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Goals for Today: Causality

1. Introduction: real-world evidence, challenges of inference and causality
* Observational data are shaped by informed interventions, feedback loops

2. Methods of Causal Inference
* Potential Outcomes Framework
* Typical Underlying Assumptions: No unmeasured confounders, Ignorability, Common support
« Statistical methods of causal inference: Covariate adjustment, Propensity score re-weighting
*Natural Experiments

3. From Association to Causality: Principles of causality in real-world evidence
« Strength: Causal effects often have stronger associations.
* Consistency: Causal effects can be repeatedly observed by different persons, in different places, circumstances, and times?
« Specificity: Causal effects are often condition-specific.
* Temporality: Causal effects respect temporal ordering.
*Biological gradient: Causal effects are influenced by underlying biology which has continuously-varying characteristics.
* Plausibility: Causal effects should be plausible.
* Coherence: Causal effects should not seriously conflict with the generally known mechanisms.
* Experiment: Causal effects can predict experimental evidence.
* Analogy: Causal effects may be transferable between systems.

4. Causality in practice
*Bias and Confounding: Handling sensitive variables, explicitly sampling across groups
* All models are wrong, but some are useful -> Do we always want a biologically causal model?
» Useful models require careful consideration of setting and use cases to include generalizability, interventions, and risks.



Patient/Provider Goals of Clinical Data Science

* Mrs. Patel is a 65 year old who was recently diagnosed
with kidney cancer. She returns to your office to discuss
treatment and has some questions.

* After treatment, what is the risk of my cancer coming back
before the Ultimate World Cruise (December 2023)?

* Will the risk of my cancer coming back change if | get a partial
nephrectomy instead of a radical nephrectomy?

How would you answer these questions using
clinical data science?

Will my cancer come back?

* How would you the estimate of Mrs. Patel’s risk of cancer
recurrence?

Features X Label Y Mrs. Patel
(age, sex, (cancer features
ethnicity, recurrence) L 2
smoking status, > M L — | Model
body mass
index, blood "
pressure, heart Prediction
rate, ..., nth

feature)

‘ Aim of prediction is to estimate Y, given X ‘

Change the risk of my cancer coming back?

* You hypothesize that type of surgery (partial vs. radical) will
change her risk of cancer recurrence.

Outcome
* Ground truth ﬁ
Partial nephrectomy Y
Mrs. Patel > °
Radical nephrectomy . Y
» 1

* Reality: We cannot know the ground truth

RCT: Radical vs. Partial Nephrectomy

- EORTC 30904
! Results

Local recurrence
RN 1/273 = 0.37%
PN 6/278 = 2.16%

Population: 541
patients with tumors ) .
<5cm suspicious for intergroup phase 3 siudy comparing the oncologic outcome of

Wan Poppel, Hendrik, et al. "A prospective, randomised EORTC

elective nephron-sparing surgery and radical nephrectomy for low-
stage renal cell carcinoma .~ European urology 59.4 (2011). 543-
£532

kidney cancer Randomized to
RN vs. PN

Conclusion from randomized control trial:
On average, radical nephrectomy has a lower rate of local recurrence than partial




Clinical Research Study Designs

/\

Descriptive Analytic

* Case report ‘/\

* Case series
Observational Experimental

* Survey
* Cohort studies * Randomized
* Cross sectional controlled
* Case-control trials

Change the risk of my cancer coming back?

*You hypothesize that type of surgery (partial vs.
radical) will change her risk of cancer recurrence.
How do you evaluate this hypothesis?

Outcome
o & & o

Twins of Mrs. Patel who have
undergone PN or RN

Surgery type (RN vs. PN)

General population of
patients undergoing RN or PN

RN

PN

Change the risk of my cancer coming back?

*You hypothesize that type of surgery (partial vs.
radical) will change her risk of cancer recurrence.
How do you evaluate this hypothesis?

¢ Fieallty Surgery type (RN vs. PN) Outcome
| 0000 O - WRN
i) &) 'ﬂ‘m‘m %
® O 00 o

Mee

Patients “similar” to Mrs.
Patel who have undergone
PN or RN

Selected population of
patients undergoing RN or PN




Does gastric bypass surgery prevent
onset of diabetes?

