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Dataset shift / non-stationarity:
Models often do not generalize

UCSF What kinds of dataset shift
might this have, and why?
@U @U Imagine machine biases
Population age/health
v ‘ ' Treatment patterns
Treatment selection
Past history of treatments

Environmental factors
Socioeconomic factors

[Figure adopted from Jen Gong and Tristan Naumann]



Dataset shift / non-stationarity:
Diabetes Onset After 2009

= Observed
— Modeled

¢ Change in diagnostic criteria®

Prevalence, per 100 Persons per Year

o = N W BN (] ()] ~N (o) o
| | | | | | | | ]

— Automatically derived

labels may change meaning
Better diagnosis

Insulin/glucose biomarkers
Obesity rates

Definition of disease
Meaning of label

1980 1984 1988 1992 1996 2000 2004 2008 2012 T1D vs. T2D

Year

[Geiss LS, Wang J, Cheng VY], et al. Prevalence and Incidence Trends for Diagnosed
Diabetes Among Adults Aged 20 to 79 Years, United States, 1980-2012. JAMA, 2014.]



Dataset shift / non-stationarity:
ICD-9 to ICD-10 shift
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2000 2005 2010 2015 1-to-2 mapping

— Significance of features may change over time
(note, map from ICD10 to ICD9 isn’t 1-1)

One approach: Map each to a common vocabulary

[Figure credits: (Left) Mike Oberst, (Right) http://www.icd10codesearch.com/]



Outline for today’s class

 Examples & formalization of dataset shift
e Testing for dataset shift
* Mitigating dataset shift



Formalizing Dataset Shift

* General Task: Perform well on a “target

domain” Q

Train: Population P (e.g. MGH)
Apply: Population Q (e.g. UCSF)

* Assumptions: What is changing vs. what is
stable?

— Covariate Shift / Label Shift / more general shifts



Formalizing Dataset Shift

* General Task: Perform well on a “target
domain” Q



An Impossible Problem

Given {X;,Y;}}*, from a source domain P(X,Y),
find a model that performs well on some target
domain Q(X,Y)

min Eq[£(Y, f(X)]

Minimize the expected loss between truth Y
and prediction f(X) in domain Q

Find the function f that minimizes this

Examples:
* Pand Q are two different hospital systems Not well-posed without further assumptions
* Pisthe past, Qis the future or information about Q!



Worst-case scenario
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Worst case scenario of P<»>Q discrepancy: flip all of the labels: exactly opposite diagnosis

Easy to reason about, but we learn something about the problem

Learn: =» Need to infer relationships between distributions



Formalizing Dataset Shift

* Assumptions: What is changing vs. what is
stable?

— Covariate Shift / Label Shift / more general shifts



Example: Covariate Shift Assumption

P(X) =+ Q(X) Why might this be true? One
rationale: P(Y | X) encodes some
P(Y|X)=0Q( [X)

“causal” mechanism

Example: Risk stratification for
different patient populations

Current Health Future Health

Common assumption: distribution of future health will be the same. But doesn’t usually hold



Example: Label Shift Assumption

. . ,
P(Y) = Q(Y) Why might this be true? One
rationale: P(X | Y) encodes some

P(X | Y) — Q(X | Y) “causal” mechanism

(flip directionality from previous slide)
a Example: Diagnostic testing under
changes in disease prevalence.
Symptoms Disease

Disease informative of symptoms. Prior vs. posterior probability.
Generative model vs. data-conditional posterior-probability inference



Example: “Domain Shift”

Example: Changes in how
features are derived (e.g., ICD-9
Domain

e versus ICD-10)
(Source vs. Target) :

We can also view the domain
itself as a variable that influences

Latent Observed others
Features U Features
(Unobserved)
Note: So far, we have not
discussed how to mitigate these
shifts. In this example, more
Label information is required!

Quinonero-Candela et al., (2008). Dataset Shift in Machine Learning, MIT Press.



