Machine Learning for Healthcare 6.7930 [6.871], HST.956

Lecture 22: Genetics Part 2 Mendelian Randomization, eQTLs, patient subtypes, multi-modal integration

Prof. Manolis Kellis

<u>Slides credit:</u> David Evans Manny Rivas Sek Kathiresan Yosuke Tanigawa

Mendelian randomization

A method for using measured variation in genes of known function to examine the causal effect of a modifiable exposure on disease in observational studies.

The design has a powerful control for reverse causation and confounding, which often impede or mislead epidemiological studies.

Recent history of CVD RCTs

- 1. Biomarker X is associated with Disease Y
- 2. Hypothesis: treatment to lower X will risk reduce risk for Y
- 3. Phase 3 randomized control trial to test hypothesis above

Example #1: Anemia and CVD

Sarnak, | Am Coll Cardiol 2002

Slides from Sek Kathiresan

11

Erythropoiesis stimulating agents (ESA) increases hemoglobin

TREAT trial: Treatment with ESA improved hemoglobin

Pfeffer, N Engl J Med 2010

... but failed to reduce CVD risk

Pfeffer, N Engl | Med 2010

Example 2: Lipoprotein-associated phospholipase A2 & CHD

The Lp-PLA2 Studies Collaboration, Lancet 2010

Oral inhibitor of Lp-PLA2 - darapladib - inhibits enzymatic activity

Darapladib Fails in Large Phase 3 Study

Michael O'Riordan November 12, 2013

LONDON, UK – A large phase 3 study testing an inhibitor of the lipoprotein-associated A2 (Lp-PLA2) enzyme has failed to lower the risk of cardiovascular events in coronary heart disease patients who received the drug on top of statin therapy^[1].

The Lp-PLA2 inhibitor **darapladib** (GlaxoSmithKline, London, UK) was tested in more than 15 000 patients in the <u>Stabilization of</u> <u>Atherosclerotic Plaque by Initiation of Darapladib Therapy</u> (STABILITY) study.

The trial ran to completion, but GlaxoSmithKline announced the top-line results today, stating the drug failed to provide a significant reduction in the risk of cardiovascular death, nonfatal MI, or nonfatal stroke when compared with patients treated with placebo.

Example 3: HDL cholesterol and CHD

Coronary heart disease

Emerging Risk Factors Collaboration, JAMA 2009

Dalcetrapib increases HDL cholesterol by 30%

dal-OUTCOMES: treatment with dalcetrapib increased in HDL cholesterol

Schwartz, N Engl J Med 2012

...but failed to reduced CVD risk

16,000-person randomized controlled trial

Mendelian Randomization

- Problems with observational data
- Randomized controlled trials
- Mendelian Randomization (MR):
 - How it works
 - Core assumptions
 - Calculating causal effect estimates
- MR example
- Limitations of MR

Problems with inferring causality in observational studies

The Problem with Inferring Causality in Observational Studies

CHD risk according to duration of current Vitamin E supplement use compared to no use

Rimm et al NEJM 1993; 328: 1450-6

Use of vitamin supplements by US adults, 1987-2000

Source: Millen AE, Journal of American Dietetic Assoc 2004;104:942-950

Vitamin E supplement use and risk of Coronary Heart Disease

Stampfer et al NEJM 1993; 328: 144-9; Rimm et al NEJM 1993; 328: 1450-6; Eidelman et al Arch Intern Med 2004; 164:1552-6

MANY OTHER EXAMPLES

VITAMIN C, VITAMIN A, HRT, MANY DRUG TARGETS......

WHAT'S THE EXPLANATION?

Vitamin E levels and confounding risk factors:

Childhood SES

Manual social class

No car access

State pension only

Smoker

Obese

Daily alcohol

Exercise

Low fat diet

Height

Leg length

Women's Heart and Health Study Lawlor et al, Lancet 2004

Confounding

Smoking, diet, alcohol, socioeconomic position....

