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Potential of PRS in clinical practice

“These observations point to the possibility of using genetic profiling 
to inform clinical practice in significantly larger groups of individuals 
than for whom monogenic cardiovascular variants are considered. As a 
result of exponential increases in the proportion of individuals with broad 
genetic profiling, cardiovascular PRSs are beginning to enter clinical 
practice. Such PRSs may be appropriately considered in select 
scenarios, given the current evidence base. ”

2O’Sullivan, et al. Circulation (2022);

https://doi.org/10.1001/jamapsychiatry.2020.3049


Potential relevance of PRS in clinical practice

Example: coronary artery disease

- PRS has higher risk stratification ability than conventional risk factors
- PRS & conventional risk factors leads to improvement

3O’Sullivan, et al. Circulation (2022);
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https://doi.org/10.1001/jamapsychiatry.2020.3049


Overview: Genetic prediction of complex traits

1. Foundations of Human Genetic Variation

2. Polygenic score (PGS) introduction

3. PGS Evaluation

4. Methods to fit PGS model

5. Challenges and opportunities in PGS research

4



Genetics: Ancient ForeshadowingsMendelian traits  Polygenicity

9000BC: Selective breeding of animals/plants
Inheritance: Eye/hair color long understood

1866: Mendel: Discrete inheritance
No blending. Dominant/recessive alleles

Independent assortment

Biometrics: continuous phenotype variation.
Others: Saltationism, orthogenesis, vitalism, 
neo-Lamarckism, theistic evolution…

1913: Linkage/mapping, Morgan, Sturtevant
1980s: Mendelian Trait genes mapped

2000s: Human genome. Variation maps. 
Haplotypes. GWAS. Common/rare variants. 

1918. Continuous phenotype variation
explained by multiple Mendelian loci

Fisher



0011010110010ARMS2TACAATCAAGGTTTTTTTTTTTTTTCAAATCCCTGGGTCTCT
GCATTTTTTAAAAGCTTCACAGATGATTTCAATGGATACTAGGGACCTCTGTTGCCTCCT
CTGGCAGAGCAGGACTGAGGGGTGGACCCTCCCTGAGACCACCCAACAATTCAGGGTGGA
GTTATCAGGGCGCCCTGACTCCTGGGGGCATTTTTGTGTGACGGGAAAAGACAATGCTCC
TGGCTGAGTGAGATGGCAGCTGGCTTGGCAAGGGGACAGCACCTTTGTCACCACATTATG
TCCCTGTACCCTACATGCTGCGCCTATACCCAGGACCGATGGTAACTGAGGCGGAGGGGA
AAGGAGGGCCTGAGATGGCAAGTCTGTCCTCCTCGGTGGTTCCTGTGTCCTTCATTTCCA
CTCTGCGAGAGTCTGTGCTGGACCCTGGAGTTGGTGGAGAAGGAGCCAGTGACAAGCAGA
GGAGCAAACTGTCTTTATCACACTCCATGATCCCAGCTTCTAAAATCCACACTGAGCTCT
GCTTACCAGCCTTCTTCTCTCCTGCTGGAACCCAGAGGAGGTTCCAGCAGCCTCAGCACC
ACCTGACACTGGTAAGAAATGCAGATGATCAGGCCTTACCCCAGACCTATTGAATCAGAA
ATTCTGGAGTGGTGCCCTGCAGCTTGCATTTTAACCAGCCTTCAGGTGCTTCTGATGCAT
GCTCAGGTTTGAGCACCACTGGCCACAGGGAGGCCTAGGCAATTCAGCCTTCCTCTGGTT
GAATAGCTGGAGAATTGGGAATATCAGTAAATACTTCCAATGCACCTGCTACATGCCAGA
AAAAGGAAACAAGAAGACGCAGTAGGTCTGAGAAAGTGATGGGGTGAGCAGAAACCCAAA
GCTTATAGAAGGCCATCTGAGTGGCCCCTCAAGCCGGTGAATTGGCTTTAGGGTTTACTG
AAGGAGGTGGAAACCTCAGCCTGCTTCTCGTCCGGGTTGTTAGAGGAGTCATTTAGAAAN
NTIMP3AACATATATATTTTTCAGTGGCAGGAAGTCTTGCCCGAGGTGGGAATGTTACTG
GGTTAATATCTGGGGGAAAGAGAAATATTTTTCCCTTTGTTAGCTGGCTCTGGGCAGCCT
GAAAACTCTTGATCCTCTCTGTCTGCTGCTTGGGACCTAATGACCTGCTTTCAATCCCTT
TCAATTACAGGATTTCTGATAGGAATTTGGAAAACAACCTAAATCCCAAAGCTTGGATGG
TAGCCCATGCTTCATTCCACGTCTCTGTACCCAGTTTTTCAAAGAGATTTTTTTTTTTCA
CCTGCTCNNC2ACTGAAGGGGAGAGTCCTGGACCTTTGGCAGCAAAGGGTGGGACTTCTG
CAGTTTCTGTTTCCTTGACTGGCAGCTCAGCGGGGCCCTCCCGCTTGGATGTTCCGGGAA
AGTGATGTGGGTAGGACAGGCGGGGCGAGCCGCAGGTGCCAGAACACAGATTGTATAAAA
GGCTGGGGGCTGGTGGGGAGCAGGGGAAGGGAATGTGACCAGGTCTAGGTCTGGAGTTTC
AGCTTGGACACTGAGCCAAGCAGACAAGCAAAGCAAGCCAGGACACACCATCCTGCCCCA
GGCCCAGCTTCTCTCCTGCCTTCCAACGCCATGGGGAGCAATCTCAGCCCCCAACTCTGC
CTGATGCCCTTTATCTTGGGCCTCTTGTCTGGAGGTAAGCGAGGGTAACCTTCCCTTCCT
GCTGTCTCCAGCATCCCTCCTTGGCCTTTTGGGGCCAGGCTTCATCAGCCTTTCTCTTCA
GGTGTGACCACCACTCCATGGTCTTTGGCCCGGCCCCAGGGATCCTGCTCTCTGGAGGGG
GTAGAGATCAAAGGCGGCTCCTTCCGACTTCTCCAAGAGGGCCAGGCACTGGAGTACGTG
TGTCCTTCTGGCTTCTACCCGTACCCTGTGCAGACACGTACCTGCAGATCTACGGGGTCC
TGGAGCACCCTGAAGACTCAAGACCAAAAGACTGTCAGGAAGGCAGAGTGCAGAGGTTTG
AGGGCAATGAGTGTGGGCAGTGGCCTAAGGCAGAAACAGGGCAGGCGGCAGCAAGGTCAG
GACTAGGATGAGACTAGGCAGGGTGACAAGGTGGGCTGACCGGGAGTAGGAGCAGTTTTA
GGGTGGCAGGCGGAAAGGGGGCAAGAAAAAGCGGAGTTAACCCTTACTAAGCATTTACCC
TGGGCTTCCAGGCAGCCCTGGAAGTCAAGAGAACACTCAGAAATGGGGAGGGAGAAGCAG
TGGAAATCCATATGGGTTGAGGAGTAGGTAAGATGCTGCTTCTGCGGGACTG00110101