Example: Using causal graphs to
reason about shift

Demographics P(O | D’S) == Q(Ol D; S)

\ More fine-grained shifts can be
. reasoned about as changes in
marginal/conditional distributions

Sepsis Lab Ordered

Example: Changes in lab ordering

Vital Signs Lab Results patterns across hospitals

P(D,S,0,V,L) = P(D)P(S|D)P(V |D,S)P(0|D,S)P(L|0,S)

Example from Subbaswany et al. (2021). Evaluating Model Robustness and Stability to Dataset Shift. AISTATS



Outline for today’s class

 Examples & formalization of dataset shift
* Testing for dataset shift
* Mitigating dataset shift



Testing for dataset shift

* Shiftin p(y):

— Plot distributions (across data sets, across time)



Testing for dataset shift
e Shiftin p(y):

— “Label shift”. e.g. ‘diabetes’ now means something different

— Plot distributions (across data sets, across time)
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e Shiftin p(x) or p(x]y):

— Different: x is multidimentional

— E.g. Compare feature means =2 but could miss bi-modal vs. unimodal

— Could look for additional moments.
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Testing for dataset shift

* Shiftin p(y):
— Plot distributions (across data sets, across time)
e Shiftin p(x) or p(x]y):
— Compare feature means (repeat for each value of Y, assuming discrete)

— However: means can be identical even if two distributions are
different!

— E.g. variance, co-variance

T)\\)s) must  check I’\{sLe,(”O(‘daf Mamantt
E D) v B DY)
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Testing for dataset shift

* Shiftin p(y):

— Plot distributions (across data sets, across time)
e Shiftin p(x) or p(x]y):

— Compare feature means

— Use kernel two-sample test (Gretton et al., JMLR ‘12)

Integral probability metric:  1p)\[ — sup [E10(2)] — E.[0(x
(Muller, 1997) c(p,q) Eeg! pll(x)] — Eql€(2)]]

[(x): generalization of mean/variance
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Testing for dataset shift

* Shiftin p(y):
— Plot distributions (across data sets, across time)
e Shiftin p(x) or p(x]y):
— Compare feature means
— Use kernel two-sample test (Gretton et al., JMLR ‘12)

Integral probability metric:  1p)\[ — sup [E10(2)] — E.[0(x
(Muller, 1997) c(p,q) Eeg! pll(x)] — Eql€(2)]]

Maximum mean discrepancy (MMD): L are functions with norm 1 in a RKHS:
(Gretton et al., 2012)

samples X1, ..., Ty ~ D, Ty, Xh ~ g

MMDk(p, = _1 ZZ (24, 5) ngkaz, ZZk
i=1 j=1

1=1 j=1 lel

)



Testing for dataset shift

« Shiftin p(y):

— Plot distributions (across data sets, across time)
e Shiftin p(x) or p(x]y):

— Compare feature means

— Use kernel two-sample test such as maximum mean discrepancy/MMD
(Gretton et al., JMLR “12)

— (Attempt to) learn a classifier to distinguish one dataset from the other

samples 1, ..., Ty ~ P, Ty .0y T, ~ @
Binary classification (O vs. 1
\ y / ( ) /
, D ={(x1,1),...,(xm, 1), (27,0),...,(x,,0)}
(eson & classifes Transform

?; o * = l:

1. + - —=

ot o o= Tf Could find gny non-linear transformation (kernel)

X 1 9 that makes the data separable




Testing for dataset shift

* Testing for covariate shift (wound healing):

ROC - 2013 vs pre-2013
1.00-

0.75- F—

E0.50-

0.25-

0.00-

1.00 0.75 050 0.25 0.00
Specificity

Distinguish 2013 from pre-2013

ROC — delayed wound hedling w2013 data only

1.00 -

0.75 -

S itivi
o
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=}

0.25 -

0.00 -

| i | | 1
1.00 0.75 0.50 025 0.00

Specificity

Distinguish first 2/3 of 2013 from
last 1/3 of 2013

(Figures from Ken Jung. See also Jung & Shah, Implications of non-stationarity on predictive modeling using EHRs,

Journal of Biomedical Informatics, 2015)



Outline for today’s class

 Examples & formalization of dataset shift
e Testing for dataset shift
e Mitigating dataset shift



Some practical answers

* Domain shift — transform features
— imputation of missing values
— artificially introduce noise/missingness during training
— reprocess images
— map to a common space
— drop features that do not transfer

* Concept drift / non-stationarity
— eg, p(y|x) changes because of new medical treatments
— Retrain the model with most recent data
— Research question: how to automate the above?

* Covariate shift
— When the underlying demographics / metadata is shifted

— Application to different population: younger, healthier, etc
— Next slide



Covariate shift: nonparametric
regression just “works”

When can we expect training on p(x,y) and testing on q(x,y) to give good
results, forp # g7

Theorem: If p(x) > 0 whenever q(x) > O0andp(y | x) =q(y | x),
then in the limit of infinite data from p, can achieve Bayes’ error on g




Covariate shift: nonparametric
regression just “works”

When can we expect training on p(x,y) and testing on q(x,y) to give good
results, forp # g7

Theorem: If p(x) > 0 whenever q(x) > O0andp(y | x) =q(y | x),
then in the limit of infinite data from p, can achieve Bayes’ error on g

We never have infinite data!

