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Matt Damon Is Dreamy Whenever He Is Smart

“Smartness” vs. “dreaminess” based on probabilities that a
character played by Matt Damon will beat an average Matt
Damon in the category, from surveys of 3,435 respondents about
the smartness of characters and 17,582 about the dreaminess
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https://fivethirtyeight.com/features/matt-damon-the-martian-sexy-smart/

Global deaths from disasters over more than a century SR

The size of the bubble represents the estimated annual death toll. The largest years are labeled with this total figure, in Data
alongside large-scale events that contributed to the majority - although usually not all - of these deaths.

In the 20th century an annual death toll in the millions was common, Now, in most years 10,000 - 20,000 die. Years with very

usually as the result of floods, droughts or famine. large-scale events record tens to hundreds of thousands.
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Data source: EM-DAT, CRED / UCLouvain, Brussels, Belgium - www.emdat.be (D. Guha-Sapir).
OurWorldinData.org - Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the author Hannah Ritchie.
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Data Visualization
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Channels: Expressiveness Types and Effectiveness Ranks
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Monthly change in jobs

+750,000 jobs
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+250,000

Jan.’'22

Data is seasonally adjusted.
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Source: Bureau of Labor Statistics
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Matt Damon Is Dreamy Whenever He Is Smart

“Smartness” vs. “dreaminess” based on probabilities that a
character played by Matt Damon will beat an average Matt
Damon in the category, from surveys of 3,435 respondents about
the smartness of characters and 17,582 about the dreaminess
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https://fivethirtyeight.com/features/matt-damon-the-martian-sexy-smart/

Global deaths from disasters over more than a century ERNEE

The size of the bubble represents the estimated annual death toll. The largest years are labeled with this total figure, in Data
alongside large-scale events that contributed to the majority - although usually not all - of these deaths.

In the 20th century an annual death toll in the millions was common, Now, in most years 10,000 - 20,000 die. Years with very
usually as the result of floods, droughts or famine. large-scale events record tens to hundreds of thousands.
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OurWorldinData.org - Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the author Hannah Ritchie.
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Driving Shifts Into Reverse

CONOMISTS have long studied the

relationship between driving habits

and gasoline prices. Low gas prices
can bring periods of profligate driving,
and a quick jump in prices can cause
many vehicles to languish in garages.

Until recently, Americans have driven

more each year than the previous one,
with a few brief exceptions. In 1956,
Americans of driving age drove about
4,000 miles a year, on average. Fifty years

later, that figure had climbed above 10,000.

But the latest recession has caused
some big changes. High unemployment
meant that fewer people were driving to
work, and a slump in consumer spending

Annual
average

....................................................

Price of
a gallon
of gasoline

Annual average for
regular grade,
adjusted for inflation

Miles driven per capita each year == 5,000 mi.

Cheap gas,
longer commutes

meant that less freight needed to be
moved around the country. As gas prices
soared in 2005, the number of miles driven
— including commercial and personal —
began to fall, and continued to drop after
2008 even as gasoline became cheaper.

“People were surprised by the very
rapid rise in gas prices, and they changed
their driving behavior,” said Kenneth A.
Small, a transportation economist at the
University of California, Irvine. “But my
suspicion is that it is temporary. As soon
as unemployment gets back to
pre-recession levels, we will see
Americans doing a lot more driving
again.”
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class. It includes some short exercises that take the form of code blocks that you can
fill in, to help you practice these concepts.

Before you get going, the first thing you want to do is sign up for an Observable
account and fork (make a copy of) this document, so that you have your own version
that you will eventually submit. To do this, simply click the "Sign in" button at the top
right of this page and select your preferred sign-in method. Once you've signed in
and you're back to this document, you can select the "Fork" button, also in the top
right. Every exercise you do below should be done on your own fork of this
document so that your work is saved. Your final submission of this exercise will be a
link to your completed fork of the reading.

