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Reminder: Causal inference

Patient, X Intervention, T
(including all (e.g. medication,
confounding 7 procedure)
factors)

Outcome, Y

High dimensional Observational data



Reminder: Potential Outcomes

* Each unit (individual) x; has two potential outcomes:

— Yy(x;) is the potential outcome had the unit not been treated:
“control outcome”

— Y;(x;) is the potential outcome had the unit been treated:
“treated outcome”

* Conditional average treatment effect for unit i:
CATE(x;) = Ey, ~pev %) [Yalxi] — By, ~p(vy|x) [Yolx;]

* Average Treatment Effect:



THEN I Took A
STATISTICS CLASS,

T USED 10 THINK,
CORRELATION IMPUED
CAUSATION. )

SHISIIENE

SOUNDS LKE THE

STAMSTIC Lpss. | | CLASS HELPED. | think correlation | take a Now | don'’t
' | wew, MA)’BE- implies causation statistics class

Case 1: Causation

Case 2: Some other event causes both (biomarker)

| realize
it doesn’t

| take a
statistics class

| have an
out-of-body
experience epiphany

| speak with .
Tget hit by
a falling apple
| think correlation
implies causation

| have an

Intuition: not everyone takes a statistics class
Perhaps something pushed me to take one.
Perhaps that same something led to the outcome

Case 3: Complete coincidence (independent paths)

| have an | realize
epiphany it doesn’t

| think correlation | take a
implies causation statistics class
| need one more
class to graduate

Intuition: Sometimes even the correlation is fortuitous

(solution: increase sample size = correlation goes away)



https://xkcd.com/552/

Does smoking cause lung cancer?

Think about confounding factors that we
would need to collect as part of the
dataset

RA Fisher - famous statistician, rejected
smoking =» cancer causality

Claim: Only associational studies have
been run so far.

Monozygotic twins have more similar
smoking patterns than dizygotic twins, so
maybe a genetic propensity to smoke
instead of a causal link?

How many cancers were caused by this
wrong interpretation?

British Medical J., vol. I1, p. 43, 6 July 1957 and vol. II, pp. 297-298, 3 August 1957.

269-270

ALLEGED DANGERS OF CIGARETTE-SMOKING




“Alleged benefits of covid vaccination” Patient, X Intervention, T

(including all (e.g. medication,

Statistics confounding ? procedure)

factors)

Qutcome, Y

Alleged benefits of mask-wearing

to protect against covid spread:

* Yes, there is plausibility

* Yes, there is correlation

* Yes, there are interventional
studies

TIME But many confounders:

* Counties who choose to mask
also choose other measures

* Individuals who choose to
mask also take other

We reject the null hypothesis based on precautions o
the 'hot damn, check out this chart' test X de *  Can we untangle these effects®

\“\VACCINE GROUP

A |

STATISTICS TIP: ALAYS TRY TO GET
DATA THAT'S GOOD ENOUGH THAT YOU
DON'T NEED TO DO STATISTICS ON IT




To properly answer, need to
formulate as causal questions:

Patient, X Intervention, T
(including all (e.g. medication,
confounding procedure)
factors)

Outcome, Y
High dimensional Observational data

ATE = Average Treatment Effect
CATE = Conditional Average Treatment Effect

Each unit (individual) x; has two potential outcomes*:
— Yy(x;) is the potential outcome had the unit not been treated:
“control outcome”

— Yi(x;) is the potential outcome had the unit been treated:
“treated outcome”

Conditional average treatment effect for unit i:
CATE (x;) = EY1~p(Y1|x5) [Yilx;] — Eyg~p(yg|xi)[yo|xi]

Average Treatment Effect:
ATE: = E[Y; — Y] = [Ex,,p(x)[CATE(x)]

Observed factual outcome:

yi = ;Y1 (%) + (1 —t)Yp(x;)
Unobserved counterfactual outcome:
yi' =1 =tV (x) + ;Yo (x))




Real-world evidence comes from complex human behaviors

(Underlying Risk)
Observed D\ Usefulto predlct’? ........... Patient
Blomarkers .......................................................... é}.‘l Outcome

( Treatments )




Real-world evidence comes from complex human behaviors

Underlying [ Undeﬂying Risk ] Underlying risk
risk produces worsens patient
observed outcomes.

biomarkers.