2013

O<4.5% 0O 4.5%-5.9% O 6.0%-7.4%M@ 7.5%-8.9% MW >9.0%

* In Lecture 4 & PS2 we used machine learning for early
detection of Type 2 diabetes

* Health system doesn’t want to know how to predict
diabetes — they want to know how to prevent it

* Gastric bypass surgery is the highest negative weight
(9th most predictive feature)

— Does this mean it would be a good intervention?
Sontag (MIT) 5



What is the likelihood this patient, with
breast cancer, will survive 5 years?

* Such predictive models widely used to stage patients.
Should we initiate treatment? How aggressive?

* What could go wrong if we trained to predict survival,
and then used to guide patient care?

Y
D|agn05|s Treatment De?th Time
”Mary

A long survival time may be because of treatment!

Sontag (MIT)
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To properly answer, need to
formulate as causal questions:

Patient, X Intervention, T

(including all
confounding
factors)

(e.g. medication,
procedure)

Outcome, Y

High dimensional Observational data



T USED T0 THINK
CORRELATION IMPUED
CAVSATION.

1

THEN I TOCK A

STATISTICS CLASs.

Now I DON'T.

P

SOUNDS LIKE THE
CLASS HELPED.

WELL, MAYBE

§i

XKCD



https://xkcd.com/552/

T USED 10 THINK, THEN I TOOK A | | SOUNDS LIKE THE

CORRELATION IMPUED| | STATISTICS CLass. | | CLASS HELPED.

CAUSATION. | NOW T DON'T. \ WELL, MAYEE.
/

| think correlation
implies causation

Case 1: Causation

| take a
statistics class

PR IRRIRT e

Case 2: Some other event causes both (biomarker)

| realize
it doesn’t

| take a
statistics class

| have an
out-of-body
experience epiphany

| speak With =y hit by
a wise friend .
a falling apple
| think correlation
implies causation

| have an

Intuition: not everyone takes a statistics class
Perhaps something pushed me to take one.
Perhaps that same something led to the outcome

Case 3: Complete coincidence (independent paths)

| have an | realize
epiphany it doesn’t

| think correlation | take a
implies causation statistics class
| need one more
class to graduate

Intuition: Sometimes even the correlation is fortuitous

(solution: increase sample size = correlation goes away)



https://xkcd.com/552/

What should we do with associational evidence?

British Medical J., vol. I1, p. 43, 6 July 1957 and vol. II, pp. 297-298, 3 August 1957.

269-270

ALLEGED DANGERS OF CIGARETTE-SMOKING

e RA Fisher - famous statistician,
rejected smoking =» cancer causality

e Claim: Only associational studies have
been run so far.

e Monozygotic twins have more similar
smoking patterns than dizygotic twins,
SO maybe a genetic propensity to
smoke instead of a causal link?

e How many cancers were caused by
this wrong interpretation?

10



“Alleged benefits of covid vaccination”

Statistics

\“VACCINE GROUP

L

TIME

STATISTICS TiP: ALLAYS TRY TO GET
DATA THAT'S GOOD ENOUGH THAT YOU
DONT NEED TO DO STATISTICS ON IT

We reject the null hypothesis based on
the 'hot damn, check out this chart' test

xkcd

Patient, X Intervention, T
(including all (e.g. medication,
confounding ? procedure)
factors)

Qutcome, Y

Alleged benefits of mask-wearing

to protect against covid spread:

* Yes, there is plausibility

* Yes, there is correlation

* Yes, there are interventional
studies

But many confounders:

* Counties who choose to mask
also choose other measures

* Individuals who choose to
mask also take other
precautions

« Can we untangle these effects?




To properly answer, need to
formulate as causal questions:

Patient, X Intervention, T
(including all (e.g. medication,
confounding procedure)
factors)

Outcome, Y
High dimensional Observational data

ATE = Average Treatment Effect
CATE = Conditional Average Treatment Effect

Each unit (individual) x; has two potential outcomes*:
— Yy(x;) is the potential outcome had the unit not been treated:
“control outcome”

— Yi(x;) is the potential outcome had the unit been treated:
“treated outcome”

Conditional average treatment effect for unit i:
CATE (x;) = Ey,~p(vy|x;) [Y11Xi] = Eygep(vgxp [Yolxi]
Average Treatment Effect:

ATE: = E[Y; — Y,] = [Elx,vp(x)[CATE(x)]

Observed factual outcome:

yi = ;Y1 (%) + (1 —t)Yp(x;)
Unobserved counterfactual outcome:
yi' =1 = t)Y1(x) + ;Yo (x;)




Real-world evidence comes from complex human behaviors

(Underlying Risk)
Observed S\ Usefulto predlct’? ........... Patient
Biomarker‘S ......................................................... i‘.’: Outcome

( Treatments )

13



Real-world evidence comes from complex human behaviors

Underlying [ Undeﬂying Risk ] Underlying risk
risk produces worsens patient
observed outcomes.

biomarkers.

