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Intervention, 𝑇𝑇

(e.g. medication, 
procedure)

Outcome, 𝑌𝑌

Patient, 𝑋𝑋

(including all
confounding
factors)

?

High dimensional Observational data

Reminder: Causal inference



Reminder: Potential Outcomes

• Each unit (individual) 𝑥𝑥𝑖𝑖 has two potential outcomes: 
– 𝑌𝑌0(𝑥𝑥𝑖𝑖) is the potential outcome had the unit not been treated: 

“control outcome”
– 𝑌𝑌1(𝑥𝑥𝑖𝑖) is the potential outcome had the unit been treated: 

“treated outcome”

• Conditional average treatment effect for unit 𝑖𝑖: 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥𝑖𝑖 = 𝔼𝔼𝑌𝑌1~𝑝𝑝(𝑌𝑌1|𝑥𝑥𝑖𝑖) [𝑌𝑌1|𝑥𝑥𝑖𝑖] − 𝔼𝔼𝑌𝑌0~𝑝𝑝(𝑌𝑌0|𝑥𝑥𝑖𝑖)[𝑌𝑌0|𝑥𝑥𝑖𝑖]

• Average Treatment Effect:
𝐴𝐴𝐴𝐴𝐸𝐸 = 𝔼𝔼𝑥𝑥~𝑝𝑝(𝑥𝑥) 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥
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XKCD

I think correlation
implies causation

I take a 
statistics class Now I don’t

I think correlation
implies causation

I realize
it doesn’t

Now I don’t

I get hit by 
a falling apple

I take a 
statistics class

I have an
epiphany

I speak with 
a wise friend

I have an
out-of-body
experience

I think correlation
implies causation

I realize
it doesn’t

Now I don’t

I have an
epiphany

I take a 
statistics class

I need one more
class to graduate

Case 1: Causation

Case 2: Some other event causes both (biomarker) Case 3: Complete coincidence (independent paths)

Intuition: not everyone takes a statistics class
Perhaps something pushed me to take one. 
Perhaps that same something led to the outcome

Intuition: Sometimes even the correlation is fortuitous
(solution: increase sample size  correlation goes away)

https://xkcd.com/552/


Does smoking cause lung cancer?

● Think about confounding factors that we 
would need to collect as part of the 
dataset

● RA Fisher - famous statistician, rejected 
smoking  cancer causality

● Claim: Only associational studies have 
been run so far.

● Monozygotic twins have more similar 
smoking patterns than dizygotic twins, so 
maybe a genetic propensity to smoke 
instead of a causal link?

● How many cancers were caused by this 
wrong interpretation? 
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Statistics

We reject the null hypothesis based on 
the 'hot damn, check out this chart' test

“Alleged benefits of covid vaccination”

Alleged benefits of mask-wearing 
to protect against covid spread: 
• Yes, there is plausibility
• Yes, there is correlation
• Yes, there are interventional 

studies
But many confounders: 
• Counties who choose to mask 

also choose other measures
• Individuals who choose to 

mask also take other 
precautions

• Can we untangle these effects?



To properly answer, need to
formulate as causal questions:

Intervention, 𝑇𝑇

(e.g. medication, 
procedure)

Outcome, 𝑌𝑌

Patient, 𝑋𝑋

(including all
confounding
factors)

?

High dimensional Observational data

ATE = Average Treatment Effect
CATE = Conditional Average Treatment Effect



Real-world evidence comes from complex human behaviors
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Observed 
Biomarkers

Patient 
Outcome

Useful to predict?

