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1. Introduction: real-world evidence, challenges of inference and causality
•Observational data are shaped by informed interventions, feedback loops

2. Methods of Causal Inference
•Potential Outcomes Framework
•Typical Underlying Assumptions: No unmeasured confounders, Ignorability, Common support
•Statistical methods of causal inference: Covariate adjustment, Propensity score re-weighting
•Natural Experiments

3. From Association to Causality: Principles of causality in real-world evidence
•Strength: Causal effects often have stronger associations.
•Consistency: Causal effects can be repeatedly observed by different persons, in different places, circumstances, and times?
•Specificity: Causal effects are often condition-specific.
•Temporality: Causal effects respect temporal ordering.
•Biological gradient: Causal effects are influenced by underlying biology which has continuously-varying characteristics.
•Plausibility: Causal effects should be plausible.
•Coherence: Causal effects should not seriously conflict with the generally known mechanisms.
•Experiment: Causal effects can predict experimental evidence.
•Analogy: Causal effects may be transferable between systems.

4. Causality in practice
•Bias and Confounding: Handling sensitive variables, explicitly sampling across groups
•All models are wrong, but some are useful -> Do we always want a biologically causal model?
•Useful models require careful consideration of setting and use cases to include generalizability, interventions, and risks.

Goals for Today: Causality
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To properly answer, need to
formulate as causal questions:

Intervention, 𝑇𝑇

(e.g. medication, 
procedure)

Outcome, 𝑌𝑌

Patient, 𝑋𝑋

(including all
confounding
factors)

?

High dimensional Observational data



XKCD

https://xkcd.com/552/
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XKCD

I think correlation
implies causation

I take a 
statistics class Now I don’t

I think correlation
implies causation

I realize
it doesn’t

Now I don’t

I get hit by 
a falling apple

I take a 
statistics class

I have an
epiphany

I speak with 
a wise friend

I have an
out-of-body
experience

I think correlation
implies causation

I realize
it doesn’t

Now I don’t

I have an
epiphany

I take a 
statistics class

I need one more
class to graduate

Case 1: Causation

Case 2: Some other event causes both (biomarker) Case 3: Complete coincidence (independent paths)

Intuition: not everyone takes a statistics class
Perhaps something pushed me to take one. 
Perhaps that same something led to the outcome

Intuition: Sometimes even the correlation is fortuitous
(solution: increase sample size  correlation goes away)

https://xkcd.com/552/


What should we do with associational evidence?

● RA Fisher - famous statistician, 
rejected smoking  cancer causality

● Claim: Only associational studies have 
been run so far.

● Monozygotic twins have more similar 
smoking patterns than dizygotic twins, 
so maybe a genetic propensity to 
smoke instead of a causal link?

● How many cancers were caused by 
this wrong interpretation? 
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Statistics

We reject the null hypothesis based on 
the 'hot damn, check out this chart' test

“Alleged benefits of covid vaccination”

Alleged benefits of mask-wearing 
to protect against covid spread: 
• Yes, there is plausibility
• Yes, there is correlation
• Yes, there are interventional

studies
But many confounders: 
• Counties who choose to mask 

also choose other measures
• Individuals who choose to

mask also take other 
precautions

• Can we untangle these effects?



To properly answer, need to
formulate as causal questions:

Intervention, 𝑇𝑇

(e.g. medication, 
procedure)

Outcome, 𝑌𝑌

Patient, 𝑋𝑋

(including all
confounding
factors)

?

High dimensional Observational data

ATE = Average Treatment Effect
CATE = Conditional Average Treatment Effect



Real-world evidence comes from complex human behaviors
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Observed 
Biomarkers

Patient 
Outcome

Useful to predict?

Underlying Risk

Treatments



Real-world evidence comes from complex human behaviors
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1. Introduction: real-world evidence, challenges of inference and causality
•Observational data are shaped by informed interventions, feedback loops

2. Methods of Causal Inference
•Potential Outcomes Framework
•Typical Underlying Assumptions: No unmeasured confounders, Ignorability, Common support
•Statistical methods of causal inference: Covariate adjustment, Propensity score re-weighting
•Natural Experiments

3. From Association to Causality: Principles of causality in real-world evidence
•Strength: Causal effects often have stronger associations.
•Consistency: Causal effects can be repeatedly observed by different persons, in different places, circumstances, and times?
•Specificity: Causal effects are often condition-specific.
•Temporality: Causal effects respect temporal ordering.
•Biological gradient: Causal effects are influenced by underlying biology which has continuously-varying characteristics.
•Plausibility: Causal effects should be plausible.
•Coherence: Causal effects should not seriously conflict with the generally known mechanisms.
•Experiment: Causal effects can predict experimental evidence.
•Analogy: Causal effects may be transferable between systems.

4. Causality in practice
•Bias and Confounding: Handling sensitive variables, explicitly sampling across groups
•All models are wrong, but some are useful -> Do we always want a biologically causal model?
•Useful models require careful consideration of setting and use cases to include generalizability, interventions, and risks.