Predicts worse outcome

Observed \~ -~ """~ "¢ ir----5"°A"""

Biomarkers Predicting outcomes from biomarkers can

confound underlying risk and treatment.

Observed

Predicts better outcome

biomarkers can Treatments
affect treatment O improve patient
decisions. outcomes.

[ Treatments ]




Goals for Today: Causality

1. Introduction: real-world evidence, challenges of inference and causality
* Observational data are shaped by informed interventions, feedback loops

2. Methods of Causal Inference
* Potential Outcomes Framework
* Typical Underlying Assumptions: No unmeasured confounders, Ignorability, Common support
« Statistical methods of causal inference: Covariate adjustment, Propensity score re-weighting
*Natural Experiments

3. From Association to Causality: Principles of causality in real-world evidence
« Strength: Causal effects often have stronger associations.
* Consistency: Causal effects can be repeatedly observed by different persons, in different places, circumstances, and times?
« Specificity: Causal effects are often condition-specific.
* Temporality: Causal effects respect temporal ordering.
*Biological gradient: Causal effects are influenced by underlying biology which has continuously-varying characteristics.
* Plausibility: Causal effects should be plausible.
* Coherence: Causal effects should not seriously conflict with the generally known mechanisms.
* Experiment: Causal effects can predict experimental evidence.
* Analogy: Causal effects may be transferable between systems.

4. Causality in practice
*Bias and Confounding: Handling sensitive variables, explicitly sampling across groups
* All models are wrong, but some are useful -> Do we always want a biologically causal model?

. . . . . . i . . 15
» Useful models require careful consideration of setting and use cases to include generalizability, interventions, and risks.




Potential Outcomes Framework
(Rubin-Neyman Causal Model)

* Each unit (individual) x; has two potential outcomes:

— Yo (x;) is the potential outcome had the unit not been treated:
“control outcome”

— Y1 (x;) is the potential outcome had the unit been treated:
“treated outcome”

* Conditional average treatment effect for unit i:
CATE (x;) = Ey, ~pv, %) [Y11%i] = Eyypevy ) [Yol ]
* Average Treatment Effect:
ATE:=E|Y; - Y,] = IExNP(x)[CATE(x)]

Slide Adapted from: David Sontag (MIT) 16



“The fundamental problem of
causal inference”

We only ever observe one of the
two outcomes

Slide Adapted from: David Sontag (MIT) 17



Example — Blood pressure and age

y =
blood_pres.

— Y (x)
— Yo (x)

X =age
Only information about these individuals
(usually highly multidimentional)

Y, = Hypothetical treatment group 0
Y, = Hypothetical treatment group 1

Slide Adapted from: David Sontag (MIT) 18



Blood pressure and age

y =
blood_pres.

— Y (x)

|

(Conditional Average
_Treatment Effect)

P ] | CATE (x)

_ YO (x) /\

X = age

Slide Adapted from: David Sontag (MIT) 19



Blood pressure and age

y =
blood_pres.

— Y3 (x)
— Yo (x)

ATE

/(Average

X = age

Slide Adapted from: David Sontag (MIT)

Treatment Effect)

20



Blood pressure and age

y =
blood_pres.

— Y3 (x)
— Yy (x)
@ Treated
@ control

X = age

Slide Adapted from: David Sontag (MIT)
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Blood pressure and age

Y; (x)
y = * .'
i ?"‘0"|
blood_pres. 2
x 22, . .-'-"‘" : '
ay T e PN ...o" I
.: {Tl"#f --.l...-t:-‘-L"' we? 4 T:? ::: : : I
g oy VDT
BRE RN YR
‘I “L"'..‘.l.. N .‘",--.""Q":.‘:"u'.:' '!.:! h I :
O."‘ @ 4. h I'-i-li.',l
@ Treated o)
@ cControl X = age

-----

i : Counterfactual treated

[ Counterfactual control
Slide Adapted from: David Sontag (MIT) 22



Typical assumption — no unmeasured
confounders

Yo, Y : potential outcomes for control and treated
X: unit covariates (features)
T: treatment assignment