Note that this notebook does include some initial snippets of JavaScript code to load
a dataset. If you are unfamiliar with JavaScript, don't stress—we'll be covering these
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PART ONE

Data & Image Models




PART TWO

Exploratory Visual Analysis



“The first sign that a visualization is good is that it shows you
a problem in your data. Every successful visualization that I've
been involved with has had this stage where you realize, "Oh
my God, this data is not what | thought it would be!" So already,
you've discovered something.

—Martin Wattenberg

Co-lead of Google's People + Al Initiative
ACM Queue, Mar 2010
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1. Construct graphics to address questions.
2. Inspect "answer" and ask new questions.
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Analysis Example:
Antibiotic Effectiveness




Analysis Example: Antibiotic Effectiveness

Collected prior to 1951

Cenus of Bacteria String (N)
Species of Bacteria String (N)
Antibiotic Applied String (N)
Gram-Staining? Pos / Neg (N)

Min. Inhibitory Con. (g) Number (Q)

46



Collected prior to 1951
Cenus of Bacteria String (N)
String (N)
String (N)
Pos / Neg (N)

Min. Inhibitory Con. (g) Number (Q)

Species of Bacteria
Antibiotic Applied

Cram-Staining?

Bacteria

Aerobacter aerogenes
Brucella abortus

Brucella anthracis
Diplococcus pneumoniae
Escherichia coli

Klebsiella pneumoniae
Mycobacterium tuberculosis
Proteus vulgans
Pseudomonas aeruginosa

Salmonella (Eberthella) typhosa

Salmonella schottmuelleri
Staphylococcus albus
Staphylococcus aureus
Streptococcus fecalis
Streptococcus hemolyticus
Streptococcus viridans

Analysis Example: Antibiotic Effectiveness

Table 1—Burtin's Data

870
1

0.001
0.005

100
850
800
3
850
1
10

Antibiotic

1
2
0.01

11
0.4
1.2
9
0.1
2
0.4
0.8
0.1

16
0.02

0.007

10
0.1
1
2
0.1
0.4

Penicillin Streptomycin Neomycin Gram Staining

negative
negative
positive
positive
negative
negative
negative
negative
negative
negative
negative
positive
positive
positive
positive
positive




Collected prior to 1951
Cenus of Bacteria String (N)
String (N)
String (N)
Pos / Neg (N)

Min. Inhibitory Con. (g) Number (Q)

Species of Bacteria
Antibiotic Applied

Cram-Staining?

What questions might we ask?

Bacteria

Aerobacter aerogenes
Brucella abortus

Brucella anthracis
Diplococcus pneumoniae
Escherichia coli

Klebsiella pneumoniae
Mycobacterium tuberculosis
Proteus vulgaris
Pseudomonas aeruginosa

Salmonella (Eberthella) typhosa

Salmonella schottmuelleri
Staphylococcus albus
Staphylococcus aureus
Streptococcus fecalis
Streptococcus hemolyticus
Streptococcus viridans

Table 1—Burtin's Data

Antibiotic

Penicillin Streptomycin Neomycin Gram Staining

negative
negative
positive
positive
negative
negative
negative
negative
negative
negative
negative
positive
positive
positive
positive

positive
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How do the drugs compare?

Original graphic by Will Burtin, 1

Penicillin
870

Bacteria
Aerobacter aerogenes

Brucella abortus 1
Bacillus anthracis

Diplococcus pneumoniae
Escherichia coli
Klebsiella pneumoniae

0.001
0.005
100
850
Mycobacterium tuberculosis 800
Proteus vulqgaris 3

Pseudomonas aeruginosa 850
Salmonella (Eberthella) typhosa 1

Salmonella schottmuelleri 10
Staphylococcus albus

Staphylococcus aureus

Streptococcus fecalis

Streptococcus hemolyticus

Streptococcus viridans

951.