Three bad and two good alleles

Age-Related Macular Degeneration

AMD Risk

ARMS2

TIMP3/SYN3

C2



Building blocks 
of genetic 
variation

23 chromosomes

~20,000 genes

3.2B letters of DNA

Millions of polymorphic
sites 

Within each cell:

2 copies of the genome



Types of genetic variation

Name Example Frequency in one 
genome

Single nucleotide 
polymorphisms (SNPs)

GAGGAGAACG[C/G]AACTCCGCCG 1 per 1,000 bp

Insertions/deletions (indels) CACTATTC[C/CTATGG]TGTCTAA 1 per 10,000 bp

Short tandem repeats 
(STRs)

ACGGCAGTCGTCGTCGTCACCGTAT 1 per 10,000 bp

Structural variants (SVs) / 
Copy Number Variants 
(CNVs)

Large (median 5,000 bp) deletions, 
duplications, inversions

1 per 1,000,000 bp

• 99% of DNA is shared between two individuals
• Variation in the remainder explains all our predisposition differences
• Remaining phenotypic variation: environmental/stochastic differences



Single-nucleotide polymorphisms (SNPs)

• Many modern analyses (GWAS, eQTL) focus on SNPs/indels
• Often have only two alleles (states)
• Identified as reference SNP clusters (rsid)
• Submitted sequences containing a variant are clustered to build 

a database (dbSNP)
• To date, >100 M known variants in dbSNP

rs189107123
GAGGAGAACG[C/G]AACTCCGCCG

CATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTG

CATGGTGCATCTGACTCCTGTGGAGAAGTCTGCCGTTACTG

glutamic acid > valine

Sickle Cell Anemia



Beyond SNPs: Tandem repeats and Indels
• Variable number tandem repeats

TCACAGCAGCAGCAGCAGCAGCAGCAGCAGTTGCATTT9
TCACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGTTGCATTT10
TCACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGTTGCATTT12

> 30 Huntington’s Disease

• Insertion/Deletions

CATTAAAGAAAATATCATCTTTGGTGTTTCCTATGATGAATA
CATTAAAGAAAATATCATTGGTGTTTCCTATGATGAATA

Cystic fibrosis transmembrane conductance regulator (CFTR) -> Lung infections, cysts, fibrosis

Abnormal protein, damages neurons, brain cell death, mood,
coordination, speaking, dementia, etc



Variant alleles: ref/alt; maj/min; risk/prot; anc/der
Distinguishing the two alleles:

• Matching the human reference sequence (reference/alternate)
• Being more frequent in the population (major/minor)
• Matching the most recent common ancestor between human 

and chimpanzee (ancestral/derived)
• Based on their disease association (risk/non-risk)

Classifying variants by minor allele frequency:

commonLow frequencyRarePrivate/de novoSomatic

5%0.5%1 personSubset of 1 person

Example: rs189107123
GAGGAGAACG[C/G]AACTCCGCCG
Reference allele: C
Minor allele: G (frequency 0.03 in Europeans)
Ancestral allele: unknown (why?)



Cataloguing genetic variants:
Thousand Genomes Project

• 2,504 whole genome sequences at low depth (4x) 
across 26 subpopulations spanning the globe

• Develop sophisticated statistical tools (phasing, 
imputation) to account for noise, known patterns of 
variation (linkage disequilibrium; next section)

Thousand Genomes Consortium Nature 2016



Measuring known genetic variation: genotyping
• Key insight: Most genetic variants in 

an individual are recurrent in the 
population. Once they’ve been 
discovered/catalogued, build a 
common array for measuring them

• DNA microarrays were the key 
technological advance of the 1990s

• Idea: fragments of sample DNA 
containing SNPs will hybridize (reverse 
complement) to array probes
(engineered DNA fragments)

• Tag fragments with fluorescent 
compound, use intensity to recover 
which probes were bound, which alleles 
were present in the sample

• Today: still the fundamental technology 
used in large-scale population genetic 
assays (GWAS, 23andMe)

• Next: study disease associations across 
populations, requiring new array 
designs due to differences in 
polymorphisms, LD across populations

Image credit: Wikimedia Commons



r^2 and recombination events across regions/populations

• Recurrent recombination 
events occur at hotspots

• r2 correlations between 
SNPs depend on historical 
order in which they arose

(not in their physical order on 
the chromosome)



Long-range threading of haplotype blocks

• Relatively few haplotypes exist in the human population 
(consider 10M SNPs: we don’t see 210𝑀𝑀 haplotypes!)

