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The Problem

• Cost of health care expenditures in the US are 
over $3 trillion, and rising

• Despite having some of the best clinicians in 
the world, chronic conditions are

– Often diagnosed late

– Often inappropriately managed

• Medical errors are pervasive



What 
might a 
solution 
look 
like?



ChatGPT “passes” USMLE
Performance of ChatGPT on USMLE: Potential for AI-Assisted Medical 

Education Using Large Language Models 

Tiffany H. Kung; Morgan Cheatham; ChatGPT; Arielle Medenilla; Czarina 

Sillos; Lorie De Leon; Camille Elepaño; Maria Madriaga; Rimel Aggabao, 

Giezel Diaz-Candido; James Maningo; Victor Tseng

We evaluated the performance of a large language model called ChatGPT on 

the United States Medical Licensing Exam (USMLE), which consists of three 

exams: Step 1, Step 2CK, and Step 3. ChatGPT performed at or near the 

passing threshold for all three exams without any specialized training or 

reinforcement. Additionally, ChatGPT demonstrated a high level of 

concordance and insight in its explanations. These results suggest that large 

language models may have the potential to assist with medical education, and 

potentially, clinical decision-making. 

http://medrxiv.org/lookup/doi/10.1101/2022.12.19.22283643

Not (yet) peer-reviewed!

http://medrxiv.org/lookup/doi/10.1101/2022.12.19.22283643
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1970’s: MYCIN expert system

• 1970’s (Stanford): MYCIN expert 
system for identifying bacteria 
causing severe infections

• Proposed a good therapy in 
~69% of cases. Better than 
infectious disease experts 

Dialogue interface



1980’s: INTERNIST-1/QMR model

• 1970-80’s (Univ. of Pittsburgh): 
INTERNIST-1/Quick Medical 
Reference

• Diagnosis for internal medicine

Diseases

Symptoms

flu diabetespneumonia

fatigue chest
pain

cough high
A1C

Probabilistic model relating:

570 binary disease variables
4,075 binary symptom variables 
45,470 directed edges

Elicited from doctors:
15 person-years of work

Led to advances in ML & AI 
(Bayesian networks, approximate 
inference)

[Miller et al., ‘86, Shwe et al., ‘91]

Problems: 1. Clinicians entered symptoms manually
2. Difficult to maintain, difficult to generalize



1980’s: 
automating 

medical 
discovery

Discovers that prednisone 
elevates cholesterol
(Annals of Internal Medicine, ‘86)

[Robert Blum, “Discovery, Confirmation 
and Incorporation of Causal Relationships 
from a Large Time-Oriented Clinical Data 
Base: The RX Project”. Dept. of Computer 
Science, Stanford. 1981]



1990’s: neural networks in medicine

• Neural networks with 
clinical data took off in 
1990, with 88 new studies 
that year

• Small number of features 
(inputs)

• Data often collected by 
chart review

[Penny & Frost, Neural Networks in Clinical Medicine. Med Decis Making, 1996]

Problems: 1. Did not fit well into clinical workflow
2. Hard to get enough training data
3. Poor generalization to new places
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Course staff - Professors
• Peter Szolovits (instructor)

– Professor of Computer Science and Engineering — EECS (course 6)

• https://people.csail.mit.edu/psz/web/

– Professor of Health Sciences and Technology — IMES

– PhD ’74 from Caltech, at MIT since then

– Leads clinical decision making research group in CSAIL

• https://mit-medg.github.io

• Manolis Kellis (instructor)

– Professor of Computer Science and Engineering — EECS (course 6)

• https://mit.edu/manoli/

– Genetics, Genomics, Epigenomics, Computational Biology, 
Machine Learning, Alzheimer’s, Obesity, Schizophrenia, etc

– Molecular basis of human disease circuitry, single-cell

– PhD ’03 from MIT

– Leads MIT computational biology group in CSAIL

• https://compbio.mit.edu/

https://mit-medg.github.io/
https://mit.edu/manoli/
https://compbio.mit.edu/


Course staff – teaching assistants

• Eric Lehman
– PhD student in EECS advised by Peter Szolovits

– Research on clinical natural language 
processing, predictive models for medicine