Underlying Risk

Treatments



Real-world evidence comes from complex human behaviors
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Two approaches for causality inference 
using counterfactual analysis

Covariate adjustment  and matching

Predict outcome given features and treatment, 
then use resulting model to impute counterfactuals

Propensity score re-weighing
Predict treatment using features (propensity score), 
then use to reweight outcome or stratify the data



𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑑𝑑

𝑇𝑇

… 𝑓𝑓(𝑥𝑥,𝑇𝑇)
𝑦𝑦

Regression 
model

OutcomeCovariates
(Features)

Covariate adjustment (reminder)

Explicitly model the relationship between 
treatment, confounders, and outcome:

Treatment
(0/1)



Covariate adjustment (reminder)

• Under ignorability, can use the adjustment 
formula:

𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥 =
𝔼𝔼𝑥𝑥~𝑝𝑝 𝑥𝑥 𝔼𝔼 𝑌𝑌1 𝑇𝑇 = 1, 𝑥𝑥 − 𝔼𝔼 𝑌𝑌0 𝑇𝑇 = 0, 𝑥𝑥

• Fit a model 𝑓𝑓 𝑥𝑥, 𝑡𝑡 ≈ 𝔼𝔼 𝑌𝑌𝑡𝑡 𝑇𝑇 = 𝑡𝑡, 𝑥𝑥 , then:
�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥 = 𝑓𝑓 𝑥𝑥, 1 − 𝑓𝑓(𝑥𝑥, 0).



𝑻𝑻𝒙𝒙

𝒀𝒀𝟏𝟏𝒀𝒀𝟎𝟎

anti-
hypertensive 
medication

blood pressure
after medication 
A

age, gender, 
weight, diet, 
heart rate at 
rest,…

blood pressure
after  
medication B

Ignorability (no hidden 
confounding)

(𝑌𝑌0,𝑌𝑌1) ⫫ 𝑇𝑇 | 𝑥𝑥



𝒙𝒙

𝒀𝒀𝟏𝟏𝒀𝒀𝟎𝟎blood pressure
after medication 
A

age, gender, 
weight, diet, 
heart rate at 
rest,…

blood pressure
after  
medication B

𝒉𝒉

No Ignorability

diabetic
𝑻𝑻

anti-
hypertensive 
medication

(𝑌𝑌0,𝑌𝑌1) ⫫ 𝑇𝑇 | 𝑥𝑥



Covariate adjustment with linear models

• Assume that:

• Then:
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥): = 𝔼𝔼[𝑌𝑌1 𝑥𝑥 − 𝑌𝑌0 𝑥𝑥 ] =

𝔼𝔼[(𝛽𝛽𝑥𝑥 + 𝛾𝛾 + 𝜖𝜖1) − 𝛽𝛽𝑥𝑥 + 𝜖𝜖0 ] = 𝛾𝛾

age medicationBlood pressure

𝑌𝑌𝑡𝑡 𝑥𝑥 = 𝛽𝛽𝑥𝑥 + 𝛾𝛾 ⋅ 𝑡𝑡 + 𝜖𝜖𝑡𝑡
𝔼𝔼 𝜖𝜖𝑡𝑡 = 0



• Assume that:

• Then:
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥): = 𝔼𝔼[𝑌𝑌1 𝑥𝑥 − 𝑌𝑌0 𝑥𝑥 ] =

𝔼𝔼[(𝛽𝛽𝑥𝑥 + 𝛾𝛾 + 𝜖𝜖1) − 𝛽𝛽𝑥𝑥 + 𝜖𝜖0 ] = 𝛾𝛾

age medication

𝐴𝐴𝐴𝐴𝐴𝐴: = 𝔼𝔼𝑝𝑝 𝑥𝑥 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥 = 𝛾𝛾

Blood pressure

𝑌𝑌𝑡𝑡 𝑥𝑥 = 𝛽𝛽𝑥𝑥 + 𝛾𝛾 ⋅ 𝑡𝑡 + 𝜖𝜖𝑡𝑡
𝔼𝔼 𝜖𝜖𝑡𝑡 = 0

Covariate adjustment with linear models



• Assume that:

• For causal inference, need to estimate 𝛾𝛾 well, 
not 𝑌𝑌𝑡𝑡 𝑥𝑥 - Identification, not prediction

• Major difference between ML and statistics

age medication

𝐴𝐴𝐴𝐴𝐴𝐴: = 𝔼𝔼𝑝𝑝 𝑥𝑥 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥 = 𝛾𝛾

Blood pressure

𝑌𝑌𝑡𝑡 𝑥𝑥 = 𝛽𝛽𝑥𝑥 + 𝛾𝛾 ⋅ 𝑡𝑡 + 𝜖𝜖𝑡𝑡
𝔼𝔼 𝜖𝜖𝑡𝑡 = 0

Covariate adjustment with linear models



What happens when there is 
misspecification?