May have to use a more restricted model to prevent overfitting
(e.g. a linear model despite true one being non-linear)



Effect of covariate shift when (naively)
learning with misspecified models

* Training data p(x,y)=@® and test data q(x,y)=0O
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[Storkey, “When Training and Test Sets are Different”, Dataset in Machine Learning,
MIT Press 2009]



Effect of covariate shift when (naively)
learning with misspecified models

* Training data p(x,y)=@® and test data q(x,y)=0O

Ideal linear
model

>
X

[Storkey, “When Training and Test Sets are Different”, Dataset in Machine Learning,
MIT Press 2009]



Effect of covariate shift when (naively)
learning with misspecified models

* Training data p(x,y)=@® and test data q(x,y)=0O

Linear model
learned on
training data

[Storkey, “When Training and Test Sets are Different”, Dataset in Machine Learning,
MIT Press 2009]



Learning using importance reweighting
under covariate shift

* Training data p(x,y)=@® and test data q(x,y)=0O

yA




Learning using importance reweighting
under covariate shift

* Training data p(x,y)=@® and test data q(x,y)=0O

g Learned using
® . importance

( reweighted
objective




Learning using importance reweighting
under covariate shift

* Training data p(x,y)=@® and test data q(x,y)=0O
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Key insight: We only need to know q(x) to reweight the training data!
Example of unsupervised domain adaptation. No need for y values!




Learning using importance reweighting
under covariate shift

Goal of learning:

Example — squared loss, linear model

minE ()~ L(2, 43 6) L(z,y;0) = (y — 0 - x)°
But, suppose all we have are samples (21,91), - -, (Zm, Ym) ~ p(z,y)
Learn using: q L(xs,y;0)

[mprleaa o g featt plol) = ‘ic;)lr")
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Learning using importance reweighting
under covariate shift

Goal of learning:
Example — squared loss, linear model

minE ()~ L(2, 43 6) L(z,y;0) = (y — 0 - x)°
But, suppose all we have are samples (21,91), - -, (Zm, Ym) ~ p(z,y)
Learn using: q i, i3 0) How do we obtain q(x)/p(x)?

Approach 1:
Data (x, d), where d denotes the dataset

Samples T, ..., Tm ~ P, 113/1, ’m% ~4q — D= {(.’131, 1)7 SRR (xma 1)7 (xllao)a sy (.CE;“O)}
q(x) Pr(d=1|z) n
% J—
p(x) 1—Pr(d=1|z)m




Learning using importance reweighting
under covariate shift

Goal of learning:
Example — squared loss, linear model

minE ()~ L(2, 43 6) L(z,y;0) = (y — 0 - )
But, suppose all we have are samples (21,91), - -, (Zm, Ym) ~ p(z,y)
Learn using: q i, i3 0) How do we obtain q(x)/p(x)?
Approach 1:

Data (x, d), where d denotes the dataset
Samples Ty dm ™ Py 113/1, ’m% ~4q — D= {(.’131, 1)7 T (xma 1)7 (xllao)a Tt (.CE;“O)}

go) | Prd=1]z) n
p(x) = 1—-Pr(d=1|xz)m

Approach 2: density estimation of g and p



When importance reweighting is not
enough
* I[mportance reweighted estimator can be high

variance

* |f there is no overlap, then in general
impossible — even with infinite data



Current state of research on dataset shift

Seek “invariant” representations that will work well
even after dataset shift

What properties should a representation have?

Here, the domain only influences (some) features.

Domain Learn only on those features. Lower performance,
(Multi-Source) but better translation between domains

But, how do we know which ones?

=>» We just saw several methods to do so

“Spurious”
Features
Observe: The distribution P(Y |X;) does not
depend on D. Can we encourage our
representation to recover X;?
Potential approach: Given multiple source
environments, learn a representation such that
Label
“Invariant” ¢X) LD
Features

Caveat: The right “invariance” depends on the
generative structure, and how D impacts X, Y



Current state of research on dataset shift

e Seek “invariant” representations that will work well
even after dataset shift

Label

Domain
(Multi-Source)

“Causal”
Features

“Anti-Causal”
Features

What properties should a representation have?