• Hussein Mozannar
– PhD student in Social & Engineering Systems (IDSS), 

advised by David Sontag
• https://husseinmozannar.github.io/

– Research on improving Human-AI interaction 
by combining machine learning and HCI 
techniques



Student intros

• We have a diverse set of students from MIT, 
Harvard, and local hospitals – let’s start to get 
to know each other!
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The Opportunity:
Adoption of Electronic Health Records (EHR) has increased 9x in US since 2008

https://www.healthit.gov/data/quickstats/national-trends-hospital-and-physician-adoption-electronic-health-records



Large datasets

Laboratory for 
Computational 
Physiology

De-identified health 
data from ~60K 
critical care patients

Demographics, vital 
signs, laboratory 
tests, medications, 
notes, …

MIMIC-IV: ~200K

+ ED data, CXR



UK Biobank: ~500K participants
(# of data items in each category)

• Population characteristics:

• Baseline characteristics: 31

• Ongoing characteristics: 4

• Assessment centre

• Recruitment: 17

• Touchscreen: 396

• Verbal interview: 37

• Physical measures: 517

• Cognitive function: 103

• Imaging: 2534

• Biological sampling: 10

• Procedural metrics: 74

• Biological samples

• Blood assays: 945

• Sample inventory: 13

• Saliva assays: 0

• Urine assays: 16

• Genomics

• Polygenic Risk Scores: 91

• Genetically deduced 

phenotypes: 1

• Imputation: 4

• Genotypes: 35

• Exome sequences: 32

• Whole genome sequences: 

99

• Telomeres: 5

• Online follow-up

• Cognitive function online: 

56

• Diet by 24-hour recall: 473

• Digestive health: 54

• Experience of pain: 129

• Food (and other) 

preferences 153

• Mental health: 142

• Work environment: 100

• Additional exposures

• Local environment: 37

• Physical activity 

measurement: 210

• Cardiac monitoring: 110

• Health-related outcomes

• Coronavirus COVID-19: 

177

• Primary care: 3

• Hospital inpatient: 80

• Death register: 8

• Cancer register: 9

• Algorithmically-defined 

outcomes: 38

• First occurrences: 2330

https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=1
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100094
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=2
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100000
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100021
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100025
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100071
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100006
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100026
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100003
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100001
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100004
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100078
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100080
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100084
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100082
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100083
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100314
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=300
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=264
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=264
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100319
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=263
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=170
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=180
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=265
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100089
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=116
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100090
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=153
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=154
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=1039
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=1039
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=136
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=123
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100088
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=113
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=1008
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=1008
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=347
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100091
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=999
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=3000
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=2000
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100093
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100092
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=42
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=42
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=1712


Diversity of digital health data

genomics

imaging

phone

lab tests

vital signs

proteomics 

devices

social media



Standardization

• Diagnosis codes: ICD-9 and 
ICD-10 (International 
Classification of Diseases)

[https://blog.curemd.com/the-most-bizarre-
icd-10-codes-infographic/]

[https://en.wikipedia.org/wiki/Lis
t_of_ICD-9_codes]

…
…

…



Standardization

• Diagnosis codes: ICD-9 and 
ICD-10 (International 
Classification of Diseases)

• Laboratory tests: LOINC 
codes

• Pharmacy: National Drug 
Codes (NDCs)

• Unified Medical Language 
System (UMLS): millions of 
medical concepts

[http://oplinc.com/newsletter/index_May08.htm]



Standardization



Standardization

OMOP
Common
Data
Model v5.0



Breakthroughs in machine learning

AlphaFold
(attention model learning)

Generating realistic data
(GANs, VAEs)

Object recognition
(deep neural networks)

Text comprehension
(language models)



What’s driving these advances?

• Democratization of machine learning
– Large datasets

– Cheap fast processing (GPUs + TPUs)

– High-quality open-source software (scikit-learn, 
PyTorch, TensorFlow)

• More and more researchers



Tech industry interest in health care



Tech industry interest in health care
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Source for figure:
http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry

ML will transform every aspect of healthcare

The stakeholders:



Emergency Department:

• Limited resources

• Time sensitive

• Critical decisions



What will the ER of the future be like?