• True data generating process, 𝑥𝑥 ∈ ℝ:

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝔼𝔼 𝑌𝑌1 − 𝑌𝑌0 = 𝛾𝛾
• Hypothesized model:

𝑌𝑌𝑡𝑡 𝑥𝑥 = 𝛽𝛽𝛽𝛽 + 𝛾𝛾 ⋅ 𝑡𝑡 + 𝛿𝛿 ⋅ 𝑥𝑥2

�𝑌𝑌𝑡𝑡 𝑥𝑥 = 𝛽̂𝛽𝑥𝑥 + �𝛾𝛾 ⋅ 𝑡𝑡

�𝛾𝛾 = 𝛾𝛾 + 𝛿𝛿
𝔼𝔼 𝑥𝑥𝑥𝑥 𝔼𝔼 𝑥𝑥2 − 𝔼𝔼[𝑡𝑡2]𝔼𝔼[𝑥𝑥2𝑡𝑡]
𝔼𝔼 𝑥𝑥𝑥𝑥 2 − 𝔼𝔼[𝑥𝑥2]𝔼𝔼[𝑡𝑡2]

Depending on 𝜹𝜹, can be made to be arbitrarily large or 
small!



Covariate adjustment with non-linear 
models

• Random forests and Bayesian trees 
Hill (2011), Athey & Imbens (2015), Wager & Athey (2015)

• Gaussian processes 
Hoyer et al. (2009), Zigler et al. (2012), Alaa & van der Schaar (2017)

• Neural networks
Beck et al. (2000), Johansson et al. (2016), Shalit et al. (2016), Lopez-
Paz et al. (2016)

Called nonparametric estimators, since they do not make assumptions 
about form of 𝔼𝔼 𝑌𝑌 𝑋𝑋,𝑇𝑇 and, given enough data, could fit any function



Example: Gaussian processes

Figures: Vincent Dorie & Jennifer Hill

Separate treated and 
control models

Joint treated and 
control model

𝑌𝑌1 𝑥𝑥

𝑌𝑌0 𝑥𝑥

𝑌𝑌1 𝑥𝑥

𝑌𝑌0 𝑥𝑥

𝑥𝑥𝑥𝑥

𝑦𝑦

Treated

Control



Example: Neural networks



Example: Neural networks

Shalit, Johansson, Sontag. Estimating Individual Treatment Effect: Generalization 
Bounds and Algorithms. ICML, 2017



Necessary assumption for nonparametric 
estimation – common support

Y0,𝑌𝑌1: potential outcomes for control and treated
𝑥𝑥: unit covariates (features)
𝑇𝑇: treatment assignment

We assume:
𝑝𝑝 𝑇𝑇 = 𝑡𝑡 𝑋𝑋 = 𝑥𝑥 > 0 ∀𝑡𝑡, 𝑥𝑥



Example of how (nonparametric) 
covariate adjustment fails when there is 

no common support (overlap)

TreatedTreated

Control 𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎

𝑦𝑦 =
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.

