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Objectives

During this presentation we will review By end, you will have a better understanding
opportunities and challenges of using of

imaging biomarkers in clinical drug

development = Role of imaging within the broader venue

of clinical biomarkers
» Reproducibility and scalability of imaging
biomarkers in drug development

» |ntersection of imaging biomarker and Al
methods
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B. Kneecap

C. Artichoke

D. Flowing lava




Clinical Trial Phases

PHASE 1 " : PHASE III

Safety and Efficacy




Clinical biomarker depends on the context of use
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Precision Medicine| Understanding complex diseases and
therapeutic response biology to deliver high value medicines

It

Patient Phenotypes/Clinical
Subpopulations
Clinical Signs, Symptoms, PROs
Real World Evidence Data, Outcomes

x Genetic
DNA variants & epigenetic modifications
W Transcriptome
] mRNA, ncRNA, miRNA

Peripheral
Proteins, metabolites, cells, microbes

Tissues/Organ systems
Imaging, immunohistochemistry

Endotypes in Complex Diseases

Digital Devices




Roadmap | exploratory biomarker to regulated diagnostic

3. Investigational
Use Only (IUO) Assay

* “To be marketed’ type assay 5. Regulatory submission
*Clinical trial compliant

1. Biomarker selection « Analytical validation - + Diagnostic coupled to drug

Biomarker predictive of response eastre Liomarker + Analytical validation, clinical 7. Clinical utility
. . s measure biomarker Yy ,

. Blolog1§al plausibility validation, manufacturing, software « Cost effectiveness

. Precllmf:a'l data validation & equipment qualification * Post-marketing trials

* Early clinical data «Simultaneous review and approval * Price optimisation

~m ™
D

8. CDx life cycle
2. Prototype / Clinical 6. Marketing approval management
Trial Assay and launch * Maximise testing (Country
specific plans)
«Clinical testing guidelines
* Follow-on regulated CDx
*Lab developed tests
(where appropriate)
* Innovative diagnostics

* Prototype form of a planned IVD
or lab-developed test that will
not be commercialized
*Clinical trial regulatory compliant . .
* Preliminary analytical validation * Assay has an ability to predict the

*Rx & CDx marketing approvals

*Pricing and market access

« “Go-to-market” strategies

» Co-marketing strategies

*Market awareness, education and
training

«Clinical testing guidelines

treatment outcome in the individual
patient (efficacy or safety)




Modalities | balancing availability & complexity vs
mechanistic specificity

high Clinical Radiology Nuclear Medicine
= MRI = CT .
= Ultrasound = CTA R
= Endoscopy * DXA non-specific probes
- « OCT « X-ray = Scintigraphy
=
% Advanced MRI [ Molecular Imaging ]
% = MR spectroscopy = PET, SPECT with targeted probes
> = Magnetization transfer/CEST
@© = Diffusion MRI
®©
©
= Next generation Clinical Technology
= = NIRS
= Reflectance Confocal Microscopy
= OCT - Angiography
|0W = HFUS
= SWE

low mechanistic specificity high



Variability assessment | standardized protocols matter

Center 1 Center 2 Center 3
15 patients 15 patients 15 patients
MAGNETOM Verio MAGNETOM Skyra MAGNETOM Prisma

]

Cardiovascular MRI
(standardized protocol)
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/ 2 axial GRE cine /"Candy-cane" image\ axial PC cine images\
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3 repetitions
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/ Aortic strain measurement

X Amax — Amin
strain = ————
Amin
3 readers
3 readings
3 measurement sites (AA, PDA, DDA)

\ 3645 aortic strain measurements

PWV measurement
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5 readers
3 readings

2025 PWV measurements

Source: Hrabak-Paar. Card Img. 2020
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A. Zebrafish

B. Human Spine

C. Balloon catheter




Enriching the target population | using imaging as inclusion
criteria

3 CLINICAL TRIAL REPORT

Efficacy and Safety of the CFTR
Potentiator lcenticaftor (QBW251) in COPD:
Results from a Phase 2 Randomized Trial

International Journal of Chronic Obstructive Pulmonary Disease 2020:15 2399-2409 2399
@mn Rowe et xLTh werk i publishe n dmﬂ nsed by Dove Medical Press Limited. The full terms of this i available at hitps:/eww.dovepress.com/terms php
...... incorperate the Creaive Commons — Non Commerdal (unported, +3.0) License (bupi/creative

os.orglicenss/by-nc/3.01). By acesing the work
you bereby accept mlumx Non-commer ui usts of the -m n pummd withaut any furher permission frm Dove Medical Press Linited, provided the work s propery attrbuted. For
permission for commercal use of tis werk, please see paragraphs 4 and . of eur Terms (utgs:/fwww.dovepress. omterms hy).