Predicts worse outcome

Observed \ =~ " 1o Sf T fm mm i T T Patient
Biomarkers /!------=-=-=1-=-=--'---- u Outcome

Predicting outcomes from biomarkers can
confound underlying risk and treatment.

c:bSENEd Predicts better outcome

biomarkers can Treatments
affect treatment O improve patient
decisions. outcomes.

[ Treatments ]




Two approaches for causality inference
using counterfactual analysis

Covariate adjustment and matching

Predict outcome given features and treatment,
then use resulting model to impute counterfactuals

Propensity score re-weighing

Predict treatment using features (propensity score),
then use to reweight outcome or stratify the data




Covariate adjustment (reminder)

Explicitly model the relationship between
treatment, confounders, and outcome:

Covariates Regression Outcome
(Features) model

f(x,T)

Treatment
oot



Covariate adjustment (reminder)

* Under ignorability, can use the adjustment
formula:

ATE (x) =
Ex-—pool| EMAIT = 1,x] — E[Y,|T = 0, x]|

* Fitamodel f(x,t) = E|Y,|T = t, x|, then:
CATE(x) = f(x,1) — f(x, 0).



lgnorability (no hidden |
confounding) f\cgértensive

medication
age, gender,

weight, diet,
heart rate at
rest,...

blood pressure blood pressure
after medication after

A medication B

(YO’Yl) LT ‘ X



No Ignorability

anti-
hypertensive
medication

age, gender,
weight, diet,
heart rate at
rest,...

diabetic

blood pressure blood pressure
after medication after

A medication B

(YO’ Yl)é‘*I T ‘ X




Covariate adjustment with linear models

e Assume that:

Blood pressure age medication
Yi(x)= Bx +y-t+¢
IE[Et] — O

* Then:

CATE (x): = E[Y,(x) — Y(x)] =



Covariate adjustment with linear models

e Assume that:

Blood pressure age medication
Yi(x)= Bx +y-t+¢
IE[Et] — O

* Then:

CATE (x): = E[Y;(x) — Yo(x)]

IE/(,,Z’x +y+e)—(Br+e)]=

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
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Covariate adjustment with linear models

e Assume that:

Blood pressure age s medlcatlon
Y.(x) = Bx +y t+ €
Ele ] =
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* For causal inference, need to estimate y well,
not Y; (x) - Identification, not prediction

* Major difference between ML and statistics



What happens when there is
misspecification?

* True data generating process, x € R:
Y,(x) = Bx +y-t+6-x°
ATE = E[Y; =Y, =v

* Hypothesized model:
) =px+7-t

N o+ E[xt]E[x?] — E[t*]E[x*¢]
y =y +o: :
~..  E|xt]? — E[x?]E[t?]

Depending on 6, can be made to be arbitrarily large or
small!




Covariate adjustment with non-linear
models

 Random forests and Bayesian trees
Hill (2011), Athey & Imbens (2015), Wager & Athey (2015)

* Gaussian processes
Hoyer et al. (2009), Zigler et al. (2012), Alaa & van der Schaar (2017)

* Neural networks
Beck et al. (2000), Johansson et al. (2016), Shalit et al. (2016), Lopez-
Paz et al. (2016)

Called nonparametric estimators, since they do not make assumptions
about form of E[Y|X, T] and, given enough data, could fit any function



Example: Gaussian processes

Separate treated and Yy (x) Joint treated and Yy (x)
control models control model

Yo (x)
10 20 30 40 50 6( 10 20 30 40 50 6(
X X
@® Treated
Control

Figures: Vincent Dorie & Jennifer Hill



Example: Neural networks

Predicted potential outcomes

|
|

|
Covariates Group-conditional risk



Example: Neural networks

Neural network layers Predicted potential outcomes

|
)

> —  —> —>f0 - -

-----J

}
}
|
}
-

H

Covariates Shared representation

Shalit, Johansson, Sontag. Estimating Individual Treatment Effect: Generalization
Bounds and Algorithms. ICML, 2017



Necessary assumption for nonparametric
estimation —common support

Yy, Y;: potential outcomes for control and treated
X: unit covariates (features)
T: treatment assignment

We assume:

p(T=t|X=x)>0Vtx



Example of how (nonparametric)
covariate adjustment fails when there is
no common support (overlap) .-

.

y =
blood_pres.