Diseases

Symptoms

flu diabetespneumonia

fatigue chest
pain

cough high
A1C

Drives

Automatically extracted from 
electronic health record

• Better triage

• Faster diagnosis

• Early detection of 
adverse events

• Prevent medical 
errors

Behind-the-scenes reasoning about the patient’s 
conditions (current and future)



What will the ER of the future be like?

Propagating best practices 



What will the ER of the future be like?

Anticipating the clinicians’
needs



What will the ER of the future be like?

Reducing the need for specialist consults

Arrhythmia?

Figure sources: Rajpurkar et al., arXiv:1711.05225 ’17
Rajpurkar et al., arXiv:1707.01836, '17



Triage 
note

Predicted 
chief 

complaints Contextual 
auto-

complete

What will the ER of the future be like?

Automated documentation and billing



What is the future of how we treat chronic 
disease?

• Predicting a patient’s future disease progression

Figure credit: https://www.cdc.gov/kidneydisease/prevention-risk.html

Time

Time

Disease burden

Undiagnosed

condition



What is the future of how we treat chronic 
disease?

• Predicting a patient’s future disease progression

• Precision medicine

Choosing first line therapy in multiple myeloma
A) KRd: carfilzomib-lenalidomide-dexamethasone, B) VRd: bortezomib-lenalidomide-dexamethasone

Diagnosis and first-line treatment

Progression on VRd

Time

Progression on KRd



What is the future of how we treat chronic 
disease?

• Early diagnosis, e.g. of diabetes, Alzheimer's, 
cancer

Liquid biopsy

Figure sources: NIH, 
https://www.roche.com/research_and_development/what_we_are_working_on/oncolog
y/liquid-biopsy.htm



What is the future of how we treat chronic 
disease?

• Continuous monitoring and coaching, e.g. for the 
elderly, diabetes, psychiatric disease

Figure source (left): http://www.emeraldforhome.com/



What is the future of how we treat chronic 
disease?

• Discovery of new disease subtypes; design of 
new drugs; better targeted clinical trials

Figure sources: Haldar et al., Am J Respir Crit Care Med, 2008 
http://news.mit.edu/2018/automating-molecule-design-speed-drug-development-0706



Genomic medicine: challenge and promises

The promise of genetics
– Path to causality

– Disease mechanism

– New target genes

– New therapeutics

– Personalized medicine

The challenge of mechanism
– 90+% disease hits non-

coding

– Target gene not known

– Causal variant not known

– Cell type of action not known

– Relevant pathways not 

known

– Mechanism not known

GWAS Manhattan Plot: simple χ2 statistical test

SNP genomic position (23 chrs)
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Dissect mechanisms of disease-associated regions

1. Disease genetics reveals

common + rare variants/regions

2. Profile RNA + Epigenome

in healthy + disease samples

Convolutional neural network model linking 

genome sequence to enhancer activity

A
C
G
T

One-hot

encoding

Convolutional

Layer

Max-pooling 

Layer

Fully-connected

Layer

Cell type-specific

prediction of 

Alzheimer’s-

associated mutations

3. Integrate data to predict driver 

genes, regions, cell types

4. Validate predictions in 

human cells + mouse models

Cell cultures Mouse models

5. Disseminate results

Roadmap
Nature 15

Boix EpiMap
Nature 21

Park NBT 15

Claussnitzer
NEJM’15

Blanchard, 
Nature, 2022



Non-coding circuitry helps interpret disease loci

• Expand each GWAS locus using SNP linkage disequilibrium (LD)

– Recognize relevant cell types: tissue-specific enhancer enrichment

– Recognize driver TFs: enriched motifs in multiple GWAS loci

– Recognize target genes: linked to causal enhancers

Region of association

Quon bioRxiv 467852



IRX3 KD ➔ Burn calories in their sleep
➔ 54% weight loss. Can’t gain weight

CRISPR-edit human fat cells
➔ able to burn calories again

FTO & Obesity: Uncover & manipulate circuitry ➔ reverse disease phenotypes

Obese

Lean

C-to-T ➔ Lean
T-to-C ➔ Obese

Decrease IRX3, IRX5➔ Lean
Increase IRX3, IRX5➔ Obese

Incr. ARID5B ➔ Lean
Decr ARID5B➔Obese

Claussnitzer, NEJM 2015

SNP genomic position (23 chrs)
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ApoE4 & Alzheimer’s: Cholesterol transport ➔ Oligo ER accumulation ➔Myelin ➔ Cognition

scRNA of ApoE33, ApoE34, ApoE44 individuals Cholesterol transport & biosynthesis in oligos Cholesterol accumulates in ER, Myelination decrease

