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Mendelian randomization

A method for using measured variation in genes of known
function to examine the causal effect of a modifiable
exposure on disease in observational studies.

The design has a powerful control for reverse causation
and confounding, which often impede or mislead
epidemiological studies.
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Recent history of CVD RCTs

1. Biomarker X is associated with Disease Y
Hypothesis: treatment to lower X will risk
reduce risk for Y

3. Phase 3 randomized control trial to test
hypothesis above
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Example #1: Anemia and CVD

Proportion Free of CVD
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Erythropoiesis stimulating agents (ESA) increases hemoglobin

TREAT trial: Treatment with ESA improved hemoglobin

13.54

13.04
Darbepoetin alfa 5

Placebo

Mean Hemoglobin (g/dl)

T T T T T T L) 1
0 6 12 18 24 30 36 42 48
Months since Randomization

No. of Patients
Darbepoetin alfa 2004 1768 1503 1300 946 635 404 253 97
Placebo 2019 1742 1460 1221 887 620 356 216 79

Pfeffer, N Engl | Med 2010
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... but failed to reduce CVD risk

A Cardiovascular Composite End Point

Patients with Event (%)

No. at Risk
Darbepoetin alfa
Placebo

50—
Hazard ratio, 1.05 (95% Cl, 0.94-1.17)
40 P=0.41

Darbepoetin alfa
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Placebo
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0 6 12 18 24 30 36 42 48
Months since Randomization
2012 1882 1717 1515 1180 817 551 318 130
2026 1836 1687 1487 1178 834 529 319 122

Pfeffer, N Engl | Med 2010
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Example 2: Lipoprotein-associated phospholipase

A2 & CHD
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Oral inhibitor of Lp-PLAZ2 - darapladib - inhibits
enzymatic activity
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Heartwire

Darapladib Fails in Large Phase 3 Study

Michael O'Riordan
November 12, 2013

LONDON, UK — A large phase 3 study testing an inhibitor of the
lipoprotein-associated A2 (Lp-PLA2) enzyme has failed to lower
the risk of cardiovascular events in coronary heart disease
patients who received the drug on top of statin therapyll.

The Lp-PLAZ2 inhibitor darapladib (GlaxoSmithKline, London, UK)
was tested in more than 15 000 patients in the Stabilization of
Atherosclerotic Plaque by Initiation of Darapladib Therapy
(STABILITY) study.

The trial ran to completion, but GlaxoSmithKline announced the
top-line results today, stating the drug failed to provide a
significant reduction in the risk of cardiovascular death, nonfatal
MI, or nonfatal stroke when compared with patients treated with
placebo.



Example 3: HDL cholesterol and CHD

Hazard Ratio
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Dalcetrapib increases HDL cholesterol by 30%
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dal-OUTCOMES: treatment with dalcetrapib
iIncreased in HDL cholesterol

A

Months

Schwartz, N Engl | Med 2012
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...but failed to reduced CVD risk

Effects of Dalcetrapib in Patients
with a Recent Acute Coronary Syndrome

100+ -
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_g G 204 P=0.52 by log-rank test
S 101 e————
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0 1 2 3
Year
No. at Risk
Placebo 7933 7386 6551 1743 Schwartz,
Dalcetrapib 7938 7372 6495 1736 N Engl | Med 2012

1 6,000-person randomized controlled trial



Mendelian Randomization

Problems with observational data
Randomized controlled trials
Mendelian Randomization (MR):

— How it works
— Core assumptions
— Calculating causal effect estimates

MR example
Limitations of MR



Problems with inferring causality
in observational studies



The Problem with Inferring Causality in
Observational Studies

l Tdeus, Random Medical News ™ 222,







CHD risk according to duration of current Vitamin E
supplement use compared to no use
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Rimm et al NEJM 1993; 328: 1450-6



Use of vitamin supplements by US adults,
1987-2000
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Source: Millen AE, Journal of American Dietetic Assoc 2004;104:942-950



Vitamin E supplement use and risk of Coronary Heart Disease
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Stampfer et al NEJM 1993; 328: 144-9; Rimm et al NEJM 1993; 328: 1450-6; Eidelman et al
Arch Intern Med 2004; 164:1552-6



MANY OTHER EXAMPLES

VITAMIN C, VITAMIN A, HRT,
MANY DRUG TARGETS.......