We assume:

(Yo, Y1) LT |x

The potential outcomes are independent of treatment
assignment, conditioned on covariates x

Note: We only care about confounders **that lead to treatment decisions™*

Slide Adapted from: David Sontag (MIT) 23



Typical assumption — no unmeasured
confounders

Yo, Y : potential outcomes for control and treated
X: unit covariates (features)
T: treatment assignment

We assume:

(Yo, Y1) UT|x
Ignorability

Slide Adapted from: David Sontag (MIT) o4

Note: We care about confounders **that lead to treatment decisions™*



lgnorability

covariates > T treatment
(features)

Potential outcomes

(Yo, Y1) LT | x

. . Slide Adapted from: David Sontag (MIT)
Note: We care about confounders **that lead to treatment decisions™*

25



lgnorability
anti-
hypertensive
medication

T

age, gender,
weight, diet,

heart rate at
rest,...
blood pressure @ blood pressure
after medication after
A medication B

(Yo,Y)) LT |x

. . Slide Adapted from: David Sontag (MIT
Note: We care about confounders **that lead to treatment decisions™* P gMIT) 56




No Ignorability

anti-

hypertensive
medication

age, gender,
weight, diet,
heart rate at
rest,...

blood pressure
after medication

blood pressure
after

diabetic

A medication B

(Yo, Y1)AT|x

Note: We care about confounders **that lead to treatment decisions™*

Slide Adapted from: David Sontag (MIT)
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Typical assumption —common support

Yo, Y;: potential outcomes for control and treated
X: unit covariates (features)
T: treatment assignment

We assume:

p(T=t|X=x)>0Vt,x

Slide Adapted from: David Sontag (MIT)

Note: We care about confounders **that lead to treatment decisions™* 28



Covariate adjustment

Explicitly model the relationship between
treatment, confounders, and outcome:

Covariates Regression Outcome
(Features) model

Xq \

X

-~ f(xT)

. —_—

X4 /

T /

Slide Adapted from: David Sontag (MIT) 59



Covariate adjustment
(parametric g-formula)
* Explicitly model the relationship between
treatment, confounders, and outcome

* Under ignorability, the expected causal effect
of TonY:

Ex-peoy| EIT = 1,x] — E[Yy|T = 0,x]]
* Fitamodel f(x,t) = E[Y{|T = t, x]

____——____

ATE = f(xu 1) f(xu O)

Inferred treated Inferred untreated
Slide Adapted from: David Sontag (MIT)

S|P
M=

Il
[

i

ATE = average treatment effect 30



Covariate adjustment
(parametric g-formula)
* Explicitly model the relationship between
treatment, confounders, and outcome

* Under ignorability, the expected causal effect
of TonY:
Eyvpeo| EIIT = 1,x] — E[Y|T = 0,x]]

* Fitamodel f(x,t) = E[Y;|T = ¢, x]

CATE (x;) = f(x;,1) — f(x;,0)

Slide Adapted from: David Sontag (MIT)

CATE = conditional average treatment effect 31



Covariate adjustment

y =
blood_pres.

— Y3 (x)
— Yy (x)
@ Treated
@ control

X = age

Slide Adapted from: David Sontag (MIT)
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Covariate adjustment

y = Te
|

blood _pres. o L

@ Treated
@ control

X = age

"""

{ i Counterfactual treated

{ i Counterfactual control

Slide Adapted from: David Sontag (MIT) 33



Propensity scores

+ Tool for estimating ATE /(Average Treatment Effect)

* Basic idea: turn observational study into a
pseudo-randomized trial by re-weighting
samples, similar to importance sampling

Propensity score: the probability of receiving one of the

treatments being compared, given the measured covariates
PropensityScore = Prob(Treatment | Covariates)

Slide Adapted from: David Sontag (MIT) 34



Inverse propensity score re-weighting

p(x[t =0) #px[t =1)

control treated
° O
o ¢ -
e ® O
Xy = * © O O ¢
2 O @ .
Charlson ® ° ®
comorbidity O © ® ' ° e ©
index o ° [ 1
CCI: 10-year survival 9] O ® O ®
in patients with O o ® O
multiple comorbidities o O O
. Treated O
. Control X1 = age