Classic limitations to "observational" science

• Confounding

Reverse Causation

• Bias

Mendelian Randomization

- Problems with observational data
- Randomized controlled trials
- Mendelian Randomization (MR):
 - How it works
 - Core assumptions
 - Calculating causal effect estimates
- MR example
- Limitations of MR

RCTs: the Gold Standard in Inferring Causality

The Need for Observational Studies

- Randomized Controlled Trials (RCTs):
 - Not always ethical or practically feasible eg anything toxic
 - Expensive, requires experimentation in humans
 - Impractical for long follow up times
 - Should only be conducted on interventions that show very strong observational evidence in humans

• Observational studies:

- Association between environmental exposures and disease measured in observational designs (non-experimental) eg case-control studies or cohort studies
- Reliably assigning causality in these types of studies is very limited

The Wide Applicability of MR

- Traditional Observational Epidemiological Studies
- Behavior Genetics and the Social Sciences
- Molecular Studies
- Pharmacogenomics

Mendelian Randomization

- Problems with observational data
- Randomized controlled trials
- Mendelian Randomization (MR):
 - How it works
 - Core assumptions
 - Calculating causal effect estimates
- MR example
- Limitations of MR

How does Mendelian randomization work?

What does MR do?

- Assess causal relationship between two variables
- Estimate magnitude of causal effect

How does it do this? By harnessing Mendel's laws of inheritance

Mendel's Laws of Inheritance

Mendel in 1862

1. Segregation: alleles separate at meiosis and a randomly selected allele is transmitted to offspring

2. Independent assortment: alleles for separate traits are transmitted independently of one another

Treat genetics as randomized assignment variable

Slide courtesy of John Danesh Hingorani et al, *Lancet* 2005

Mendelian randomization and RCTs

Mendelian randomization: Smoking and Lung Cancer

(3) SNP ONLY associated with outcome through the exposure
Why are genetic associations special?

- Robustness to confounding due to Mendel's laws:
 - Law of segregation: inheritance of an allele is random and independent of environment etc
 - Law of independent assortment: genes for different traits segregate independently (assuming not in LD)
- The direction of causality is known always from SNP to trait
- Genetic variants are **potentially** very good instrumental variables
- Using genetic variants as IVs is a special case of IV analysis, known as Mendelian randomization

Mendelian Randomization

- Problems with observational data
- Randomized controlled trials
- Mendelian Randomization (MR):
 - How it works
 - Core assumptions
 - Calculating causal effect estimates
- MR example
- Limitations of MR

Calculating causal effect estimates

After SNP identified robustly associated with exposure of interest:

- Wald Estimator
- Two-stage least-squares (TSLS) regression

(3) Adjust standard errors

*Needs to be done in the one sample ("Single sample MR")

*Needs to be done in the one sample ("Single sample MR")

*Can be used in different samples ("Two sample MR")

*Can be used in different samples ("Two sample MR")

MR can also be performed using just the results from GWAS

- Also known as two-sample MR, SMR, or MR with summary data etc
- Advantages:
 - The data is readily available, non-disclosive, free, open source
 - The exposure and outcome might not be measured in the same sample
 - The sample size of the outcome variable, key to statistical power, is not limited by requiring overlapping measures of the exposure
- Disadvantages:
 - Some extensions of MR not possible, e.g. non-linear MR, use of GxE for negative controls, various sensitivity analyses

Mendelian Randomization

- Problems with observational data
- Randomized controlled trials
- Mendelian Randomization (MR):
 - How it works
 - Core assumptions
 - Calculating causal effect estimates
- MR example
- Limitations of MR

An Example using Mendelian randomization

MR Example using CRP

- C-Reactive Protein (CRP) is a biomarker of inflammation
- It is associated with BMI, metabolic syndrome, CHD and a number of other diseases
- It is unclear whether these observational relationships are causal or due to confounding or reverse causality
- This question is important from the perspective of intervention and drug development