WHAT’S THE EXPLANATION?



Vitamin E levels and confounding risk factors:

Childhood SES
Manual social class
No car access
State pension only

Smoker

Obese
Daily alcohol

Exercise

Low fat diet
Height

Leg length

— > > —> —> — —— — — — —

Women’s Heart and Health Study
Lawlor et al, Lancet 2004



Confounding

Smoking, diet, alcohol, socioeconomic position....

Confounders
Exposure - Qutcome

Vitamin E Heart disease



Classic limitations to
sclence

III

“observationa

- Confounding

e Reverse Causation

e Bias




Mendelian Randomization

Problems with observational data
Randomized controlled trials
Mendelian Randomization (MR):

— How it works
— Core assumptions
— Calculating causal effect estimates

MR example
Limitations of MR



RCTs: the Gold Standard in Inferring Causality

RANDOMISED
CONTROLLED TRIAL

Randomization

RANDOMIZATION METHOD
makes causal inference

possible
W

EXPOSED: CONTROL:

NO
INTERVENTION INTERVENTION

CONFOUNDERS
EQUAL BETWEEN
GROUPS

v v

OUTCOMES COMPARED BETWEEN
GROUPS




The Need for Observational Studies

 Randomized Controlled Trials (RCTs):
— Not always ethical or practically feasible eg anything toxic
— Expensive, requires experimentation in humans
— Impractical for long follow up times

— Should only be conducted on interventions that show very strong
observational evidence in humans

e Observational studies:

— Association between environmental exposures and disease
measured in observational designs (non-experimental)
eg case-control studies or cohort studies

— Reliably assigning causality in these types of studies is
very limited



The Wide Applicability of MR

Traditional Observational Epidemiological
Studies

Behavior Genetics and the Social Sciences
Molecular Studies

Pharmacogenomics



Mendelian Randomization

Problems with observational data
Randomized controlled trials
Mendelian Randomization (MR):

— How it works
— Core assumptions
— Calculating causal effect estimates

MR example
Limitations of MR



How does Mendelian
randomization work?



What does MR do?

* Assess causal relationship between two variables

* Estimate magnitude of causal effect

How does it do this?

By harnessing Mendel’s laws of inheritance



Mendel’s Laws of Inheritance

Mendel in 1862

1. Segregation: alleles separate at meiosis and a
randomly selected allele is transmitted to offspring

2. Independent assortment: alleles for separate traits
are transmitted independently of one another



Treat genetics as randomized assignment variable

Drug interventions

Randomized Control Trial

Sample

Randomisation

Intervention Control
Biomarker Biomarker
higher lower
CV event CV event
rate lower rate higher

Genetics

Mendelian randomisation

Population

Random allocation of alleles

Genotype aa Genotype AA

Biomarker Biomarker
higher lower
CV event CV event
rate lower rate higher

Slide courtesy of John Danesh
Hingorani et al, Lancet 2005



Mendelian randomization and RCTs

MENDELIAN
RANDOMIZATION

l + independent assortment

RANDOM SEGREGATION
OF ALLELES

EXPOSED: CONTROL:
FUNCTIONAL NULL
ALLELLES ALLELLES

CONFOUNDERS
EQUAL BETWEEN
GROUPS

v v

OUTCOMES COMPARED BETWEEN
GROUPS

RANDOMISED
CONTROLLED TRIAL

l

RANDOMISATION METHOD

N

EXPOSED: CONTROL:

NO
INTERVENTION INTERVENTION

CONFOUNDERS
EQUAL BETWEEN
GROUPS

v v

OUTCOMES COMPARED BETWEEN
GROUPS




Mendelian randomization: Smoking and Lung Cancer

MENDELIAN
RANDOMIZATION

l + independent assortment

RANDOM SEGREGATION

OF ALLELES

RANDOMISED
CONTROLLED TRIAL

l

RANDOMISATION METHOD

Heavy
Smokers:
Cc/C

Light/Non
Smokers:
C/TorT/T

< D

GROUPS

CONFOUNDERS
EQUAL BETWEEN

SMOKERS NON

EXPOSED: CONTROL:
SMOKERS

LUNG CANCER COMPARED
BETWEEN GROUPS

CONFOUNDERS
EQUAL BETWEEN
GROUPS

LUNG CANCER COMPARED
BETWEEN GROUPS




Mendelian Randomization:
3 Core Assumptions

- Confounders
@ -
SNP —45—— Exposure - Outcome

A
1

3)

(1) SNP is associated with the exposure

(2) SNP is NOT associated with confounding variables
(3) SNP ONLY associated with outcome through the exposure



Why are genetic associations special?

Robustness to confounding due to Mendel’s laws:

— Law of segregation: inheritance of an allele is random and
independent of environment etc

— Law of independent assortment: genes for different traits
segregate independently (assuming not in LD)

The direction of causality is known — always from SNP
to trait

Genetic variants are potentially very good instrumental
variables

Using genetic variants as IVs is a special case of IV
analysis, known as Mendelian randomization



Mendelian Randomization

Problems with observational data
Randomized controlled trials
Mendelian Randomization (MR):

— How it works
— Core assumptions
— Calculating causal effect estimates

MR example
Limitations of MR



Calculating causal effect
estimates



Calculating Causal Effect Estimates

Confounders

VRN

SNP > Exposure > Qutcome
SNP-EXPOSURE

? B CAUSAL EXP-OUTCOME

!
BSN P-OUTCOME

After SNP identified robustly associated with exposure of interest:

- Wald Estimator
- Two-stage least-squares (TSLS) regression



Calculating Causal Effect Estimates

Confounders -
2 5 .x""j- L+
40 g f,
e ’,;T'fr
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SNP 5 * Exposure » Outcome g s0ig~
SNP-EXPOSURE ? - E
* M CAUSAL EXP-OUTCOME 1518
0
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EI::E TED VALUE T = SHPq:an

Copyright & 2006 Mature Publishing Group
Mature Reviews | Genetlcs

I:;:;:ieares (1) Regress exposure on SNP & obtain predicted values
(25LS): (2) Regress outcome on predicted exposure (from 1 stage regression)

(3) Adjust standard errors

*Needs to be done in the one sample (“Single sample MR")



Calculating Causal Effect Estimates

Confounders L
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Hature Reviews | Genetics
Two-stage : :
8 (1) Regress exposure on SNP & obtain predicted values
Least Squares
(25LS): (2) Regress outcome on predicted exposure (from 1 stage regression)

(3) Adjust standard errors

This gives you: difference in outcome per unit change in (genetically-predicted) exposure

Genetically determined exposure = “randomized” = can ascribe causality

(if assumptions are met)

*Needs to be done in the one sample (“Single sample MR")



Calculating Causal Effect Estimates

Confounders
SNP > EXxposure »  Qutcome
BSN P-EXPOSURE CAUSAL EXP-OUTCOME

Y
BSNP—OUTCOI\/IE

B BSNP—OUTCOME = BCAUSAL EXP-OUTCOME X BSNP—EXPOSURE
Causal effect by SNP-OUTCOME

Wald Estimator* :

A
BSNP—EXPOSURE

*Can be used in different samples (“Two sample MR”)



Calculating Causal Effect Estimates

Confounders
SNP > Weight » BP
BSN P-WEIGHT BCAUSAL WEIGHT-BP
0.5kg
{ J
Y
BSNP-BP
0.9mmHg BP and weight:

/B 0.9 mmHg/allele
Causal effect by SNP-OUTCOME = change in outcome 0.5 kg/allele

Wald Estimator* : per unit change in exposure

TAN
BSNP—EXPOSURE

=1.8 mmHg/kg

*Can be used in different samples (“Two sample MR”)



MR can also be performed using just
the results from GWAS

* Also known as two-sample MR, SMR, or MR with summary
data etc

* Advantages:

— The data is readily available, non-disclosive, free, open source

— The exposure and outcome might not be measured in the same
sample

— The sample size of the outcome variable, key to statistical

power, is not limited by requiring overlapping measures of the
exposure

* Disadvantages:

— Some extensions of MR not possible, e.g. non-linear MR, use of
GxE for negative controls, various sensitivity analyses



Mendelian Randomization

Problems with observational data
Randomized controlled trials
Mendelian Randomization (MR):

— How it works
— Core assumptions
— Calculating causal effect estimates

MR example
Limitations of MR



An Example using Mendelian
randomization



MR Example using CRP

C-Reactive Protein (CRP) is a biomarker of inflammation

It is associated with BMI, metabolic syndrome, CHD and a
number of other diseases

It is unclear whether these observational relationships
are causal or due to confounding or reverse causality

This question is important from the perspective of
intervention and drug development



“Bi-directional Mendelian Randomization”:
Testing causality and reverse causation

CRP
G — BMI CRP «——
Genotype — Genotype



30

10

CRP(mg/L)

Effect estimates

T T
-10 0

T T
10 20

residual BMI

-10

Outcome
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Observational i Piv Paiss Frirst
explanatory variable
variable
1.075 1.06
CRP/BMI 0.002 0.6 50.2
(1.073, 1.077) (1.02, 1.11)
1.58 -0.30
BMI/CRP 0.2 <0.00001 78.3
(1.53, 1.62) (-0.78, 0.18)
=

—

T
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Mendelian Randomization

Problems with observational data
Randomized controlled trials
Mendelian Randomization (MR):

— How it works
— Core assumptions
— Calculating causal effect estimates

MR example
Limitations of MR



Limitations to Mendelian
randomization



Limitations to Mendelian Randomization

1 Violations of assumptions
2 Population stratification
3 Canalisation ("Developmental compensation”)

4 The existence of instruments

5 Power and “weak instrument bias”

6 Pleiotropy



Assumption: INstrument Strength Independent of Direct Effect (InSIDE)

Top: okay. pleiotropic effects act directly on the
outcome (InSIDE satisfied)

Middle: pleiotropic effects act on the outcome via
single confounder
(InSIDE violated)

Bottom: pleiotropic effects act on the outcome via
different confounders
(InSIDE still violated).

e Arrows from the genetic variants to the risk factor
may not be present for all variants

e some variants may affect the confounder directly
and not the risk factor.

Notation:

G1, G2, ..., GJ, genetic variants

X, risk factor

Y, outcome

U, confounder.

Curved arrows: Pleiotropic effects




Power and Weak Instruments

* Power:

— Genetic variants explain very small amounts of phenotypic variance
in a given trait

— VERY large sample sizes are generally required

e Weakinstruments:
— Genetic variants that are weak proxies for the exposure
— Results in biased causal estimates from MR

* Different impact of the bias from weak instruments:
— Single Sample MR: to the confounded estimate
— Two-Sample MR: to the null



Using Multiple Genetic Variants as Instruments

FTO

MC4R—

-
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TMEM18=

GNPDA2

N

Fat mass

Confounders

» Bone mineral density

Figure |. DAG for a Mendelian randomisation analysis using four genetic variants as instrumental variables for the
effect of fat mass on bone mineral density.

 Allelic scores

Palmer et al (2011) Stat Method Res

* Testing multiple variants individually

* Meta-analyse individual SNPs



Calculating Power in Mendelian
Randomization Studies

= [=] g
ey - T 7 . frac]
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File Edit View Favorites Tools Help

mRnd: Power calculations for Mendelian Randomization

Continuous outcome Binary outcome Binary outcome derivations Citation About
Input
Two-stage least squares
Calculate:
Power 0.05
@® Power NCP 0.00 Non-Centrality-Parameter

() Sample size " )
F-statistic 11.10  The sirength of the instrument

Provide:
Sample size Power or sample size calculations forlwn—stage least squares Mendelian Randomization studies usEng a genetic instrument Z (a SNP
1000 or allele score), a continuous exposure variable X (e.9. body mass index [BMI, %]) and a continuous outcome variable Y (e.g. blood
pressure [mmHg]).
a YZ association
0.05 Power 0.03
Type- error rate NCP  0.00 Nen-Centrality-Parameter

Power or sample size calculations for the regression association of a genetic instrument Z (2.g. a BMI SNP), with a continuous
outcome variable Y (blood pressure).