Antibiotic Gram
Streptomycin  Neomycin stain

1 1.6 —

2 0.02 -
0.01 0.007

11 10
0.4 0.1
1.2 1
S 2
0.1 0.1
2 0.4
04 0.008
0.8 0.09
0.1 0.001
0.03 0.001
1 0.1

14 10

10 40

Encodings
Radius:1/log(MIC)
Bar Color: Antibiotic

Background Color:
Cram Staining
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How do the drugs compare?

Penicillin Streptomycin Neomycin

Brucella anthracis + [N
Streptoccus hemolyticus + [N
Diplococcus pneumoniae + RIS

Streptococcus viridans + [EIEEE
Staphylococcus albus +

Staphylococcus aureus +
Streptococcus fecalis +

Brucella abortus -

Salmonella (Eberthella) typhosa -
Proteus vulgaris -

Salmonella schottmuelleri -
Escherichia coli -

Mycobacterium tuberculosis -
Klebsiella pneumoniae -
Pseudomonas aeruginosa -
Aerobacter aerogenes -

Minimum Inhibitory Concentration (MIC)

X-Axis: Antibiotic | log(MIC) Mike Bostock, Stanford CS448b (Winter 2009).

Y-Axis: Gram-Staining | Species
Color: Most Effective?




Bowen Li, Stanford CS448b (Fall 2009).

. viridans
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S. pneumoniae
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. anthracis

. schottmuelleri
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bowen li
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. vulgaris

M. tuberculosis

K. pneumoniae

B. abortus
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minimum inhibitory concentration

of antibiotics

penicillin streptomycin  neomycin
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All bacteria

40%

20% -

Proportion of

bactena strains J _,_'
inhibited 0% -

I
Concentration (ug/ml) 0.001

Gram-negative bacteria only

40%

_— ‘
Proportion of

bactena strains |

inhibited o% -

Concentration (ug/ml) 0.001 . . 1

Gram-positive bacteria only

40% [

20%

Proportion of
bactenia strains |
inhibited o% -

Concentration (ug/ml) 0.001

Streptomycin and Neomycin
are more efficient broad-spectrum
antibiotics than Fenicilin

Neomycin and Streptomycin are
more efficient against gram-negative
bacteria, so can be used at a lower
dosage here than above.

Gram staining quickly identifies
bacteria as Gram-negative or
Gram-positive, which can be
used to find a more efficient
antibiotic and dosage.

Penicilin is more efficient than either
Streptomycin or Neomycin if the
bacteria is known to be gram-positive.

Penicillin

N
[

ot
o

Log1o Minimum Inhibitory Concentration (ug/mL)
N
o

O
o

Negative Positive

Penicillin

**

Streptomycin

Negative Positive
Gram Staining

Neomycin

Negative Positive

A. aerogenes
B. abortus

E. coli

K. pneumoniae
M. tuberculosis

P. vulgaris |

P. aeruginosa

S. typhosa

S. schottmuelleri
B. anthracis

D. pneumoniae
S. albus

S. aureus

S. fecalis

S. hemolyticus
S. viridans

Streptomycin

Effectiveness of Antibiotics

Penicillin Streptomycin Neomycin

darker colors: more effective

Neomycin

0.007 | |

o | | | | |

o | | | | |

40 | | | | |

0.001]
0.001
0.1

0.02
0.008
0.1
0.09
0.1



Which antibiotic should one use?



Wainer & Lysen. American Scientist, 2009

B Penicillin (P) WM Streptomycin (S) Ml Neomycin (N)
minimum inhibitory
concentration

= Il Il I | Do the bacteria group by

001PSN PSN PSN PSN

_ antibiotic resistance?

Mycobacterium Pseudomonas Aerobacter Klebsiella
tuberculosis aeruginosa aerogenes pneumoniae

1000
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1000

, e Not a streptococcus!
‘:}? I (realized ~30 yrs later)
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w' e e e Really a streptococcus!