"Bi-directional Mendelian Randomization": Testing causality and reverse causation

Effect estimates					
Outcome / explanatory variable	Observational	Instrumental variable	P _{IV}	P _{diff}	F _{first}
CRP/BMI	1.075 (1.073, 1.077)	1.06 (1.02, 1.11)	0.002	0.6	50.2
BMI/CRP	1.58 (1.53, 1.62)	-0.30 (-0.78, 0.18)	0.2	<0.00001	78.3

Mendelian Randomization

- Problems with observational data
- Randomized controlled trials
- Mendelian Randomization (MR):
 - How it works
 - Core assumptions
 - Calculating causal effect estimates
- MR example
- Limitations of MR

Limitations to Mendelian randomization

Limitations to Mendelian Randomization

- 1 Violations of assumptions
- 2 Population stratification
- 3 Canalisation ("Developmental compensation")
- 4 The existence of instruments
- **5** Power and "weak instrument bias"
- 6 Pleiotropy

Assumption: INstrument Strength Independent of Direct Effect (InSIDE)

Top: okay. pleiotropic effects act directly on the outcome (InSIDE satisfied)

Middle: pleiotropic effects act on the outcome via single confounder (InSIDE violated)

Bottom: pleiotropic effects act on the outcome via different confounders (InSIDE still violated).

- Arrows from the genetic variants to the risk factor may not be present for all variants
- some variants may affect the confounder directly and not the risk factor.

Notation:

G1, G2, . . ., GJ , genetic variants

X, risk factor

Y, outcome

U, confounder.

Curved arrows: Pleiotropic effects

Power and Weak Instruments

- Power:
 - Genetic variants explain very small amounts of phenotypic variance in a given trait
 - VERY large sample sizes are generally required
- Weak instruments:
 - Genetic variants that are weak proxies for the exposure
 - Results in biased causal estimates from MR
- Different impact of the bias from weak instruments:
 - **Single Sample MR:** to the confounded estimate
 - Two-Sample MR: to the null

Using Multiple Genetic Variants as Instruments

Figure 1. DAG for a Mendelian randomisation analysis using four genetic variants as instrumental variables for the effect of fat mass on bone mineral density. Palmer et al (2011) Stat Method Res

- Allelic scores
- Testing multiple variants individually
- Meta-analyse individual SNPs

Calculating Power in Mendelian Randomization Studies

-			
Æ	Http://cnsgenomics.com/shiny/mRnd/	クー C mRnd: Power calculations f ×	合 ☆ 燈
File	Edit View Favorites Tools Help		

mRnd: Power calculations for Mendelian Randomization

Input	Continuous outcome Binary outcome Binary outcome derivations Citation About		
Calculate:	Two-stage least squares		
	Power 0.05		
Power	NCP 0.00 Non-Centrality-Parameter		
⊖ Sample size	F-statistic 11.10 The strength of the instrument		
Provide:			
Sample size	Power or sample size calculations for two-stage least squares Mendelian Randomization studies using a genetic instrument Z (a SNP		
1000	or allele score), a continuous exposure variable X (e.g. body mass index [BMI, $\frac{kg}{m^2}$]) and a continuous outcome variable Y (e.g. blood pressure [mmHg]).		
α	YZ association		
0.05	Power 0.05		
Type-I error rate	NCP 0.00 Non-Centrality-Parameter		
	Power or sample size calculations for the regression association of a genetic instrument Z (e.g. a BMI SNP), with a continuous		
2	outcome variable Y (blood pressure).		
β_{yx}			
0			

Limitations to Mendelian Randomization

- 1 Population stratification
- 2 Canalisation ("Developmental compensation")
- 3 The existence of instruments
- 4 Power (also "weak instrument bias")
- **5** Pleiotropy