5
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Limitations to Mendelian Randomization

1 Population stratification

2 Canalisation ("Developmental compensation”)
3 The existence of instruments

4 Power (also "weak instrument bias”)

5 Pleiotropy



Pleiotropy

e Genetic variant influences more than one trait

* Horizontal vs Vertical pleiotropy

Outcome
Exposure Outcome
Exposure ‘
G
G
Vertical Horizontal

Pleiotropy Pleiotropy



Pleiotropy

Genetic variant influences more than one trait

Pleiotropy only violates MR’s assumptions if it involves a

pathway outside that of the exposure and is a pathway that
affects your outcome

Violation
Outcome Outcome
Exposure - “
E:l\ 89 xpgiure 35
G \ G /




Molecular QTL mapping and causal inference
for gene-regulatory mechanisms

® Concept of molecular QTL mapping

® Basic methods for eQTL discovery

®* Molecular QTL mapping in single-cell genomics
®* Mediation analysis to understand mechanisms

® Causality inference: A battle against confounding
variables



Genomic medicine: challenge and promises

GWAS Manhattan Plot: simple x? statistical test

a1 © BMiloci, early (before 2010) [ ] o
o, B f The promise of genetics
50 ! .
. : — Path to causality
ke I
sa . — Disease mechanism
8 20 NEGR‘LMR! AAAA EwsGNPDAZ o P . .
2l Iy — New target genes
S o) ik lm ||| i el .
o 6 7 8 9 10 11 12 13 1415 g 171819202122 — New thera peut|cs
SNP genomlc position (23 chrs)
Speliotes NG 2010 — Personalized medicine
\.2\\\1\0 [ \rs1\221\()\!;|\\\ \Ur:;\!;;;;:z\u (1] \\\\\1:5;93;5(;6\\ T T HHH(\)S;PS
% A ¢ | The challenge of mechanism
g o = g —90+% disease hits non-
8 < coding
10 §
olec wts e "ok ese Y. N — Target gene not known
o Ll i e —_ i F' Co
R <. N Causal variant not known @_,..:\E
£2 — Cell type of action not known Elt?'# =
=3 L
=2 — Relevant pathways not Claussnitzer
Dina NG 2007, Frayling Science 2007, Claussnitzer NEJM 2015 known NEJM’15

— Mechanism not known



Claussnitzer

NEJM’15

i
Blanchard,
Nature, 2022
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1. Disease genetics reveals

common + rare variants/regions

5. Disseminate results

4. Validate predictions in

human cells + mouse models

Dissect mechanisms of disease-associated regions
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2. Profile RNA + Epigenome
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Genetic Tissue/ Molecular Phenotypes Organismal

Variant cell type Epigenetic Gene phenotypes
Changes Expression
Methyl, - Changes
Heart Gene Endo
DNA expr. phenotypes
access. /
Lipids

CATGACTG
CATGCCTG

V‘ a
/ !
Metabol
Skin Promoter Drug
Gene resp

Nerve Insulator expr

Feedback from environment / disease state

Enwroanent




eQTL mapping: a population genetic approach for regulatory
variant identification
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Gene expression is a heritable trait

Count
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W All transcripts
B RefSeq transcripts
B Non-RefSeq transcripts
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. Heritability estimate
Goring HHH et al. Nat Genet 2007 39:1208-1216.

45
::1 w— Simulation
20 - Heal data
o 15
on
J
et '1[] -
&
Mean =0.23, 5.d. =017
51 0.3
D .

1 1 1
00 02 04 08 08 10

) Total heritabili by3 gene
Dixon AL et al. Nat Genet 200739:1202-1207.