Slide Adapted from: David Sontag (MIT) 35



Inverse propensity score re-weighting

p(x|t =0) - wo(x) =

p(xlt =1) - wy(x)

reweighted control reweighted treated
* O
O o °
O O
o ® Lo o °
Charlson ® . ° o
comorbidity O © o e ©
index C © o
® o * ®¢ o
o O O O
O ® ©
. Treated .
. Control X1 = age

Slide Adapted from: David Sontag (MIT) 36



Propensity score

* Propensity score: p(T = 1|x),
using machine learning tools

* Samples re-weighted by the inverse propensity
score of the treatment they received

Propensity score: the probability of receiving one of the
treatments being compared, given the measured covariates
PropensityScore = Prob(Treatment | Covariates)

Slide Adapted from: David Sontag (MIT) 37



Propensity scores — algorithm

Inverse probability of treatment weighted estimator
(Average Treatment Effect)
How to calculate ATE with propensity scores_ propensityscore

= Prob(Treatment

for sample (x1,t1, V1), .o, (Xn, tny Vi) | Covariates)

1. Use any ML method to estimate p(T = t|x)

A 1 Yi 1 Yi
2 ATE == i S .
n Z p(t; =1lz;)) n Z 0 p(t; = 0lz;)

1 s.t. t;=1 1 s.t. t;=
treated untreated

Slide Adapted from: David Sontag (MIT)
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Propensity scores — algorithm

Inverse probability of treatment weighted estimator
(Average Treatment Effect)
How to calculate ATE with propensity scores_ propensityscore

= Prob(Treatment

for sample (x1,t1, V1), .o, (Xn, tny Vi) | Covariates)

1. Randomized trial p(T = t|x) = 0.5

A 1 Yi 1 Yi
2 ATE == i S .
n Z p(t; =1lz;)) n Z 0 p(t; = 0lz;)

1 s.t. t;=1 1 s.t. t;=
treated untreated

Slide Adapted from: David Sontag (MIT)
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Propensity scores — algorithm

Inverse probability of treatment weighted estimator
(Average Treatment Effect)
How to calculate ATE with propensity scores_ propensityscore

= Prob(Treatment

for sample (xq, t1, ¥1), -o» Gy tr, V) | Covariates)
1. Randomized trial p(T = t|x) = 0.5

o vi 1 Yi _
2 ATE = D 55 n, 2 05"

1 s.t. t;=1

Slide Adapted from: David Sontag (MIT)
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Propensity scores — algorithm

Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score
for sample (x1,t1, V1), .o, (Xn, tny Vi)

1. Randomized trial p = 0.5

A 1 y 1 Yi
. ATE == AT KA
2 2
n 2 Vi, Z y
1 8.t. t;=1 1 s.t. t;=0

Slide Adapted from: David Sontag (MIT)
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Propensity scores — algorithm

Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score

for sample (x1,t1, V1), .o (Xn, try Vi)

n
Sum over ~ = terms

1. Randomized trial p = 0.5

2. ATE =

Slide Adapted from: David Sontag (MIT) 49



/(Inverse Prob. Weighting)

Problems with IPW

* Need to estimate propensity score (problem in
all propensity score methods)

* |If there’s not much overlap, propensity scores
become non-informative and easily mis-
calibrated

* Weighting by inverse can create large variance
and large errors for small propensity scores

— Exacerbated when more than two treatments

Slide Adapted from: David Sontag (MIT) 43



Many more ideas and methods —
Natural experiments

Does stress during pregnancy affect later child
development?

Confounding: genetic, mother personality,
economic factors...

Natural experiment: the Cuban missile crisis of
October 1962. Many people were afraid a nuclear
war is about to break out.

Compare children who were in utero during the
crisis with children from immediately before and
after

Slide Adapted from: David Sontag (MIT) 44



Many more ideas and methods —
Instrumental variables

Informally: a variable which affects treatment
assignment but not the outcome

Example: are private schools better than public
schools?

Confounding: different student population,
different teacher population

Can’t force people which school to go to

Slide Adapted from: David Sontag (MIT) 45



Many more ideas and methods —
Instrumental variables

Informally: a variable which affects treatment
assignment but not the outcome

Example: are private schools better than public
schools?