10
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vulgaris & Gram positive
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Wainer & Lysen. American Scientist, 2009
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| 2> Trends = Qutliers > Features

‘Ex

L

e ——————

| .Y

l
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= Distribution > Dependency > Correlation > Similarity
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1. Construct graphics to address questions.
2. Inspect "answer" and ask new questions.

2> Extremes

3. |terate... il

@ Search
Lessons Targetknown  Target unknown

Location

v Check data quality and your assumptions. knowr

Location @.
o L 3
unknown

v Start with univariate summaries, then 5 q
: . : . uery
consider re|atIOnShIpS b@tween Varlables. > |dentify > Compare = Summarize

o S

“.°%« Lookup “le*J  Browse

.> Locate "@-> Explore

v Avoid premature fixation: balance data
variation and design variation.
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PART TWO

Exploratory Visual Analysis



PART THREE

Visualizing Uncertainty




The possibility of many/other outcomes.

PART THREE \

Visualizing Uncertainty




Dag%ﬂ NZ 92\—_&/

Collect Derive Visualize

[Pang, Wittenbrink, Lodha. Approaches to Uncertainty Visualization.]



How and how much should U 5

we sample the data? 7 \_Q@ / O
o\ (1~
— |

oaea or—— 2 ) & =

Collect Derive Visualize

[Pang, Wittenbrink, Lodha. Approaches to Uncertainty Visualization.]



Visualization
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How and how much should Modél Uncertainty o\ o /O )
we sample the data? , O /
How does the data fit together: o )\ \ (] —
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Collect Derive Visualize

[Pang, Wittenbrink, Lodha. Approaches to Uncertainty Visualization.]
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Visualization
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we sample the data: How does the data fit together? J\ f/v
\ _ l\

Decision/Forecast Uncertainty

;\ ﬁ How do | assess the risk/error?

SNSTHERD i =

Collect Derive Visualize

[Pang, Wittenbrink, Lodha. Approaches to Uncertainty Visualization.]
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100 X Error bars aren't consistently used to
visualize the same measure (standard
- deviation, standard error, IQR, 95% ClI).
50 I I
25
O

Placebo Treatment
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Vlsuallzmg Uncertalnty Glyphs
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100 X Error bars aren't consistently used to
visualize the same measure (standard
- deviation, standard error, IQR, 95% ClI).
X Within-the-bar bias: people perceive
>0 T l points falling within the bar as more
likely than those that lie outside.
25
O

‘Newman & Scholl, 2012]
Correll & Gleicher, 2014]




_— S —_— S p—

Vlsuallzmg Uncertamty Glyphs
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100 X Error bars aren't consistently used to
visualize the same measure (standard
- deviation, standard error, IQR, 95% Cl).
T T X Within-the-bar bias: people perceive
>0 T I points falling within the bar as more

likely than those that lie outside.

25
X Binary bias: people perceive values to

either be in or out of the margins of error.

‘Newman & Scholl, 2012]
Correll & Gleicher, 2014]
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J

Raw Data Box-plot of the Data Violin-plot of the Data

SECLEERTTIY

A\
A AT W ————.
R s e b ol Bhe o b ia s ol
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‘Matejka & Fitzmaurice, 2017]
Correll & Gleicher, 2014]
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Visualizing Uncertainty: Visual Variables]
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Data Map Uncertainty Map

[Correll, Moritz, & Heer, 2018]
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Visualizing Uncertainty: Visual Variables|

Bivariate Map (Data + Uncertainty) Value-Suppressing Uncertainty Map

[Correll, Moritz, & Heer, 2018]
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Bus Timeline
10
Density o
S Y S S S A
10
Dotplot
(2 O) ® © 000008 0 D i
0 10 20 30 40 50
10
Dotplot 8,
(100) gissese
10
Stripeplot
(50) R Y

[Kay et al., 2016]

Vlsuallzmg Uncertalnty Set of Draws”
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100%—
i
/7
75%— /
50%— /
25%—
Cumulative / T
probability O%__'_/ | |

