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Potential of PRS in clinical practice

AHA SCIENTIFIC STATEMENT

Polygenic Risk Scores for Cardiovascular
Disease: A Scientific Statement From the
American Heart Association

Jack W. O'Sullivan, MBBS, DPhil, Chair; Sridharan Raghavan, MD, PhD; Carla Marquez-Luna, PhD;

Jasmine A. Luzum, PharmD, PhD; Scott M. Damrauer, MD, FAHA; Euan A. Ashley, MBChB, DPhil, FAHA;

Christopher J. O'Donnell, MD, MPH; Cristen J. Willer, DPhil; Pradeep Natarajan, MD, MMSc, Vice Chair; on behalf of the American
Heart Association Council on Genomic and Precision Medicine; Council on Clinical Cardiology; Council on Arteriosclerosis,
Thrombosis and Vascular Biology; Council on Cardiovascular Radiology and Intervention; Council on Lifestyle and Cardiometabolic
Health; and Council on Peripheral Vascular Disease

“These observations point to the possibility of using genetic profiling
to inform clinical practice in significantly larger groups of individuals
than for whom monogenic cardiovascular variants are considered. As a
result of exponential increases in the proportion of individuals with broad
genetic profiling, cardiovascular PRSs are beginning to enter clinical
practice. Such PRSs may be appropriately considered in select
scenarios, given the current evidence base.”



https://doi.org/10.1001/jamapsychiatry.2020.3049

Potential relevance of PRS in clinical practice

Example: coronary artery disease
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Figure 3. Predictive ability of polygenic risk scores for coroWease.

- PRS has higher risk stratification ability than conventional risk factors
- PRS & conventional risk factors leads to improvement



https://doi.org/10.1001/jamapsychiatry.2020.3049

Overview: Genetic prediction of complex traits

1. Foundations of Human Genetic Variation

2. Polygenic score (PGS) introduction
3. PGS Evaluation
4. Methods to fit PGS model

5. Challenges and opportunities in PGS research




Genetics:

Ancient Foreshadowings = Mendelian traits =» Polygenicity

g
M’

1866: Mendel: Discrete inheritance
No blending. Dominant/recessive alleles
Independent assortment

QOOOBC Selectlve breedmg of anlmals/plants
Inheritance: Eye/hair color long understood

Chromosome 9
J-Dotted

L vellow-green
seedlings

L ¢ Kernel color
{ s#Shrunken endosperm
—4-#z Bronze color

-} Waxy endosperm
Centromere

}-Male sterile

-4 Brittle stalk

-4 White
endosperm
cap

-{-Brown midrib

1918. Continuous phenotype variation
explained by multiple Mendelian loci

1980s: Mendelian Trait genes mapped

1913: Lmkage/mappmg, Morgan, Sturtevant
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TACTAGGGACCTCTGTTGCCTC
GACCACCCAACAATTCAGGGTG
TGTGACGGGAAAAGACAATGCT
CAGCACCTTTGTCACCACATTA
CGATGGTAACTGAGGCGGAGGGGA
TGGTTCCTGTGTCCTTCATTTCCA

iigiGGAGCCAGTGACAAGCAGA
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CCACACTGAGCTCT
GCAGCCTCAGCACC
"' i II TACCCCAGACCTATTGAATCAGAA

- BSGALTL

e RAD518
- iws LIPC

AGCCTTCAGGTGCTTCTGATGCAT
AGGCAATTCAGCCTTCCTCTGGTT

9 1

Chromosome

0 11 12 13 14 15 16 17 1819202122 CCAATGCACCTGCTACATGCCAGA

AAAUUAAAbAAbAAbALUbAUlAbblblbAbAAAUTGATGGGGTGAGCAGAAACCCAAA

GCTTATAGAAGGCCATCTGAGTGGCCCCTCAAGCCGGTGAATTGGCTTTAGGGTTTACTG
AAGGAGGTGGAAACCTCAGCCTGCTTCTCGTCCGGGTTGTTAGAGGAGTCATTTAGAAAN
NTIMP3AACATATATATTTTTCAGTGGCAGGAAGTCTTGCCCGAGGTGGGAATGTTACTG

2-fold

AMD Risk

Average Risk

2-fold

IO O PHHOQOQOOQMOFOFOOQHHGNG

Increased Risk |

CFH

Decreased Risk ~—

C2

ARMS2

Age-Related Macular Degeneration

SYN3/
TIMP3

C3

Three bad and two good alleles

ATATTTTTCCC GTTAGCTGGCTCTGGGCAGCCT
GCTGCTTGGGA AATGACCTGCTTTCAATCCCTT
AATTTGGAAAACA g@p%@%@g AAGCTTGGATGG
ITCTGTACCCAGTTTT TTTTTTTTTTCA
AGTCCTGGACCTTTGGCAGCAAAGGGTGGGACTTCTG
AGCTCAGCGGGGCCCTCCCGCTTGGATGTTCCGGGAA
GGCGAGCCGCAGGTGCCAGAACACAGATTGTATAAAA
GGGAAGGGAATGTGACCAGGTCTAGGTCTGGAGTTTC

ACAAGCAAAGCAAGCCAGGACACACCATCCTGCCCCA
CAACGCCATGGGGAGCAATCTCAGCCCCCAACTCTGC
CTTGTCTGGAGGTAAGCGAGGGTAACCTTCCCTTCCT
GCCTTTTGGGGCCAGGCTTCATCAGCCTTTCTCTTCA
ITTTGGCC CCCCAGGGATCCTGCTCTCTGGAGGGG
CCGACTT AAGAGGGCCAGGCACTGGAGTACGTG
CCCTGTGCACGACACGTACCTGCAGATCTACGGGGTCC
CCAAAAGACTGTCAGGAAGGCAGAGTGCAGAGGTTTG
CCTAAGGCAGAAACAGGGCAGGCGGCAGCAAGGTCAG
TGACAAGGTGGGCTGACCGGGAGTAGGAGCAGTTTTA
AGAAAAAGCGGAGTTAACCCTTACTAAGCATTTACCC
GTCAAGAGAACACTCAGAAATGGGGAGGGAGAAGCAG
AT AANCATCOTCCOTTOTCCOCCCACTCONOTTO0OT 01
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Chromosome

Chrornalid Chramualicl

Building blocks
of genetic
variation

lakyman:

Canlramens

Within each cell:

2 copies of the genome
23 chromosomes

-"",.-" Bass Fars

~20,000 genes
3.2B letters of DNA

Millions of polymorphic
sites



Types of genetic variation

* 99% of DNA is shared between two individuals
* Variation in the remainder explains all our predisposition differences
* Remaining phenotypic variation: environmental/stochastic differences

Name Example Frequency in one
genome

Single nucleotide GAGGAGAACG[C/G]AACTCCGCCG 1 per 1,000 bp

polymorphisms (SNPs)

Insertions/deletions (indels) | CACTATTC[C/CTATGG]TGTCTAA 1 per 10,000 bp

Short tandem repeats ACGGCAGTCGTCGTCGTCACCGTAT 1 per 10,000 bp

(STRs)

Structural variants (SVs) / Large (median 5,000 bp) deletions, |1 per 1,000,000 bp
Copy Number Variants duplications, inversions
(CNVs)




Single-nucleotide polymorphisms (SNPs)

CATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTG
CATGGTGCATCTGACTCCTGTGGAGAAGTCTGCCGTTACTG

Second letter

5 & . " glutamic acid > valine
UL ucu UAU UGU U
i uuo}Phe wee b UAC}Tyr UGC}CyS C
UUA}LeU UCA UAA Stop UGA Stop A
UUG UCG UAG Stop UGG Trp G
cuu ccu CAUT... | CGU U 1 1
5 [ cuc cce CAC}H'S CGC c SleIe Ce” Ane““a
= @ cua [ cca [P caa caa [A9 A o
2 cua cCca cac 18N cag H
w
= T Auu ACU AAU AGU B
- AUC]He ACC AAC}Asn AGC}Ser c % rs189107123
A AuA ACA [ THF AAA}LyS AGA}Arg A —
AUG Met ACG AAG AGG G
T TR GAGGAGAACG[ C/G]AACTCCGCCG
Bl GUn o leontae Gany — aaa tov B
GUG | GCG GAG GGG G

 Many modern analyses (GWAS, eQTL) focus on SNPs/indels
« Often have only two alleles (states)
* |[dentified as reference SNP clusters (rsid)

« Submitted sequences containing a variant are clustered to build
a database (dbSNP)

 To date, >100 M known variants in dbSNP



Beyond SNPs: Tandem repeats and Indels

* Variable number tandem repeats

9 TCACAGCAGCAGCAGCAGCAGCAGCAGCAGTTGCATTT

10 TCACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGTTGCATTT

12 TCACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGTTGCATTT

> 30 Huntington’s Disease

Abnormal protein, damages neurons, brain cell death, mood,
coordination, speaking, dementia, etc

* Insertion/Deletions

Cystic fibrosis transmembrane conductance regulator (CFTR) -> Lung infections, cysts, fibrosis

CATTAAAGAAAATATCATCTTTGGTGTTTCCTATGATGAATA
CATTAAAGAAAATATCATTGGTGTTTCCTATGATGAATA  cFTR Sequence:

MNucleotide ATC ATIC TT|T GGT GTT
Amino Acid lle Il Phel Gly Wal
I | |
506 508 510

T
Deleted in AF508

AF508 CFTR Sequence:

Nucleotide ATC ATT GGT GTT

Amino Acid lle lle Gly Val
SJJE-




Variant alleles: ref/alt; maj/min; risk/prot; anc/der

Distinguishing the two alleles:
« Matching the human reference sequence (reference/alternate)
« Being more frequent in the population (major/minor)
» Matching the most recent common ancestor between human
and chimpanzee (ancestral/derived)
» Based on their disease association (risk/non-risk)

Classifying variants by minor allele frequency:
Somatic Private/de novo Rare Low frequency common

Subset of 1 person 1 person 0.5% 5%

Example: rs189107123
GAGGAGAACG[C/G]AACTCCGCCG

Reference allele: C
Minor allele: G (frequency 0.03 in Europeans)

Ancestral allele: unknown (why?)