Here, the domain influences all features.

Observe: The distribution P(Y |X.) does not
depend on D. Can we encourage our
representation to recover X.?

Potential approach: Given multiple source
environments, learn a representation such that

Y1 D|¢p(X)

Note: Under this generative structure, it no
longer makes sense to seek ¢p(X) L D



Current state of research on dataset shift

* Assume knowledge of ‘anchors’ that tell you what
can change; learn to extrapolate

Assume p(A) will change in test distribution,

Anchors Hidden and use distributionally robust training
variables

A SN
TN H f* = argmin sup Ep[¢(Y, f(X))]
/ \ , \ fer pep

/ Change in A is assumed to be bounded.

@ ®

OLS AR(A)=xPAR(W., Z)
Proxies for A  Features Label ° ¥ MSPE
mem 10
3

[Rothenhausler et al., Anchor regression: heterogeneous data meets causality. J. of the Royal Statistical Society: Series B, ‘18]
[Oberst, Thams, Peters, Sontag. Regularizing towards Causal Invariance: Linear Models with Proxies, ICML, ‘21]



Current state of research on dataset shift:
benchmarking

WILDS: A Benchmark of in-the-Wild Distribution Shifts
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Domain generalization

Train (mixture of domains)

I 1
o a YT Y
LY _ AT L
X= Aim x=[J

y = active y = inactive
d = scaffold 1 d = scaffold
44,930

drawnfrom /.y drawnfrom 493,

Test (unseen domains)

. T d{p

B \_z ‘8“\
o,

y = active y = inactive
d = scaffold d = scaffold
44,931 90,124

drawn from Ficqqe31  drawn from /. opi24

average precision = 27.2%

Subpopulation shift

Train (mixture of domains)

y = mall 3
e y = residential
d = Africa

drawn from P, . icas drawn from [0

Test (Americas) Test (Africa)

y = school
d = Africa

y = rec facility
d= Americas

drawn from P .icae drawn from /i,

accuracy = 55.3% accuracy = 32.8%

Al
worst-region accuracy = 32.8%



Domain generalization Subpsmnpulsltlcu Domain generalization + subpopulation shift
Input (<) camera trap photo tissue slide cellimage molecular graph wheat image online comment satellite image satellite image product review code
Prediction () animal species tumor perturbed gene  bioassays wheat head bbox  toxicity land use asset wealth  sentiment  autocomplete
Domain (d) camera hospital batch scaffold location, time demographic  time, region country, rural-urban  user git repository
# domains 323 5 51 120,084 47 16 16x5 23x2 2,686 8,421
# examples 203,029 455,954 125,510 437,929 6,515 448,000 523,846 19,669 539,502 150,000
T T What do Black Overall a solid import
j and LGBT package that numpy as np
= people have to has a good
Train example L do with bicycle quality of -
licensing? construction
for the price. norm=np.___
As a Christian, I *loved* my import
| will not be French prass, subprocess
R patronizing it's so perfect as sp
Test mme W any of those and came with
W businesses. all this fun p=sp.Popen()
A X stuff] stdout=p.___
Adapted f Beery et al. Bandietal. Taylor et al. Hu et al. Davidetal. Borkanetal. Christieetal. Yeh et al. Ni et al. Raychev et al.
2020 2018 2019 2020 2021 2019 2018 2020 2019 20186

[Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts. arXiv:2012.07421, 2021.]



Domain generalization Spr:ﬁfﬂlaﬁm Domain generalization + subpopulation shift

Dataset widcan [l R&< 0GB-MoPCBA GiobaWheat GiviComments — FMow PovertyMap  Amazon Py150
Input () camera trap photo tissue slide cellimage molecular graph wheat image online comment satellite image satellite image product review code
Prediction ()  animal species tumor perturbed gene  bioassays wheat head bbox  toxicity land use asset wealth  sentiment  autocomplete
Domain (d) camera hospital batch scaffold location, time demographic  time, region country, rural-urban  user git repository
# domains 323 5 51 120,084 47 16 16x5 23x2 2,586 8,421
# examples 203,029 455,954 125,510 437,929 6,515 448,000 523,846 19,669 539,502 150,000
What do Black Owerall a solid import
and LGBT package that numpy as np
people have to has a good
Train example do with bicycle quality of -
licensing? construction
for the price. norm=np.___
As a Christian, | *loved” my import
| will not be French prass, subpracess
patronizing it's so perfect as sp
Test example any of thoss and came with
businessas. all this fun p=sp.Popen()
stuffl stdout=p.___
Adapted f Beery et al. Bandietal. Tayloretal Hu et al. Davidetal. Borkanetal. Christieetal. Yeh et al. Ni et al. Raychev et al.
2020 2018 2019 2020 2021 2019 2018 2020 2019 2016

[Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts. arXiv:2012.07421, 2021.]