Cumulative distribution
function

Quantile dotplot

|
0

Minutes until
bus arrives

:§§§§..
I I
10 15

! l I
20 25 30


https://flowingdata.com/2015/09/23/years-you-have-left-to-live-probably/
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Vlsuallzmg Uncertal nty:
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Bus Timeline
10
Density
I N T Y
10
Dotplot
(20) N
"0 10 20 30 40 50
10
Dotplot :,Aj:..z;.ir;. ”
(100)
10
Stripeplot
(50) %(%)=1=0%2i0%3%0{4%0%5{0

[Kay et al., 2016]

100%-

75%—

50%—

25%

Cumulative
probability (o

P—— — —_— —— e e —

et of “Draws

Cumulative distribution
function

Minutes until

:§§§ i‘ ® Quantile dotplot
| I : : I | I | |
0 S v 10 15 20 25 30

bus arrives

: 18/20 = 90% chance the bus
. comes at ~ 8 mins or later


https://flowingdata.com/2015/09/23/years-you-have-left-to-live-probably/
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National overview «

FiveThirtyEight (2020

Biden is favoredto win the election

We simulate the election 40,000 times to see who wins most often. The sample
of 100 outcomes below gives you a good idea of the range of scenarios our

Trump wins

10 in100

+300 +200
ELECTORAL VOTE
MARGIN

model thinks is possible.

¢ | /. 89in100

+100

TIE

® Trump win ® Biden win

No Electoral College majority, House decides election

75
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National overview «

FiveThirtyEight (2020]

Biden is favoredto win the election

We simulate the election 40,000 times to see who wins most often. The sample
of 100 outcomes below gives you a good idea of the range of scenarios our
model thinks is possible.

Trump wins

10in100 &

+300

ELECTORAL VOTE

MARGIN

+200 +100

@ Trul
No Electoral Colle

— ELECTORAL VOTES —
Bidenv' Trump

306

232

Biden wins

89in100

tion

76



What s being visualized?

What are the strengths and
weaknesses of this visualization?

Hurricane Laura Current information: X Forecast positions:

Tuesday August 25, 2020 Center location 23.7 N 87.0 W @ Tropical Cyclone O Post/Potential TC
10 AM CDT Advisory 23 Maximum sustained wind 75 mph Sustained winds: D <39 mph

NWS National Hurricane Center Movement WNW at 16 mph S 39-73 mph H74-110 mph M > 110 mph

Potential track area: Watches: Warnings: Current wind extent:

&Day 1-3 Day4-5 Hurricane  TropStm  [JlHurricane [l Trop Stm  [Hurricane | Trop Stm

77
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Note: The cone contains the probable path of the storm center but does not show

h  the size of the storm. Hazardous conditions can occur outside of the cone.

What s being visualized?

What are the strengths and
weaknesses of this visualization?

Hurricane Laura Current information: x Forecast positions:

Tuesday August 25, 2020 Center location 23.7 N 87.0 W @ Tropical Cyclone (Q Post/Potential TC
10 AM CDT Advisory 23 Maximum sustained wind 75 mph Sustained winds: D < 39 mph

NWS National Hurricane Center Movement WNW at 16 mph S 39-73 mph H74-110 mph M > 110 mph

Potential track area: Watches: Warnings: Current wind extent:

&Day 1-3 Day 4-5 Hurricane  Trop Stm  [Hurricane [l Trop Stm [ Hurricane © Trop Stm

78
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https://en.wikipedia.org/wiki/Hurricane_Dorian%E2%80%93Alabama_controversy

Five-day chance of tropical- o Current extent of Major hurricane (>110 mph)

storm-force winds tropical-storm-force @ Hurricane (74-110 mph)
5 50 70 90% winds » Tropical storm (39-73 mph)
| _ o Tropical depression (<39 mph)
All times are Eastern tenn. - .4", 2p.m. Wed.
,l o = Show forecast track
AR 7,p m.Sat.
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Source: National Weather Service. Note: Impact lines represent the earliest reasonable arrival time
of tropical-storm-force winds.