Patients aged >35 and <75 years with a diagnosis of
COPD and symptoms of CB and with lung clearance index
(LCI) =8 at screening were included. Patients diagnosed with
severe bronchiectasis or significant radiographic emphysema
were excluded. Whole lung emphysema extent <25% (TLC
% < —950 HU) and quantitative air trapping >15% (RV
>15% —856 HU) were assessed by high resolution computed
tomography (HRCT) for inclusion. Additional criteria are
provided in the supplementary material (Table E1).



Representative cases of 3D rendering of CT images

T2: Screen Screen Day 29 PO9: Screen
Emphysema= 22% air-trapping= 73% air-trapping=50%

Diffuse Upper & R. middle lobes Dominant

Screen Day 29
Emphysema= 22% air-trapping=44%

P24: Screen Screen Day 29
Emphysema=8% air-trapping= 25% 25%

T10: Screen Screen Day 29
Emphysema= 24% air-trapping=53% air-trapping= 55%

Upper Lobe Dominant Diffuse right lung, mild

International Journal of Chronic Obstructive Pulmonary Disease 2020:15 2399-2409 2399
© 2020 Rawe et al. This werk is published and icensed by Dove Medical Press Limited. The full terms of this icense are available at hetps://ww.dovepress.comterms php

N JamrTar nd inorperate the Creatve Commons Attrbution — Non Commercal (unported, v3.0) License (itp//creativecommans.rgflcenses/by-nc/3.01). By accssing the work
you hereby accept the Terms. Non-commercil uses of the work are permitted without any further permission rom Dove Medical Press Limited, provided the work s propely attrbuted. For
permission for commercal use of this work, please see paragraphs 42 and 5 of our Terms (https://ww.dovepres.com/terms.php).



Extent of emphysema is associated with mortality risk |
evidence from 7,341 patients in the COPD gene registry
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Deep learning enables classification of emphysema
pattern on CT | leveraging the COPD gene registry

Feature extraction Learning
(CNN) sequence (LSTM)
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Table 1: Comparison of Visual and Deep Learning Emphysema Scores in the COPDGene Test
Cohort (n =7143)

Deep Learning Algorithm

Visual Score Absent Trace Mild Moderate Confluent Advanced Destructive
Absent | 637*" 14957 324 41 2 0

Trace 126 3 66 2 0

Mild 35 380 296 20 0

Moderate 2 25 166 [643°] 21 4

Confluent 0 1 4 154 69

Advanced destructive 0 0 0 8 108 92*

» Al classified 34% ‘one level higher’ compared to visual

score
» Al classified 13% 'one level lower’




A. GOT Dragon
B. Turtle

C. Goliath Beetle

D. Pineapple




Imaging to enrich iIAMD trials | opportunity for Al

intermediate ie late AMD

early AMD R\ AMD

\nZ/ Based on fellow-eye analysis in historical trial, ~20% of patients with iAMD
k3 progressed to late AMD within 2 years

HAWK
% 0 Presence of 2 2 high risk features on OCT increases risk of conversion within
én i 2 years to more than 40%

- <

@ OCT screening is part of current iIAMD trial

OCT: optical coherence tomography
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Predicting fast progressors | manual scoring

Known High Risk Features
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Predicting iAMD progression | initial modeling approaches

Deep Learning —imaging models
% Rule-based manual scoring
Feature agnostic thickness-maps model (2021), auc: 0.55

BG 1.0 Feature agnostic OCT model (2021), auc: 0.59

RNFL '

GCL + IPL B
OPL -+ INL B

ONL + ELM 0 8
RPE + PR | .

e Retinal layers N

0.52 | Max F1: 0.60
0.50 Max F1: 0.54 3&4
0.41 [ [ |

Precision
o o
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0.37 0.57 0.75 0.93

00 02 04 06 08 1.0
Recall

*Nassisi et al., OCT Risk Factors for Development of Late Age-Related Macular Degeneration in the
Fellow Eyes of Patients Enrolled in the HARBOR Study, Ophthalmology (2019)
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How is the manual scoring performed?