𝑌𝑌1 𝑥𝑥

𝑌𝑌0 𝑥𝑥



Matching
• Find each unit’s long-lost counterfactual 

identical twin, check up on his outcome



Matching
• Find each person’s long-lost counterfactual 

identical twin, check up on his outcome

Obama, had he gone to law school Obama, had he gone to business school



Matching
• Find each person’s long-lost counterfactual 

identical twin, check up on his outcome
• Used for estimating both ATE and CATE



Match to nearest neighbor from 
opposite group

Treated

Control Age

Charleson
comorbidity
index



Match to nearest neighbor from 
opposite group

Treated

Control Age

Charleson
comorbidity
index



1-NN Matching

• Let 𝑑𝑑 ⋅,⋅ be a metric between 𝑥𝑥’s

• For each 𝑖𝑖, define 𝑗𝑗 𝑖𝑖 = argmin
𝑗𝑗 𝑠𝑠.𝑡𝑡. 𝑡𝑡𝑗𝑗≠𝑡𝑡𝑖𝑖

𝑑𝑑(𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑖𝑖)

𝑗𝑗 𝑖𝑖 is the nearest counterfactual neighbor of 𝑖𝑖
• 𝑡𝑡𝑖𝑖 = 1, unit 𝑖𝑖 is treated:

�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗 𝑖𝑖
• 𝑡𝑡𝑖𝑖 =0, unit 𝑖𝑖 is control:

�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥𝑖𝑖 = 𝑦𝑦𝑗𝑗(𝑖𝑖) − 𝑦𝑦𝑖𝑖



1-NN Matching

• Let 𝑑𝑑 ⋅,⋅ be a metric between 𝑥𝑥’s

• For each 𝑖𝑖, define 𝑗𝑗 𝑖𝑖 = argmin
𝑗𝑗 𝑠𝑠.𝑡𝑡. 𝑡𝑡𝑗𝑗≠𝑡𝑡𝑖𝑖

𝑑𝑑(𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑖𝑖)

𝑗𝑗 𝑖𝑖 is the nearest counterfactual neighbor of 𝑖𝑖

• �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥𝑖𝑖 = (2𝑡𝑡𝑖𝑖 − 1)(𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗 𝑖𝑖 )

• �𝐴𝐴𝑇𝑇𝑇𝑇 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥𝑖𝑖



Matching

• Interpretable, especially in small-sample regime
• Nonparametric
• Heavily reliant on the underlying metric
• Could be misled by features which don’t affect 

the outcome



Covariate adjustment and matching

• Matching is equivalent to covariate adjustment 
with two 1-nearest neighbor classifiers:
�𝑌𝑌1 𝑥𝑥 = 𝑦𝑦𝑁𝑁𝑁𝑁1 𝑥𝑥 , �𝑌𝑌0 𝑥𝑥 = 𝑦𝑦𝑁𝑁𝑁𝑁0 𝑥𝑥
where 𝑦𝑦𝑁𝑁𝑁𝑁𝑡𝑡 𝑥𝑥 is the nearest-neighbor of 𝑥𝑥
among units with treatment assignment

𝑡𝑡 = 0,1

• 1-NN matching is in general inconsistent, 
though only with small bias (Imbens 2004) 



Two approaches for causality inference 
using counterfactual analysis

Covariate adjustment  and matching

Predict outcome given features and treatment, 
then use resulting model to impute counterfactuals

Propensity score re-weighing
Predict treatment using features (propensity score), 
then use to reweight outcome or stratify the data



Propensity scores

• Tool for estimating ATE
• Imagine that we had data from a randomized 

control trial (RCT). Then we could simply 
estimate the ATE using:

1
𝑛𝑛1
∑𝑖𝑖 𝑠𝑠.𝑡𝑡.𝑇𝑇𝑖𝑖=1 𝑌𝑌𝑖𝑖 −

1
𝑛𝑛0
∑𝑖𝑖 𝑠𝑠.𝑡𝑡.𝑇𝑇𝑖𝑖=0 𝑌𝑌𝑖𝑖

• Basic idea: turn observational study into a 
pseudo-randomized trial by re-weighting 
samples