https://www.washingtonpost.com/weather/2019/08/28/how-hurricane-cone-uncertainty-can-be-cone-confusion-what-do-about-it/

[Cox etal.,2013]
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https://www.dl.begellhouse.com/download/article/7d41c3a64ba14ca8/IJUQ-3966.pdf
https://www.dl.begellhouse.com/download/article/7d41c3a64ba14ca8/IJUQ-3966.pdf
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Vlsuallzmg Uncertalnty Set of Draws” i‘
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I am female ~ and currently 27 years old. SLOW
FAST
PROBABILITY OF LIVING TO NEXT YEAR
100%
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-
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60% = 2 i
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= [oT0) +J i
O O § >
= - Q
Q Q. O
Q 7)) 4 b4 +J
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https://flowingdata.com/2015/09/23/years-you-have-left-to-live-probably/
https://flowingdata.com/2015/09/23/years-you-have-left-to-live-probably/
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TheUpshot

STATISTICAL NOISE

I — — —

Ehe New Hork Eimes

How Not to Be Misled
by the Jobs Report

]
Vlsuallzmg Uncertalnty Set of Draws” |

If the economy actually added 150,000 jobs last month, it would be possible to see any of these headlines:

The jobs number is just an estimate, and it comes with uncertainty.

Job Growth D'Sappomtz ng
Plummets Amid Jobs Report
Prospect Of New Raises Economic

Slump Worries

55,000 to 110,000

Under 55,000 jobs
19% chance

Slower Job
Creation
Disappoints
Economusts

110,000 to 140,000
19% chance

Job Growth
Steady, New
Report Says

160,000 to 190,000
19% chance

Job Creation
Accelerates In
Sign Of
Economy

Improving

190,000 to 245,000
19% chance

Job Growth
Robust, Pointing
To Economy
Surging

245,000+


https://www.nytimes.com/2014/05/02/upshot/how-not-to-be-misled-by-the-jobs-report.html?_r=0

|

ng Uncertainty: Set of “Draws”|

W
-
Q
N,
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&he New Nork Eimes
TheUpshot
STATISTICAL NOISE
How Not to Be Misled
by the Jobs Report
If the economy actually added 150,000 jobs last month, it would be possible to see any of these headlines:
The jobs number is just an estimate, and it comes with uncertainty.
Job Growth : Disappoinﬁng Slower Job Job Growth Job Creation Job Growth
Plummets Amid -.]Obs Report Creation Steady, New Accelerates In Robust, Pointing
Prospect Of New Raises Economi, Disappoints Report Says Sign Of To Economy
Slump Worries Economists Economy Surging
Improving
Under 55,000 jobs 55,000 to 110,000 110,000 to 140,000 160,000 to 190,000 190,000 to 245,000 245,000+
4% chance 19% chance 19% chance 19% chance 19% chance 4% chance
If job growth were actually steady ...the jobs report Play If job growth had ...the jobs report Play
over the last 12 months... could look like this: been accelerating... could look like this:
400k 400k 400k 400Kk
added added added added
350 350 350 350
300 300 300 300
250 250 250 250
200 200 200 200
150 150 150 150
100 100 100 100
50 50 50 50
0 0 0 0

J FMAMIJ J AS OND JFMAMIJ J AS OND J FMAMIJ J AS OND J FMAMIJ J AS OND


https://www.nytimes.com/2014/05/02/upshot/how-not-to-be-misled-by-the-jobs-report.html?_r=0
https://www.nytimes.com/2014/05/02/upshot/how-not-to-be-misled-by-the-jobs-report.html?_r=0
https://www.nytimes.com/2014/05/02/upshot/how-not-to-be-misled-by-the-jobs-report.html?_r=0
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ELECTION 'RESULTS BY" 'SEARCHLIGH’I’

The Times Election Searahiign:t Code.