• Implies high level of genotype sharing even for unrelated 
individuals

Daly et al Nat Genet 2001



Mutational history of multiple haplotypes

• Example region: 36 
SNPs spanning 9kb

• In principle: 2^36 
possible allele 
combinations 
(haplotypes)

• Sample 120 parental 
European 
chromosomes. 

• In practice: only 5 
recurrent haplotypes
seen (and 2 singleton 
haplotypes)

63 SNPs over 9kb



Genomewide Association

‘Manhattan’ plot

Q-Q plot



NOD2/CARD15

IBD5

ATG16L1

IL23R – rs11209026

10q

Found by Linkage

NOT Found by 
linkage



Linkage vs. Association

NOD2:  low-frequency, strong risk variants
IL23R: low-frequency, strong protective variant
ATG16L1: common associated variant

Locus Frequency Odds-ratio ASSOCIATION
cases to 
achieve GWS

LINKAGE
Pedigrees to 
achieve signif.

NOD2
(3 coding SNPs)

5% 3.0 435 1400

IL23R
(Arg381Gln)

7% 0.33 817 ~30,000

ATG16L1
(Thr300Ala)

50% 1.4 1360 ~40,000



Number of variants varies greatly by population

• Over 100 million observed variants: 4-5M positions differ between each 
of us and the human reference

• Each of us carries 2-3K structural variants affecting 20mb of sequence
• Each of us carries hundreds of protein truncating variants, 10Ks of non-

synonymous mutations
• African individuals have more variation in their genomes (why?)

Thousand Genomes Consortium Nature 2016
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Population size, bottlenecks and expansion
• Effective population size: number of 

individuals needed in idealized model to 
recapitulate population properties

• Here, recapitulate the coalescent time: 
time to most recent common ancestor

• Pairwise Markov sequential coalescent 
model with population splits/growth 
enables comparison within vs. between 
populations

• 1KG suggests shared history beyond 150 
kya

• Non-African population: Loss of 
heterozygosity, bottleneck 15-20 kya
(migration out of Africa)

• After migration, rapid population 
expansion (with interesting exceptions: 
Finland, Peru, Mexico)

• Bottlenecks/founder effects: rare alleles 
suddenly rise in frequency due to small 
population size

• Selective sweeps: rare alleles suddenly 
rise in frequency due to positive 
selection

• Admixture between previously isolated 
populations Thousand Genomes Consortium Nature 2016

African

India

Non-African

Bottleneck
Expansion

China



Ancestry painting: population-level

• Goal: infer ancestry of segments of the genome, population structure (patterns of relatedness 
between ancestry groups)

• Sharing of genetic variants enables ancestry painting of individual genomes
• The history of migration, settlement, conquest is written on our genomes

Thousand Genomes Consortium Nature 2016

Each vertical line is one individual

East Asian 
populations 
differentiate 
EW 

African 
populations 
differentiate 
EW 

European 
populations 
differentiate NS

SE Asian 
populations 
differentiate NS

American 
populations are 
an admixture of 
European, 
African, and 
native American 
populations

East Africa

West Africa

South Europe

North Europe
SE Asia

Central Asia

E Asia

Native American

Central Asia



Ancestry painting (e.g. admixed individual)

Which segments of a genome are shared with what populations



Genetic relatedness and geography

• Can we decompose genetic 
variation into the major 
forces shaping it? 
 PCA/SVD decomposition
• First components correspond 

to population structure. 
• Population structure is 

shaped by geography!
(people near each other are 
more likely to mate)

• In Europe, First two 
components correspond to 
N-S and E-W migration axes

• Country neighbors & borders 
visible at the genetic level

Novembre et al. Nature 2008



GWAS fine-mapping

• A=heuristic using LD w/ peak SNP (>orange)
• B=Penalized regression=Beta not shrunk to zero
• C=Bayesian PIPs summed to credible sets using Pcoverage>95%

(note: peak SNP not always highest PIP  correlation structure of SNPs in region)
• D=2 pops w/ different local LD struct meta-analysis narrow fine-mapping credible region
• E=Anno1 overlap in locus 1 & 2  predict top-PIP SNP in locus 3 (overlaps anno1)

 LocusZoom of marginal 
SNP associations

 Y-axis: −log10(p-values) 
 X-axis: Variant positions
 Gold: peak SNP
 Other=degree LD w/peak 

SNP (red, orange, green, 
blue)

 Purple bars=additional 
variant-level statistics by 
fine-mapping

 (Penalized 
regression=Beta; 
Bayesian: posterior 
inclusion probabilities 
(PIPs)) 

 Light grey=regions 
selected by fine-mapping



Fine Mapping



Fine-mapping disease associations: 
(1) Epigenomics / functional data (next lecture)

• Association mapping refers 
to identifying variants/gene 
associated with disease

• This is confounded by LD
• Many variants are strongly 

correlated to the true causal 
variant, and will show nearly 
as strong associations

• Use estimated correlations to 
explain correlated 
associations and recover the 
true underlying effects

Li and Kellis BiorXiv 2016



Fine-mapping disease associations
(2) Multi-ethnic analysis

• Allele frequencies and LD patterns can differ between populations
• Currently, disease associations are biased for discovery in 

European cohorts
• As we begin conducting association studies in Asia/Africa, there is 

a pressing need to develop statistical methods which can account 
for population genetic differences

Kichaev et al. Am J Hum Genet 2015 

Case 1: LD boundaries differ Case 2: allele frequencies differ



Overview: Genetic prediction of complex traits

1. Foundations of Human Genetic Variation

2. Polygenic score (PGS) introduction
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GWAS reveals complex traits are polygenic

30

Genome-wide association studies (GWAS)

P-value = 5 x 10-8

Test associations for each variant



Mapping disease-associated variants with GWAS

31

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12

chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY



Mapping disease-associated variants with GWAS

32

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12

chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY

MHC region



Mapping disease-associated variants with GWAS

33



Most common variants have small effects

34Manolio et al 2009, PMID: 19812666



Most common variants have small effects

Type 2 diabetes

35Fuchsberger, et al. 2016



Most common variants have small effects

Standing height (n = 5 million, 2022)

36Yengo*, Vedantam*, Marouli*, et al. 2022



Estimating individual-level liability 
of complex traits

Population-level inference vs. individual-level inference

Population-level inference Individual-level inference
(GWAS) (???) 