Cataloguing genetic variants:
Thousand Genomes Project

Gambian
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« 2,504 whole genome sequences at low depth (4x)
across 26 subpopulations spanning the globe

* Develop sophisticated statistical tools (phasing,
imputation) to account for noise, known patterns of
variation (linkage disequilibrium; next section)

Thousand Genomes Consortium Nature 2016



Measuring known genetic variation: genotyping

» Key insight: Most genetic variants in
an individual are recurrent in the
population. Once they’ve been
discovered/catalogued, build a
common array for measuring them

* DNA microarrays were the key
technological advance of the 1990s

 Idea: fragments of sample DNA
containing SNPs will hybridize (reverse
complement) to array probes
(engineered DNA fragments)

» Tag fragments with fluorescent
compound, use intensity to recover
which probes were bound, which alleles
were present in the sample

» Today: still the fundamental technology
used in large-scale population genetic
assays (GWAS, 23andMe)

* Next: study disease associations across
populations, requiring new array
designs due to differences in
polymorphisms, LD across populations

Image credit: Wikimedia Commons
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Long-range threading of haplotype blocks

=50 kb
IRF1p1
* * * * ¢ o * * *
CAh14b  ATThi4c IL4m2 GAh18a CAh15a CAh17a D5S51984 CSF2p10
| | | | | | | | | | | | | | | | | | |
SEPT8 IL5 IRF1 P4HA2 FACL6
> o | N = s
L4 IL13 RAD50 OCTN2 OCTN1  PDLIM3 CSF2 IL3
enes
- W1 M= - b Il
SNPs LI LT T T T T TR [N T U T N N N noi
/7 ) | I
L 1T 1T T 1 1
GGACAACC ,TTACG‘ /CGGAGACGA\ ,CGCGCCCGGAT CCAGC CCGAT CCCTGCTTACGGTGCAGTGGCACGTATT*CA CGTTTAG, ACAACA_  GTTCTGA._ TATAG
( /x GACTGGTCG\\( TTGCCCCGGCT| CAACC CTGAC CATCACTCCCCAGACTGTGATGTTAGTATCT TAATTGG ‘ GTGACG\;A;J'GTGCG& = TATCA
AATTCGTG 7 (CCAA 4 fGCAGACGK\ \\‘CTGCTATAACC\ N GCGCT _-CTGAC // TCCCATCCATCATGGTCGAATGCGTACATTA _-TGTT*GA N GCGGTG‘, <~ JFG*GTAA-—~ = CGGCG
block 1 block 2 block 3 block 4 block 5 block 6 block 7 block 8  block 9 block 10 block 11
84 kb 3kb 14 kb 30 kb 25 kb 11 kb 92 kb 21 kb 27 kb 55 kb 19 kb
96% 97% 92% 94% 93% 97% 93% 9% 92% 90% 98%
76% T7% 36% 37% 35% 1% 40% 38% 36% 42% 29%
26% 14% 9% 9% 14% 8% 10% 8% 16%
18% 19% 28% 19% 13% 29% 27% 31% 33% 36% 51%
.06 .40 .33 .05 11 .05 .07 .02 .27 .24

 Relatively few haplotypes exist in the human population
consider 10M SNPs: we don’t see 21°M haplotypes!

 Implies high level of genotype sharing even for unrelated
individuals

Daly et al Nat Genet 2001



Mutational history of multiple haplotypes

SNP position

234,876,000 234,879,000 234,882,000 234,885,000

29

45

31

NI 00T

GTCTTATTCAACTGTGTGAGCGAAGGGCCCCCATAC

—a-eo—@ o @

GTTACACTCGGCGGTGGGAGCTTAGGAACCCCATGC
-—00—@ o

GTCACACTCGGCGGTGGGAGCTTAGGAACCCCATGC

—ee—0 @

TCCACGCGAGACTACTTAGTTTTCAAGCCT TCACGG
aC—O0-C0—CoECD—axO—a000

TCCACGCGAGACTACTTAGGT TTCAAGCCT TGTCGG
—0-3E—3C30-COO0—C0—aaIXDOo

TCCACGCGAGACTACTTAGGTTTCAAGCGTTGTCGG

O—0-O—a30-CO-O0—C0—ex3x;®LO

GTCACACTCGATTACTTAGGTTTCAAGCCTTCACGG

—OCOCOO0—C0—C00

63 SNPs over 9kb

« Example region: 36
SNPs spanning 9kb

*|n principle: 236
possible allele
combinations
(haplotypes)

« Sample 120 parental
European
chromosomes.

*In practice: only 5
recurrent haplotypes
seen (and 2 singleton
haplotypes)
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IBDGC Crohn's genome-wide association results

. NOD2/CARD15

Found by Linkage
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Linkage vs. Association

NOD2: low-frequency, strong risk variants
IL23R: low-frequency, strong protective variant
ATG16L1: common associated variant

NOD2 5% 3.0 435
(3 coding SNPs)

IL23R 7% 0.33 817
(Arg381Gin)

ATG16L1 50% 1.4 1360

(Thr300Ala)

1400

~30,000

~40,000



Number of variants varies greatly by population
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Over 100 million observed variants: 4-5M positions differ between each
of us and the human reference

Each of us carries 2-3K structural variants affecting 20mb of sequence

Each of us carries hundreds of protein truncating variants, 10Ks of non-
synonymous mutations

African individuals have more variation in their genomes (why?)
Thousand Genomes Consortium Nature 2016



Population size, bottlenecks and expansion

* Effective population size: number of
individuals needed in idealized model to
recapitulate population properties

* Here, recapitulate the coalescent time:
time to most recent common ancestor

* Pairwise Markov sequential coalescent
model with population splits/growth
enables comparison within vs. between
populations

* 1KG suggests shared history beyond 150
kya

* Non-African population: Loss of
heterozygosity, bottleneck 15-20 kya
(migration out of Africa)

 After migration, rapid population
expansion (with interesting exceptions:
Finland, Peru, Mexico)

* Bottlenecks/founder effects: rare alleles
suddenly rise in frequency due to small
population size

* Selective sweeps: rare alleles suddenly
rise in frequency due to positive
selection

* Admixture between previously isolated
populations

b

Population size (scaled in units of 4uN, x 10%)

Time, assuming u = 1.25x10% to 1.5x10-8 per bp per generation and 20-30 years per generation

333-600 kya 67-120 kya 33-60kya 7-12 kya
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Thousand Genomes Consortium Nature 2016



Ancestry painting: population-level

Esan ESN
. . . . L. Gambian GWD
Each vertical line is one individual Luhya WK
Mende MSL
Yoruba YRI
— - S | T - - o Barbadian ACB
a] f II South|Europe J,JVHM'” - " o African-American SW | ASW
Colombian CLM
N . SE Asia Mexican-American MXL
g . R e R —
o a0k b 4 | o Do - Ue 0 |Ca|'1
D QRO RV DR VD 2R D VORGSR D RN

\/$ é.o —-\ &(’9& TO\;@ 0\/®+Q\> QQ/ « ®(§) OQ/ << Qb o 6 G‘l} QQ/OQ\@ 0\2\ 0\2\ §2 Dai Chinese CDX
\ \ \ ’ \ Han Chinese CHB
' Y Y Y Y Southern Han Chinese | CHS
Japanese JPT
. Kinh Vi KHY

African American European SE Asian East Asian nh Vienamese
populations populations are populations populations populations CEPH CEU
differentiate an admixture of differentiate NS  differentiate NS differentiate El’:fl;‘h GF'?:'
EW European, EW Spanish IBS
African, and Tuscan TSI
native American Bengal BEE
populations Gujarati GIH
Telugu ITU
Punjabi PJL
Tamil STU

» Goal: infer ancestry of segments of the genome, population structure (patterns of relatedness
between ancestry groups)

» Sharing of genetic variants enables ancestry painting of individual genomes

» The history of migration, settlement, conquest is written on our genomes
Thousand Genomes Consortium Nature 2016



Ancestry painting (e.g. admixed individual)

Chromaosome View : -] Sub-regional Resolution Ancestry CG’”‘IlJClSiI.iCII'I tells \.'cu. W ".a_t Ferc ent c ',.'CILII‘ DNA comes from
each of 31 populations worldwide. This analysis includes DMNA you
received from all of your recent ancestors, on both sides of your

he results reflect where your ancestors lived before the

family.
widespread migrations of the past few hundred years.
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TL Dixon's Ancestry Composition results were updated on December 24, 2014,

18.4%

1.9%

0.7%

100%

Sub-Saharan African

B West African
Central & South African
Broadly Sub-Saharan African

European
B HNorthern European
B Eritish & Irish
B Scandinavian
Broadly Northem European
Ashkenazi
B Southern European
Broadly Southem European
Broadly European

East Asian & Mative American
B hative American
Southeast Asian
Broadly East Asian & Mative American

Unassigned

TL Dixon

show all populations

Which segments of a genome are shared with what populations



Genetic relatedness and geography

« Can we decompose genetic
variation into the major
forces shaping it?

= PCA/SVD decomposition

* First components correspond
to population structure.

 Population structure is
shaped by geography!
(people near each otherare | w5 "o

-3

more likely to mate) S SR
* In Europe, First two P

components correspond to Lomfizy 28

N-S and E-W mlgratlon adXesS "o 7—?;3“—9;;)240"01 0 001 o.é;t:li.bs Rl

East-west in PC1-PC2 space T L T
0 1,000 2,000 3,000

: O French-speaking Swiss French e
« Country neighbors & borders et Geogrpnic dstanc btveer
A ltalian-speaking Swiss Italian

visible at the genetic level

Novembre et al. Nature 2008
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* Leverage annotation enrichment
* Borrow information across loci

> Annotation 1
Annotation 2
A=heuristic using LD w/ peak SNP (>orange)

B=Penalized regression=Beta not shrunk to zero

C=Bayesian PIPs summed to credible sets using P, eraqe>95%

v

YV VY

LocusZoom of marginal
SNP associations
Y-axis: —log,q(p-values)
X-axis: Variant positions
Gold: peak SNP
Other=degree LD w/peak
SNP (red, orange, green,
blue)

Purple bars=additional
variant-level statistics by
fine-mapping

(Penalized
regression=Beta;
Bayesian: posterior
inclusion probabilities
(PIPs))

Light grey=regions
selected by fine-mapping

(note: peak SNP not always highest PIP € correlation structure of SNPs in region)
D=2 pops w/ different local LD struct =» meta-analysis narrow fine-mapping credible region
E=Anno1 overlap in locus 1 & 2 = predict top-PIP SNP in locus 3 (overlaps anno1)



Fine Mapping
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Fine-mapping disease associations:
(1) Epigenomics / functional data (next lecture)

[ J
@ ™
1 1

Association mapping refers
to identifying variants/gene
associated with disease

 This is confounded by LD

» Many variants are strongly
correlated to the true causal
variant, and will show nearly
as strong associations

-logP
s

4
1
i

w

=]

=]
1

Epigenomic activities

 Use estimated correlations to
explain correlated A SRS P
associations and recover the

true underlying effects

Li and Kellis BiorXiv 2016



Fine-mapping disease associations
(2) Multi-ethnic analysis

Case 2: allele frequencies differ

Case 1: LD boundaries differ

Regional =
Association g
Statistics

CEU

Linkage
Disequilibrium

Allele 2 " ) 5
Frequency BTN WA rprmsn I i im [ N IO | MIRNRIIN M

Causal SNP(s)  cROEEENCORe0000800000000000000C00 QAGOOCOOO0SO000SCO00000OOOOC00000 QOGOOOOGOASGO00RO0000000000000000

Functional
Data e —— ]