Can’t force people which school to go to

Can randomly give out vouchers to some children,
giving them an opportunity to attend private
schools

The voucher assignment is the instrumental
variable

Slide Adapted from: David Sontag (MIT) 45



Goals for Today: Causality

1. Introduction: real-world evidence, challenges of inference and causality
* Observational data are shaped by informed interventions, feedback loops

2. Methods of Causal Inference
* Potential Outcomes Framework
* Typical Underlying Assumptions: No unmeasured confounders, Ignorability, Common support
« Statistical methods of causal inference: Covariate adjustment, Propensity score re-weighting
*Natural Experiments

3. From Association to Causality: Principles of causality in real-world evidence
« Strength: Causal effects often have stronger associations.
 Consistency: Causal effects can be repeatedly observed by different persons, in different places, circumstances, and times?
« Specificity: Causal effects are often condition-specific.
* Temporality: Causal effects respect temporal ordering.
*Biological gradient: Causal effects are influenced by underlying biology which has continuously-varying characteristics.
* Plausibility: Causal effects should be plausible.
* Coherence: Causal effects should not seriously conflict with the generally known mechanisms.
* Experiment: Causal effects can predict experimental evidence.
* Analogy: Causal effects may be transferable between systems.

4. Causality in practice
*Bias and Confounding: Handling sensitive variables, explicitly sampling across groups
* All models are wrong, but some are useful -> Do we always want a biologically causal model?

. . . . . . e . . 47
» Useful models require careful consideration of setting and use cases to include generalizability, interventions, and risks.




Principles of Causality in Observational Data

-_—

w

N

o O

0 ~

. Temporality: Causal effects respect temporal ordering. (Mendelian Randomization)
. Biological gradient: Causal effects are influenced by underlying biology which has

continuously-varying characteristics. (Threshold-based effects)

. Plausibility: Causal effects should be plausible. (Comorbidities)
. Coherence: Causal effects should not seriously conflict with the generally known

mechanisms. (Systematically aligning)

. Strength: Causal effects often have stronger associations.
. Consistency: Causal effects can be repeatedly observed by different persons, in different

places, circumstances, and times.

. Specificity: Causal effects are often condition-specific.
. Experiment: Causal effects can predict experimental evidence.
. Analogy: Causal effects may be transferable between systems.

Hill AB. Proceedings of the Royal Society of Medicine. 1965

48


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1898525/pdf/procrsmed00196-0010.pdf

Temporality: Mendelian Randomization and Natural Temporality of Genetics

e Use inherited genetic variants as pseudo-randomized assignment to infer causal
relationship between exposure and disease outcome.
e The fundamental idea:
e Genetic instrumental variables help extract the variation in intermediate
phenotype that is independent of confounding variables.
e Use this variation to estimate causal effect.
e Common method of MR: 2-Step Least Squares

49



Temporality: Mendelian Randomization and Natural Temporality of Genetics

Unobserved
Confounders

:>( Exposure )

The fundamental idea: If we can’t randomize assignment of
exposure, we can use the portion of the exposure which is
predictable from the naturally randomized genetic variant.

Disease
Outcome

Genetic
Variant

50



Biological Gradient: Causal Effects Should Be Smooth and Often Monotone

Data-Driven Reality

Expectation

levated creatinine levels are
an indicator of renal failure,
S0 we expect mortality risk to

Mortality Odds Ratio

Creatinine (mg/dL) Creatinine (mg/dL)

Lengerich et al 2022

51


https://www.medrxiv.org/content/10.1101/2022.04.30.22274520v2

Biological Gradient: Causal Effects Should Be Smooth and Often Monotone

Mortality Odds Ratio

Expectation

hanges triggered by

ound-number
f)

Elevated creatinine levels are

Data_ D [en indicator of renal failure,

ut patients with creatine

>

Creatinine (mg/dL)

Len

Creatlnlne (mg/d Lc12richetal2022



https://www.medrxiv.org/content/10.1101/2022.04.30.22274520v2

Plausibility: Causal Biological Effects Should Make Be Plausible

e Real-world For patients hospitalized with pneumonia:

aSSOCiationS Of .0 Comorbidities such as chest pain and
w 2 asthma do not reduce intrinsic risk but
Ch ronic E ﬁ:p;sb:;::?des:;ondlllcns have
. g . =] 1 +- E
comorbidities in o J_Ill_l" H
=
EHRs are often s ,
. <] NP CIC I SN R
the opposite N S SIS
. (Fz cg(} @c’@v‘?"}@\{\g@'\b & 5‘% (}(\e
sign that they & ITFITEE o
<L & O g KN W '
would be & e T S
< 2
plausible. &

Statistically appears to reduce risk I
Statistically appears to increase risk [
No statistically significant association [ |