Causality: Lack of myelination recapitulated in ApoE4 iPSC-derived oligodendrocytes

Restoring cholesterol transport (Cyclodextrine)
restores myelination & restores cognition

With: Joel Blanchard, Leyla Akay, Jose Davila-Velderrain, Djuna von Maydel, Li-Huei Tsai

Blanchard, 
Nature, 2022



Diverse tissues and cells: 
1. Adult tissues and cells (brain, muscle, heart, digestive, skin, adipose, lung, blood…)
2. Fetal tissues (brain, skeletal muscle, heart, digestive, lung, cord blood…)
3. ES cells, iPS, differentiated cells (meso/endo/ectoderm, neural, mesench, trophobl)

Epigenomics Roadmap across 100+ tissues/cell types

Diverse epigenomic assays:
1. Histone modifications

• H3K4me3, H3K4me1
• H3K36me3
• H3K27me3, H3K9me3
• H3K27/9ac, +20 more

2. Open chromatin: 
• DNase

3. DNA methylation: 
• WGBS, RRBS, MRE/MeDIP

4. Gene expression
• RNA-seq, Exon Arrays

Art: Rae Senarighi, Richard Sandstrom

Roadmap Nature, 2015

Roadmap
Nature 15



Epigenome integrates genetic + env + dis + bio signals

Genetics: common variants, 
rare variants, somatic 

alterations 

Disease phenotype: 
Alzheimer’s, Immune, 
Schizophrenia, Obesity

Genetics

Environmental factors: 
socioeconomic, nutrients, 

pollutants, chemicals

Population stratificat, 
socioeconomic status

Covariates: Age, sex. 
Co-morbidities: direct, 
medication-mediated

Unknown factors: societal, 
unmeasured

Environment

Behavioral factors: 
Nutrition, exercise, 
stress, sleep, smok., 

hormonal signals

Immune infections: bacteria, 
viruses, immune response, 

antibiotics

Gene transcription: RNA, 
miRNAs, lincRNAs, circs, 

splic/proc/degr

Microbiome: intestinal 
bacteria, infection history, 

competition/diversity

Biological co-vars Disease

Epigenetic modifications: 
DNA accessibility, DNA 

methylation, Histone mods

Epigenome



CATGACTG
CATGCCTG

Genetic
Variant

Disease

Methyl.

DNA
access.

Enhancer

H3K27ac

Promoter

Insulator

Epigenetic
Changes

Gene
expr.

Molecular Phenotypes

Gene
expr.

Gene
expr.

Gene
Expression

Changes

Brain

Heart

Cortex

Lung

Blood

Skin

Nerve

Tissue/
cell type

Organismal
phenotypes

Lipids
Tension
Amyloid
β
Metabol.
Drug 
resp

Endo
phenotypes

Feedback from environment / disease state

Environment



Mediation analysis across 750 Alzheimer patients/controls: iMWAS

Relate: GenotypeMethylation Phenotype

Genome Epigenome

meQTL

Phenotype

Epigenome

Classification

MWAS

1
2

Methylation variation
in 723 individuals

Evaluate

causality
3

ROS-MAP cohort (RushU: David Bennett)

50,000 significant meQTLs (after Bonferroni)

M DMWAS: N=800

G iM DiMWAS: N=74k

MmeQTL: N=800G Learn G→M
(simpler phenotype)

MD (no causality)

Apply G→M to get iM
iM→D (causality)

G DGWAS: N=74k
Learn G→D directly
(complex phenotype)

Imputed MWAS: incr. power, 
causality

Chromosome 6

iMWAS: new loci, multi-SNP effects



Multi-tissue multi-omics of exercise/diet in hum/mou

• Omics: Transcriptomic/epigenomic/metabolic
• Tis:Muscle, fat, digest, brain, liver, heart, blood
• Ph: Exercise-sedentary vs. diet-overeating axes
• Species: Human/mouse parallel studies
• Cell type: scRNA/scATAC in each, imm. enrich