X = age
‘ Control g



Matching

* Find each unit’s long-lost counterfactual
identical twin, check up on his outcome



Matching

* Find each person’s long-lost counterfactual
identical twin, check up on his outcome

Obama, had he gone to law school Obama, had he gone to business school



Matching

* Find each person’s long-lost counterfactual
identical twin, check up on his outcome

e Used for estimating both ATE and CATE



Match to nearest neighbor from
opposite group

Charleson
comorbidity
index




Match to nearest neighbor from
opposite group

Charleson
comorbidity
index

‘ Treated

C)

‘ Control Age



1-NN Matching

Let d(-,-) be a metric between x’s

For each i, define j(i) = argmin d(x;, x;)
jsit. ti#t;

j(i) is the nearest counterfactual neighbor of i
t; = 1, uniti istreated:

CATE (x;) = y; — Yi)
t; =0, unit i is control:

CATE (x;) = yju) — Vi



1-NN Matching

Let d(-,-) be a metric between x’s

For each i, define j(i) = argmin d(x;, x;)
jsit. ti#t;

j(i) is the nearest counterfactual neighbor of i

CATE (x;) = 2t; — )(yi—Yim)

ATE ==Y, CATE (x;)

n



Matching

Interpretable, especially in small-sample regime
Nonparametric
Heavily reliant on the underlying metric

Could be misled by features which don’t affect
the outcome



Covariate adjustment and matching

* Matching is equivalent to covariate adjustment
with two 1-nearest neighbor classifiers:

?1 (x) = YNN{(x) 170 (x) = YNNy(x)
where yyy.(x) is the nearest-neighbor of x

among units with treatment assignment
t =0,1

* 1-NN matching is in general inconsistent,
though only with small bias (Imbens 2004)



Two approaches for causality inference
using counterfactual analysis

Covariate adjustment and matching

Predict outcome given features and treatment,
then use resulting model to impute counterfactuals

Propensity score re-weighing

Predict treatment using features (propensity score),
then use to reweight outcome or stratify the data




Propensity scores

* Tool for estimating ATE

* Imagine that we had data from a randomized
control trial (RCT). Then we could simply
estimate the ATE using:

1 1
n_lzi s.t.T;i=1 Yl o TL_OZL s.t.T;=0 Yl

* Basic idea: turn observational study into a
pseudo-randomized trial by re-weighting
samples



Inverse propensity score re-weighting

p(x|t =0) #p(x|t =1)

control treated
O
® o o
O O
o ® Lo o °
Xy = . ‘ . ‘
Charlson ' >
. ® O O
comorbidity O o e ©
index O © ®
o o * 0 o
O O ® O
o O ®
O




Inverse propensity score re-weighting

p(x|t = 0) - wo(x) = p(x|t = 1) - wy(x)
reweighted control reweighted treated

® o
o o ¢
o ® Lo o °
Xy = . ‘ . ‘
Charlson ' >
. S O O
comorbidity & ® ' e ©
index O © ®
o o ° 0 o
O O ® O
® ® ®
O




Propensity score

* Propensity score: p(T = 1|x),
using machine learning tools, e.g. logistic
regression

* Samples re-weighted by the inverse propensity
score of the treatment they received



Same ideas can be used for off-policy
evaluation

Suppose someone gave us a policy 7(/) that outputs a, vs a,
How do we evaluate it?

We give two approaches, one based on potential outcomes
and the other based on propensity scores

In both cases, we have to first consider the causal graph that
underlies the observational data

State S

onfounders, Z

Switched notation to
‘ ACtiOﬂ, A what’s mor.e typically
used in RL
(a1 or 82) action A: Treatment T
reward R: Outcome Y

Features
used for 1

Reward, R



Evaluating policies using potential

outcomes
First, use machine learning to
obtain a model that can Features  Regression  Outcome /
. ] model reward
predict potential outcomes
(we need ignorability, overlap, f(s,A)
SUTVA) : —]

Then, use this model to
impute policy outcomes:



Evaluating policies using inverse
propensity scores

* First, use machine learning to Features ~ Regression  Treatment
obtain p(4|s) = f(s), mode
estimated propensity scores f(s)
:

* Then, use this model to

reweight the outcomes:

n

) L oy = w(l)]
IPW ( 2 .
© n; azls) Hi

Aside: is this the right goal? What if we wanted to control worst-
case reward instead of average?