Pleiotropy

- Genetic variant influences more than one trait
- Horizontal vs Vertical pleiotropy

Pleiotropy

- Genetic variant influences more than one trait
- Pleiotropy only violates MR's assumptions if it involves a pathway outside that of the exposure and is a pathway that <u>affects your outcome</u>

Molecular QTL mapping and causal inference for gene-regulatory mechanisms

- Concept of molecular QTL mapping
- Basic methods for eQTL discovery
- Molecular QTL mapping in single-cell genomics
- Mediation analysis to understand mechanisms
- Causality inference: A battle against confounding variables

Genomic medicine: challenge and promises

Dina NG 2007, Frayling Science 2007, Claussnitzer NEJM 2015

The promise of genetics

- Path to causality
- Disease mechanism
- New target genes
- New therapeutics
- Personalized medicine

The challenge of mechanism

 90+% disease hits noncoding

- Target gene not known
- Causal variant not known
- Cell type of action not known
- Relevant pathways not known
- Mechanism not known

Claussnitzer NEJM'15

Dissect mechanisms of disease-associated regions

4. Validate predictions in human cells + mouse models

Claussnitzer

NEJM'15

Blanchard,

Nature, 2022

3. Integrate data to predict driver genes, regions, cell types

Feedback from environment / disease state

eQTL mapping: a population genetic approach for regulatory variant identification

Gene expression is a heritable trait

Types of regulatory variants

TF	Altered TF Binding
CTCF H3	Histone Modifications
	Altered splicing
_	Altered miRNA silencing

Cis vs. Trans elements

- cis-eQTL: variant resides in close proximity to target gene location
 - Multiple mechanisms implicated
 - Promoter
 - Splicing
 - Methylation
 - Chromatin modification
- trans-eQTL: variant resides very distant to the target
 - Alternative chromosome
 - Same chromosome, but far away
 - Mechanisms less clear

The nuts and bolts of an eQTL study

The nuts and bolts of an eQTL study

Methylation in 750 Alzheimer patients/controls

- Patients followed for 10+ years with cognitive evaluations
- Brain samples donated post-mortem methylation/genotype
- Seek predictive features: SNPs, QTLs, mQTLs, regulation

Pre-processing and covariate elimination

- Eliminate 7 de novo co-variates, and 8 known co-variates
- Correlate with Plate, Cell Mixture, Conversion, Sex, age

Most methylation probes are high or low, with little variability

Intermediate methylation is truly intermediate

.6 CpG average methylation (across individuals)

0

8

2

Enhancer regions show intermediate methylation

- Enhancer states: Intermediate (EnhG1/G1/A1/A2/Wk)
- Active states: Promoters: low. Tx: high.
- Repressed states: TssBiv/EnhBiv/ReprPC: low. Quies/ReprPCWk: high

Enhancers are most variable, promoters least

- Chromatin states vary 10-fold in methylation variance, 3-fold in stdev
- Active states: EnhA > EnhWk > EnhG > TxWk > TssFlnk >> TssA
- Repressed states: Quies > ReprPC > EnhBiv >> TssBiv

Discover 50,000 methylation QTLs after Bonferroni

Overlay meQTL discovery plot

meQTL discovery vs. distance vs. cohort size

- Vary: (1) distance from CpG; (2) effect size; (3) cohort size
- Strongest effects within 20 kb of tested CpGs
- Expectation for 100, 150, 200 individuals (if searching a 1Mb region)

Selection of the number of individuals

- More individuals **9** linearly more meQTLs, but smaller effect size
- Strongest effects concentrated within 20 kb of tested CpGs
 an be used to increase power for smaller sample sizes.

of individuals ⇔ MAF of meQTL SNPs

Minor Allele Frequency (MAF) of discovered meQTL SNPs. Discovery power is greater for high-MAF SNPs, resulting in skewed distributions. Thus, we expect the majority of meQTLs to have both alleles represented in samples of 20 individuals (40 chromosomes). For