Inverse propensity score re-weighting

𝑥𝑥1 = 𝑎𝑎𝑎𝑎𝑎𝑎

𝑥𝑥2 =
Charlson
comorbidity 
index

Treated

Control

𝑝𝑝(𝑥𝑥|𝑡𝑡 = 0) ≠ 𝑝𝑝 𝑥𝑥 𝑡𝑡 = 1
control          treated



𝑝𝑝 𝑥𝑥 𝑡𝑡 = 0 ⋅ 𝑤𝑤0(𝑥𝑥) ≈ 𝑝𝑝 𝑥𝑥 𝑡𝑡 = 1 ⋅ 𝑤𝑤1(𝑥𝑥)
reweighted control     reweighted treated

Inverse propensity score re-weighting

𝑥𝑥1 = 𝑎𝑎𝑎𝑎𝑎𝑎

𝑥𝑥2 =
Charlson
comorbidity 
index

Treated

Control



Propensity score
• Propensity score: 𝑝𝑝 𝑇𝑇 = 1 𝑥𝑥 ,

using machine learning tools, e.g. logistic 
regression

• Samples re-weighted by the inverse propensity 
score of the treatment they received



Same ideas can be used for off-policy 
evaluation

• Suppose someone gave us a policy         that outputs a1 vs a2

• How do we evaluate it?
• We give two approaches, one based on potential outcomes 

and the other based on propensity scores
• In both cases, we have to first consider the causal graph that 

underlies the observational data

Action, 𝐴𝐴
(a1 or a2)

Reward, 𝑅𝑅

Features 
used for 𝜋𝜋, 𝐿𝐿

Confounders, 𝑍𝑍
Switched notation to 
what’s more typically 

used in RL
action A:   Treatment T
reward R:  Outcome Y

𝑆𝑆State



• First, use machine learning to 
obtain a model that can 
predict potential outcomes 
(we need ignorability, overlap, 
SUTVA)

• Then, use this model to 
impute policy outcomes:

Evaluating policies using potential 
outcomes

𝑠𝑠1

𝑠𝑠2

𝑠𝑠𝑑𝑑

𝐴𝐴
…

𝑓𝑓(𝑠𝑠,𝐴𝐴)

𝑅𝑅

Regression 
model

Outcome / 
reward

Features



• First, use machine learning to 
obtain 𝑝̂𝑝 𝐴𝐴 𝑠𝑠 = 𝑓𝑓(𝑠𝑠), 
estimated propensity scores

• Then, use this model to 
reweight the outcomes:

Evaluating policies using inverse 
propensity scores

𝑠𝑠1

𝑠𝑠2

𝑠𝑠𝑑𝑑

…

𝑓𝑓(𝑠𝑠)

𝐴𝐴

Regression 
model

TreatmentFeatures

Aside: is this the right goal? What if we wanted to control worst-
case reward instead of average?



• Consider our first estimator:

• Create data set {(li, oi)} where

• Use an (interpretable) ML algorithm to fit this new dataset
• The resulting policy may be a much simpler function than f!

Learning policies from observational 
data

Notice relationship to CATE

(Makar, Swaminathan, Kiciman. A distillation approach to data efficient individual treatment 
effect estimation. AAAI, 2019)



Reinforcement Learning 
for policy evaluation

Using observational data



Evaluate policies using observational 
data with Reinforcement Learning

• Suppose someone gave us a policy         that outputs a1 vs a2

Patient has a urinary
tract infection (UTI)

Affects 1 in 2 women 
during lifetime; 3rd 
most common cause 
for antibiotic treatment

Example: which antibiotic to prescribe?

[Kanjilal et al., A decision algorithm to promote outpatient antimicrobial stewardship for uncomplicated 
urinary tract infection. Science Translational Medicine, 2020.]







Evaluate policies using observational 
data with Reinforcement Learning

• Suppose someone gave us a policy         that outputs a1 vs a2

Example: which antibiotic to prescribe?

At MGH & BWH, 
resistance 
prevalence to SXT 
does exceed 20%: 
always avoid SXT

Resistance or exposure to 
NIT in past 90 days?