Learning policies from observational
data

* Consider our first estimator: (1) = = Zfai’ zio (1))
n -

* Create data set {(l, 0,)} where

0; = arg mjlx f(li, Zi,s A) Notice relationship to CATE

 Use an (interpretable) ML algorithm to fit this new dataset
* The resulting policy may be a much simpler function than f!

(Makar, Swaminathan, Kiciman. A distillation approach to data efficient individual treatment
effect estimation. AAAI, 2019)



Reinforcement Learning
for policy evaluation

Using observational data



Evaluate policies using observational
data with Reinforcement Learning

 Suppose someone gave us a policy 7(!) that outputs a, vs a,

Example: which antibiotic to prescribe?

Patient has a urinary
tract infection (UTI)

Affects 1 in 2 women
during lifetime; 3rd
most common cause
for antibiotic treatment

[Kanjilal et al., A decision algorithm to promote outpatient antimicrobial stewardship for uncomplicated
urinary tract infection. Science Translational Medicine, 2020.]



Decision processes Decision process: Mechanical ventilation

au= m R, = Rgitals + R:ent off + Rfent on

» An agent repeatedly, at Action 4, . N
b et | 3

i &

[ ]

times t takes actions 4, k Agent

to receive rewards R, i
from an environment, i | Reward R, Action 4,
the state S, of which is :
(partially) observed :

Environment |«

State S,

Value maximization Robot in a room
» The goal of most RL algorithms is to maximize the expected » Stochastic actions i.

cumulative reward—the value V; of its policy p(Moveup | A ="up”) =0.8 .

Available non-opposite moves g
» Return: G, = L . Sum of future rewards have uniform probability
-1
» Value: V, = IEAt~1t[GO] Expected sum of rewards under policy 7 » Rewards:
o _ _ +1 at [4,3] (terminal state) St

» The expectation is taken with respect to scenarios acted out -1 at [4,2] (terminal)

according to the learned policy -0.04 per step



Dynamic programming

» Assume that we know how
good a state-action pair is

» Q: Which end state is the
best? A: [4,3]

» Q: What is the best way to get
there? A: Only [3,1]

Q-learning with discrete states

1

2,

Initialize Q(s,a) =0, leta,y =1
Repeat

Q(S:A) « Q(S0 A + a[Ry 4y max Q(Sear,a) = Q(S., A7)

-> +1
[3.1] [4,3]
-1
Start
Q-table
.0.08|-0.08+092 [-0.085:096 | 41
00870 | 008
N_-0.08 N 082
! ol
/0,08 ™, /008,
N -0.08 /7> 705008 N -1.04 7
3/-0.08|-0.08}¢-0.08[-0.08 3 ~0.08|-0.08}/

Dynamic programming

» The idea of dynamic

programming for
reinforcement learning is to

+1

recursively learn the best
action/value in a previous

state given the best
action/value in future states f

Exploration in RL

» Tuples (s, a,s’,r) may be obtained by:
» On-policy exploration—"“Playing the game” with the current policy
» Randomized trials—Executing a sequentially random policy

» Off-policy (observational)—E.g., healthcare records

» The latter is most relevant to us!



Evaluate policies using observational
data with Reinforcement Learning

 Suppose someone gave us a policy 7(!) that outputs a, vs a,

Example: which antibiotic to prescribe?

e Absence of fever, flank pain, or other as pyelonephritis or complicated
suspicion for pyelonephritis UTI) & treat accordingly

‘Woman with acute uncomplicated cystitis . Consider alternate diagnosis (such I nfe ctio u S Disea Se Society of
* Able to take oral medication (see text) America (IDSA) guidelines

Fluoroquinolones
Can one of the recommended antimicrobials* (resistance prevalence high in
below be used considering: some areas)
Availability
Allergy history OR
Tolerance .
-lactams R t t
Nitrofurantoin monohydrate/macrocrystals 100 (avoid amp?cillin or amoxicillin e S I S a n Ce O r eX p O S u re O
e rlf‘g b]dl X5 ‘}-‘ld)" " alone; lower efficacy than other . . o . ?
avoid if early pyelonephritis suspectes available agents; requires close S rr'pl f N IT t 9 O d
OR follow-up) I I Ies to I n pa S ays .
Trimethoprim-sulfamethoxazole 160/800 mg
(one DS tablet) bid X 3 days At MGH & BWH, N (o) Ye S
(avoid if resistance prevalence is known to resistan
exceed 20% or if used for UTI in previous 3 esistance
months) prevalence to SXT