37

How do we inform population-level insights into individuals?

https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores

https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores


Challenges in polygenic complex traits

- Monogenic traits (e.g. cystic fibrosis)
- “Carrier” or “non-carrier”
- CFTR (cystic fibrosis transmembrane conductance regulator)
- high penetrance, high effect size, often coding variants

- Polygenic complex traits (e.g. coronary artery disease, height, etc.)
- Different individuals have a different subset of “risk” alleles
- Lower penetrance, lower effect size, many non-coding variants

38https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores

https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores


Polygenic scores combine effects of disease-
associated alleles for each individual

- Polygenic scores (PGS)
- aka. Genetic risk score (GRS), Polygenic risk score (PRS), etc.

- “risk” → disease risks
- “Polygenic” → statement of the genetic architecture of a trait

- Polygenic score := weighted sum of disease-associated alleles

39

i-th individual G: genotype
j-th variant β: effect size

βj

Uffelmann et al., Nat Rev Methods Primers (2021)

j-th 
variant



Polygenic scores combine effects of disease-
associated alleles for each individual

- Polygenic score

40

i-th individual G: genotype
j-th variant β: effect size

βj

i-th 
individual

j-th 
variant

Uffelmann et al., Nat Rev Methods Primers (2021)



Polygenic scores combine effects of disease-
associated alleles for each individual

41

i-th individual G: 
genotype
j-th variant β: effect 
size

Uffelmann et al., Nat Rev Methods Primers (2021)

βj



Polygenic scores combine effects of disease-
associated alleles for each individual

42

Individual #4 #3 #2 #1

Polygenic score
Uffelmann et al., Nat Rev Methods Primers (2021)

https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores

https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores


Polygenic scores estimate the 
relative genetic liability of disease

- Genetic liability of the disease – complex traits are influenced by 
genetics, environmental factors, and their interactions

- “Relative” – baseline risk factors (age, biological sex, comorbidity, 
…) are not part of the picture

- “Estimate” – sample size & statistical power, model misspecification

43

Individual #4 #3 #2 #1

Polygenic score
Uffelmann et al., Nat Rev Methods Primers (2021)

https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores

https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores


Potential of PRS in clinical practice

“These observations point to the possibility of using genetic profiling 
to inform clinical practice in significantly larger groups of individuals 
than for whom monogenic cardiovascular variants are considered. As a 
result of exponential increases in the proportion of individuals with broad 
genetic profiling, cardiovascular PRSs are beginning to enter clinical 
practice. Such PRSs may be appropriately considered in select 
scenarios, given the current evidence base. ”

44O’Sullivan, et al. Circulation (2022);

https://doi.org/10.1001/jamapsychiatry.2020.3049


Potential relevance of PRS in clinical practice

Example: coronary artery disease

- PRS has higher risk stratification ability than conventional risk factors
- PRS & conventional risk factors leads to improvement

45O’Sullivan, et al. Circulation (2022);
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https://doi.org/10.1001/jamapsychiatry.2020.3049


Potential clinical utility of PRS for 
cardiovascular disease

- Early-stage identification/intervention, Risk stratification, …

46O’Sullivan, et al. Circulation (2022);

https://doi.org/10.1001/jamapsychiatry.2020.3049


PGS is a useful tool for research

Cancer PRS model shows pleiotropic association with non-cancer traits

PRS-PheWAS analysis, assessing genetic correlation between traits

47Fritsche, et al., AJHG (2018)

Evaluate the observed 
phenotypic enrichments 
of all patients with high 
cancer PRS

1. Start with PRS score
2. Rank patients
3. Find phenotypic 
enrichments for those 
patients
4. Method: ROC

x-axis: Cancer PRS score
y-axis: %people with trait

5. Take significance, plot 
it on this graph here



PGS is a useful tool for research

48

PGS(biomarker) associations with lifespan (age at death)
Death might affect phenotypes measured, but PRS of those phenotypes 
can correlate with age at death more ‘cleanly’

Sakaue*, Kanai*, et al., Nat Med (2020).; Jukarainen, et al., Nat Med (2022)

PGS associations with disability 
adjusted life years (DALY)



Risk factors not captured in PGS
- Rare variants with large effects

- Sample size & statistical power limitation in PGS
- Environmental factors

Family history (FH) complements PGS

49Hujoel, et al. Cell Genom 2022

Two measures of liability: 
- Log: logistic regression model
- Liab: liability threshold model

See Hujoel, et al. Cell Genom 2022

PRS alone

Family History alone

PRS + Family History



Family history (FH) complements PGS

50Mars, et al. AJHG 2022

Family history (high risk) (baseline, no PRS info)

+ Positive PRS (increased risk)

- Negative PRS (low risk)
No family history (low risk)

Family history (high risk) but low PRS!!