Counting high-risk features

Rule-based manual scoring simply counts the number of high-risk features in the fellow eye
without weighting one feature over the other for identifying fast progressors

*Nassisi et al., OCT Risk Factors for Development of Late Age-Related Macular Degeneration in the
Fellow Eyes of Patients Enrolled in the HARBOR Study, Ophthalmology (2019)
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Adding a stonger baseline

Weighting the high-risk features using a logistic regression model

% Rule-based manual scoring

Feature agnostic thickness-maps model (2021), auc: 0.55
Feature agnostic OCT model (2021), auc: 0.59

RC annotated high-risk feature regression model, auc: 0.75
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Recall

*Nassisi et al., OCT Risk Factors for Development of Late Age-Related Macular Degeneration in the
Fellow Eyes of Patients Enrolled in the HARBOR Study, Ophthalmology (2019)
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Predicting fast progressors | feature agnostic models (using OCT
specific model)

% Rule-based manual scoring

Feature agnostic OCT model (2022), auc: 0.70

Feature agnostic OCT model (2021), auc: 0.59

RC annotated high-risk feature regression model, auc: 0.75

OCT-specific represenation learning 1.0

0.8¢1>

0.6

Precision

0.4f0

02 0.37 0.7410.75_0.93

00 02 04 06 08 1.0
Recall
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Identifying progressors from intermediate to late AMD

OCT features + high-risk feature scores model

OCT volume

Feature fuser &

Volume feature -
classifier

E@ﬂ —>» Convertor

e —> [0.1,0.8,0.4,0.05,0.02]

High-risk feature  Average high-risk
scoring model Feature scores
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Precision

% Rule-based manual scoring
Feature agnostic OCT model, auc: 0.70

RC annotated high-risk feature regression model, auc: 0.75
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A. Older patient

B. Cat

C. Child

D. Dog




Multiple sclerosis | neurodegenerative disease
affecting the entire body

MULTIPLE SCLEROSIS

Healthy
Neuron

Damaged
Neuron

The Expanded Disability Status Scale (EDSS)

No dasmaly Minimal Modera’e F&tr ely

neumlog»cd with only disabilty disability severe a"ects required restcted Yo bed or
function  minimal signs disability full dady 0 walk wheelchair wheelchar
actiies B work

Affected Areas

25



MS therapy | unmet medical need
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NATURAL HISTORY

Predicting disability progression | relapses

* New and enhancing brain lesion on MRI
are sign of relapses

* Number / frequency of brain lesions is
highly correlated with disability
progression

27



CURRENT TREATMENT ERA

Predicting disability progression | no
relapses

EEEEEEEE
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 Total brain volume change is correlated
with MS progression independent of
relapses

* Annualized change in brain volume in MS
is small (0.5 -1 %) and only slightly above
that of healthy controls (0.3% per year)

« Known measurement variability due to
physiological parameters (hydration
status) and difference in quantification
methodology



Can we do better ? | Potential alternatives to total
brain volume changes

DGM (total)
Thalamus

Caudate

Cortical grey matter
White matter
Brainstem
Cerebellum
Ventricles

29



NO.MS | leveraging information from up to 34 trials

Multiple Sclerosis Journal
Volume 27, Issuc 13, November 2021, Pages 2062-2076

© The Author(s), 2021, Article Reuse Guidelines

https://doi.org/10.1177/1352458520988637 J O U rn al S

Original Research Papers

Characterisation of MS phenotypes across the age
span using a novel data set integrating 34 clinical trials (NO.MS
cohort): Age is a key contributor to presentation

Frank Dahlke!, Douglas L Arnold?, Piet Aarden?, Habib Ganjgahi®, Dieter A Hiiring®, Jelena
Cuklina®, Thomas E Nichols’, Stephen Gardiner®, Robert Bermel®, and Heinz Wiendl () 19