YesNo

Prescribe CIP
(Ciprofloxacin)

Prescribe NIT
(Nitrofurantoin)

Simplifies to

[Gupta et al., Clinical Infections Diseases, 2011.]

Infectious Disease Society of 
America (IDSA) guidelines



Same ideas can be used to evaluate 
policies using observational data

• Suppose someone gave us a policy         that outputs a1 vs a2

• How do we evaluate it?
• We give two approaches, one based on potential outcomes 

and the other based on propensity scores
• In both cases, we have to first consider the causal graph that 

underlies the observational data

Action, 𝐴𝐴
(a1 or a2)

Reward, 𝑅𝑅

Features 
used for 𝜋𝜋, 𝐿𝐿

Confounders, 𝑋𝑋
Switched notation to 
what’s more typically 

used in 
Reinforcement Learning
action A:   Treatment T
reward R:  Outcome Y

𝑆𝑆State



• First, use machine learning to 
obtain a model that can 
predict potential outcomes 
(we need ignorability, 
overlap)

• Then, use this model to 
impute policy outcomes:

Evaluating policies using potential 
outcomes

𝑠𝑠1

𝑠𝑠2

𝑠𝑠𝑑𝑑

𝐴𝐴
…

𝑓𝑓(𝑠𝑠,𝐴𝐴)

𝑅𝑅

Regression 
model

Outcome / 
reward

Features



• First, use machine learning to 
obtain 𝑝̂𝑝 𝐴𝐴 𝑠𝑠 = 𝑓𝑓(𝑠𝑠), 
estimated propensity scores

• Then, use this model to 
reweight the outcomes:

Evaluating policies using inverse 
propensity scores

𝑠𝑠1

𝑠𝑠2

𝑠𝑠𝑑𝑑

…

𝑓𝑓(𝑠𝑠)

𝐴𝐴

Regression 
model

TreatmentFeatures

Aside: is this the right goal? What if we wanted to control 
worst-case reward instead of average?



• Consider our first estimator:

• Create data set {(li, oi)} where

• Use an (interpretable) ML algorithm to fit this new dataset
• The resulting policy may be a much simpler function than f!

Learning policies from observational 
data

Notice relationship to CATE

(Makar, Swaminathan, Kiciman. A distillation approach to data efficient individual treatment 
effect estimation. AAAI, 2019)



Does gastric bypass surgery prevent
onset of diabetes?

• Gastric bypass surgery is the highest negative weight (9th 
most predictive feature)
– Does this mean it would be a good intervention?

• Yes, if….
– Interpret ‘gastric bypass surgery’ feature as T
– Interpret all the other features as X; assume they all include all 

relevant confounders and do not include anything post-treatment 
– True potential outcome function is linear

1994 2000

<4.5%         4.5%–5.9%        6.0%–7.4%      7.5%–8.9%          >9.0%

2013



What is the likelihood this patient, with 
breast cancer, will survive 5 years?

𝑿𝑿
𝒀𝒀

Diagnosis Death Time

“Mary”

Treatment

A long survival time may be because of treatment!

• Group into K categories of treatment strategies T (one of which might 
be “no treatment”)

• Gather data on confounding factors C that might influence both 
treatment decision and outcome

• Learn f(X,C,T) to predict Y (survival time)
• Assess overlap* by looking at p(X,C|T) or p(T|X,C)
• Predict survival under a specific treatment regime k using f(X,C,k)
• Will survive 5 years when treated optimally if maxk f(X,C, k) > 5

* See, e.g., Oberst, Johansson, Wei, Gao, Brat, Sontag, Varshney. Characterization of Overlap in Observational 
Studies, Conference on Artificial Intelligence and Statistics (AI-STATS), 2020.



Reinforcement Learning 
for policy evaluation

Using observational data



Instrumental variables

• Informally: a variable which affects treatment 
assignment but not the outcome

• Example: are private schools better than public 
schools? Which students would benefit the most?