News Wiil Be Flashed from the Tower of The
Times Building on Tuesday Night.

‘The results of the election neoxt Tues-
day night will be flashed by electric
light from the tower of the Times Bulld-
ing. so that for miles around people will
be able to tell which of the candidutes
has won.

This will be entirely separate and dis-
tinet from the eluborate bLulletin service
which The Tixves will also maintain, To
dieplay the detalled bulletins so that the
crowds can see them easily and com-
fortably., a slereopticon machine will be
set up in the triangle north of the Times
Bullding and the bulletinas dlsplayed on
canvas siretched from the north slde of
the building. There will be a similar

service at the Harlem office of Tus
! TiMes, 120 West 125th Street.

! The electric signalssfrom the tower of
(the Times DBullding will be flashed from

a point 365 feet above the streot Jovel. A

Iste-dy light to the north will show that
McClellan has been elected: o steady iight
(10 the east will Indicate Iving's election,

and a steady lght to the south will indl- |

‘ente that Hearst has won.

Jerome's election will de Indicated by a
steady light to the west. A light to the
north, waving from east to west, will in-

_dizate Osborne's election. A lght to the
south, waving from oast to west, will |

indicate Shearn's election.
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The Times Eleaction

Searaniignt Code.

News Wiil Be Flashed from the Tower of The
Times Building on Tuesday Night.

The results of the election next Tues-
day night will be flashed by electric
light from the tower of the Times Bulld-
ing. so that for miles around people will
be able to tell which of the candidutes
has won,

This will be entirely separate and dis-
tinet from the elaborate bulletin service
which Tz Tivgs will also maintain, To
dieplay the detalled bulletins so that the
crowds can see them easily and com-
fortably., a stereopticon machine will be
set up in the triangle north of the Times
Bullding and the bulletina dlsplayed on
canvas sireltched from the north =lde of
the building. There will be a similar

service at the Harlem office of Tus
! TiMes, 120 West 125th Street.

! The electric signalsyfrom the tower of
[the Times BDullding will be flashed from
& point 3G5 feet above the streot Jevel. A
| steady light to the north will show that
McClellan has been elected: a steady iight
10 the east will Indicate Iving's election,

aend a steady lght to the south will indl- |

cate that Hearst has won.

Jerome’'s election will de Indicated by al
steady light to the west. A light to lhc1|

north, waving from ecast to west, will Iin-
dizate Osborne's election, A light to the

south, waving from oast to west, will

indicate Shearn's election.
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THE TRIBUNE

will send up from the roof of the

GREAT NORTHERN HOTEL

hourly, shells containing blue and red stars—
exactly on the hour—at 7, 8, 9, 10, 11 p. m.

12 midnight, 1 and 2 a. m., Wednesday morn-
ing, unless election is decided earlier, in which
case twelve bombs will be sent up in rapid sue-
cession. Blue to indicate McKinley's election.
Red to indicate Bryan's election.

SIX BOMBS EVERY HOUR.

The first bomb sent up, if blue, indicates the
returns in COOK COUNTY at that hour are
favorable to McKinley ; if red, favorable to Bryan,

After sixty seconds two bombs wi]Jl be sent up
in rapid succession, and will indicate, if blue,
that returns from ILELINOIS favor McKinley ;
if red, Bryan.

After sixty seconds more three bombs will be
sent up in rapid suecession, and if blue will in-
dicate that at that hour returns from the entire
country favor McKinley; if red, Bryan. Each
bomb bursts high in the air, scattering a shower
of stars.




PART THREE

Visualizing Uncertainty




Visualization, EVA, & Uncertainty

A Crash Course

Arvind Satyanarayan

LES VARIABLES DE SEPARATION DES IMAGE

GRAIN j = ZZ &
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