30



Methods

31

EXPAND trial | SPMS, siponimod, placebo-controlled trial, 1,645
patients, conducted ~ 2013 - 2015

Atlas based segmentation of 19 anatomic substructures of the
baseline data

Subsequent timepoints were diffeomorphically registered and
volumetric changes were estimated via mean Jacobian determinant in
the region of interests

PIRA events were defined per Lublin et al (Brain 2022)

Neural network developed (based on atlas segmentation) for batch
processes/speed



EXPAND | substructural segmentation example

Original Processed Segmented

32



Potential alternatives | exploratory insights on EXPAND

Whole Brain White Matter Cortical Gray Matter Cerebellum
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DNN Baseline Experiment

baseline

volumetric features

precomputed and cached

gender classification on
8 brain volume features

764 train 321 validation
samples samples
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A. Mountain

B. Mustached upper lip

C. Retina

D. Turkey Sandwich



Assessing renal perfusion | measures to prevent acute
kidney injury




H,1°0 PET | Assessing renal flow in CHF patients

Medulla

K1 (mL plasma/mL tissue/min) >
Geomean (+SE)
F

T T
Day 1 Day 2

Visit
Cortex

Geomean (+SE)
S

« Serelaxin, a recombinant vasodilator hormone, was assessed in
65 acute heart failure patients
Day 1 _ Day 2 « H,"50 PET in subset of 22 patients demonstrated 20% more
- perfusion in the renal medulla than in the cortex of txt group, but
no change in the placebo group

K1 (mL plasma/mL tissue/min)

-e-Serelaxin —+Placebo

Source: Voors. Circ Heart Fail. 2014



Advanced MRI methods to assess renal perfusion |
challenge to scale for phase 1l & Il trials

Cine phase-contrast MRI Arterial spin labeling (ASL) MRI
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Source: Schneider. Critical Care 2013.

Blood oxygen level-dependent
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BOLD) MRI




Ultrasound is widely available | Enabling access to patients who
could otherwise not be imaged in trial settings
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Source: MA- emergency ultrasound, www.healthmanagement.org



Doppler ultrasound measurements to asses renal perfusion

Arterial assessment: resistive index Venous assessment

.—
» PSV 36.3 cm/s

EDV 126 cm/s
RI 0.65

Renal venous flow

Normal flow < Continuous flow. RVSI = 0. VIl < 1.0

Venous
congestion

Pulsatile flow. RVSIlow. VIl = 1.0

Abnormal flow -

W e

-20

Severe
congestion

Monophasic flow. RVSI high. VIl = 1.0

Source: Hermansen. Nat. ScRe 2021



Perioperative ultrasound predicts AKI | ready for clinical trials?

89 patients with open-heart surgery | postoperative
ultrasound | AKI developed within 4 days

Renal venous flow pattern

Normal 1.0 (Ref) 1.0 (Ref)

Abnormal 2.83 (1.18; 6.80) 0.020* | 1.69 (0.60; 4.80) |0.32
RVSI

Low (0-0.30) 1.0 (Ref) 1.0 (Ref)

High (0.31-1.00) 3.19 (1.31;7.78) 0.011* | 1.70 (0.58;4.94) |0.33
Resistive index 1.21 (1.10; 1.34) <0.001* | 1.23 (1.09; 1.40) | 0.001*
Portal pulsatility fraction 1.02 (1.00; 1.05) 0.08 1.01 (0.98; 1.03) |0.55

Source: Hermansen. Nat. ScieRep 2021

Renal Resistive Index

100 patients admitted to ICU for shock | ultrasound on
admittance | AKI developed within 1 week

0.750 p=0.001 0.8501 = 0.006 ]
3 0.800] p=0.001
2

0.700+ E -_ @R
2 F
“n
‘B
& 0.700

0.650- =
3
& 0.650 }:

n=50 n=49
0.600 . . n=50 n=16 n=26 n=7
Without AKI AKI 0.600 7S ) 3 :

Without AKI vs AKI

Source: Mulier. Plus One 2018

AKI stage




Volumetric changes | gold standard for assessing therapeutic
response in polycystic kidney disease

PKD1 non PKD1 Trunc PKD1 Trunc

31F
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.‘ '
F =

628 ml/m

PKDI Trunc

' 4
LR O
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=% % g
;ﬁs‘ < :-_:.e 's.