• Can’t force people which school to go to
• Can randomly give out vouchers to some children, 

giving them an opportunity to attend private 
schools

• The voucher assignment is the instrumental 
variable



Estimation using an instrumental variable

Goal: estimation in setting where there are unobserved 
confounders, U, not captured in X

Intervention, 𝑇𝑇

(e.g. medication, 
procedure)

Outcome, 𝑌𝑌

Patient, 𝑋𝑋

(what we 
know) ?

𝑈𝑈



Estimation using an instrumental variable

First, assume no patient covariates (with this, we will only be 
able to estimate ATE not CATE)

Intervention, 𝑇𝑇

(e.g. medication, 
procedure)

Outcome, 𝑌𝑌

Patient, 𝑋𝑋

(what we 
know) ?

𝑈𝑈



Estimation using an instrumental variable

First, assume no patient covariates (with this, we will only be 
able to estimate ATE not CATE)

Intervention, 𝑇𝑇

(e.g. medication, 
procedure)

Outcome, 𝑌𝑌

?

𝑈𝑈

Note: this is without loss of 
generality (since U could 
include all of X)



Estimation using an instrumental variable

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Estimation using an instrumental variable

Instrument (e.g., voucher)

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Assumption 1: Relevance

Z has a causal effect on T

What is an Instrument?

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Assumption 2: Exclusion Restriction

The causal effect of Z on Y is fully mediated by T

What is an Instrument?

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Assumption 3: Instrumental 
Unconfoundedness

Z is unconfounded (in the setting of no X, this simply 
means U and Z are independent)

What is an Instrument?

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Warm-up: linear potential outcome, 
no X

Z doesn’t appear because of 
the exclusion restriction 
assumption

Linear

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)

Assume potential outcomes given by the linear model,

𝑌𝑌𝑡𝑡 𝑈𝑈 = 𝛼𝛼𝑢𝑢𝑈𝑈 + 𝛿𝛿 ⋅ 𝑡𝑡 + 𝜖𝜖𝑡𝑡, 𝔼𝔼 𝜖𝜖𝑡𝑡 = 0



Warm-up: linear potential outcome, 
no X

(exclusion restriction and linear outcome assumptions)

(instrumental unconfoundedness assumption)

(non-zero due to relevance assumption)

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)

𝑌𝑌𝑡𝑡 𝑈𝑈 = 𝛼𝛼𝑢𝑢𝑈𝑈 + 𝛿𝛿 ⋅ 𝑡𝑡 + 𝜖𝜖𝑡𝑡



Estimation using (conditional) instruments

𝑋𝑋

Assume potential outcomes given by:

𝑌𝑌𝑇𝑇 𝑥𝑥,𝑈𝑈 = 𝛿𝛿 𝑥𝑥 𝑇𝑇 + 𝑔𝑔 𝑥𝑥,𝑈𝑈 + 𝜖𝜖𝑇𝑇

Goal: estimate 
CATE 𝑥𝑥
= 𝛿𝛿 𝑥𝑥



Estimation using (conditional) instruments
Assume potential outcomes given by:

𝑌𝑌𝑇𝑇 𝑥𝑥,𝑈𝑈 = 𝛿𝛿 𝑥𝑥 𝑇𝑇 + 𝑔𝑔 𝑥𝑥,𝑈𝑈 + 𝜖𝜖𝑇𝑇(𝑥𝑥)

Theorem: CATE 𝑥𝑥 = 𝛿𝛿 𝑥𝑥 =
𝔼𝔼 𝑌𝑌 𝑍𝑍 = 1, 𝑥𝑥 − 𝔼𝔼[𝑌𝑌|𝑍𝑍 = 0, 𝑥𝑥]

𝑝𝑝 𝑇𝑇 = 1 𝑍𝑍 = 1, 𝑥𝑥) − 𝑝𝑝 𝑇𝑇 = 1 𝑍𝑍 = 0, 𝑥𝑥)

𝑋𝑋

(proof shown on board)

Assume
𝔼𝔼 𝜖𝜖0| 𝑥𝑥 = 0
𝔼𝔼 𝜖𝜖1| 𝑥𝑥 = 0



What if you have unobserved 
confounding but no instrument?