B does exceed 20%: . .
always avoid SXT Prescribe NIT Prescribe CIP

Fosfomycin trometamol 3 gm single dose
(lower efficacy than some other recommended . . . .
i (Nitrofurantoin) (Ciprofloxacin)

agents; avoid if early pyelonephritis suspected) *The choice between these agents should be
OR individualized and based on patient allergy and
compliance history, local practice patterns, local
Pivmecillinam 400 mg bid x 5 days communily resisl.ance prevalenc‘e. a‘vfxilabilily, cost, and
(lower efficacy than some other recommended patient and provider threshold for failure (see Table 4)

agents; avoid if early pyelonephritis suspected)

Prescribe a recommended antimicrobial
[Gupta et al., Clinical Infections Diseases, 2011.]



Same ideas can be used to evaluate
policies using observational data

Suppose someone gave us a policy 7(l) that outputs a, Vs a,
How do we evaluate it?

We give two approaches, one based on potential outcomes
and the other based on propensity scores

In both cases, we have to first consider the causal graph that
underlies the observational data

onfounders, X

Features
used for ¢

Switched notation to
‘ Action, A what’s more typically
(a4 or a,) used in
Reinforcement Learning
action A: Treatment T
reward R: Outcome Y

Reward, R



Evaluating policies using potential
outcomes

First, use machine learning to

obtain a model that can Features Regression Outcome /
i : model reward

predict potential outcomes

(we need ignorability, P

overlap) s

Then, use this model to
impute policy outcomes:



Evaluating policies using inverse
propensity scores

* First, use machine learning to Features ~ Regression  Treatment
obtain p(4|s) = f(s), mode
estimated propensity scores f(s)
:

* Then, use this model to

reweight the outcomes:

n

) L oy = w(l)]
IPW ( 2 .
© n; azls) Hi

Aside: is this the right goal? What if we wanted to control
worst-case reward instead of average?



Learning policies from observational
data

AN

* Consider our first estimator: Q()

* Create data set {(l, 0,)} where

0; = arg mjx f(lz-, X, A) Notice relationship to CATE

 Use an (interpretable) ML algorithm to fit this new dataset
* The resulting policy may be a much simpler function than f!

(Makar, Swaminathan, Kiciman. A distillation approach to data efficient individual treatment
effect estimation. AAAI, 2019)



Does gastric bypass surgery prevent
onset of diabetes?

2013

O <4.5% 0O 4.5%-5.9% O 6.0%—7.4% M@ 7.5%-8.9% M >9.0%

e Gastric bypass surgery is the highest negative weight (9th
most predictive feature)
— Does this mean it would be a good intervention?

* Yes, if....
— Interpret ‘gastric bypass surgery’ feature as T

— Interpret all the other features as X; assume they all include all
relevant confounders and do not include anything post-treatment

— True potential outcome function is linear



What is the likelihood this patient, with
breast cancer, will survive 5 years?

N
o _ _ Y
- Diagnosis Treatment Death \ .
3 "‘ .T_"“‘ X | | | | t—> ) 'Ime
< -":’If- ’ ”Mary”

A long survival time may be because of treatment!

* Group into K categories of treatment strategies T (one of which might
be “no treatment”)

e Gather data on confounding factors C that might influence both
treatment decision and outcome

e Learn f(X,C,T) to predict Y (survival time)

* Assess overlap* by looking at p(X,C|T) or p(T|X,C)

* Predict survival under a specific treatment regime k using f(X,C,k)
* Will survive 5 years when treated optimally if max, f(X,C, k) >5

* See, e.g., Oberst, Johansson, Wei, Gao, Brat, Sontag, Varshney. Characterization of Overlap in Observational
Studies, Conference on Artificial Intelligence and Statistics (Al-STATS), 2020.



Reinforcement Learning
for policy evaluation

Using observational data



Instrumental variables

Informally: a variable which affects treatment
assignment but not the outcome

Example: are private schools better than public
schools? Which students would benefit the most?