493 ml/m . 450 ml/m

Source: Kidney-international.org



Creating 3D volume from 2D ultrasound scan

Freehand Scan _— Ultrasound Images =————— |mages + Pose

1 2 3

Source: Chen, dissertation 2022




Coordinate system alignment

Pose of the sensor relative

z
to world coordinates
Image pixel Image pixel
coordinates in the coordinates in the
World Frame world frame UsS frame
S ne v v
X v u
— world sensor
y| = [S] [TegRsat] [T58""] H
YA A A 1
Scale Factor Transformation
between the US
and sensor

Source: Chen, dissertation 2022



world

sensor frame

world frame (camera + IMU)

—————
-
-

ultrasound probe

augmented with low-cost
sensors.

O RGB Camera
{ ll IMU Unit

US Frame



3D mapping of geometric and tissue properties



Freehand ultrasound volumes

Raw ultrasound image Segmented Image Segmentation + Pose

Linear

Transverse
Cross-Section

z(m)
z(m)

¥ (m) 2 x (m)

Longitudinal
Cross-Section

z(m)
z(m)

y (m) x(m) y(m) b x (m)

Benjamin, A., Chen, M. (UMB, 2020)



Ultrasound derived volumes are comparable with goid
standard

Freehand Ultrasound Computed Tomography (CT) Ellipsoidal Method Water Displacement
Linear Fan
@
]
2
c
©
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E
he]
2
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§ H
4
Volume = ExHxEx(Dtl + Dt;)
Kidney No. Measurement Freehand US (mL) CT (mL) Ellipsoid (mL) Water Displacement (mL)
Volume 64.08 63 57.49 66
1
Error (%) 2.90 454 12.90 0
5 Volume 65.25 60.15 66.2
Error (%) 1.40 9.130 0

Benjamin, A., Chen, M. (UMB, 2020)



A. Esophagus

B. Gallstones

C. Triplets




Multiparametric MRI to go beyond structure | sporadic
inclusion body myositis

* Arare progressive and currently
untreatable muscle disorder
causing severe disability

* Muscle biopsies show both
inflammatory and degenerative
changes (protein aggregates)

Mononuclear Cells Degeneration Rimmed vacuoles (RVs) and protein aggregates

Source: https://lloydlab.jhmi.edu/IBM.html



Quantitative MRI findings | Correlation with observed
functional, mobility and strength outcomes

Early-stage patient

75% TMV FF 12.9%

24% IMAT
Late-stage patient

FF37.1%

0.1% IMCT-T,*
10.9% IMAT-T,*

31.8% MTR

%IMV | %IMAT | T, FF T*IMCT | T2-IMAT | MIR
(ml) (ml) (ml) (%) (%voxels) | (%Yvoxels) (%)
SIFA 032 019 025 0.53* 025 033 027
(eore) | (=0088) | (=0319) | G=0174) | (egopp) | (0189 | (=0079) | (0144
6MWD 052¢ | -054¢ | 023 | -0.66* 036 0524 | 034
(m) =0.003) | (p=0.003) | ®=0230) | p<p001) | @=0054) | (=004 | (P=0.068)
QMT 0.65% | -041* | 012 | -0.68* -0.53* 057¢ | 043
(Ibs) @<0.001) | (p=0.025) | ®=0.346) | pc0.001) | (p=0.003) | (p=0.001) | (p=0.019)

25% TMV 3.7% IMCT-T,* 12.0% MTR
75% IMAT 82.7% IMAT-T,*
Atrophy Fat Connectiv Protein Oedema
infiltratio e tissue organizatio
n n

Source: Laurent: Ncwuiugy 2
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SIFA: sIBM physical fucntional assessment
6MWD: 6-min walking distance
QMT: Quantitative muscle testing




Sporadic inclusion body myositis | changes after 1 year
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3D-slicer segmentation

Change from Bsl in

Change from Bsl in
IMAT volume (%)

muscle volume (%)
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Anterior muscles Posterior muscles