Family history (FH) complements PGS

51Mars, et al. AJHG 2022



Summary 1: Polygenic score (PGS) introduction

- GWAS revealed large number of common variants 
contribute to complex traits; the individual effects of 
variants are small

- Polygenic scores (PGS) combine effects of disease-
associated alleles for each individual

- PGS has potential relevance for clinical applications for 
some traits and for some populations

- PGS would be useful for research
- Current PGS models captures incomplete genetic 

liability of disease and PGS and family history are 
complementary to each other

52
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2. Polygenic score (PGS) introduction
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PGS development and validation process

1. PGS development

- age, sex, demographics (genotype PCs) are typically considered as 
covariates

54Wand*, Lambert*, et al. Nature 2020.



PGS development and validation process

2. Evaluation and validation of the PGS model

55Wand*, Lambert*, et al. Nature 2020.

PRS alone only gives a relative
genetic burden score, but not an
absolute risk for an individual

For a new cohort, need
to calibrate predictive 
value of PRS score. 
can calculate for each person,
but need a ‘translation table’
to get actual risk for that cohort

Then for that cohort,
you can evaluate the
overall discrimination 
strength of PRS score

You can then combine it with
other risk factors (such as age)
to get increased predictive power
when combining PRS. 
 Age-matched risk from PRS



PGS development and validation process

2. Evaluation and validation of the PGS model

56Wand*, Lambert*, et al. Nature 2020.

Use hold-out test set or external validation set when 
evaluating the predictive performance of PGS models



- Complex trait (T) = Genetics (G) + Environment (E) + GxE interaction
- Let’s consider the variance of the observed trait  (σT

2) 

- Under a simple scenario: T = G + E (no GxE interaction)
- σT

2 = σG
2 + σE

2

- σG
2 =  σA

2 + σD
2 + σI

2

- A: additive effects
- D: non-additive effects (dominance, recessive, etc.)
- I: interaction effects

Heritability (h2) – the theoretical upper bound of 
predictive performance for quantitative traits

57Visscher et al., Nat Rev Gen (2008)



- Complex trait (T) = Genetics (G) + Environment (E) + GxE interaction
- Let’s consider the variance of the observed trait  (σT

2) 

- Under a simple scenario: T = G + E (no GxE interaction)
- σT

2 = σG
2 + σE

2

- σG
2 =  σA

2 + σD
2 + σI

2

- A: additive effects
- D: non-additive effects (dominance, recessive, etc.)
- I: interaction effects

- [Definition] Heritability
- H2 (Broad-sense heritability) = σG

2 / σT
2

- h2 (narrow-sense heritability) = σA
2 / σT

2

- Heritability: fraction of phenotypic variance explained by 
(additive) genetic effects

Heritability (h2) – the theoretical upper bound of 
predictive performance for quantitative traits

58Visscher et al., Nat Rev Gen (2008)



- Heritability is not directly observable and is often estimated by statistical 
model (typically from twin studies, more recently GWAS)

- Phenotypic variance depends on the population of the study

- Heritability is a population-level, not individual-level, parameter
- It does NOT inform the level of genetic influence on a trait for one particular 

individual
- It does NOT inform the individual-level predictive accuracy/reliability of 

polygenic prediction
- See Visscher et al., Nat Rev Gen (2008) for common pitfalls

- Heritability estimates for binary traits (observed- vs. liability-scale)
- Using GWAS data, one can compute observed-scale heritability
- Observed-scale heritability depends on the fraction of observed cases and 

disease prevalence. Need to control for ascertainment bias in GWAS 
discovery cohort = Use cumulative density function + prevalence (next slides)

- Observed-scale heritability vs. Liability-scale heritability

Some notes on heritability (h2) 

59Visscher et al., Nat Rev Gen (2008)
http://www.nealelab.is/blog/2017/9/13/heritability-201-types-of-heritability-and-how-we-estimate-it 

K=disease prevalence in population 
P=disease prevalence in GWAS set
Φ=cumulative density of Normal distr.



Liability and threshold model for binary traits

- Assume the continuous distribution of liability. Consider our observed 
cases are the one passing the liability threshold

60http://www.nealelab.is/blog/2017/9/13/heritability-201-types-of-heritability-and-how-we-estimate-it 



Liability and threshold model for binary traits

- Assume the continuous distribution of liability. Consider our observed 
cases are the one passing the liability threshold 

- We may consider the heritability on the liability scale
- Observed-scale vs. liability-scale

- In case-control GWAS, we may have overrepresentation of case 
samples.

61http://www.nealelab.is/blog/2017/9/13/heritability-201-types-of-heritability-and-how-we-estimate-it 

This is why we need to adjust 
observed scale to liability scale 



PGS evaluation: R2 is a common metric for quantitative traits
Example: predicting standing height in UK Biobank with snpnet

hold-out test set R2: 0.178 (PGS alone), 0.717 (PGS + covariates)

PGS evaluation - R2 for quantitative traits

62Qian, et al 2020, Tanigawa, et al. 2022

Using 330k people from UK biobank: 270k train + 60k t

PGS alone gives R2=0.178
Using sex + age + 10 genotype PCs as covariates
Subset of 10,000 individuals
 Very high accuracy prediction (0.717)

Tight estimate of mean
(not single individuals!)



Comparison of R2 vs. h2
SNP for quantitative traits in UK Biobank

SNP heritability h2 is the upper bound of the PGS 
predictive performance

63

SNP-based heritability 
estimates (h2

SNP) are 
from LD score regression 
(LDSC)

Tanigawa, et al. 2022

How close are we to the theoretical limit
(upper bound) using UK biobank alone?

Estimated heritability 
was incorrect

Close to theoretical
maximum  we’re done!