CHB+JPT

* Allele frequencies and LD patterns can differ between populations

» Currently, disease associations are biased for discovery in
European cohorts

« As we begin conducting association studies in Asia/Africa, there is
a pressing need to develop statistical methods which can account

for population genetic differences

Kichaev et al. Am J Hum Genet 2015



Overview: Genetic prediction of complex traits

1. Foundations of Human Genetic Variation

2. Polygenic score (PGS) introduction

3. PGS Evaluation
4. Methods to fit PGS model

5. Challenges and opportunities in PGS research
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GWAS reveals complex traits are polygenic

F1o

Genome-wide association studies (GWAS)
= Test associations for each variant
=2 150-
°
I
S
@
w) -
<" P-value=5x 1038
O
©
o
% SEC16B A('I105393.2
2 50- -
g S AggLiVAfSTTH B_E)NF §MC4Fn’
%; DNAJC27 | .’ ¢ ' g
; 5}
1 5 6 Vi 8 9 10 11 13 15 18 21 XY

Genomic paosition (chromosome)
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Mapping disease-associated variants with GWAS

2006 Jan

chri chr2 «c¢chr3 <chrd c¢chr5 <chr6 c¢chr7 chr8 c¢chr9 c¢chr10 chr11 chri12

chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 ch'rX chrY

@ www.ebi.ac.uk/gwas
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Mapping disease-associated variants with GWAS

2013 Apr

MHC region
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www.ebi.ac.uk/gwas
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Mapping disease-associated variants with GWAS

2019 July

www.ebi.ac.uk/gwas
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Most common variants have small effects

-
iy
'l“

Low-frequency
variants with
intermediate effect

Rare variants of
small effect
very hard to identify
by genetic means

; . .
Fare) " Lowheaieney)  [EHRA)
Allele frequency

Manolio et al 2009, PMID: 19812666 34



Most common variants have small effects

Type 2 diabetes

Variant ascertainment in

100 — 1 i " ! : :
! Low-frequency coding variants [ Common coding variants
T 80 i —_— —-’;-*--_—__/—-——-———-—-
& 60 ; i
< 1 I
® 40 — ! i
g 1 1
520 [ |
1 [}
0 — - 31,701 polymorphic variants . 11,344 polymorphic variants
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: < i
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) I
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Minor allele frequency (MAF)

Fuchsberger, et al. 2016 35



Most common variants have small effects

Standing height (n = 5 million, 2022)

Joint effect sizes (s.d.) of minor alleles

in cross-ancestry meta-analysis

0.3 -

O
(V)
|

=
—h
|

o
|

|

o

—h
|

-0.2 -

-0.3 -

P <5 x 10719 (672 SNPs)
m5x 1050 > P >5x 10719 (1,110 SNPs)
m5x 102> P >5x 1050 (3,513 SNPs)
5x 109> P> 5 x 1020 (5,192 SNPs)
5x108>P>5x 10710 (1,624 SNPs)

( \
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90% power (n = 0.5 million)
~—— 90% power (n = 5 million)

[ I | [ |
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MAF (%) in cross-ancestry meta-analysis

Yengo*, Vedantam®, Marouli*, et al. 2022
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Estimating individual-level liability
of complex traits

Population-level inference vs. individual-level inference
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Population-level inference Individual-level inference
(GWAS) (?7?7)

of GWAS asso

Statistical significance
e
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| TR g Aot by
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6 7 8
Genomic position (chromosome)

How do we inform population-level insights into individuals?

https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores 37



https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores

Challenges in polygenic complex traits

- Monogenic traits (e.g. cystic fibrosis)
- “Carrier” or “non-carrier”
- CFITR (cystic fibrosis transmembrane conductance regulator)
- high penetrance, high effect size, often coding variants
- Polygenic complex traits (e.g. coronary artery disease, height, etc.)
- Different individuals have a different subset of “risk” alleles
- Lower penetrance, lower effect size, many non-coding variants

Coronary artery disease

https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores 38



https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores

Polygenic scores combine effects of disease-
associated alleles for each individual

- Polygenic scores (PGS)

aka. Genetic risk score (GRS), Polygenic risk score (PRS), etc.
- “risk” — disease risks
-  “Polygenic” — statement of the genetic architecture of a trait

- Polygenic score := weighted sum of disease-associated alleles

I-th individual G: genotype
PRS; = Zﬁj Gij . JENOHP |
3 J-th variant B: effect size

(1:) GWAS summary statistics
Allele A & ] A

. » Effect +1.5 -0.5 +2.0 -1.5 ;
BJ j-th

I / variant

SNP3
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Polygenic scores combine effects of disease-
associated alleles for each individual

- Polygenic score PRSi:Zﬁf Gy

J€]
(1) GWAS summary statistics
\/ Y
Allele A C
Bj » Effect +1.5 -0.5

(2) Genotype data

' Individual 1 AT CG

-th > Individual 2 TA GG

individual | w03 T cC
l

Individual 4 TT CC

+2.0

SNP3

SNP3

GT
GT
GG

-1.5

CC
CA
CA
AA

j-th

/ variant
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Polygenic scores combine effects of disease-
associated alleles for each individual

(1) GWAS summary statistics

Allele A C ]
Effect +1.5 -0.5 +2.0
:
SNP3

@) Genotype data

SNP3
Individual 1 AT CG 1T
Individual 2 TA GG GT
Individual 3 TT CC GT
Individual 4 TT CC GG
(3) Polygenic risk score
Individuall 1.5 - 05 + 4.0
Individual2 1.5 - 00 + 2.0
Individual3 00 - 10 + 2.0

Individual4 00 - 10 + 0.0

-1.5

CC
CA
CA
AA

0.0
1.5
1.5
3.0

5.0
2.0
-0.5
-4.0

B;

JEJ
I-th individual G:
genotype
J-th variant B: effect

size
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Polygenic scores combine effects of disease-

associated alleles for each individual

@ Polygenic risk score

Individuall 15 - 05 + 40 - 00 = 5.0
Individual2 15 - 0.0 + 20 - 1.5 = 2.0
Individual3 0.0 - 10 + 20 - 1.5 = -0.5
Individual4 00 - 10 + 00 - 3.0 = -4.0
Individual #4
@
b e
U] @@@% @ @
¢ @%%%%% ] ﬁ?%
EEEEEENEEN H DO0000
Low Risk High Risk

Polygenic score

https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores
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Polygenic scores estimate the
relative genetic liability of disease

Genetic liability of the disease — complex traits are influenced by
genetics, environmental factors, and their interactions

“‘Relative” — baseline risk factors (age, biological sex, comorbidity,
...) are not part of the picture

“‘Estimate” — sample size & statistical power, model misspecification
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Polygenic score
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Potential of PRS in clinical practice

AHA SCIENTIFIC STATEMENT

Polygenic Risk Scores for Cardiovascular
Disease: A Scientific Statement From the
American Heart Association

Jack W. O'Sullivan, MBBS, DPhil, Chair; Sridharan Raghavan, MD, PhD; Carla Marquez-Luna, PhD;

Jasmine A. Luzum, PharmD, PhD; Scott M. Damrauer, MD, FAHA; Euan A. Ashley, MBChB, DPhil, FAHA;

Christopher J. O'Donnell, MD, MPH; Cristen J. Willer, DPhil; Pradeep Natarajan, MD, MMSc, Vice Chair; on behalf of the American
Heart Association Council on Genomic and Precision Medicine; Council on Clinical Cardiology; Council on Arteriosclerosis,
Thrombosis and Vascular Biology; Council on Cardiovascular Radiology and Intervention; Council on Lifestyle and Cardiometabolic
Health; and Council on Peripheral Vascular Disease

“These observations point to the possibility of using genetic profiling
to inform clinical practice in significantly larger groups of individuals
than for whom monogenic cardiovascular variants are considered. As a
result of exponential increases in the proportion of individuals with broad
genetic profiling, cardiovascular PRSs are beginning to enter clinical
practice. Such PRSs may be appropriately considered in select
scenarios, given the current evidence base.”



https://doi.org/10.1001/jamapsychiatry.2020.3049

Potential relevance of PRS in clinical practice

Example: coronary artery disease

PRS

PRS

¢
Conventional risk factors
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Figure 3. Predictive ability of polygenic risk scores for coroWease.

PRS has higher risk stratification ability than conventional risk factors
PRS & conventional risk factors leads to improvement

45


https://doi.org/10.1001/jamapsychiatry.2020.3049

Potential clinical utility of PRS for

cardiovascular disease

Disease/risk factor Potential clinical utility of PRS

CAD Earlier identification for lifestyle therapies and statins, potentially for those with very high CAD PRSs
Earlier screening for subclinical atherosclerosis to time the initiation of pharmacotherapies
Use as a risk-enhancing factor for primary prevention in middle-aged patients at borderline-
intermediate 10-y ASCVD risk

AF Earlier AF detection and resultant prophylactic anticoagulation, potentially with monitoring devices
Rigorous control of additive clinical risk factors for AF

T2D Earlier lifestyle modification
Potential consideration of prophylactic hypoglycemic medications with concomitant additional T2D
clinical risk factors
Genomic stratification may optimize hypoglycemic choice

VTE Rigorous VTE risk-reducing strategies in the context of high-risk scenarios (prolonged travel, major

surgery, etc)

Hypercholesterolemia

Earlier institution and earlier uptitration of lipid-lowering pharmacotherapies analogous to FH

Pharmacogenomics

Personalized drug therapy regimens that increase drug efficacy and decrease toxicities, eg,
personalized B-blocker target dose in patients with HFrEF or the prevention of drug-induced QT
prolongation

AF indicates atrial fibrillation; ASCVD, atherosclerotic cardiovascular disease; CAD, coronary artery disease; FH, familial hypercholesterolemia;
HFrEF, heart failure with reduced ejection fraction; PRS, polygenic risk score; T2D, type 2 diabetes; and VTE, venous thromboembolism.
Lone AF refers to AF in the absence of other cardiovascular risk factors (typically in young adults).