TL;DR: Existing algorithms don’t substantially improve over
Empirical Risk Minimization (ERM)

ERM = estimate risk empirically on training data,
cuz we don’t know all possible distributions of datasets

Table 2: The out-of-distribution test performance of models trained with different baseline algorithms:
CORAL, originally designed for unsupervised domain adaptation; IRM, for domain generalization; and Group
DRO, for subpopulation shifts. Evaluation metrics for each dataset are the same as in Table 1; higher is
better. Overall, these algorithms did not improve over empirical risk minimization (ERM), and sometimes
made performance significantly worse, except on CiviLCOMMENTS-WILDS where they perform better but still
do not close the in-distribution gap in Table 1. For GLOBALWHEAT-WILDS, we omit CORAL and IRM as
those methods do not port straightforwardly to detection settings; its ERM number also differs from Table 1
as its ID comparison required a slight change to the OOD test set. Parentheses show standard deviation
across 3+ replicates.

Dataset | Setting | ERM | CORAL | IRM | Group DRO
IWILDCAM2020-wILDS | Domain gen. 31.0 (1.3) | 32.8 (0.1) | 15.1 (4.9) 23.9 (2.1)
CAMELYON17-WILDS Domain gen. 70.3 (6.4) 59.5 (7.7) | 64.2 (8.1) 68.4 (7.3)
RxRx1-wiLDS Domain gen. 29.9 (0.4) 28.4 (0.3) 8.2 (1.1) 23.0 (0.3)
OGB-MoLPCBA Domain gen. 27.2 (0.3) 17.9 (0.5) | 15.6 (0.3) 22.4 (0.6)
GLOBALWHEAT-WILDS | Domain gen. 51.2 (1.8) — — 47.9 (2.0)
CIVILCOMMENTS-WILDS | Subpop. shift |  56.0 (3.6) | 65.6 (1.3) | 66.3 (2.1) | 70.0 (2.0)
FMOW-WILDS Hybrid 32.3 (1.3) | 31.7(1.2) | 30.0 (1.4) | 30.8 (0.8)
POVERTYMAP-WILDS Hybrid 0.45 (0.06) | 0.44 (0.06) | 0.43 (0.07) 0.39 (0.06)
AMAZON-WILDS Hybrid 53.8 (0.8) | 529 (0.8) | 524 (0.8) 53.3 (0.0)
Py150-wILDS Hybrid 67.9 (0.1) | 659 (0.1) | 64.3 (0.2) 65.9 (0.1)

Note: These are blind implementations (with no domain knowledge injected) that do not

attempt to understand the causal nature of the dataset shifts.

[Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts. arXiv:2012.07421, 2021.]



Current state of industry on dataset shift

weather_monitor_daily
5% Settings P> Analyze existing data () Refresh

Select feature: Select metrics:

temperature \/I [ Wasserstein distance |

Wasserstein distance

7

//\/:o;
‘ it

Valu

1

'_9—%6*21 19-06-22 19-06-23 19-06-24 19-06-25 19-06-26 19-06-27 19-06-28 19-06-29 19-06-30

Date

Feature distribution

= baseline

2019-06-29

Source: https://docs.microsoft.com/en-us/azure/machine-learning /how-to-monitor-datasets

See also: https://cloud.google.com/solutions/machine-learning/ml-modeling-monitoring-identifying-
training-server-skew-with-novelty-detection & https://docs.seldon.io/projects/alibi-detect/en/latest/



https://docs.microsoft.com/en-us/azure/machine-learning/how-to-monitor-datasets
https://cloud.google.com/solutions/machine-learning/ml-modeling-monitoring-identifying-training-server-skew-with-novelty-detection
https://docs.seldon.io/projects/alibi-detect/en/latest/

Conclusion

Dataset shift happens all the time with
nealthcare data

t doesn’t always hurt performance

nterpretability methods can help with
detecting and mitigating dataset shift

Safe deployments should include automated
checks for dataset shift

Active area of research in ML
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