Lengerich et al 2022
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https://www.medrxiv.org/content/10.1101/2022.04.30.22274520v2

Coherence: Systematically Aligning Real-World Evidence with Domain Knowledge

Human-in-the-loop training

Simulations

Knowledge graphs

Multi-task models

Data augmentation policies

Teacher-student model training to encode logic rules
Re-usable representations / embeddings

54



Coherence: Retrofitting Distributional Embeddings to Knowledge Graphs

Forces distributional (co-
occurrence, etc)
embeddings to respect
known relations encoded as
knowledge graph edges

Distributional vectors

Linear retrofitting

.mrdal
ko

%ﬁ%ﬁwﬂnla

Identity retrofitting

Neural retrofitting

Dégieigspimenia

nsepro
ARPYaa

Lengerich et al 2018
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https://aclanthology.org/C18-1205/

Coherence: Data Augmentation

e Augmentation policies:
orthogonal to labels
e Good augmentation policies for

and magnitude)

Sample a strategy S
(Operation type, probability

e Can we learn to augment from

images: resize, rotate, crop, color [
data?

~

The controller (RNN)

e Current bottleneck: requires a set
of atomic augmentation
techniques to mix.

[

SRR

Use R to update

Train a child network
with strategy S to get
validation accuracy R

the controller

—

Cubic et al 2018
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Coherence: Logic Rules with Teacher-Student Models

e How can we make a NN

that ts lodi los? teacher network construction rule knowledge distillation
at respects logic rules”
: . o > loss -
e One solution: build a y Pe 1% Y e
| projection_ - - BRDI
teacher model that is forced ( v e
. back
to respect the logic rules, teacher propagation | student
i q(y|x) "l pe Olx)
and then learn to trade off logic rules
against data.
 unlabeled data labeled data
Hu et al 2020
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Coherence: Foundation Models

e Pretext task: masked token e
prediction (O S

e |f we observe many examples Data G @
and routinely fill in the missing e L) " —
syntax, then some underlying - '\%’5’) ’ | & romaon
semantics are implicitly Speecn WY Teinna | Foundation et & = ~
learned. e |

e Do new inferences respect the 50 Sl iz % .‘
semantics learned in training G e ;
corpus? —

Bommasani et al. 2022
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Goals for Today: Causality

1. Introduction: real-world evidence, challenges of inference and causality
* Observational data are shaped by informed interventions, feedback loops

2. Methods of Causal Inference
* Potential Outcomes Framework
* Typical Underlying Assumptions: No unmeasured confounders, Ignorability, Common support
« Statistical methods of causal inference: Covariate adjustment, Propensity score re-weighting
*Natural Experiments

3. From Association to Causality: Principles of causality in real-world evidence
« Strength: Causal effects often have stronger associations.
* Consistency: Causal effects can be repeatedly observed by different persons, in different places, circumstances, and times?
« Specificity: Causal effects are often condition-specific.
* Temporality: Causal effects respect temporal ordering.
*Biological gradient: Causal effects are influenced by underlying biology which has continuously-varying characteristics.
* Plausibility: Causal effects should be plausible.
* Coherence: Causal effects should not seriously conflict with the generally known mechanisms.
* Experiment: Causal effects can predict experimental evidence.
* Analogy: Causal effects may be transferable between systems.

4. Causality in practice
*Bias and Confounding: Handling sensitive variables, explicitly sampling across groups
* All models are wrong, but some are useful -> Do we always want a biologically causal model?

. . . . . . e . . 59
» Useful models require careful consideration of setting and use cases to include generalizability, interventions, and risks.




Causality in practice

All models are wrong, but some are
useful.

— (}w‘z};g E P Bex —

AZ QUOTES
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Causality in practice: Bias and Confounding

e Suppose we want to learn causal effect invariant to a sensitive feature.
e Should we hold that feature out of training?

e At test time, we can:
e Throw away the effect of the feature
e Sweep over all values of the sensitive feature
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Causality in practice: Do we always want a biologically causal model?

e Accuracy isn’t enough for medical impact:
e Medicine is a continuous process: Should we include prior lab tests as a
predictor in our model?
e Should we include prior treatments as a predictor in our model? They are
missing not-at-random.
e Techniques depend on our goal:
e learning biological causality?
e maximizing predictive accuracy?
e quiding interventions?
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Relations

[Lengerich et al 2022] Death by Round Numbers: Glass-Box Machine Learning Uncovers Biases in
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