- Focusing on 100-150 individuals, MAF > 0.1, as expected
- Large number of SNPs never probed even with 600 indiv

meQTL probes are enriched in enhancers + TssFlnk

- Prioritize EnhA, EnhWk, TssFlnk regions for meQTLs
- Profile variation in H3K27ac directly (ChIP-seq component)

Enhancer variation correlated with AD diagnosis

- Enhancer variation is actually biologically meaningful (not just an artifact of meaningless variation)
- Enhancers > all methylation > Promoters > APOE4 >> SNPs

Functional enrichments persist across 1000 probes

AD-associated probes in enhancers. Age-assoc in Polycomb

- 10,000 phenotype permutations **②** Statistical significance
- AD top 1k GWAS enrichment persists across 100k+ probes

Imputed MWAS: increased power, genetic component

Learn G→D directly (complex phenotype) Learn G→M (simpler phenotype)

M^ID (no causality)

Apply $G \rightarrow M$ to get iM iM $\rightarrow D$ (causality)

<u>Key Idea:</u>

- Learn G \rightarrow M model (ROSMAP n=800) Fewer indiv. Simpler phenotype
- Impute methylation iM for GWAS cohort (n=74k)
- iMWAS between <u>genotype-driven</u> M and AD phenotype (n=47k) <u>Advantage:</u>
- Much larger GWAS cohorts (>>MWAS): increased power
- Genetic component of methyl. variation Logistical challenge:
- Summary stats, not full genotypes **Q**inear model, impute stats direct

iMWAS results: new loci, multiple contributing SNPs

Mendelian Randomization

- Problems with observational data
- Randomized controlled trials
- Mendelian Randomization (MR):
 - How it works
 - Core assumptions
 - Calculating causal effect estimates
- MR example
- Limitations of MR

MR Base

Phil Haycock

Jie "Chris" Zheng

SingleSampleExtensionV × M	Inbox (688) - epxde@bri 🗙 🔀 mRnd: Power cal	culation X 🗅 www.mrbase.org/beta/?s X		Ξ <u>-</u> Σ	3		
\leftrightarrow \rightarrow C (i) www.mrbase.org/b	eta/?state=xe <mark>FWkjTVJMWm6uuhL8nr&cod</mark> e=	4/HxGD3SyDFKXUWcqz97amNkiK08ztsdmGN8-14I2SFd8#	☆ 🍳		:		
MRBASE MRBASE	statistics for these SNPs can be taken from a s	sure effect of an exposure on an outcome, the first step is to identify SNPs that are robustly associated with the exposure. T sample from which there is no data on the outcome. one of the data sources below, or by uploading your own data. You can choose multiple exposures to be analysed, and		-	•		
 Welcome to MR Base About 	Choose instruments	Manual file upload					
 Acknowledgements Data access agreement 	Select exposure source Manual file upload NHGRI-EBI GWAS catalog MR Base GWAS catalog 	The file must be a plain text file. To do simple SNP look ups it must have at least one column with the header SNP . To do an MR analysis it must have the following column headers:					
Logged in as David Evans epxde@bristol.ac.uk	Gene expression QTLs Protein level QTLs Metabolite level QTLs	 SNP - rs IDs of the instruments for the exposure beta - effect sizes for each SNP se - standard errors effect_allele - Effect allele 					
🕰 Perform MR analysis 🛛 🗸	Methylation level QTLs	It's useful to have these columns too: • other_allele - Other allele					
🔁 Choose exposures		eaf - Effect allele frequency					
후 Choose outcomes 후 Run MR		You can see an example file here: telomere_length.txt					
Q Quick SNP lookup <	Upload plain text file Preview of upl	oaded table			Ŧ		
🎋 ben.jpg 🔷	🗚 underconstruction.png \land 🖷 ab	stract_v2.docx ^ 🔁 APP1137714_Assepdf ^ 🔁 APP1137714_Sumpdf ^	Show	all	×		
	🚺 🖬 🔯 🔁 🤇	🖻 😒 🥞 📀 🛃 📴 🛛 🗈 🖻		:44 PM 02/2017			