Many traits still have a ways to go
(keep doing larger-cohort GWAS’es)
[or heritability estimate might be off]
[or rare variants] [or non-additive] […]



PGS evaluation for binary traits

Example: asthma in UK Biobank

- Predictive performance: AUROC, observed-scale pseudo-R2, liability-
scale pseudo-R2, …

64Qian, et al 2020, Tanigawa, et al. 2022



Area under the receiver-operator curve 
(AUC or AUROC)

65cmglee & MartinThoma. 2018 wikimedia
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Max AUC for genetic risk prediction depends on 
heritability and disease prevalence

AUC is calculated on the observed-scale and depends on disease 
parameters

66Wray et al. 2010 PLoS Genet

Liability-scale heritability



Pseudo-R2 as a goodness of fit for binary traits

- AUROC is not the only metric

- Cox and Shell’s pseudo-R2 (based on likelihood)
- Nagelkerke’s pseudo-R2 (aka Cragg and Uhler’s pseudo-R2)

- Normalized C&S pseudo-R2 so that the maximum reaches 1

67Lee, et al. Genetic Epidemiology. 2012.



Pseudo-R2 as a goodness of fit for binary traits

- AUROC is not the only metric

- Cox and Shell’s pseudo-R2 (based on likelihood)
- Nagelkerke’s pseudo-R2 (aka Cragg and Uhler’s pseudo-R2)

- Normalized C&S pseudo-R2 so that the maximum reaches 1

68Lee, et al. Genetic Epidemiology. 2012.



Liability-scale Pseudo-R2 has expectation of hl
2

69Lee, et al. Genetic Epidemiology. 2012.



Polygenic hazard score for genetic liability of 
disease onset prediction (Cox model)

- Cox proportional Hazard ratio model
- Hazard ratio or C-index are commonly used metric for evaluation
- C-index: fraction of the accurately predicted ordering of the events. 

See Harrell, et al. (1982), Li and Tibshirani (2019)

70Li, et al. Biostatistics 2020



- Genetics plays a partial role: Complex trait (T) = 
Genetics (G) + Environment (E) + GxE interaction

- Heritability := fraction of phenotypic variation explained 
by genetics in a population

- Use hold-out test set or external validation set to 
evaluate the predictive performance of PGS

- Commonly used metrics:
- Quantitative traits: R2

- Binary traits: pseudo-R2 (observed, liability), AUROC 
(observed)

- Time-to-event traits: Hazard ratio, C-index

Summary 2: PGS Evaluation

71



Genetic prediction of complex traits

1. Foundations of Human Genetic Variation

2. Polygenic score (PGS) introduction

3. PGS Evaluation

4. Methods to fit PGS model

5. Challenges and opportunities in PGS research

72



- Polygenic score: 

- Types of traits
- Quantitative traits (e.g. biomarkers, anthropometry)
- Binary traits (e.g. case-control)
- Time-to-event traits (e.g. disease onset)

How to train PGS models?

73

i-th individual G: genotype
j-th variant β: effect size



- Polygenic score: 

- Types of traits
- Quantitative traits (e.g. biomarkers, anthropometry): linear regression
- Binary traits (e.g. case-control): logistic regression
- Time-to-event traits (e.g. disease onset): Cox model (time to event, 

proportional hazard ratio model)

How to train PGS models?

74

i-th individual G: genotype
j-th variant β: effect size



- Polygenic score: 

- Types of traits
- Quantitative traits (e.g. biomarkers, anthropometry)
- Binary traits (e.g. case-control)
- Time-to-event traits (e.g. disease onset)

- To train PGS models:
- Identify set of genetic variants in the model
- Estimate effect size (β) for each

How to train PGS models?

75

i-th individual G: genotype
j-th variant β: effect size



How to train PGS models?

76

- Polygenic score: 

- Types of traits
- Quantitative traits (e.g. biomarkers, anthropometry)
- Binary traits (e.g. case-control)
- Time-to-event traits (e.g. disease onset)

- To train PGS models:
- Identify set of genetic variants in the model
- Estimate effect size (β) for each

- PGS modeling approaches:
- PGS model with genome-wide significant (p < 5e-8) SNPs
- P-value thresholding (P + T)
- Bayesian approach that considers LD
- PGS methods on individual-level data (BULP, snpnet, …)

i-th individual G: genotype
j-th variant β: effect size



How to train PGS models?

77

- Polygenic score: 

- Types of traits
- Quantitative traits (e.g. biomarkers, anthropometry)
- Binary traits (e.g. case-control)
- Time-to-event traits (e.g. disease onset)

- To train PGS models:
- Identify set of genetic variants in the model
- Estimate effect size (β) for each

- PGS modeling approaches:
- PGS model with genome-wide significant (p < 5e-8) SNPs
- P-value thresholding (P + T)
- Bayesian approach that considers LD
- PGS methods on individual-level data (BULP, snpnet, …)

i-th individual G: genotype
j-th variant β: effect size

Active area of research with 
many proposed methods



Genetic risk scores from GWAS significant SNPs

- Wray et al. proposed a method to predict disease risk with GWAS 
selected loci using simulation data.

- Investigated how genetic architecture and disease parameters 
(prevalence and heritability) influence power

78Wray et al., Genom Res (2007)



Predictive accuracy of GWAS significant SNPs 
depends on genetic architecture

79

K = prevalence
h2 = heritability
N = GWAS sample size

Wray et al., Genome Res (2007)

Infinitesimal model



Polygenic scores from GWAS ‘significant’ SNPs

- Schizophrenia GWAS meta-analysis (European, ~3300 cases)
- Tested “polygenic inheritance” hypothesis (Gottesman & Shields, 1967)
- Polygenic component with liberal significance threshold (PT) predicts 

disease risks

80The International Schizophrenia Consortium. Nature (2009)
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Genetic architecture and PGS models

- Challenge:
- How to estimate the polygenic effect sizes from GWAS effect size

- PGS accuracy depends on genetic architecture

- Genetic architecture is trait-specific

- Infinitesimal model: all independent SNPs have non-zero effects on 
traits

- Use all LD-independent SNPs in GWAS
- Equivalent to P + T model with PT = 1

- Non-infinitesimal model: 
- Mixture of components (zero effects, non-zero effects, …)

