhaps a set of 8,528 training patterns 
was not enough to give the more complex 
approaches an advantage. With so many 
parameters and hyperparameters to tune, the 
search space can be enormous and significant 
overtraining was seen…”

[Clifford et al. AF Classification from a Short Single Lead ECG Recording: the 
PhysioNet/Computing in Cardiology Challenge, Computing in Cardiology 2017]



[Rajpurkar et al., arXiv:1707.01836, 2017; Hannun et al. Nature Medicine ‘19]



Differences with previous work

• Sensor is a Zio patch – conceivably much less noisy: 

• ~90K ECG records annotated (from ~50K patients) 

• Identify 12 heart arrhythmias, sinus rhythm and 
noise for a total of 14 output classes







Deep convolutional 
network

Input

[Rajpurkar et al., arXiv:1707.01836, 2017; Nature Medicine ‘19] Output

• 1-D signal sampled at 200Hz, 
labeled at 1 sec intervals 

• 34 layers 

• Shortcut connections (ala 
residual networks) with max-
pooling 

• Subsampled every other layer (28 
in total)



Example of 1D convolution

1 0 1 1 0 1 1 0 1 1 Input

2 3 1Filter

Output3 4 5 3 4 5 3

= <1,0,1>*<2,3,1> = 1*2 + 0*3 + 1*1 = 3.

?

Stride=1 
(Not showing 
padding)



Evaluation: beat-level (‘Seq’) vs. patient-level (‘Set’)

Recall = sensitivity 
Precision = PPV



Evaluation: confusion matrix
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Predicting 1-year mortality using 
12-lead ECGs

• >2 million ECGs from 500k 
patients seen at Geisinger 
(in Pennsylvania) over 30 
years 

• Comparison of predictive 
performance (AUC): 
– .876 – Deep model ECG + 

age, gender 
– .86 – XGBoost using ECG 

measures + age, gender 
– .816 - Charlson comorbidity 

index
[Figures from: Raghunath et al., Prediction of mortality from 12-lead electro-cardiogram voltage 
data using a deep neural network, Nature Medicine 2020. 
For related work, see also: Ribeiro et al., Automatic diagnosis of the 12-lead ECG using a deep 
neural network, Nature Communications 2020]

Lead V2 Lead V3

Gradient-CAM (Selvaraju et al., IJCV ‘19)

Patient 
with 
anterior 
STEMI 
who 
died 
within 1 
year

“Table 1”



Can we ‘push’ deep networks to discover 
new features?

[Beer, Eini-Porat, Goodfellow, Eytan, Shalit. Using deep networks for scientific discovery 
in physiological signals, Machine Learning in Healthcare 2020]

Class activation maps 
(Zhou et al. 2016) 
followed by alignment 
& averaging



Do models generalize across institutions?

[Strodthoff, Wagner, Schaeffter, Samek. Deep learning for 
ECG Analysis: Benchmarks and Insights from PTB-XL, IEEE 
Journal of Biomedical and Health Informatics, 2020]

[Alday et al., Classification of 12-lead ECGs: The 
PhysioNet/Computing in Cardiology Challenge 2020, 
Physiological Measurement, 2020]



Obermeyer Talk last week

• "Machine Learning About Sudden Cardiac Death from ECG Waveforms” 

• 300K people/year (US) drop dead 

• Wearable monitors can detect arrhythmias 

• Fancy implantable cardioversion devices can shock heart to restore 
rhythm 

• False negatives: many don’t get this treatment 

• False positives: 73% of these devices never fire 

• Predict risk from waveform; stratify to high and low risk groups 

• Used best algorithms from Physionet Challenge 

• 64-layer ResNet, AUC>90% 

• Will patient die? If so, from SCD?



Predicting Risk of Cardiac Sudden Death

• Swedish Data (2014-18) 

• 401,765 ECGs from 119,724 patients 

• Every patient linked to EHR data, death certificates (if 
any) 

• 0.7% have 1-yr SCD (14.8% of all deaths) 

• Best current predictor: ejection fraction 

• 83.3% of SCD have EF≤35% 

• but, 75.2% of SCD have no EF recorded; so, only 20% of 
SCD appear high-risk 

• Train: 30%, Validation: 30%, Test: 40%



• Beyond the AUC 
• High risk ≡ doctor inserts defibrillator (4.4%) 
• These account for ~24.5% of SCD 
• Is predictable risk preventable? 

• Proximal cause of SCD: VF/VT 
• Happily, model worked well in Taiwan! 

• Despite different definition of SCD, different population 
• Matched case-control study, Swedish model can 

distinguish cases and controls, with AUC = 0.804 (vs. 
0.846) 

• Adding clinical variables made transferred model AUC = 
0.615 (!!!) 

• How to incorporate into clinical workflow

https://www.broadinstitute.org/videos/ewsc-machine-learning-about-sudden-cardiac-death-
ecg-waveforms-ziad-obermeyer



Closing reflections for ML on 
physiological data

• We are often in realm of “not enough data” 
– Modeling and incorporating prior knowledge can 

be critical to good performance 

• Is machine learning actually picking up new 
features? 

• How can we improve the interpretability and 
generalizability of the learned models?