Lydia
Lynch

Laurie
Goodyear

Maria
Vamvini

Leandro
Agudelo

Jackie
Yang

Na
Sun

Pasquale
Nigro

Jan-Willem
Middelbeek

Yang, Vamvini, Nigro et al, In revisions

Yang 2021

Cell Metabolism



Modular and programmable CRISPR-Cas9/dCas9 system

• Activation: CRISPR-dCas9+p300
• Repression: CRISPR-dCas9+KRAB
• Editing: CRISPR-Cas9 + repair template
• Knockout: CRISPR-Cas9 cutting

Modularity:

• Pick perturbation type (3 lines)

• Pick cell type (differentiation)

• Pick target (sgRNA + repair template)

• Induce (Dox/Tet control)

• Environmental modulations (+Aβ)

• Cross-cell-type effects (2D/3D co-culture)

AD: Bin1 enhancer activation
with multiple sgRNAs

Apply in iPSCs, differentiate into NPCs, neurons, astrocytes, 
oligodendrocytes, microglia

Collaboration with Li-Huei Tsai Lab



➢My own family: Obesity, cancer, stroke, diabetes
➢My own predispositions: obesity, blindness, cancer.
➢Genetics: Each of us in this room carries mutations
➢Environment: pollution, nutrition, sedentary lifestyle
➢Systemic disorders: obesity, diabetes, cancer, heart
➢Pathogens: infections, immune dysregulation, cancer
➢Lifespan: Alzheimer’s, new diseases

Disease still reigns

➢CS: ML, DeepNN, DNA code, circuitry, big data
➢Bio: High-throughput profiling + manipulation
➢Chemistry: Libraries, synthesis, modularity
➢Biotech: New technol. for rewiring, delivery
➢Finance: long-term 10-year 20-year ‘biobonds’ 
➢Pharma: partnership, pre-competitive sharing
➢Patients: empowrmnt, personalization, sharing
➢Hospitals: combine cohorts, increase power

Call to action: CoalitionTransforming pharma

• Always surprised ➔ Prognosis: Mendelian, Polygenic Scores
• Misdiagnosis ➔ Better biomarkers, Multi-modal diagnosis
• Treat manifestations ➔ Address root causes, causal hallmarks
• Monolithic: AD,T2D,Cancer ➔ Heterogeneity: symptoms+causes
• Monolithic: AD ➔ Understand components: Ab, tau, infl, lipids
• Silos: tissues, departments ➔ Interplay, commonalities, sharing
• Treatment too late ➔ Preventive personalized interventions

➢Polygenicity: Thousands of variants
➢Convergence: Small number of common pathways
➢Hallmarks of disease: causal pathways
➢Manipulation: reverse disease circuitry 
➢Individualized treatment: combine pathways
➢Each Patient: different combination 
➢Burden: Accumulation of pathway perturbations
➢Omics: Genetic, epigenomic, transcript, proteomic

Personalizing Medicine

Kellis TEDx 2010

Kellis TEDx 2021



➢ Human body as a dynamic reconfigurable system
➢ Systems circuitry view of human health

➢ Disease prognosis and early intervention and measurement 
before symptoms appear

➢ Use of biomarkers indicative and prognostic of disease onset
➢ Biomarker modeling of intervention to gauge success of 

treatments intervention
➢ Dynamic sensor modeling and selection of data to measure
➢ Electronic health record data mining with awareness of bias in 

data gathering
➢ Doctors will prescribe specific tests that they expected to 

have abnormal results
➢ Thus, the values distribution of measured variables is 

dramatically different from that of unmeasured variables
➢ Treatment interventions are guided by biomarkers that assess 

disease statues leading to coupling of positive and negative 
outcomes with opposite predictive values

➢ Measuring differences between observed outcomes of gene 
expression levels and predicted outcomes based on genetic 
variables to infer the impact of environmental effects

➢ Deep learning and translation between gene expression
➢ Systems-level convergence of mutations
➢ Smart sensors and system monitoring for human health
➢ The quantified life

Deep Learning, Circuitry Inference, Decoding of Human Health
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What makes healthcare different?

• Life or death decisions
– Non-fungibility of patients

– Need robust algorithms

– Checks and balances built into ML deployment

– (Also arises in other applications of AI such as autonomous 
driving)

– Need fair and accountable algorithms

• Many questions are about unsupervised learning
– Discovering disease subtypes, or answering question such as 

“characterize the types of people that are highly likely to be 
readmitted to the hospital”?