- Early-stage identification/intervention, Risk stratification, ...
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PGS is a useful tool for research

Cancer PRS model shows pleiotropic association with non-cancer traits

F
Thyroid cancer A
Evaluate the observed
15 — phenotypic enrichments
of all patients with high
cancer PRS
&, | w Hypothyroidism NOS
5 ® w Hypothyroidism 1. Start with PRS score
= 2. Rank patients

3. Find phenotypic

B e B B R R R R R e s T e . enrichments for those
® .
atients
. . . " : e .2 |P _
Se &, *%ee A s o 4. Method: ROC
0 - “ x-axis: Cancer PRS score
-axis: %people with trait
22 o &2 W W L 0 ¢ 3 @ @ Y e
o @ o & & S0 &0 & o Q.\@\" ey &Q@“\ 5. Take significance, plot
2 N ) Oy gV 9 X 0 . .
R Y LA e@i&o RPN S R 6@(\9‘3 % it on this graph here
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O\‘ (\Q’ (‘b \({\ o
00 Q/ \0\

PRS-PheWAS analysis, assessing genetic correlation between traits
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PGS is a useful tool for research

A

!;EZTEIIE S medicine Association of PRS with lifespan —>

M) Check for updates H'?‘E‘};j-t i _D__D_
Po e
Trans-biobank analysis with 676,000 individuals ~ AT -
elucidates the association of polygenic risk scores asophil -
. . . N Mcv o
of complex traits with human lifespan z7 4 bx; oo 8
Saori Sakaue ©'23%8, Masahiro Kanai®'2456788 Juha Karjalainen**¢8, Masato Akiyama'?, MZ?‘E I
Mitja Kurki*>¢%, Nana Matoba®’, Atsushi Takahashi®'"°, Makoto Hirata", Michiaki Kubo', G |i —t
Koichi Matsuda®, Yoshinori Murakami', FinnGen, Mark J. Daly ©®*568, Yoichiro Kamatani®* and GenOtype . En?sr':‘oocp't‘g 1
Yukinori Okada ®21617&< yUﬁlrma\c(u:i —il-
wec -
PGS(biomarker) associations with lifespan (age at death) T —
eu rop il -
Death might affect phenotypes measured, but PRS of those phenotypes o —-
o] .
Platelet ~=!

T T T
0.96 1.00 1.04 1.08
HR for age at death

can correlate with age at death more ‘cleanly
ARTICLES

https://doi.org/10.1038/541591-022-01957-2
Attributable DALY for PGSs

nature . o
medicine
M) Check for updates

Mulnsne chronic pain
artery disease

Shorter lifespan e
e
]
P
P
P
e

Genetic risk factors have a substantial impact
P

Type d!abeles
DHD
Cigarettes per day
]

on healthy life years
Stroke ——

Systolic blood pressure
Schizophrenia
Lower cognmve performance P
Diastolic blood pressure ——
Lower |nlellﬁence ——
bA1c ——
Atrial fibrillation ——

Alzheimer's disease ——
——
i
——
——

Sakari Jukarainen ®'=, Tuomo Kiiskinen®"?3, Sara Kuitunen'?, Aki S. Havulinna'?,
1, Joel T. R&mo @', Nina Mars', FinnGen™", Kaitlin E. Samocha®3,

Juha Karjalainen'*#, Mattia Cordioli®",
Hanna M. Ollila'35¢, Matti Pirinen©®"”8 and Andrea Ganna®"34X

PGS name

Drinks
Rheumatoid anhrms
(Al

PGS associations with disability =
adjusted life years (DALY) WE e 2 3 4

Inflammatory bowel disease
0 1
DALYs (top 10% versus rest)




Family history (FH) complements PGS

Risk factors not captured in PGS

- Rare variants with large effects
- Sample size & statistical power limitation in PGS
- Environmental factors

B
PRS + Family History

o

Q@

S 02

P Family History alone

>

=

O

< PRS alone

o 0.1 =

2 Two measures of liability:

% - Log: logistic regression model
?DE - Liab: liability threshold model

See Hujoel, et al. Cell Genom 2022
0.0 ]
PRS Log Liab PRS Log Liab PRS Log Liab PRS|Log Liab
T2D Depression HTN Average

Hujoel, et al. Cell Genom 2022
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Family history (FH) complements PGS

ARTICLE

Systematic comparison of family history
and polygenic risk across 24 common diseases

. . . . z 1,2 3 i 3,4,5 Pi i 1 i idén 1 in 1,3
Atrlal flbrlllatlon Nina Mars, 2 Joni V. Lindbohm, Pietro della Briotta Parolo,' Elisabeth Widén,' Jaakko Kaprio,

Aarno Palotie, 26 FinnGen,” and Samuli Ripatti'.3.5*
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Mars, et al. AJHG 2022 50



Family history (FH) complements PGS
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Summary 1: Polygenic score (PGS) introduction

- GWAS revealed large number of common variants
contribute to complex traits; the individual effects of
variants are small

- Polygenic scores (PGS) combine effects of disease-
associated alleles for each individual

- PGS has potential relevance for clinical applications for
some traits and for some populations

- PGS would be useful for research

- Current PGS models captures incomplete genetic
liability of disease and PGS and family history are
complementary to each other
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Overview: Genetic prediction of complex traits

1. Foundations of Human Genetic Variation

2. Polygenic score (PGS) introduction

3. PGS Evaluation

4. Methods to fit PGS model

5. Challenges and opportunities in PGS research
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PGS development and validation process

1. PGS development

Example inputs:

- GWAS summary statistics
- Monogenic mutations PRS training sample
- Haplotypes or HLA alleles [ = i J
204 - : Outcome of interest
— ! :
&G . : | e Demographics (age, sex, ancestry)
= g 104:: | . L il ' ! i
o o i ; i S NI . Genotyping
, i A I
g. 0 ﬂ u h H h u ‘ Non-genetic variables
o T = T —= T
T) L= (aV] (9] < To] (o] M~ O O 9 : C‘ll ‘CE ::_r E‘QEEQD‘“N
5 Chromosome |
(a]
Integrated risk model fitting
PGS construction and estimation ) l
v ¥
Predicted . ; . ; :
outcome afinterast = Final PGS + Demographics + Non-genetic variables Risk model type

- age, sex, demographics (genotype PCs) are typically considered as
covariates

Wand*, Lambert*, et al. Nature 2020. 54



PGS development and validation process

2. Evaluation and validation of the PGS model

Validation

Results

PRS validation sample
Outcome of interest
Demographics (age, sex, ancestry)
Genotyping

Non-genetic variables

l

Application to a validation cohort
(external from training)

Risk score Risk model Risk model Risk model
. distribution calibration discrimination predictive ability
c
0.20 1.00 ;
% Controls '?é > S0 High PRS
3 2 o2 = 20
g E 0.104 o @ 0.50 A
o @ [ o 7 101
— 0 - (¢)] E o -
% (@] /' PRS
o} . : . L e — 04 — e
£ 25 0 25 0 0.10 0.20 1.00 0.50 0 0 20 40 60 80
j Standardized PRS Predicted risk Specificity Age
o
= Mean, median, Hosmer-Lemeshow AUROC, C-index, PRS effect size
standard deviation, IQR, range X3 NRI, IDI (HR, OR, )
R2
PRS alone only gives a relative  For a new cohort, need Then for that cohort, You can then combine it with

genetic burden score, but not an
absolute risk for an individual

to calibrate predictive you can evaluate the
value of PRS score. overall discrimination
can calculate for each person, strength of PRS score
but need a ‘translation table’

to get actual risk for that cohort

other risk factors (such as age)
to get increased predictive power
when combining PRS.

=>» Age-matched risk from PRS

Wand*, Lambert*, et al. Nature 2020.
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PGS development and validation process

2. Evaluation and validation of the PGS model

PRS validation sample

Qutcome of interest

Genotyping

Validation

Non-genetic variables

l

Demographics (age, sex, ancestry)

Application to a validation cohort
(external from training)

Risk model Risk model
discrimination predictive ability

High PRS

Risk score Risk model
. distribution calibration
c
0.20 . 1.00
-% Controls '?é R
= 3 e 2 o
i) g E 0.10- o @ 0.50 '
3 (1)) 0 o Q 7
— . wn . .
0 D Q .
O 5 (@] / .
e o : : ; O e — 01
= 25 0 25 0 0.10 0.20 1
ﬁ Standardized PRS Predicted risk
o
= Mean, median, Hosmer-Lemeshow
standard deviation, IQR, range (X3

00 050 O 0 20 40 60 80

Specificity Age
AUROC, C-index, PRS effect size
NRI, IDI (HR, OR, j3)
RZ

Use hold-out test set or external validation set when

evaluating the predictive performance of PGS models

Wand*, Lambert*, et al. Nature 2020.
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Heritability (h?) — the theoretical upper bound of
predictive performance for quantitative traits

Complex trait (T) = Genetics (G) + Environment (E) + GxE interaction

Let’s consider the variance of the observed trait (o12)

Under a simple scenario: T = G + E (no GxE interaction)
- A: additive effects

- D: non-additive effects (dominance, recessive, etc.)
- I: interaction effects
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Heritability (h?) — the theoretical upper bound of
predictive performance for quantitative traits

Complex trait (T) = Genetics (G) + Environment (E) + GxE interaction

Let’s consider the variance of the observed trait (o12)

Under a simple scenario: T = G + E (no GxE interaction)

- A: additive effects
- D: non-additive effects (dominance, recessive, etc.)
- I: interaction effects

[Definition] Heritability
- H? (Broad-sense heritability) = 052 / 072
h? (narrow-sense heritability) = 0,2 / 072
- Heritability: fraction of phenotypic variance explained by
(additive) genetic effects
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Some notes on heritability (h?)

Heritability is not directly observable and is often estimated by statistical

model (typically from twin studies, more recently GWAS)
- Phenotypic variance depends on the population of the study

Heritability is a population-level, not individual-level, parameter
- It does NOT inform the level of genetic influence on a trait for one particular
individual
- It does NOT inform the individual-level predictive accuracy/reliability of
polygenic prediction
- See Visscher et al., Nat Rev Gen (2008) for common pitfalls

Heritability estimates for binary traits (observed- vs. liability-scale)
- Using GWAS data, one can compute observed-scale heritability
- Observed-scale heritability depends on the fraction of observed cases and
disease prevalence. Need to control for ascertainment bias in GWAS
discovery cohort = Use cumulative density function + prevalence (next slides)
- Observed-scale heritability vs. Liability-scale heritability

B . K=disease prevalence in population
h2 . =h2 K(l K) K(l K) P=disease prevalence in GWAS set
liability observed e(®1[K])? P(1—P) ®=cumulative density of Normal distr.
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Liability and threshold model for binary traits

Assume the continuous distribution of liability. Consider our observed
cases are the one passing the liability threshold

* Control
* Case

Marginal distrribution
of phenotype/liability
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Liability and threshold model for binary traits

Assume the continuous distribution of liability. Consider our observed
cases are the one passing the liability threshold

We may consider the heritability on the liability scale
- Observed-scale vs. liability-scale
In case-control GWAS, we may have overrepresentation of case

samples. This is why we need to adjust
observed scale to liability scale

+ Control i (T * Control .
S Gass - * Case Liabiliry

Marginal distrribution
of phenotype/liability
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INI50: Standing height

PGS evaluation - R? for quantitative traits

200 4

180

PGS evaluation: R? is a common metric for quantitative traits

Example: predicting standing height in UK Biobank with snpnet
hold-out test set R%: 0.178 (PGS alone), 0.717 (PGS + covariates)

25 0.0 25
snpnet PRS (Z-score)

PGS alone gives R?=0.178

INI50: Standing height

{(not single individuals!) =

Tight estimate of mean 1 200

10000

7500

t
¥

¥
Actual Height (cm)

@
S

dlh

140 160 180 200 -20 -10 0 10 20 30
Predicted Height (cm) Residual (cm)

Using sex + age + 10 genotype PCs as covariates
Subset of 10,000 individuals
=>» Very high accuracy prediction (0.717)

140

The percentile of snpnet PRS

Using 330k people from UK biobank: 270k train + 60k 1

Qian, et al 2020, Tanigawa, et al. 2022 62



SNP heritability h? is the upper bound of the PGS
predictive performance

Comparison of R? vs. h?gp for quantitative traits in UK Biobank

0.4

Predictive performance (R?)
o
n

0.0 4

Spearman's p =0.46
(p—value: 1.4e-31)

Estimated heritability
was incorrect

\ Mean platelet volume

Close to theoreticd

0.151

How close are we to the theoretical limit

Neutroph

0.05 4

maximum =>» we’rg done!