M Inbox (572) - ep × 🗅 www.mr	rbase.on ×	and a constant of the state of the	
← → C () www.mrbase.org/	beta/?state=3DNYEn5uYpGOFV1AR1x8&code=4/c_PBiWWg	JLEId0E5VXsQP0vhJ0ExNeHxmjpZeUz4u4vI#	☆ ♀ ◘ :
	LD clumping Most two sample MR methods require that the	Select methods for analysis Many methods exist for performing two sample MR.	Submit Once you have selected exposures, outcomes, and
∞<u>MR</u>B ASE	instruments do not have LD between them. Linkage disequilibrium O not check for LD between SNPs	Different methods have sensitivities to different potential issues, accommodate different scenarios, and vary in their statistical efficiency.	analysis options you are ready to perform the analysis.
Welcome to MR Base	 Use clumping to prune SNPs for LD 	Choose which methods to use: Image: Wald ratio Image: Fixed effects meta analysis (simple SE)	9 Perform MR analysis
i About T Acknowledgements	LD proxies	 Fixed effects meta analysis (delta method) Random effects meta analysis (delta method) Maximum likelihood 	
Data access agreement Logged in as	outcome dataset, should proxy SNPs be used instead through LD tagging?	MR Egger MR Egger (bootstrap)	
Logged in as David Evans epxde@bristol.ac.uk	Use proxies? Minimum LD Rsq value 0.6 0.8 1	 Weighted median Penalised weighted median Inverse variance weighted 	
Choose exposures Choose outcomes	0.6 0.84 0.68 0.72 0.76 0.8 0.84 0.88 0.92 0.96 1		
😇 Run MR	MAF threshold for aligning palindromes		
Q Quick SNP lookup <	0.01 0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.41 0.46 0.49		
🔁 Watanabe2017.pdf 🔷	Lawloretal2017.pdf		Show all
🚱 🖸 🥭 🗩	📋 💿 🔯 🛃 😰		EN 🔺 隆 🐻 🖨 🕥ıll 🕪 12:59 AM 11/03/2017

🛫 КUN MK	5e-08				, _	gLEId0E5VXsQP(\$	0
📥 MR Results	Perfo	rm clum	ping												
Quick SNP lookup <	Display	column	s	First author	or	🕑 Number o	f controls	Pubm	edID		Population		Subca	tegory	
	✓ ID			🖉 Consortiur	m	🕑 Sample si:		Access			Priority		🕑 Unit		
	 Trait Note 			Number of	fcases	 Number o Year 	f variants	Catego	ory		Sd Sex				
	and the second										- Contraction of the second se				
												S	earch: Id	l	
		11	1	t 1	† ↓† First	11	Number		↓† Sample	Number 1	11	11	11	11	
		ID	Trait	Note	author	Consortium	of cases	controls	size	variants	Year	PubmedID	Access	Category	Po
	300	300	LDL cholesterol		Willer CJ	GLGC			173082	2437752	2013	24097068	public	Risk factor	Î
			Cholesteroi												
	781	781	LDL cholesterol	Metabo- chip	Willer CJ	GLGC			83198	120251	2013	24097068	public	Risk factor	
			cholesterot	Chip											
	880	880	Total	L.LDL.C	Kettunen				21552	11871461	2016	27005778	public	Metabolites	
			cholesterol in large LDL												
	881	881	Cholesterol	L.LDL.CE	Kettunen				19273	1 <mark>18</mark> 20655	2016	27005778	public	Metabolites	
			esters in large VLDL	2											-
	4														•
Watanabe2017.pdf	🔁 Lawlo	oretal201	17.pdf	La	wloretal2017.	pdf								Show	all