• Many of the questions we want to answer are causal
– Naïve use of supervised machine learning is insufficient



What makes healthcare different?

• Very little labeled data
Recent breakthroughs in AI

depended on lots of labeled data!



What makes healthcare different?

• Very little labeled data

– Motivates semi-supervised learning algorithms

• Sometimes small numbers of samples (e.g., a 
rare disease)

– Learn as much as possible from other data (e.g. 
healthy patients)

– Model the problem carefully

• Lots of missing data, varying time intervals, 
censored labels



What makes healthcare different?

• Difficulty of de-identifying data

– Need for data sharing agreements and sensitivity

• Difficulty of deploying ML

– Commercial electronic health record software is 
difficult to modify

– Data is often in silos; everyone recognizes need for 
interoperability, but slow progress

– Careful testing and iteration is needed



Goals for the semester

• Intuition for working with healthcare data

• How to set up as machine learning problems

• Understand which learning algorithms are 
likely to be useful and when

• Appreciate subtleties in safely & robustly 
applying ML in healthcare

• Set the research agenda for the next decade



Outline for today’s class

1. Brief history of AI and ML in healthcare

2. Interlude: Student & faculty introductions

3. Why now? What has changed?

4. Examples of how ML will transform 
healthcare

5. What is unique about ML in healthcare?

6. Course logistics & syllabus



Prerequisites

• Previous undergraduate-level ML (e.g. 6.390[6.036]):

– Machine learning methodology (e.g. generalization, cross-
validation)

– Supervised machine learning techniques (e.g. linear and 
logistic regression, neural networks)

– Loss functions, regularization, and optimization (e.g. 
stochastic gradient descent)

– Statistical modeling (e.g. Gaussian mixture models)

Want a quick review? See Videos 1, 2, 3, 4 (~1 hr.)

• Python

https://www.dropbox.com/s/ety0xzs78uar8u1/Foundations%2520of%2520Machine%2520Learning%2520Part%25201.mp4&sa=D&source=editors&ust=1643669820640031&usg=AOvVaw1wds78rng4r0pAlSxejdzj
https://www.dropbox.com/s/qgg5fohvzipi0a7/Foundations%2520of%2520Machine%2520Learning%2520Part%25202.mp4&sa=D&source=editors&ust=1643669820640117&usg=AOvVaw1H-8GDfr7H4iWkfGnru7Mp
https://www.dropbox.com/s/i8nn0znhlb9tp5n/Machine%2520Learning%2520Review%2520Part%25201.mp4&sa=D&source=editors&ust=1643669820642302&usg=AOvVaw2t1EpAGpSbWlwd1asjVYi0
https://www.dropbox.com/s/if5kw1jn4hp064q/Machine%2520Learning%2520Review%2520Part%25202.mp4&sa=D&source=editors&ust=1643669820642384&usg=AOvVaw3L2xISb9pbj0yhWtOBVTUN


Logistics

• Course website: 
https://mlhcmit.github.io/

• All announcements made via Canvas

• Use Piazza for Q&A with staff and each other

• Recitation (required): Fridays 3-4pm in 4-270 
(starts this week)

• Office hours TBD

https://mlhcmit.github.io/


Grading

• 40% course project

• 35% homework (~4 problem sets; both theory & 
practice)

• 20% final exam (date to be scheduled by registrar)

• 5% participation – note: class attendance is 
required*

* Exceptions will be made for quarantine/isolation.



This week’s assignments/readings

• PS0 (due Tue, 2/14 11:59pm): human subjects training & 
MIMIC data use agreement

• Reading response (due Fri 2/4, 1pm)

AI in Health and Medicine – required reading
Pranav Rajpurkar, Emma Chen, Oishi Banerjee & Eric J. Topol
Nature Medicine, 2022

Machine Learning in Medicine – optional reading
Alvin Rajkomar, Jeffrey Dean, Isaac Kohane
New England Journal of Medicine, 2019



Course project

• Teams of ~4-8 students each

• Each project will have one or more clinicians 
involved as mentors and/or students

• Project descriptions during class of Feb 16

• Project poster presentations May 16
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