Basoph
v

s (upper bound) using UK biobank alone?

Many traits still have a ways to go
(keep doing larger-cohort GWAS’es)
[or heritability estimate might be off]
[or rare variants] [or non-additive] [...]

A

SNP-based heritability

0.0 01

EBNA-1 antigen for Epstein-Barr Virus

0.0

0.8

Estimated SNP-based heritability [SE]

02 0.3

estimates (h’gp) are

from LD score regression
(LDSC)

Anthropometry -+ Bone-densitometry of heel
Trait category = Biomarkers « Lifestyle and environment
-~ Blood assays -+ Others

Tanigawa, et al. 2022 63



PGS evaluation for binary traits

Example: asthma in UK Biobank

251 ——

o
o
1

snpnet PRS (Z-score)
o
(=]

\
2.54 l‘.'f 0.5 4 I

T T T T T T T T T
T £ £ § ¥ ¥ ¥ §® ¥§ %
o o o o o o o o o o
8 (o] o M~ o LD =t o (o] —
o = X X = = = = X X
> o o @) o =) @) ) o =)

' T o @ ~ © T3] = % & =] =

Control Case ) - ~ — — -~ - - =
HC382: Asthma The percentile of snpnet PRS

- Predictive performance: AUROC, observed-scale pseudo-R?, liability-
scale pseudo-R?, ...

Qian, et al 2020, Tanigawa, et al. 2022 64



Area under the receiver-operator curve
(AUC or AUROC)
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True positive rate=TP /P
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0.0 : 1.0
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Max AUC for genetic risk prediction depends on
heritability and disease prevalence

AUC is calculated on the observed-scale and depends on disease
parameters

o _
o _
o
0 _
< O
]
E
S
< a K=0.001
o | b K=0.01
c K=0.1
d K=0.3
© _
o
I
I
0 _|
o
| | | | | |
0.0 0.2 04 » 0.6 0.8 1.0
h
L

Liability-scale heritability

Wray et al. 2010 PLoS Genet 66



Pseudo-R? as a goodness of fit for binary traits

- AUROC is not the only metric
- Cox and Shell’s pseudo-R? (based on likelihood)

- Nagelkerke’s pseudo-R? (aka Cragg and Uhler’s pseudo-R?)
- Normalized C&S pseudo-R? so that the maximum reaches 1

Brief description Notation and formula
N 2
2 (yi—1)
R? on the observed scale R:=1- 4
> (yi—7)?
Cox and Snell’s R? on the observed scale 2 o =1 — | Likelihoodnu N
I{C&S _ Likelihoodg
2
’ 2 2 _ RC&S
Nagelkerke’s R* on the observed scale Ry, = 1= (Likelihood, /N

Lee, et al. Genetic Epidemiology. 2012.



Pseudo-R? as a goodness of fit for binary traits

- AUROC is not the only metric
- Cox and Shell’s pseudo-R? (based on likelihood)

- Nagelkerke’s pseudo-R? (aka Cragg and Uhler’s pseudo-R?)
- Normalized C&S pseudo-R? so that the maximum reaches 1

Brief description Notation and formula
N 2
2 (yi—1)
R? on the observed scale R:=1- 4
> (yi—7)?
Cox and Snell’s R? on the observed scale 2 o =1 — | Likelihoodnu N
I{C&S _ Likelihoodg
2
’ 2 2 _ RC&S
Nagelkerke’s R* on the observed scale Ry, = 1= (Likelihood, /N

Lee, et al. Genetic Epidemiology. 2012.



Liability-scale Pseudo-R? has expectation of h?

TABLE 1. Brief description of R*> measures used in this study and their theoretical expectation

Brief description Notation and formula Expectation
N
> (wi-9)? ,
R? on the observed scale R2=1- 4 h‘?ﬁ
> (vi—)?
Cox and Snell’s R? on the observed scale R2, . =1 — | Likelihoodsuy N [ -
C&S — Likelihoodg, I K(1-K)
2 2
Nagelkerke’s R? on the observed scale Ry = 1= (Likelilc-:f:f:lm,u]zm{ —% ‘R(Cl‘gfmm_ %3
R? on the liability scale Rf = REK—({%K] Fz,z
2 T ays 2 _ \"‘"([’pmbilgi) 2
R* on the probit liability scale Rprobit = Varpmaong) 11 hj
2 eg s 1 s1s 2 o Va[(ﬁlugilgi) 2
R# on the logit liability scale Rioei = Varrogi) 1339 h;
2 e : 2 _ 20 2
R? on the liability scale using AUC Riyc = R Pt Emaah hj
e . . : e
R? on the liability scale when using ascertained case-control studies fw = H-?z:éiluc h?

y, observations that are 0 or 1 for unaffected and affected individuals; 17, heritability on the liability scale, in this context the proportion
of variance on the liability scale explained by the genetic profile; K, population prevalence; z, the height of a normal density curve at the
point according to K; g, the sum of all additive genetic factors in the estimated genetic predictor; b, regression coefficient from generalized
linear model; m, the mean liability for cases; my, the mean liability for controls; t, the threshold on the normal distribution that truncates the
proportion of disease prevalence K; Q, the inverse of the cumulative density function of the normal distribution up to values of AUC; C and
6, correcting factors for ascertainment.

Lee, et al. Genetic Epidemiology. 2012. 69



Polygenic hazard score for genetic liability of
disease onset prediction (Cox model)

Cox proportional Hazard ratio model
Hazard ratio or C-index are commonly used metric for evaluation

C-index: fraction of the accurately predicted ordering of the events.
See Harrell, et al. (1982), Li and Tibshirani (2019)

Age of first event - Asthma

——— PHSall=40-60%
PHSall=40-60%
| PHSall=40-60%

PHSall=Bottom 10¢
PHSall=Bottom 10¢
PHSall=Bottom 10¢

0.2 PHSall=Top 1%
PHSall=Top 1%
PHSall=Top 1%

PHSall=Top 10%
PHSall=Top 10%
PHSall=Top 10%

PHSall=Top 5%
0.1 PHSall=Top 5%
PHSall=Top 5%

Proportion Asthma event

20 40 60 80
Age

Li, et al. Biostatistics 2020



Summary 2: PGS Evaluation

Genetics plays a partial role: Complex trait (T) =
Genetics (G) + Environment (E) + GXE interaction

Heritability := fraction of phenotypic variation explained
by genetics in a population

Use hold-out test set or external validation set to
evaluate the predictive performance of PGS

Commonly used metrics:
- Quantitative traits: R?

- Binary traits: pseudo-R? (observed, liability), AUROC
(observed)

- Time-to-event traits: Hazard ratio, C-index
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Genetic prediction of complex traits

1. Foundations of Human Genetic Variation

2. Polygenic score (PGS) introduction

3. PGS Evaluation

4. Methods to fit PGS model

5. Challenges and opportunities in PGS research
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How to train PGS models?

- Polygenic score: PRS":Zﬁf Gij
i€J

- Types of traits
- Quantitative traits (e.g. biomarkers, anthropometry)
- Binary traits (e.g. case-control)
- Time-to-event traits (e.g. disease onset)
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How to train PGS models?

- Polygenic score: PRS":Zﬁf Gij
i€J

- Types of traits

- Quantitative traits (e.g. biomarkers, anthropometry): linear reqression
- Binary traits (e.g. case-control): logistic reqression

- Time-to-event traits (e.g. disease onset): Cox model (time to event,
proportional hazard ratio model)

200
254
180 = //
g § P E
= 9 B \\
5 N A
T 9 004 ’ ‘ /
j— — /
S % \ B /
< 160 o e | o2
o \ /
= N
a \|/
-2.54
[
140
140 160 180 200 Cariral Case
Predicted Height (cm) HC382: Asthma

20 40 60 80
Age
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How to train PGS models?

Polygenic score: PRS; = Z B; Gi
j€J

Types of traits
- Quantitative traits (e.g. biomarkers, anthropometry)
- Binary traits (e.g. case-control)
- Time-to-event traits (e.g. disease onset)

To train PGS models:
- ldentify set of genetic variants in the model
- Estimate effect size () for each
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How to train PGS models?

Polygenic score: PRS; = Z B; Gi
j€J

Types of traits
- Quantitative traits (e.g. biomarkers, anthropometry)
- Binary traits (e.g. case-control)
- Time-to-event traits (e.g. disease onset)

To train PGS models:
- ldentify set of genetic variants in the model
- Estimate effect size () for each

PGS modeling approaches:
- PGS model with genome-wide significant (p < 5e-8) SNPs
- P-value thresholding (P + T)
- Bayesian approach that considers LD
- PGS methods on individual-level data (BULP, snpnet, ...)
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How to train PGS models?