Can’t force people which school to go to

Can randomly give out vouchers to some children,
giving them an opportunity to attend private
schools

The voucher assignment is the instrumental
variable



Estimation using an instrumental variable

Goal: estimation in setting where there are unobserved
confounders, U, not captured in X

-\

( U

Patient, X Intervention, T
(what we (e.g. medication,
know) 7 procedure)

Outcome, Y



Estimation using an instrumental variable

First, assume no patient covariates (with this, we will only be
able to estimate ATE not CATE)

Patient, X Intervention, T
(what we (e.g. medication,
know) 7 procedure)

Outcome, Y



Estimation using an instrumental variable

First, assume no patient covariates (with this, we will only be
able to estimate ATE not CATE)

Note: this is without loss of
generality (since U could

include all of X) Intervention, T

(e.g. medication,
procedure)

?

Outcome, Y



Estimation using an instrumental variable

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Estimation using an instrumental variable

Instrument (e.g., voucher)

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Assumption 1: Relevance

Z has a causal effecton T

What is an Instrument?

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Assumption 2: Exclusion Restriction

The causal effect of Zon Y is fully mediated by T

What is an Instrument?

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Assumption 3: Instrumental
Unconfoundedness

Z is unconfounded (in the setting of no X, this simply
means U and Z are independent)

What is an Instrument?

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Warm-up: linear potential outcome,
no X

Assume potential outcomes given by the linear model,

Yt(U) — C(uU + 6 - U+ Et, ]E[Et] —_ O

Z doesn’t appear because of
the exclusion restriction
assumption

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Warm-up: linear potential outcome,
no X

ElY | Z=1—-E[Y | Z =0]

= ]E[(ST +a,U | Z=1]—-E[0T +a,U | Z=0] (exclusion restriction and linear outcome assumptions)
S(E[T | Z=1]~E[T | Z=0)+0u (EU | Z =1~ E[U | Z =0))
S(E[T|Z=1]-E[T| Z=0])+ o (E[U] — E[U]) (instrumental unconfoundedness assumption)
S(E[T|Z=1]-E[T|Z=0])

s _EY|Z=1-E[Y|Z=0] @\ ‘U
T E[T|Z=1]-E[T|Z=0] N
\ i J /

(non-zero due to relevance assumption)

Y

Yt(U)z a,U +8-t+¢€;

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Estimation using (conditional) instruments

Assume potential outcomes given by:

Yr(x,U) = 6(x)T + g(x,U) + €7

Goal: estimate
CATE(x)
= 0(x)




Estimation using (conditional) instruments

Assume potential outcomes given by:

Yr(x,U) = §(x)T + glx,U) + ep(x)

E[Y|Z = 1,x] — E[Y|Z = 0, x]

Theorem: = 500) =
eorem CATE(x) 6(x) p(T=1|Z=1,x) —p(T=1|Z=0,x)

(proof shown on board)

Assume
Eleg| x] =0
Ele;]x] =0




What if you have unobserved
confounding but no instrument?

Sensitivity analysis will help us build
intuition on how biased our
estimates might be



Sensitivity analysis and hidden
confounding

* Major challenge: how to define the amount of
hidden confounding?

* This is not a purely mathematical problem!
We need to frame it in terms that enable us to
make judgement calls about plausible and
implausible levels of hidden confounding

(Slides adapted from Uri Shalit’s causal inference class)



Scenario #1

Patients treated with blood pressure drug A
live longer than patients without on
average.

However, drug A is very expensive, soO
mostly wealthy patients get drug A.

If income is not in our dataset, it could be
very likely that it explains much or all of the
ATE due to general lifestyle factors

(Example from Monica Agrawal)



Scenario #2

Patients who smoke are likelier to develop lung
cancer than patients who don't.

There is believed to be some heritability for
both addiction and lung cancer.

Even if patients’ mutations are not in the
dataset, it is unlikely that the genetic factors
are sufficient to overpower the overwhelming
ATE.

(Example from Monica Agrawal)

SN




Sensitivity analysis and hidden
confounding

e How to define the amount of hidden
confounding?