Sensitivity analysis will help us build 
intuition on how biased our 

estimates might be



Sensitivity analysis and hidden 
confounding

• Major challenge: how to define the amount of 
hidden confounding?

• This is not a purely mathematical problem! 
We need to frame it in terms that enable us to 
make judgement calls about plausible and 
implausible levels of hidden confounding 

(Slides adapted from Uri Shalit’s causal inference class)



(Example from Monica Agrawal)



(Example from Monica Agrawal)



Sensitivity analysis and hidden 
confounding

• How to define the amount of hidden 
confounding?

• How much 𝐻𝐻 affects 𝑇𝑇 and 𝑦𝑦?
• What “units” do we use for this? 

How to ground it?

(Slides adapted from Uri Shalit’s causal inference class)



Special case to build intuition

Goal: recover 

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)

Notation change (!)
these slides use W
instead of XContinuous T

Linear T and no randomness
Linear Y



Bias in Simple Linear Setting

Proof coming 
after next 
slide

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Contour Plots for Sensitivity to 
Confounding

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Get a closed-form expression for                                 in terms of     ,     ,     , and     .

Bias in Simple Linear Setting Proof: 
Step 1

Assumed SCM:

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Bias in Simple Linear Setting Proof: 
Step 2

Step 1:

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Bias in Simple Linear Setting Proof: 
Step 3

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Rosenbaum & Rubin (1983) and Imbens (2003)
• Simple parametric form for T
• Simple parametric form for Y
• U is binary
• U is a scalar (only one unobserved 

confounder)

Sensitivity analysis with binary 
treatment

where

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)

https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1983.tb01242.x
https://scholar.harvard.edu/files/imbens/files/sensitivity_to_exogeneity_assumptions_in_program_evaluation.pdf


• How much unmeasured confounding to flip 
our conclusions? 

(Slides adapted from Uri Shalit’s causal inference class)

Sensitivity analysis with binary 
treatment



Does cigarette 
smoking 

increase blood 
lead?

Unmeasured confounding exp(𝛾𝛾) in treatment assignment 𝑈𝑈 → 𝑇𝑇

Unmeasured
confounding 
exp(𝛿𝛿) in 
outcome 
model 𝑈𝑈
→ 𝑌𝑌

Hsu & Small,  
2013

(Slides adapted from Uri Shalit’s causal inference class)



• Here, both treatment 
mechanism and the 
outcome mechanism can be 
modeled with arbitrary 
machine learning models

• Assumptions on how hidden 
confounders modify 
treatment & outcome 
models

Generalization: Austen plots

(Veitch & Zaveri, Sense and Sensitivity Analysis: Simple Post-Hoc Analysis of Bias Due to 
Unobserved Confounding. NeurIPS 2020)



Summary

• Close connection between causal inference 
and off-policy evaluation
– Will return to this later when we talk about off-

policy reinforcement learning
• Instrumental variables can be used to 

estimate ATE and CATE when there is 
unobserved confounding

• Sensitivity analysis can help build intuition for 
how unobserved confounding affects bias



References
• Introduction to causal inference from a machine learning 

perspective by Brady Neal, 2020.
– Section 8.2: Sensitivity Analysis
– Chapter 9: Instrumental Variables
(See also the many references within for both recent literature and where 
these methods were originally introduced.)

• Syrgkanis et al., Machine Learning Estimation of Heterogeneous 
Treatment Effects with Instruments, NeurIPS 2019.

• Boominathan et al., Treatment Policy Learning in Multiobjective
Settings with Fully Observed Outcomes, KDD 2020.
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