Polygenic score: PRS; = Z B; Gi
j€J

Types of traits
- Quantitative traits (e.g. biomarkers, anthropometry)
- Binary traits (e.g. case-control)
- Time-to-event traits (e.g. disease onset)

To train PGS models:
- ldentify set of genetic variants in the model

- Estimate effect size () for each Active area of research with
many proposed methods

PGS modeling approaches:
- PGS model with genome-wide significant (p < 5e-8) SNPs
- P-value thresholding (P + T)
- Bayesian approach that considers LD
- PGS methods on individual-level data (BULP, snpnet, ...)
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Genetic risk scores from GWAS significant SNPs

Methods

Prediction of individual genetic risk to disease
from genome-wide association studies

Naomi R. Wray,"* Michael E. Goddard,?? and Peter M. Visscher'

- Wray et al. proposed a method to predict disease risk with GWAS
selected loci using simulation data.

ally on the simulated genotype (G). For each of these individuals,
we knew the true disease probability and estimated disease prob-
ability from the selected SNPs, calculated as,

P(D;|G;) = fOH)\;eXii and ]S(Di|G1.) = fOH X;‘ii
j=1 =1

with n the total number of true risk loci, m the number of se-
lected loci (both true and false), f\j the estimated RR for locus j

from the case-control study, and x;; the number of risk alleles for
individual i at locus j. Note that the estimated risk will deviate

- Investigated how genetic architecture and disease parameters
(prevalence and heritability) influence power
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Predictive accuracy of GWAS significant SNPs
depends on genetic architecture

Methods

Prediction of individual genetic risk to disease
from genome-wide association studies

Naomi R. Wray,"* Michael E. Goddard,?? and Peter M. Visscher'

1.0 e —
0.9 4 . —

08 - . K = prevalence
07 - . h? = heritability

N = GWAS sample size

& 0.6 - !
© o
S 0.5 ‘:-—K=0.05, h2=0.2, N=10000 "
S |-=-K=0.10, h2=0.2, N=10000
< 041 |+ K=0.05, h2=0.1, N=10000
03] |—+-K=0.10, h2=0.1, N=10000 \
| ——K=0.05, h2=0.2, N=1000
0.2 1 |-e-K=0.10, h2=0.2, N=1000 ;
——K=0.05, h2=0.1, N=1000 -
011 |=-K=0.10, h2=0.1, N=1000 N
0.0 ' ' Infinitesimal model
10 100 , 1000
No. risk loci g
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Polygenic scores from GWAS ‘significant’ SNPs

- Schizophrenia GWAS meta-analysis (European, ~3300 cases)
- Tested “polygenic inheritance” hypothesis (Gottesman & Shields, 1967)

- Polygenic component with liberal significance threshold (P-) predicts
disease risks

P=2x1028
0.03 1
» mP;<0.1
< 5x10° mP; <02
& 3 ooz f mPr<0.4
o = mP; <05
U —
5 2
% g 7 x10°
a g
8
L 0.01 1
0.008
- 0.05 0.23 0.06
_ | B o | 0.71 g 0.30,0.652-23 0.0
¥ Qo QO O
e%fo C?,VY Qoxb <8’<b é\Qo CAD CD HT RA TID T2D
AU 600 S
Schizophrenia  Bipolar disorder Non-psychiatric (WTCCC)
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Genetic architecture and PGS models

Challenge:
- How to estimate the polygenic effect sizes from GWAS effect size

PGS accuracy depends on genetic architecture
Genetic architecture is trait-specific

Infinitesimal model: all independent SNPs have non-zero effects on

traits
- Use all LD-independent SNPs in GWAS

- Equivalent to P + T model with P; = 1

Non-infinitesimal model:
- Mixture of components (zero effects, non-zero effects, ...)
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Pruning and thresholding (P + T) approach
improves prediction over infinitesimal model

- Pruning and thresholding
- Assume genetic architecture where a subset of GWAS SNPs

contribute to the disease risk
- Apply shrinkage of the estimates by P-value thresholding and clumping

- For Rheumatoid Arthritis, P+ = 0.05 was the best in Stahl, et al. 2012

SNP set P (Ngnps)
0.01 10* 10° 10° 107"
Pawas < 107 Il 67 Including more variants (that
P GWAS < 107 Bl 483 2%r?i?it:;enac(:ehir?wepr;g\r/nees_\év(i:(ife)
PGWAS <0.01 _ 3,470 (thresholding & pruning

Pawas <005 N 12,788 ¢ "% sorrer

Pawas < 0-1 I 21,484

Pawas < 0-2 T 34,941 Further inclusion reduces

p 03 accuracy (cuz the beta
awas < 0-5 NN 45.727 estimates are off/unreliable)

PGWAS <0.4 _ 54,587 (infinitesimal model

PGWAS < 0.5 _ 61 ,882 v includes these as well)
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Pruning and thresholding (P + T)
is commonly used PGS model

- User-friendly software packages are available for P+T

GigaScience, 8, 2019, 1-6

(Gl A)n doi: 10.1093/gigascience/giz082
D2HDLD) gClEN %n E Technical Note

TECHNICAL NOTE

Shing Wan Choi ®@12" and Paul F. O'Reilly ®12°

IMRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and
Neuroscience, King’s College London, De Crespigny Park, Denmark Hill, London, UK, SES 8AF; and
’Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, 1 Gustave L. Levy Pl,
New York City, NY 10029, USA

*Correspondence address. Shing Wan Choi, Icahn School of Medicine, Mount Sinai, New York, USA. E-mail:

choishingwan@gmail.com & http://orcid.org/0000-0003-2215-3238; Paul F. O'Reilly, Icahn School of Medicine, Mount Sinai, New York, USA. E-mail:
paul.oreilly@mssm.edu




Pruning and thresholding (P + T)
does not reach maximum predictive performance

- P + T does not model the LD structure between SNPs

A Unlinked genotypes B Linked genotypes
0_5__ _________________________ — el G I IO I I IO I
., 0.4} o 2E £
o~ 258 £
c %gg 2
9 03 B u 9 = g 9
— — 2 a o
b =50 £
S 2t p=1
D 0.2 - B8
o 5 p:()].
p=0.01
0.1 »=0.001
~ - . h?
0.0 L 1= 1 | | 1 1 | ( i | | | | | 1 |
3.0 35 40 45 50 55 6.0 6.5 3.0 3.5 40 45 50 55 6.0 6.5
Training sample size (log,,(N)) Training sample size (log,,(N))

- LDpred (Vilhjalmsson et al 2015) models LD and improved prediction
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Modeling LD structure with LDpred shows prediction
improvements over pruning+Thresholding

nature | I Genome-wide polygenic scores for common
genclics B diseases identify individuals with risk equivalent
to monogenic mutations

Amit V. Khera'>*45 Mark Chaffin ©45, Krishna G. Aragam'?3*4, Mary E. Haas*, Carolina Roselli ©4,
Seung Hoan Choi*, Pradeep Natarajan ©23#, Eric S. Lander?, Steven A. Lubitz ©234,
Patrick T. Ellinor ©23# and Sekar Kathiresan ®"234*

Association statistics from previously Linkage disequilibrium reference panel from
published genome-wide association study l 1000 Genomes Europeans (n = 503)
c . .
2 Use publicly-available
£ Derive 31 candidate polygenic scores for each disease: . g
a (1) Pruning and thresholding (24 scores) GWAS sum mary StatIStICS
(2) LDPred algorithm (7 scores) and f|t P+T and LDpred
v
é Choose best polygenic score based on Choose the best model
3 maximal AUC in UK Biobank . ]
s phase 1 validation dataset (n = 120,280) with UK Biobank phase 1
\ 4
g Assess association of best polygenic score Evaluate the mOdel W|th
? with disease in UK Biobank phase 2 testing .
= dataset (n = 288,978) UK Biobank phase 2
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LDpred: Modeling LD structure shows

improvements in prediction over P+T
Coronary artery disease (CAD)

- Rare variants associated to familial hypercholesterolemia
identified 0.4% of individuals have odds ratio > 3.0

- PGS identified 8% of individuals with odds ratio > 3.0

Allele frequenc

Yes, rare variants are *individually* very predictive for those individuals that carry them, but for the
general population, PGS has now matched this predictive power (+applies to general population!)

04 fouwsmovese o 8%: 3Xrisk | Highlight the potential of PGS to identify
[ > threefold (8.0%) 2.3%: 4x | large-number of individuals with high
. > fourfold (2.3%) — > - X . .
0.3 | Il > fivefold (0.5%) genetic liability of the disease
0.5%: 5X
—
= b 00 ¢
2 02- %0 ‘ 0
(@] o 80+
£ 70- £ 8+ )
§ 60 g o
0.1 % 50 E 6 .::
§ 40 | 5 q".
F § 30 g . ’ﬁ‘:‘:“
< 20 + * P L) .“".*‘ ¢
o T T T 1 T 107 ‘ Sl
_4 -2 0 2 4 °7 T T °7 T T T T T T T T T T T
Genome-wide polygenic score for CAD Control Case 0 10 20 30 40 50 60 70 80 90 100
CAD Percentile of polygenic score
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Many Bayesian PGS methods report
improvements over P+T

SBayesR (Lloyd-Jones, et al. Nat Comm. 2019)

ARTICLE

Improved polygenic prediction by Bayesian multiple
regression on summary statistics
Continuous thresholds

Luke R. Lloyd-Jones 1'9*, Jian Zeng 1'9*, Julia Sidorenko1'2, Loic Yengo1, Gerhard Moser3'4, with decaying contribution strengths
Kathryn E. Kemperw, Huanwei Wang 1 Zhili Zheng1, Reedik Magiz, Ténu Esko?, Andres MetspaluZ*S, (instead of single—threshold)
Naomi R. Wray® 6, Michael E. Goddard’, Jian Yang® 8* & Peter M. Visscher® ™

_ ) (0 with probability 7, ,
BayesR model (Gaussian mixture): ~ N(0,y,0%)  with probability 5,
ﬁj|ﬂ7 0'[23 = 4 :
PRS-CS (Ge, et al. Nat Comm. 2019) : o 3 o
[ ~ N(0,yc03) withprobability 1 —>° ;' 7,

ARTICLE

Polygenic prediction via Bayesian regression and
continuous shrinkage priors
Local shrinkage parameter,

H 12,3 F. 1,234 r o 5 _ 12,34 123 . .
Tian Ge"“>, Chia-Yen Chen , Yang Ni® °, Yen-Chen Anne Feng & Jordan W. Smoller applled based on GWAS estimate

2
Global-local scale mixtures of Gaussians: ~N<0,%¢wj), Y~ G(a, 5]'); 6j ~ G(ba 1),
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Sparse PGS using penalized regression

Bayesian PGS approaches (LDpred, SBayesR, PRS-CS, etc.) show
improvements over P+T

The resulting model have millions of SNVs included in the model

GPS=Genome-wide polygenic score

Table 1| GPS derivation and testing for five common, complex diseases

Disease Discovery Prevalence in validation  Prevalence in testing Polymorphisms | Tuning AUC (95% AUC
GWAS (n)  dataset dataset in GPS parameter Cl)in (95% CI)

validation  in testing
dataset dataset

CAD 60,801 3,963/120,280 (3.4%) 8,676/288,978 (3.0%) 6,630,150 LDPred 0.81(0.80- 0.81
cases; (p=0.001) 0.81) (0.81-
123,504 0.81)
controls'

Atrial fibrillation 17,931 cases; 2,024,/120,280 (1.7%) 4,576/288,978 (1.6%) 6,730,541 LDPred 0.77 (0.76- 0.77
115,142 (p=0.003) 0.78) (0.76-
controls® 0.77)

Type 2 diabetes 26,676 2,785/120,280 (2.4%) 5,853/288,978 (2.0%) 6,917,436 LDPred 0.72 (0.72- 073
cases; (p=0.01) 0.73) (0.72-
132,532 0.73)
controls™

Inflammatory 12,882 1,360/120,280 (1.1%) 3,102/288,978 (1.1%) 6,907,112 LDPred 0.63(0.62- 0.63

bowel disease cases; (p=01) 0.65) (0.62-
21,770 0.64)
controls®

Breast cancer 122,977 2,576/63,347 (41%) 6,586/157,895 (4.2%) 5,218 Pruning and 0.68 (0.67- 0.69
cases; thresholding 0.69) (0.68-
105,974 (r/?<0.2; 0.69)
controls® P<5x10-%)

AUC was determined using a logistic regression model adjusted for age, sex, genotyping array, and the first four principal components of ancestry. The breast cancer analysis was restricted to female
participants. For the LDPred algorithm, the tuning parameter p reflects the proportion of polymorphisms assumed to be causal for the disease. For the pruning and thresholding strategy, r* reflects the
degree of independence from other variants in the linkage disequilibrium reference panel, and P reflects the P value noted for a given variant in the discovery GWAS. Cl, confidence interval.
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Sparse PGS using penalized regression

Bayesian PGS approaches (LDpred, SBayesR, PRS-CS, etc.) show
improvements over P+T

The resulting model have millions of SNVs included in the model
- Potential overfit and challenges in interpretation

Penalized regression (Ridge/Lasso/Elastic Net) for sparse PGS

Lassosum (Mak, et al. Genet Epidemiol. 2017.)