About Acknowledgements Data access agreement	Disp II II II II II II II II II II II II II	rait	 First author Consortium Number of cases 	 Number of contr Sample size Number of varia Year 		ubmedID ccess ategory	PopuPriorSdSex		Subcat	egory
gged in as wid Evans xde@bristol.ac.uk Perform MR analysis <	Show	v 10 • entries	11	11	Number of []	Number of	ţţ	Number of	Search: con	0
Choose exposures	6	Trait Note Coronary heart disease	First author Peden	Consortium C4D	cases 15420	controls 15062	Sample size 30482	variants 540233	Year 2011	Subcategory Cardiovascula
Run MR	7	Coronary heart disease	Nikpay	CARDIoGRAMplusC4D	60801	123504	184305	9455779	2015	Cardiovascula
Quick SNP lookup <	8	Coronary heart disease	Schunkert H	CARDIOGRAM	22233	64762	86995	2420361	2011	Cardiovascula
	9	Coronary heart disease	Deloukas	CARDIoGRAMplusC4D	63746	130681	194427	79129	2013	Cardiovascula
		All	All	All	All	All	All	All	All	All
	Show	ving 1 to 4 of 4 entries (filtered from 1,033 total entri	ies)					Previou	us 1 Nex

] www.mrbase.org/beta/?s	A contrast.	
 C (i) www.mrbase.org, Welcome to MR Base About Acknowledgements 	/beta/?state=3DNYEn5uYpGOFV1AR1x8&code=4/c_PBiWWg Linkage disequilibrium Do not check for LD between SNPs Use clumping to prune SNPs for LD LD proxies	potential issues, accommodate different scenarios, and vary in their statistical efficiency. Choose which methods to use: Wald ratio Fixed effects meta analysis (simple SE) Fixed effects meta analysis (delta method) Random effects meta analysis (delta method)	★ ♥ ◘ :
Data access agreement Logged in as David Evans epxde@bristol.ac.uk	If a particular exposure SNP is not present in an outcome dataset, should proxy SNPs be used instead through LD tagging? Use proxies?	 Maximum likelihood MR Egger MR Egger (bootstrap) Weighted median Penalised weighted median Inverse variance weighted 	
Image: Second state of the second	Allele harmonisation An important step in two sample MR is making sure that the effects of the SNPs on the exposure correspond to the same allele as their effects on the outcome. This is potentially difficult with palindromic SNPs. Handling reference alleles All effect alleles are definitely on the positive strand Attempt to align strands for palindromic SNPs		
 Watanabe2017.pdf Watanabe2017.pdf 	Exclude palindromic SNPs Exclude palindromic SNPs Lawloretal2017.pdf Failed - Network error Image: State of the	df ^	Show all × EN م الله 🐼 🖬 🕥 .nll 🕪 1:12 AM 11/03/2017

Useful References

Brion et al (2013). Calculating statistical power in Mendelian randomization studies. Int J Epidemiol, 42(5), 1497-501.

Davey-Smith & Hemani (2014). Mendelian randomization: genetic anchors for causal inference in epidemiological studies. *Hum Mol Genet*, 23(1), R89-98.

Davey-Smith & Ebrahim (2003). "Mendelian randomization": can genetic epidemiology contribute to understanding environmental determinants of disease? IJE, 32, 1-22.

Davies et al (2018). Reading Mendelian randomization studies: a guide, glossary, and checklist for clinicians. BMJ, Jul 12, 362:k601.

Evans & Davey-Smith (2015). Mendelian randomization: New applications in the coming age of hypothesis free causality. Annu Rev Genomics Hum Genet, 16, 327-50.

Hemani et al. (2018). The MR-Base platform supports systematic causal inference across the human phenome. Elife, May 30, 7, e34408.

Zheng et al. (2017). Recent developments in Mendelian randomization studies. Curr Epidemiol Rep, 4(4), 330-345.