Types of regulatory variants
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Cis vs. Trans elements

 cis-eQTL: variant resides
in close proximity to target [
gene location —
— Multiple mechanisms implicated
* Promoter
« Splicing
* Methylation
« Chromatin modification

C/A

e frans-eQTL: variant resides
very distant to the target
— Alternative chromosome (¥ ©
— Same chromosome, but far away
— Mechanisms less clear




Cell isolation

@0

Oa isolation

The nuts and bolts of an eQTL study

Expression
measurement

RNA

—_—
Subjects

Millions of

Linear Regression Equation
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Expression ~ genotype
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The nuts and bolts of an eQTL study

Expression * g o
Cell isolation measurement ; * &, Millions DNA
g : e’ of SNP
QO RNA isolation £ ] d Genotyping
(gl | ac
. . sootatpiemepiingines: o
Filter transcripts |

Linear Regression Age, gender
Expression = genotype + covariates il Pop
stratification
Technical
Covs

Genes

Subjects

Annotation
Visualization
Interpretation

Determine significance
threshold




Methylation in 750 Alzheimer patients/controls

Dorsolateral prefrontal 750 individuals (NSO% W/AD)

cortex

Memory and Aging Project
~>._ Religious Order Study

>

486,000
methylation
probes

Philip delager, Epigenomics Roadmap

3 Active enhancer
4 Weak enhancer
5 Gene bodies

7 Repetitive h

8 Heterochromatin
9 Low signal
Brad Bernstein

REMC mapping

Genome Phenotype

@ Classification

Epigenome

H3K35me3l
Input
H3k9me3
Hikdme3
H3k9ac
H3ik4mel

* Patients followed for 10+ years with cognitive evaluations
* Brain samples donated post-mortem methylation/genotype

* Seek predictive features: SNPs, QTLs, mQTLs, regulation



Gene annotation: GPC1
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Pre-processing and covariate elimination
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e Eliminate 7 de novo co-variates, and 8 known co-variates
* Correlate with Plate, Cell Mixture, Conversion, Sex, age



Most methylation probes are high or low, with little variability

a. Chromatin state definitions

a il b b. Distribution of CpG avg methylation
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Enhancer regions show intermediate methylation
/
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* Enhancer states: Intermediate (EnhG1/G1/A1/A2/WKk)
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Enhancers are most variable, promoters least
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* Repressed states: Quies > ReprPC > EnhBiv >> TssBiv
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meQTL effect size

MmeQTL effect size

meQTL discovery vs. distance vs. cohort size

Individuals: 25; meQTLs: 138 Individuals: 50; meQTLs: 2,579 Individuals: 100; meQTLs: 9,825 | Individuals: 150; meQTLs: 16,459 | Individuals: 200; meQTLs: 22,543 meQTL
counts
N ‘ g s p 600
8 ) 402
¥ g 0 " 270
g
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° & ; 81
.
4 5—";‘ : 24
2 g S 16
Expected meQTL min effect size: R?=0.31 Ry .':.;,' gy 171
2 '53 7 5
. 3
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0 Aim 2 expected power 0.0le" 0
[ T I T I T I T I T I T I I T T . 100 250 4‘00 5‘75
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Distance from meQTL SNP to target (kb) Number of individuals used in study

e Vary: (1) distance from CpG; (2) effect size; (3) cohort size
e Strongest effects within 20 kb of tested CpGs

e Expectation for 100, 150, 200 individuals
(if searching a 1Mb region)



Selection of the number of individuals

0% of mellTLs

i 50 %
.":\-:_|! ikl 2ikE .":h'i

Fﬁ«: 1 — Effect size misestimation (average) - ° E: T4 '
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0 100 200 300 400 500 575 -100kb  -50kb 0 50kb  100kb
Sample size (number of individuals) Genomic distance from SNP to CpG

* More individuals ©® linearly more meQTLs, but smaller effect size

* Strongest effects concentrated within 20 kb of tested CpGs
© can be used to increase power for smaller sample sizes. 79



# of individuals & MAF of meQTL SNPs

L . Minor Allele Frequency (MAF) of
Number of Individuals discovered meQTL SNPs. Discovery
— power is greater for high-MAF SNPs,