Received: 14 June 2016 ‘ Revised: 20 February 2017 | Accepted: 14 March 2017

DOIL: 10.1002/gepi.22050 .
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PGS models on individual-level data

Many PGS approaches start with GWAS summary statistics

. GWAS summary sta;{istics

ADCY3 wsTiR sonF
o imom

'DnAUC27,

; : i
i
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PGS modeling

<4 LD reference

JEJ
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PGS models on individual-level data

- Many PGS approaches start with GWAS summary statistics

- GWAS summary statistics PGS modeling
: PRS; = E :5;' Gij
=+ - | = LD reference o

------- PSS B ST PRI i

- We can consider fitting PGS directly on individual-level data

- Multivariate model that consider multiple SNVs simultaneously
- (GWAS: fitting univariate effects for each SNVs independently)
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PGS models on individual-level data

Many PGS approaches start with GWAS summary statistics

GWAS summary sta;{istics PGS modeling
| PRS; = E:ﬁf Gyj
=+ - | = LDreference T3

We can consider fitting PGS directly on individual-level data

- Multivariate model that consider multiple SNVs simultaneously
- (GWAS: fitting univariate effects for each SNVs independently)
Example: BULP (Best Unbiased Linear Predictor)
- Fit mixed model associations: Model all SNPs jointly instead of individually
- Accounts for relatedness = Improves when some individuals related
- Accounts for other SNPs =» Improves even if all indivduals are unrelated
- Review: de los Campos et al. Nat Rev Genet (2010)
Example: BASIL (batch screening iterative lasso) and snpnet
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Learning PGS on individual-level data with BASIL
(Batch Screening lterative Lasso) and snpnet

Polygenic risk score (PRS)

A . 1
PRS; = z B; Gy |B(N) = argmin —y — XB|3 + A5

_ BERP
JEJ

L, penalized regression w/ Lasso
BASIL algorithm & R snpnet package

PLOS GENETICS

f3 OPENACCESS B PEER-REVIEWED

RESEARCH ARTICLE

A fast and scalable framework for large-scale and ultrahigh-
dimensional sparse regression with application to the UK
Biobank

Junyang Qian, Yosuke Tanigawa, Wenfei Du, Matthew Aguirre, Chris Chang, Robert Tibshirani, Manuel A. Rivas,

Junyang Qian
Trevor Hastie [E] Yosuke Tanigawa
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Batch screening iterative Lasso (BASIL)

BASIL (= BAtch Screening lterative Lasso) in R snpnet package

3 steps per iteration
1. Screening

1
(1) = argmin ||y — XB|, + 1A,

>

. P n
2. Lasso Fit (gimnet) pek
3. KKT Check
<+ | . <+
S Iteration 1 ° Iteration 2
34 < 3 Z
Z
o %fg o
w o o
m 2
g N completed fit S - @ Relax the
— new valid fit ' = L, penalty
;_ A — new invalid fit ; _ —
T I I | I | 1 | I |
Lambda index (sparsity) Lambda index (sparsity)
S - Iteration 3 S - Iteration 4 |
p—
o 3 =
< —
m o
o o
T 9
<+ < %&
T S —
I | I | ! T T | I !
Lambda index (sparsity) Lambda index (sparsity)

Qian, Tanigawa, et al. PLOS Gen. (2020). 4



BASIL/snpnet model are sparse, yet have
comparable predictive performance

- The snpnet PRS models (Lasso & Elastic-Net) have comparable
predictive performance with SBayesR

B bicight Quantitative traits (Gaussian model)
a': 0.70- e i 0.125- Mean platelet volume
= Spearman's p = 0.61
[O]
2 0.65- 0.100- (p-value: 2.2e-59)
$ 0.6181 03_
-
5 os60- 05912 0.075-
o
-6 0.5615
— o
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0 fa 5 o Q;a 5 . : P ;
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@\'Z’ s ~’<>° N + Blood assays * Others

- Standing height was one of the most polygenic traits.
- Hight PRS model has 47k variants (5% of non-zero BETAS)

Qian, Tanigawa, et al. PLOS Gen. (2020).; Tanigawa, Qian, et al. PLOS Gen in press



Summary 3: Methods to fit PGS model

PGS model: set of variants and their weights

Predictive performance of “GWAS top hits” depends on
genetic architecture of the trait

PGS methodology: active area of research
Well-known methodology:
- Pruning and thresholding (P + T)

- Bayesian modeling accounts for LD and showed
Improvements over P + T (LDpred, SBayesR, PRS-CS)

New approaches:
- Sparse PGS
- PGS directly from individual-level data
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Overview: Genetic prediction of complex traits

1. Foundations of Human Genetic Variation

2. Polygenic score (PGS) introduction
3. PGS Evaluation

4. Methods to fit PGS model

5. Challenges and opportunities in PGS research
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Limited transferability of polygenic scores (PGS)

Limited predictive performance in
non-European cohorts

Prediction accuracy
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o]
I

(relative to Europeans)
o
)
o

0.25 -

0.00 -

PERSPECTIVE

namure
https://doi.org/10.1038/541588-019-0379-x gerletlc S

Clinical use of current polygenic risk scores may
exacerbate health disparities

Alicia R. Martin ®"2**, Masahiro Kanai ©"*34%, Yoichiro Kamatani ®>¢, Yukinori Okada ®5"%,
Benjamin M. Neale ®'23 and Mark J. Daly ®'23°
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Underrepresentation of non-European samples
in GWAS studies studies

Population

European
100 East Asian

South Asian/other Asian

I African

~ Hispanic/Latino
Greater Middle Eastern

Individuals in GWAS (millions)
(suolfjiq) uonieindod [eqo|D

50 . I Oceanic
Other
Multiple
0 - —r0
2006 2008 2010 2012 2014 2016 2018 Present
1.00 '

Fraction
o
n
(o]

The challenge is well recognized in 2019 (Martin, et al. 2019)

Martin et al., Nat Gen (2019)



We still see lack of diversity today

Population
800

. European
—_ . . ©
% . East Asian 6 5
s o
Q . South Asian/other Asian o
E et . African 3
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g Greater Middle Eastern 4 2

. o)
G 4004 . Oceanic =
E Other g
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©
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The proportion of samples from individuals cumulatively reported by the GWAS Catalog as of 8 July 2021

Fatumo, et al. 2022 Nat Med 100



Multi-ancestry polygenic score models
combine multiple PGS predictors

1.

Fit PGS g and PGS, independently

PGS model for European ancestry

PGS model for African ancestry

200
UUUUUUU

e et

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

J€]

200
UUUUUUU

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

j€J

Large sample size, statistical power

Relevant LD structure and MAF

1. Consider linear combination of the two

Weur PGSgyr + Warr PGSprr

Marquez-Luna et al. 2017 Genet Epidemiol
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Multi-ancestry polygenic score models combines
multiple PGS predictors

ARTICLES

nature
genetlcs

https://doi.org/10.1038/541588-022-01054-7

M) Check for updates

Improving polygenic prediction in ancestrally
diverse populations

Yunfeng Ruan'?, Yen-Feng Lin ®345, Yen-Chen Anne Feng ©'678°1° Chia-Yen Chen®",
Max Lam ®'8121314. Zhenglin Guo', Stanley Global Asia Initiatives*, Lin He? Akira Sawa®',
Alicia R. Martin ©®'#'¢, Shengying Qin ©2¢°™, Hailiang Huang ©'8166°% and Tian Ge ®"671760X

ARTICLES

https://doi.org/10.1038/541588-022-01036-9

natuure

genetics

M) Check for updates

Leveraging fine-mapping and multipopulation
training data to improve cross-population

polygenic risk scores

Omer Weissbrod ®'34=, Masahiro Kanai®2334, Huwenbo Shi

1434 Steven Gazal'>s,

Wouter J. Peyrot ®'7, Amit V. Khera?, Yukinori Okada®3°, The Biobank Japan Project*,
Alicia R. Martin®?, Hilary K. Finucane®?™" and Alkes L. Price ®"2%
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Large European sample
(n>100,000)
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Linear decay of the PGS predictive performance
across genome-wide genetic ancestry
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https://doi.org/10.1101/2022.09.28.509988

Effects of some of the population structure
remain unadjusted in PGS models

Geographic Variation and Bias in the Polygenic Scores
of Complex Diseases and Traits in Finland
Sini Kerminen,! Alicia R. Martin,?3+ Jukka Koskela,! Sanni E. Ruotsalainen,! Aki S. Havulinna,'>

Ida Surakka,'.© Aarno Palotie,".**”% Markus Perola,'> Veikko Salomaa,> Mark J. Daly,"**
Samuli Ripatti,'” and Matti Pirinen!%10.*

B c
W 140 SD unit
W 130 | >04
| 120 B 03.04
. . . | 110 | 02.03
Adjusting for PCA of population 8 100 h = 0102
Structure Captures cc_>r_1t|n_ent- =% @ -02.81
level population stratification, but ol Therrie

residual remains within country

Figure 1. A Comparison of Genetic Population Structure, Incidence Rates, and Distribution of the Polygenic Score of Coronary Artery
Disease in Finland

(A-C) Main genetic population structure (A), the incidence rate for age-adjusted coronary artery disease (CAD) in 2013-2015 (Sepelval-
timotauti-indeksi, see Web Resources) (B), and the distribution of the polygenic score (PS) for CAD (C) in Finland. The population struc-
| ture was estimated by clustering 2,376 samples into two groups.'” The incidence rate is scaled to have a mean = 100. The PS distribution
is shown in units of standard deviation.
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Effects of some of the population structure
remain unadjusted in PGS models

A CAD (p=1.6e-4) B RA (p=5.5e-5) C CD (p=8.7e-1) D UC (p=2.2e-1)

SD unit
>0.4
] 0.3...0.4
\ 0.2..03
i 0.1..0.2
V- -0.1...0.1
v -0.2...-0.1
o -0.3...-0.2
( -0.4...-0.3
<-0.4
q q q q

E SCZ(p=4.4e-3) F BMi(p=1.8e-3) G WHR (p=4.7e-12) H HG (p=2.1e-60)

333

Figure 2. Distribution of Polygenic Scores in Finland

(A-H) Distribution of polygenic scores for (A) coronary artery disease, (B) rheumatoid arthritis, (C) Crohn disease, (D) ulcerative colitis,
(E) schizophrenia, (F) body-mass index, (G) waist-hip ratio adjusted for body-mass index, and (H) height. P values correspond to the
association with longitude presented in Table 2.