81



Pruning and thresholding (P + T) approach 
improves prediction over infinitesimal model

- Pruning and thresholding
- Assume genetic architecture where a subset of GWAS SNPs 

contribute to the disease risk
- Apply shrinkage of the estimates by P-value thresholding and clumping

- For Rheumatoid Arthritis, PT = 0.05 was the best in Stahl, et al. 2012

82Stahl, et al. Nat Gen 2012

Including more variants (that 
do not reach genome-wide 
significance improves score)

Further inclusion reduces
accuracy (cuz the beta 
estimates are off/unreliable)

(infinitesimal model 
includes these as well)

(thresholding & pruning 
models stop here)



Pruning and thresholding (P + T) 
is commonly used PGS model

- User-friendly software packages are available for P+T

83



- P + T does not model the LD structure between SNPs

- LDpred (Vilhjálmsson et al 2015) models LD and improved prediction

84

Pruning and thresholding (P + T) 
does not reach maximum predictive performance

Vilhjálmsson, et al. AJHG 2015
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Modeling LD structure with LDpred shows prediction 
improvements over pruning+Thresholding

85

Use publicly-available 
GWAS summary statistics 
and fit P+T and LDpred

Choose the best model 
with UK Biobank phase 1 

Evaluate the model with 
UK Biobank phase 2 

Khera et al Nat Gen 2018



Coronary artery disease (CAD)
- Rare variants associated to familial hypercholesterolemia 

identified 0.4% of individuals have odds ratio > 3.0 
- PGS identified 8% of individuals with odds ratio > 3.0

LDpred: Modeling LD structure shows 
improvements in prediction over P+T

86

Highlight the potential of PGS to identify 
large-number of individuals with high 
genetic liability of the disease

Khera et al Nat Gen 2018

Yes, rare variants are *individually* very predictive for those individuals that carry them, but for the 
general population, PGS has now matched this predictive power (+applies to general population!)

8%: 3X risk

2.3%: 4X

0.5%: 5X



Many Bayesian PGS methods report 
improvements over P+T

SBayesR (Lloyd-Jones, et al. Nat Comm. 2019)

PRS-CS (Ge, et al. Nat Comm. 2019)

87

Global-local scale mixtures of Gaussians:

BayesR model (Gaussian mixture):

Continuous thresholds
with decaying contribution strengths 
(instead of single-threshold)

Local shrinkage parameter, 
applied based on GWAS estimate



Sparse PGS using penalized regression

- Bayesian PGS approaches (LDpred, SBayesR, PRS-CS, etc.) show 
improvements over P+T

- The resulting model have millions of SNVs included in the model

88Khera et al Nat Gen 2018

GPS=Genome-wide polygenic score



Sparse PGS using penalized regression

- Bayesian PGS approaches (LDpred, SBayesR, PRS-CS, etc.) show 
improvements over P+T

- The resulting model have millions of SNVs included in the model
- Potential overfit and challenges in interpretation

- Penalized regression (Ridge/Lasso/Elastic Net) for sparse PGS

Lassosum (Mak, et al. Genet Epidemiol. 2017.)

89



- Many PGS approaches start with GWAS summary statistics

PGS models on individual-level data

90

+

GWAS summary statistics

LD reference

PGS modeling



- Many PGS approaches start with GWAS summary statistics

- We can consider fitting PGS directly on individual-level data

- Multivariate model that consider multiple SNVs simultaneously
- (GWAS: fitting univariate effects for each SNVs independently)

PGS models on individual-level data

91

+

GWAS summary statistics

LD reference

PGS modeling



PGS models on individual-level data

- Many PGS approaches start with GWAS summary statistics

- We can consider fitting PGS directly on individual-level data

- Multivariate model that consider multiple SNVs simultaneously
- (GWAS: fitting univariate effects for each SNVs independently)

- Example: BULP (Best Unbiased Linear Predictor)
- Fit mixed model associations: Model all SNPs jointly instead of individually
- Accounts for relatedness  Improves when some individuals related 
- Accounts for other SNPs  Improves even if all indivduals are unrelated
- Review: de los Campos et al. Nat Rev Genet (2010)

- Example: BASIL (batch screening iterative lasso) and snpnet 

92

+

GWAS summary statistics

LD reference

PGS modeling



Learning PGS on individual-level data with BASIL 
(Batch Screening Iterative Lasso) and snpnet

Polygenic risk score (PRS)

93Qian, Tanigawa, et al. PLOS Gen. (2020).

Junyang Qian
Yosuke Tanigawa

L1 penalized regression w/ Lasso
BASIL algorithm & R snpnet package



Batch screening iterative Lasso (BASIL)

BASIL (= BAtch Screening Iterative Lasso) in R snpnet package

94

3 steps per iteration
1. Screening
2. Lasso Fit (glmnet)
3. KKT Check

Qian, Tanigawa, et al. PLOS Gen. (2020).