%8 528 resulting in skewed distributions.
| 1 00 Thus, we expect the majority of
300 meQTLs to have both alleles
1 50 — 400 represented in samples of 20
— 575 individuals (40 chromosomes). For
| == Background ,
|

density

0.0 0.1 0.2 0.3 0.4 0.5
Minor Allele Frequency (MAF) distribution for discovered meQTLs

* Focusing on 100-150 individuals, MAF > 0.1, as expected
* Large number of SNPs never probed even with 600 indiv



meQTL probes are enriched in enhancers + TssFink

Enrichment for meQTLs

TssAp
TssFink
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TssFInkD
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18k Repressed PolyCom

36k Weak Repr. PolyComr
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* Prioritize EnhA, EnhWk, TssFInk regions for meQTLs
* Profile variation in H3K27ac directly (ChIP-seq component)



Enhancer variation correlated with AD diagnosis

Enhancer Methylation + All Covars

== Promoter Methylation + All Covars

= Full Methylome + All Covars

=== All Covariates (APOE4+Known+SVs)

— APOE4

== Known Covariates |All Covars

=== Surrogate Variables
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* Enhancer variation is actually biologically meaningful
(not just an artifact of meaningless variation)

 Enhancers > all methylation > Promoters > APOE4 >> SNPs
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Functional enrichments persist across 1000 probes
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Excess over expected

-0.02

* AD-associated probes in enhancers. Age-assoc in Po

Excess over expected

Excess over expected

0.157
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Enhancer enrichment in AD-associated probes
15k probes

True AD Phenoctype
Pemuted AD Phenotype
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AD-assoc. haplotypes vs. AD-assoc. probes
15|-:. probes

0 1DDk EDDI'; 300k
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* 10,000 phenotype permutations © Statistical significance
* AD top 1k GWAS enrichment persists across 100k+ probes




Imputed MWAS: increased power, genetic component

GWAS: G . D N=74k
meQlL: G — M N=800
MWAS: M —— D N=800

IMWAS: G —— IM —— D N=74k

Key Idea:

Learn G—>D directly
(complex phenotype)

Learn G>M
(simpler phenotype)

MIOD (no causality)

Apply G=>M to get iM
iM—>D (causality)

e Learn G>M model (ROSMAP n=800) Fewer indiv. Simpler phenotype

e Impute methylation iM for GWAS cohort (n=74k)

e iIMWAS between genotype-driven M and AD phenotype (n=47k)

Advantage:

e Much larger GWAS cohorts (>>MWAS): increased power

e Genetic component of methyl. variation
Logistical challenge:

e Summary stats, not full genotypes @inear model, impute stats direct
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Mendelian Randomization

Problems with observational data
Randomized controlled trials
Mendelian Randomization (MR):

— How it works
— Core assumptions
— Calculating causal effect estimates

MR example
Limitations of MR



MR Base

http://www.mrbase.org/
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QO MRBASE

A platform for Mendelian randomisation using summary data from genome-wide
association studies
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Choosing instruments for the exposure

To use two sample MR to estimate the causal effect of an exposure on an outcome, the first step is to identify SNPs that are robustly associated with the exposure. These summary
statistics for these SMNPs can be taken from a sample from which there is no data on the outcome.

Please provide instruments by choosing from one of the data sources below, or by uploading your own data. You can choose multiple expasures to be analysed, and multiple
instruments per exposure,

oose instruments

Select exposure source The file must be a plain text file.

e to MR Base

® Manual file upload To do simple SNP look ups it must have at least one column with the header SNP .
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LD clumping

Most two sample MR methods require that the
instruments do not have LD between them.
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Select methods for analysis

Many methods exist for performing two sample MR.
Different methods have sensitivities to different

Submit

Once you have selected exposures, outcomes, and
analysis options you are ready to perform the analysis.

potential issues, accommodate different scenarios, and

Linkage disequilibrium
3 " vary in their statistical efficiency.

# Do not check for LD between SNPs
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Use clumping to prune SNPs for LD
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outcome. This is potentially difficult with palindromic
SNPs.
Handling reference alleles
® All effect alleles are definitely on the pasitive strand
Attempt to align strands for palindromic SNPs
Exclude palindromic SHPs
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