* Volume loss ranging
from <1% (gracilis) to -
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Risk stratifying COVID patients | opportunistic use of
available information from chest CT data*

Female
Visceral fat
Normal/overweight
i . 9 *
Visceral fat: < 100 cm! 500 A f i ™
400 1 —1- 0
Normal/overweight &E\ ——
Visceral fat: >190 cm? \S, 300
&
g 200
8 -
Obese >£
Visceral fat: < 100 cm?
100 4
0 —— S — ——
Obese ! ) . '
Visceral fat: 250-260 cm? All Normal/overweight Obese

* 2019 MGH COVID registry: 410/866 (47.3%) had chest CT during our before hospitalization

Source: Goehler, OFID 2021



Visceral fat quantified on chest CT | correlation with 28

day mortality or intubation independent of BMI

VAT Only

BMI + VAT

BMI Only

aHR + 95% ClI

aHR + 95% Cl

aHR + 95% ClI

VAT >100 cm? 2.00 (1.32-3.02)
Age, y 1.00 (0.99-1.01)
Male 1.21 (0.85-1.72)
Diabetes 1.27 (0.93-1.74)
BMI

Normal —
Overweight —
Obese —

Race

White Reference
Hispanic 1.05 (0.67-1.63)
Black 1.88 (1.08-3.27)
Other 1.05 (0.71-1.54)

1.97 (1.24-3.09)
1.00 (0.99-1.01)
1.22 (0.85-1.76)
1.20 (0.87-1.66)

Reference
0.76 (0.47-1.21)
1.14 (0.71-1.82)

Reference
1.07 (0.69-1.68)
1.95 (1.11-3.40)
1.03 (0.70-1.52)

1.00 (0.99-1.01)
151 (1.07-2.13)
1.21 (0.88-1.67)

Reference
0.95 (0.61-1.49)
1.57 (1.02-2.40)

Reference
1.09 (0.70-1.70)
1.67 (0.97-2.90)
1.01 (0.68-1.49)

Abbreviations: aHR, adjusted hazard ratio; BMI, body mass index; VAT, visceral adipose tissue.

Source: Goehler, OFID 2021



Imaging Al can address a broad range of applications

Scope depends on the context of use

Enabling feasibility: Automate established
endpoint to reduce variability / increase
scalability

Pfizer | Iterative Scopes — Al driven colonoscopies
for trial inclusion, primary/secondary endpoints’

Biogen | Al2 — FDA-listed Al algorithm to identify and
classify Amyloid-related imaging abnormality (ARIA)?

I-Driven-Data-Shari

Sources: (1) https://wwi
diabetic-macular-thickening. (4) https://www.biogen

56

Novel feature association: Going
beyond what the human eye can see

s

Roche — macular thickness quantification from
color fundus photography (ph 3, RIDE/RISE)?

fk
S

iAMD fast

progressor

J&J | Neutrogena | FitSkin — Al driven app for
skin analyses and product recommendations*

Multimodal integration: Leveraging the full
spectrum of information across imaging &
non-imaging data

—

_g{}- :

pMS

progression

/

.
|

o 2

Merck | Perceiv Al — imaging & molecular &
clinical & blood for Alzheimer's progression
prediction®6

tfolio.html (3) https://ww

9
o.html. (5) https://www.perceiv.ail (6) https://www.newswire

IBD-Clinical-Trials. (2) https://www.biogen.
lect

hort-853646627 .htm|




Conclusion

» Imaging is a key component of many overall biomarker strategies

» Imaging modalities and methodologies come at different levels of
complexity and maturity which affects their utility in later stage studies

= Al assisted imaging analysis provides opportunities for broader use of data;
early engagement with health authorities is important to ‘learn together’



Acknowledgments

= Andrea Wiethoff, PhD
= Didier Laurent, PhD

= Alex Benjamin, PhD
Melinda Chen, PhD
Andre da Costa, PhD
Denise Yates, PhD
Imtiaz Hossain, PhD
Jonathan Ziegler, PhD
Roman Zeleznik, PhD
= Jay Patel

» Prateek, Katiyar, PhD



Questions

Feel free to contact me at alexander.goehler@novartis.com