* How much H affects T and y?
e What “units” do we use for this?

measured \ [ T  treatment

How to ground it? confounders \ /

-y

outcome

hidden
; H confounders

(Slides adapted from Uri Shalit’s causal inference class)



Special case to build intuition

Notation change (!)
these slides use W

' fXxX
Continuous T @—»@ instead o

Linear T and no randomness T := a,W + a,U
Linear Y Y = 8,W + B,U + T

Goal: recoverd

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Bias in Simple Linear Setting

T :=a,W + a,U

Y = B W + B,U + 6T Proof coming

l after next
€)1 ) R

Bias of By [E[Y | T = 1,W] ~E[Y | T = 0,W]] =5+ % _g5="u

Qyy Qo

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Contour Plots for Sensitivity to
Confounding

Bias of Ew [E[Y | T =1,W] —E[Y | T = 0, W]]
10.0 A

. Bu
10
7.5
—— 25 au
5.0 Gt

2.5

By 00

-5.0
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-10.0

-15 -10 —B\ \ j 5 10 ili5

au
Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Bias in Simple Linear Setting Proof:
Step 1

A 4SCM T := a,W + o, U I T — a, W
ssume . =
Y .= 38 ,W + B,U+ 6T Qy

lGetld Xloded-foin exgresSionh, 63 Y- 0T =1t A1 Wi lterms of aw, o, By, and B
= Ew [BuW + B.E[U | T =t, W] + 6t
=Ew | BuW + B (t — &wW) + 5t]

u

- IEW ﬁwW + @t - Buaw

u au

Wt

— B E[W] + Puy _ Pudug

Oy Oy

- (5+ @>t+ (/3w— 5“%)151[1/[/]

au u

(W] + 6t

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Bias in Simple Linear Setting Proof:
Step 2

Step 1: Ew 51V |7 =0.W]| = (542 o (5, - 22 ) v

Oy

Ew [E[Y |T=1,W]-E[Y | T =0,W]| = <5+@) (1) + <5w— 5““”>E[W]

u u

~[(5+2) @+ (pu - 22 ) mw]

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Bias in Simple Linear Setting Proof:
Step 3

Bias = Ey [E[Y | T =1,W] —E[Y | T = 0, W]| a bV
—Ewy [E[Y | T=1,W,U] —E[Y | T = 0,W, U] lﬁu
_a s
" (O—
_ Bu
Oy

T :=a, W+ a,U
Y =B, ,W + B, U+ T

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Sensitivity analysis with binary
treatment

T :=a,W + a,U
Y =38 ,W + B,U + 0T

‘U P(T=1|W,U) :=sigmoid (e, W + o U)
\l’ Y = BuW + BuU + 6T + N

1
l1+e 7
Rosenbaum & Rubin (1983) and Imbens (2003)
 Simple parametric form for T

where sigmoid(z) =

* Simple parametric form for Y
 Uisbinary

 Uisascalar (only one unobserved
confounder)

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)


https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1983.tb01242.x
https://scholar.harvard.edu/files/imbens/files/sensitivity_to_exogeneity_assumptions_in_program_evaluation.pdf

Sensitivity analysis with binary
treatment

* How much unmeasured confounding to flip
our conclusions?

(Slides adapted from Uri Shalit’s causal inference class)



Does cigarette

—— Max. p—-value =0.05
0 Max. p—value >0.05
Max. p—value < 0.05

Less than 9th grade
VS,
College
L ]

smoking
increase blood =¥
lead?
m -
© -
Unmeasured
confounding
exp(d) in
outcome
model U
->Y
Other Hispanic
QO - vs. White
Hsu & Small, [I) 015 ‘ll
2013

2 4 6 8 10
Unmeasured confounding exp(y) in treatment assignment U = T

(Slides adapted from Uri Shalit’s causal inference class)




Generalization: Austen plots

* Here, both treatment e age blas =02-£e><

mechanism and the , © bloodwork e socioeconomic

outcome mechanism canbe «
. . o
modeled with arbitrary £ .
. . Q
machine learning models >
£
S 0.50
3
* Assumptions on how hidden ¢
. 0.25
confounders modify S
treatment & outcome E Q"{F
“_E 0

models 0 025 050 075
Influence on treatment (a)

(Veitch & Zaveri, Sense and Sensitivity Analysis: Simple Post-Hoc Analysis of Bias Due to
Unobserved Confounding. NeurlPS 2020)
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Summary

* Close connection between causal inference
and off-policy evaluation

— Will return to this later when we talk about off-
policy reinforcement learning

 |Instrumental variables can be used to
estimate ATE and CATE when there is
unobserved confounding

e Sensitivity analysis can help build intuition for
how unobserved confounding affects bias
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