000D EEEN

Kerminen, et al. AJHG 2019
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How best to incorporate rare variants into PGS?

- Active area of research
- One approach: use expression outliers from eQTLs

Integration of rare expression outlier-associated
variants improves polygenic risk prediction

Craig Smail,!.2* Nicole M. Ferraro,! Qin Hui,>* Matthew G. Durrant,> Matthew Aguirre,! VarlantS Wlth extreme eXpreSSIOn
Yosuke Tanigawa,! Marissa R. Keever-Keigher,2 Abhiram S. Rao,%’ Johanne M. Justesen,! Xin Li,? effects also have Stronger
Michael J. Gloudemans,! Themistocles L. Assimes,?'0 Charles Kooperberg,!! Alexander P. Reiner,!? .
Jie Huang,'3 Christopher J. O’'Donnell,'#15.16 Yan V. Sun,3* Million Veteran Program, Manuel A. Rivas,! phenOtyp|C consequences
and Stephen B. Montgomery>.%*
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Uncertainty in assigning “Top X% genetic
liability” from PGS

- PGS effect size estimates are from Bayesian inference

- We should consider uncertainties in individual-level PGS estimates

Article \ Published: 20 December 2021

Large uncertainty in individual polygenic risk score
estimation impacts PRS-based risk stratification

Can only confidently [95% PPI int.] predict
“you will be in top 10% of phenotype”
for 0.8% of individuals (i.e. not 10%)

Yi Ding &, Kangcheng Hou &, Kathryn S. Burch, Sandra Lapinska, Florian Privé, Bjarni Vilhjalmsson,

Sriram Sankararaman & Bogdan Pasaniuc &

Nature Genetics 54, 30-39 (2022) | Cite this article gﬂbasfgirv”:('j‘ei:‘ZCtéWAs Bowas

9367 Accesses | 13 Citations | 76 Altmetric | Metrics
“we observe large variances in e samolo aag  EPawas) = RE. M
individual PRS estimates which
impact interpretation of PRS-based LD structure R 000@0
stratification; averaging across O, PRS for x;= (010)"
traits, only 0.8% (s.d.=1.6%) of Causal effect 3 11 /\\
individuals with PRS point ‘ N
estimates in the top decile have
corresponding 95% credible b M /\‘\
intervals fully contained in the Other plausible effects
top decile.” B> M /\‘\

Ding, et al. Nat Gen. 2021 107



Which PGS model is better? Statistical test for
significance of difference in performance

ARTICLE

Significance tests for R? of out-of-sample
prediction using polygenic scores

Md. Moksedul Momin,!%-%4* Soohyun Lee,> Naomi R. Wray,®” and S. Hong Lee!.24*

Summary

The coefficient of determination (R?) is a well-established measure to indicate the predictive ability of polygenic scores (PGSs). However,
the sampling variance of R is rarely considered so that 95% confidence intervals (CI) are not usually reported. Moreover, when compar-
isons are made between PGSs based on different discovery samples, the sampling covariance of R? is required to test the difference be-
tween them. Here, we show how to estimate the variance and covariance of R? values to assess the 95% CI and p value of the R? differ-
ence. We apply this approach to real data calculating PGSs in 28,880 European participants derived from UK Biobank (UKBB) and
Biobank Japan (BBJ) GWAS summary statistics for cholesterol and BMI. We quantify the significantly higher predictive ability of
UKBB PGSs compared to BB] PGSs (p value 7.6e—31 for cholesterol and 1.4e—50 for BMI). A joint model of UKBB and BBJ PGSs signif-
icantly improves the predictive ability, compared to a model of UKBB PGS only (p value 3.5e—05 for cholesterol and 1.3e—28 for BMI).
We also show that the predictive ability of regulatory SNPs is significantly enriched over non-regulatory SNPs for cholesterol (p value
8.9e—26 for UKBB and 3.8e—17 for BBJ]). We suggest that the proposed approach (available in R package r2redux) should be used to
test the statistical significance of difference between pairs of PGSs, which may help to draw a correct conclusion about the comparative

dictive ability of PGSs. ot '
predictive ability o S Statistical test for comparing PRS scores

from different sources

r2redux: https://github.com/mommyQ003/r2redux

Momin, et al. AUJHG. 2023 108
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PGS reporting standard (PGS-RS)

- PGS-RS to encourage PGS model sharing

Perspective | Published: 10 March 2021

Improving reporting standards for polygenic scores in
risk prediction studies

Hannah Wand, Samuel A. Lambert, Cecelia Tamburro, Michael A. lacocca, Jack W. O'Sullivan, Catherine

Sillari, Iftikhar J. Kullo, Robb Rowley, Jacgueline S. Dron, Deanna Brockman, Eric Venner, Mark |.

McCarthy, Antonis C. Antoniou, Douglas F. Easton, Robert A. Hegele, Amit V. Khera, Nilanjan Chatterjee,

Charles Kooperberg, Karen Edwards, Katherine Vlessis, Kim Kinnear, John N. Danesh, Helen Parkinson,

Erin M. Ramos, ... Genevieve L. Wojcik &3 + Show authors

Nature 591, 211-219 (2021) | Cite this article

Can't just share PRS score
between cohorts/studies.
Need to also share metadata,
correction factors, etc

- PGS equivalent (?) of the Minimum information about a microarray

experiment (MIAME)

- Specify a wide range of recommendations for background, study
population, risk model development and evaluation, limitations and

clinical implications, and data availability

Wand*, Lambert*, et al. Nature 2021. 109



PGS catalog — publicly available PGS weights

and their (self-reported) evaluations
!—.%! PGS Catalog ‘ Home ‘ Browse v ’ Downloads ~

Documentation ~ ’

Latest release: Feb. 8, 2023
The Polygenic Score (PGS) Catalog

An open database of polygenic scores and the relevant metadata required for accurate application and evaluation.

Search the PGS Catalog

Examples: breast cancer, glaucoma, BMI, EFO_0001645

New tool!

We just released pgsc_calc: a reproducible workflow to calculate both PGS Catalog and custom polygenic scores.

> See more information

| Feedback |

Can deposit models directly,
h irectl
Explore the Data then reuse directly

In the current PGS Catalog you can browse the scores and metadata through the following categories:

Polygenic Scores Traits Publications

(1426

¥ 3,349 P 584

https://www.pgscatalog.org/

Lambert, et al. 2021 110
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Bloom of D2C personal genomics companies

- Bloom of Direct-to-Consumer (D2C) personal genomics companies

x23andMe

Welcome to you

XX

24 a3-F

- Considerations
- Risk vs. benefits

- Statistical significance vs. Clinical relevance

- Ethics
- Communications

MYCODE s

Your genetic muscle
composition is
common in elite
power athletes.

W
//////f

ACTN3 qene

Type 2 Diabetes
Muscle Composition

uuuuuuuuuu

Your genetics g View & download your summary
are associated
with a typical
likelihood.
o ©
37% - >
Jaime King
n
w M @
Genetics Age
Good:

Power of information. Democratization
More power to individual.

But:

More dangers to misinterpret risk.
Consequences to individuals.

Treatments may come with risks.

Doctors treat symptoms not risk.

Benefits < risk weighing...

Need better warnings + general education.
Regulatory supervision

NB: This slide is not meant to endorse the service or products listed here.

https://www.23andme.com/
https://mycode.ijp
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How do we bring back PGS results to clinic?

Example: Veterans Affairs Genomic Medicine at Veterans Affairs
(GenoVA) study (ongoing) develops PRS lab report and info packets

PRS pipeline

PRS alone is not enough,
need ecosystem to support its use:
genetic counselors, clinicians, etc

Principal components
adjustment and
standardization

Secondary

- finding pipeline
ACMG-AMP

PRS calculation classification PILP Comparison to
with publicly Potentially Vatiants PRS threshold
available loci reportable for OR > 2
and weights variants

Sanger
confirmation i
Imputed VCF Risk category

Flltratlon_and Confirmed
annotation variants
Imputation to
1000 Genomes

Genotype VCF

1. Epidemiology/

statistical genetics 2. Laboratory 3. Patient care

Computational methods are applied to Laboratory develops analytically and Physician contextualizes PRS results
GWAS data to develop and validate PRS in clinically valid assay and pipeline to with the patient's other risk factors,
large populations calculate, interpret, and report PRS for comorbidities, and patient preferences,
the individual to make medical management decisions

Hao, et al. Nat Med 2022 112



How do we communicate PGS to patients?

Perspectives of diverse Spanish- and English-speaking ®™
patients on the clinical use of polygenic risk scores

Sabrina A. Suckiel**

, Giovanna T. Braganza', Karla Lopez Aquifiiga’,

Jacqueline A. Odgis', Katherine E. Bonini®, Eimear E. Kenny"**, Jada G. Hamilton“""°,

Noura S. Abul-Husn®**

“There was little concern among
participants about the limited
predictive power of PRS for non-
European populations. Barriers to
uptake of PRS testing and adoption of
PRS-related recommendations
included socioeconomic factors,
insurance status, race, ethnicity,
lanquage, and inadequate
understanding of PRS. Participants
favored in-person PRS result
disclosure by their physician’

ELECTRONIC |
|

IN-PERSON

‘ Patient portal is beneficial,
time-efficient, accessible, o specific

| familiar ~ |reason

No specific reason
MAIL

critical
for high-
challen- | risk

ges results

Avoid mail | ¢och
delays

Confused

by patient

Read body language and | Use preferred
i ; portal More secure

tone of voice language

pppppppppp

Equivalent to in-person understanding

Fig. Preferred methods for clinical PRS
result disclosure and rationale

Suckiel, et al. Genom in Med 2022 113




Summary 4: Challenges and opportunities

PGS model suffers from limited transferability

- We lack GWAS data from diverse populations

- Methodological innovations (weighted sum of PGSs)
Remaining methodological challenges:

- How to model the effects of population structure?

- How to incorporate rare variants?

- Uncertainties in individual-level PGS

PGS model sharing and evaluation

- Reporting standard & PGS catalog

How to bring the results back to health care system?
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