BASIL/snpnet model are sparse, yet have 
comparable predictive performance

- The snpnet PRS models (Lasso & Elastic-Net) have comparable 
predictive performance with SBayesR

- Standing height was one of the most polygenic traits.
- Hight PRS model has 47k variants (5% of non-zero BETAs)

95Qian, Tanigawa, et al. PLOS Gen. (2020).; Tanigawa, Qian, et al. PLOS Gen in press
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- PGS model: set of variants and their weights
- Predictive performance of “GWAS top hits” depends on 

genetic architecture of the trait
- PGS methodology: active area of research
- Well-known methodology:

- Pruning and thresholding (P + T)
- Bayesian modeling accounts for LD and showed 

improvements over P + T (LDpred, SBayesR, PRS-CS)

- New approaches:
- Sparse PGS
- PGS directly from individual-level data

Summary 3: Methods to fit PGS model

96



Overview: Genetic prediction of complex traits

1. Foundations of Human Genetic Variation

2. Polygenic score (PGS) introduction

3. PGS Evaluation

4. Methods to fit PGS model

5. Challenges and opportunities in PGS research
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Limited predictive performance in 
non-European cohorts

Limited transferability of polygenic scores (PGS) 

98
Martin et al., Nat Gen (2019)



Underrepresentation of non-European samples 
in GWAS studies studies

The challenge is well recognized in 2019 (Martin, et al. 2019)

99
Martin et al., Nat Gen (2019)



We still see lack of diversity today

100Fatumo, et al. 2022 Nat Med

The proportion of samples from individuals cumulatively reported by the GWAS Catalog as of 8 July 2021



Multi-ancestry polygenic score models
combine multiple PGS predictors

1. Fit PGSEUR and PGSAFR independently

1. Consider linear combination of the two

wEUR PGSEUR + wAFR PGSAFR

101

PGS model for European ancestry PGS model for African ancestry

Large sample size, statistical power Relevant LD structure and MAF

Marquez-Luna et al. 2017 Genet Epidemiol



Multi-ancestry polygenic score models combines 
multiple PGS predictors

102Ruan et al., Nat Gen (2022)
Weissbrod, Kanai, Shi, Nat Gen (2022)



Linear decay of the PGS predictive performance 
across genome-wide genetic ancestry

103Ding, et al. bioRxiv. 2022
https://doi.org/10.1101/2022.09.28.509988

https://doi.org/10.1101/2022.09.28.509988


Effects of some of the population structure 
remain unadjusted in PGS models

104
Kerminen, et al. AJHG 2019

Adjusting for PCA of population
Structure captures continent-
level population stratification, but 
residual remains within country

Russian
ancestry?



Effects of some of the population structure 
remain unadjusted in PGS models

105
Kerminen, et al. AJHG 2019



How best to incorporate rare variants into PGS?

- Active area of research
- One approach: use expression outliers from eQTLs

106
Smail, et al., AJHG (2022)

Variants with extreme expression 
effects also have stronger 
phenotypic consequences



Ding, et al. Nat Gen. 2021

Uncertainty in assigning “Top X% genetic 
liability” from PGS

- PGS effect size estimates are from Bayesian inference 

- We should consider uncertainties in individual-level PGS estimates

107

“we observe large variances in 
individual PRS estimates which 
impact interpretation of PRS-based 
stratification; averaging across 
traits, only 0.8% (s.d. = 1.6%) of 
individuals with PRS point 
estimates in the top decile have 
corresponding 95% credible 
intervals fully contained in the 
top decile.”

Can only confidently [95% PPI int.] predict 
“you will be in top 10% of phenotype”
for 0.8% of individuals (i.e. not 10%)



Which PGS model is better? Statistical test for 
significance of difference in performance

108

r2redux: https://github.com/mommy003/r2redux
Momin, et al. AJHG. 2023

Statistical test for comparing PRS scores 
from different sources

https://github.com/mommy003/r2redux


- PGS-RS to encourage PGS model sharing

- PGS equivalent (?) of the Minimum information about a microarray 
experiment (MIAME)

- Specify a wide range of recommendations for background, study 
population, risk model development and evaluation, limitations and 
clinical implications, and data availability

PGS reporting standard (PGS-RS)

109Wand*, Lambert*, et al. Nature 2021.

Can’t just share PRS score 
between cohorts/studies. 
Need to also share metadata,
correction factors, etc



PGS catalog – publicly available PGS weights 
and their (self-reported) evaluations

110Lambert, et al. 2021

https://www.pgscatalog.org/

Can deposit models directly,
then reuse directly

https://www.pgscatalog.org/


Bloom of D2C personal genomics companies

- Bloom of Direct-to-Consumer (D2C) personal genomics companies

- Considerations
- Risk vs. benefits
- Statistical significance vs. Clinical relevance
- Ethics
- Communications

111https://www.23andme.com/
https://mycode.jp

NB: This slide is not meant to endorse the service or products listed here.

Good:
Power of information. Democratization
More power to individual. 
But: 
More dangers to misinterpret risk. 
Consequences to individuals. 
Treatments may come with risks. 
Doctors treat symptoms not risk. 
Benefits  risk weighing…
Solutions: 
Need better warnings + general education. 
Regulatory supervision

https://www.23andme.com/
https://mycode.jp


How do we bring back PGS results to clinic?

- Example: Veterans Affairs Genomic Medicine at Veterans Affairs 
(GenoVA) study (ongoing) develops PRS lab report and info packets

112Hao, et al. Nat Med 2022

PRS alone is not enough,
need ecosystem to support its use: 
genetic counselors, clinicians, etc



How do we communicate PGS to patients?

“There was little concern among 
participants about the limited 
predictive power of PRS for non-
European populations. Barriers to 
uptake of PRS testing and adoption of 
PRS-related recommendations 
included socioeconomic factors, 
insurance status, race, ethnicity, 
language, and inadequate 
understanding of PRS. Participants 
favored in-person PRS result 
disclosure by their physician”

113

Fig. Preferred methods for clinical PRS 
result disclosure and rationale

Suckiel, et al. Genom in Med 2022



- PGS model suffers from limited transferability
- We lack GWAS data from diverse populations
- Methodological innovations (weighted sum of PGSs)

- Remaining methodological challenges:
- How to model the effects of population structure?
- How to incorporate rare variants?
- Uncertainties in individual-level PGS

- PGS model sharing and evaluation
- Reporting standard & PGS catalog

- How to bring the results back to health care system?

Summary 4: Challenges and opportunities
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