Goals for Today: Causality
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Y0 = Hypothetical treatment group 0
Y1 = Hypothetical treatment group 1 Only information about these individuals 

(usually highly multidimentional)
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(Conditional Average 
Treatment Effect)
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(Average 
Treatment Effect)



Slide Adapted from: David Sontag (MIT) 21



Slide Adapted from: David Sontag (MIT) 22



Slide Adapted from: David Sontag (MIT)
23

Note: We only care about confounders **that lead to treatment decisions**
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30ATE = average treatment effect

Inferred treated Inferred untreated
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Propensity score: the probability of receiving one of the 
treatments being compared, given the measured covariates
PropensityScore = Prob(Treatment | Covariates)

(Average Treatment Effect)
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CCI: 10-year survival 
in patients with 
multiple comorbidities
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Propensity score: the probability of receiving one of the 
treatments being compared, given the measured covariates
PropensityScore = Prob(Treatment | Covariates)
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(Average Treatment Effect)
PropensityScore
= Prob(Treatment 

| Covariates)

treated untreated
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treated untreated

(Average Treatment Effect)
PropensityScore
= Prob(Treatment 

| Covariates)
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(Average Treatment Effect)
PropensityScore
= Prob(Treatment 

| Covariates)
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(Inverse Prob. Weighting)
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1. Introduction: real-world evidence, challenges of inference and causality
•Observational data are shaped by informed interventions, feedback loops

2. Methods of Causal Inference
•Potential Outcomes Framework
•Typical Underlying Assumptions: No unmeasured confounders, Ignorability, Common support
•Statistical methods of causal inference: Covariate adjustment, Propensity score re-weighting
•Natural Experiments

3. From Association to Causality: Principles of causality in real-world evidence
•Strength: Causal effects often have stronger associations.
•Consistency: Causal effects can be repeatedly observed by different persons, in different places, circumstances, and times?
•Specificity: Causal effects are often condition-specific.
•Temporality: Causal effects respect temporal ordering.
•Biological gradient: Causal effects are influenced by underlying biology which has continuously-varying characteristics.
•Plausibility: Causal effects should be plausible.
•Coherence: Causal effects should not seriously conflict with the generally known mechanisms.
•Experiment: Causal effects can predict experimental evidence.
•Analogy: Causal effects may be transferable between systems.

4. Causality in practice
•Bias and Confounding: Handling sensitive variables, explicitly sampling across groups
•All models are wrong, but some are useful -> Do we always want a biologically causal model?
•Useful models require careful consideration of setting and use cases to include generalizability, interventions, and risks.

Goals for Today: Causality
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Principles of Causality in Observational Data

1. Temporality: Causal effects respect temporal ordering. (Mendelian Randomization)
2. Biological gradient: Causal effects are influenced by underlying biology which has 

continuously-varying characteristics. (Threshold-based effects)
3. Plausibility: Causal effects should be plausible. (Comorbidities)
4. Coherence: Causal effects should not seriously conflict with the generally known 

mechanisms. (Systematically aligning)
5. Strength: Causal effects often have stronger associations.
6. Consistency: Causal effects can be repeatedly observed by different persons, in different 

places, circumstances, and times.
7. Specificity: Causal effects are often condition-specific.
8. Experiment: Causal effects can predict experimental evidence.
9. Analogy: Causal effects may be transferable between systems.
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Hill AB. Proceedings of the Royal Society of Medicine. 1965

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1898525/pdf/procrsmed00196-0010.pdf


Temporality: Mendelian Randomization and Natural Temporality of Genetics

● Use inherited genetic variants as pseudo-randomized assignment to infer causal 
relationship between exposure and disease outcome.

● The fundamental idea:
● Genetic instrumental variables help extract the variation in intermediate 

phenotype that is independent of confounding variables.
● Use this variation to estimate causal effect.

● Common method of MR: 2-Step Least Squares
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Temporality: Mendelian Randomization and Natural Temporality of Genetics
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Genetic 
Variant

Disease 
Outcome

Unobserved 
Confounders

Exposure

The fundamental idea: If we can’t randomize assignment of 
exposure, we can use the portion of the exposure which is 
predictable from the naturally randomized genetic variant.
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Data-Driven Reality

Elevated creatinine levels are 
an indicator of renal failure, 
so we expect mortality risk to 
increase with creatinine.

Expectation

Biological Gradient: Causal Effects Should Be Smooth and Often Monotone

Lengerich et al 2022

https://www.medrxiv.org/content/10.1101/2022.04.30.22274520v2
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Expectation Data-Driven Reality

ç√

ç√Changes triggered by 
round-number 
thresholds?

Elevated creatinine levels are 
an indicator of renal failure, 
but patients with creatine 
>5mg/dL appear low-risk.ç√

Biological Gradient: Causal Effects Should Be Smooth and Often Monotone

Lengerich et al 2022

https://www.medrxiv.org/content/10.1101/2022.04.30.22274520v2


Plausibility: Causal Biological Effects Should Make Be Plausible

● Real-world 
associations of 
chronic 
comorbidities in 
EHRs are often 
the opposite 
sign that they 
would be 
plausible.
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Lengerich et al 2022

For patients hospitalized with pneumonia:

https://www.medrxiv.org/content/10.1101/2022.04.30.22274520v2


Coherence: Systematically Aligning Real-World Evidence with Domain Knowledge

● Human-in-the-loop training
● Simulations
● Knowledge graphs
● Multi-task models
● Data augmentation policies
● Teacher-student model training to encode logic rules
● Re-usable representations / embeddings
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Coherence: Retrofitting Distributional Embeddings to Knowledge Graphs

● Forces distributional (co-
occurrence, etc) 
embeddings to respect 
known relations encoded as 
knowledge graph edges
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Lengerich et al 2018

https://aclanthology.org/C18-1205/


Coherence: Data Augmentation

● Augmentation policies: 
orthogonal to labels

● Good augmentation policies for 
images: resize, rotate, crop, color

● Can we learn to augment from 
data?

● Current bottleneck: requires a set 
of atomic augmentation 
techniques to mix.
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Cubic et al 2018



Coherence: Logic Rules with Teacher-Student Models

● How can we make a NN 
that respects logic rules?

● One solution: build a 
teacher model that is forced 
to respect the logic rules, 
and then learn to trade off 
against data.
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Hu et al 2020



Coherence: Foundation Models

● Pretext task: masked token 
prediction

● If we observe many examples 
and routinely fill in the missing 
syntax, then some underlying 
semantics are implicitly 
learned.

● Do new inferences respect the 
semantics learned in training 
corpus?
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Bommasani et al. 2022



1. Introduction: real-world evidence, challenges of inference and causality
•Observational data are shaped by informed interventions, feedback loops

2. Methods of Causal Inference
•Potential Outcomes Framework
•Typical Underlying Assumptions: No unmeasured confounders, Ignorability, Common support
•Statistical methods of causal inference: Covariate adjustment, Propensity score re-weighting
•Natural Experiments

3. From Association to Causality: Principles of causality in real-world evidence
•Strength: Causal effects often have stronger associations.
•Consistency: Causal effects can be repeatedly observed by different persons, in different places, circumstances, and times?
•Specificity: Causal effects are often condition-specific.
•Temporality: Causal effects respect temporal ordering.
•Biological gradient: Causal effects are influenced by underlying biology which has continuously-varying characteristics.
•Plausibility: Causal effects should be plausible.
•Coherence: Causal effects should not seriously conflict with the generally known mechanisms.
•Experiment: Causal effects can predict experimental evidence.
•Analogy: Causal effects may be transferable between systems.

4. Causality in practice
•Bias and Confounding: Handling sensitive variables, explicitly sampling across groups
•All models are wrong, but some are useful -> Do we always want a biologically causal model?
•Useful models require careful consideration of setting and use cases to include generalizability, interventions, and risks.

Goals for Today: Causality
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Causality in practice



Causality in practice: Bias and Confounding

● Suppose we want to learn causal effect invariant to a sensitive feature.
● Should we hold that feature out of training?

● At test time, we can:
● Throw away the effect of the feature
● Sweep over all values of the sensitive feature
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Causality in practice: Do we always want a biologically causal model?

● Accuracy isn’t enough for medical impact:
● Medicine is a continuous process: Should we include prior lab tests as a 

predictor in our model?
● Should we include prior treatments as a predictor in our model? They are 

missing not-at-random.
● Techniques depend on our goal:

● learning biological causality?
● maximizing predictive accuracy?
● guiding interventions?
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Resources
● [Bommasani et al 2022] On the Opportunities and Risks of Foundation Models
● [Cubuk et al 2019] AutoAugment: Learning Augmentation Policies from Data
● [Faruqui et al 2015] Retrofitting Word Vectors to Semantic Lexicons
● [Henry et al 2022] Factors driving provider adoption of the TREWS machine learning-based early 

warning system and its effects on sepsis treatment timing
● [Hill AB 1965] The Environment and Disease: Association or Causation?
● [Hsu] Mendelian Randomization
● [Hu et al 2020] Harnessing Deep Neural Networks with Logic Rules.
● [Lengerich et al 2018] Retrofitting Distributional Embeddings to Knowledge Graphs with Functional 

Relations
● [Lengerich et al 2022] Death by Round Numbers: Glass-Box Machine Learning Uncovers Biases in 

Medical Practice
● [Wong et al 2021] External Validation of a Widely Implemented Proprietary Sepsis Prediction Model 

in Hospitalized Patients
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https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1411.4166
https://www.nature.com/articles/s41591-022-01895-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1898525/pdf/procrsmed00196-0010.pdf
https://research.fredhutch.org/content/dam/stripe/hsu/files/IV_Mendelian_lecture_1.pdf
https://arxiv.org/abs/1603.06318
https://arxiv.org/abs/1708.00112
https://www.medrxiv.org/content/10.1101/2022.04.30.22274520v2
https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2781307?utm_source=STAT+Newsletters&utm_campaign=2cf65f91fb-health_tech_COPY_01&utm_medium=email&utm_term=0_8cab1d7961-2cf65f91fb-152974970
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