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What is medical imaging?

● Medical imaging is the technique and process of imaging the interior of a body 
for clinical analysis and medical intervention.


● Critical for diagnosis, treatment, monitoring disease and more

Source: https://en.wikipedia.org/wiki/Medical_imaging 5Source: Ruizhi “Ray” Liao



Fundamentals of medical imaging

● A generator releases energy.

○ Create “invisible light” 


● Body tissues interact with the energy.

● A receptor reconstructs an image based on the remaining/reflected energy.


Examples:


● Projectional radiography (X-rays), CT: electromagnetic radiation

● MRI: perturbation of magnetic field 

● Ultrasound: sound waves 

6Source: Ruizhi “Ray” Liao



Projectional radiography / x-ray

SOD: source-
object distance


SDD: source-
detector 
distance

Source: https://en.wikipedia.org/wiki/Projectional_radiography 7Source: Ruizhi “Ray” Liao



Computed tomography (CT) scan

Source: https://www.nejm.org/doi/full/10.1056/nejmra072149

● Multiple x-ray measurements taken from 
different angles to produce tomographic 
images of a body.


● Advantages

○ Eliminating the superimposition of 2D x-ray images 

(due to its 3D nature)

○ High resolution (due to it high radiation energy)


● Adverse effect

○ One scan can have 100 to 1,000 times higher dose 

than 2D x-rays

8Source: Ruizhi “Ray” Liao



Magnetic resonance imaging (MRI)

● Nuclei with spin have a magnetic moments (spin magnetic moments). By 
itself, there is no energetic difference for any particular orientation of the 
nuclear magnet.

Source: https://en.wikipedia.org/wiki/Nuclear_magnetic_resonance 9Source: Ruizhi “Ray” Liao



Magnetic resonance imaging (MRI)

● A strong constant magnetic field is 
perturbed by a weak oscillating 
magnetic field.


● In response, the spin orientations of 
nuclei perturbe from equilibrium.


● Nuclei return to their thermal 
equilibrium states of the spins. The 
receptor detects and characterizes the 
relaxation time to reconstruct MRI 
images. 

Source: https://en.wikipedia.org/wiki/Nuclear_magnetic_resonance 10Source: Ruizhi “Ray” Liao



MRI captures chemical characteristics of body tissues

Source: http://www.ajnr.org/content/27/3/475/F1 11Source: Ruizhi “Ray” Liao



Why do we need to understand medical image modalities?

● Because the intensity values of different modalities may capture different 
characteristics of body tissues.

Liao et al, Luo et al. MRI Ultrasound 12Source: Ruizhi “Ray” Liao



Why model medical images?
Hospital source in pathology 

Images offer rich phenotype of tissue 


Opportunities:

Improve diagnosis and procedures

Understanding of treatment response 

Enable new treatments




A wealth of opportunities: Lower cost
Hospital source in pathology 

Improve global access to care

Diagnosis



A wealth of opportunities: Better outcomes
Hospital source in pathology 

Predict Recurrences, Sensi/vity to Treatment,

Popula/on at Risk



A wealth of opportunities: New discoveries
Hospital source in pathology 

Identify drugs that perturb cells to 
“healthy” states



Data: What is medical imaging?

Method Foundations: How do we build models on imaging data?


Applications:  How can we catch cancer earlier?


Interpretation: How can we audit our models?
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Images are matrices (tensors)

3

Images
• We’ll focus on grayscale 

images
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Images
• We’ll focus on grayscale 

images 
• Each pixel takes a value 

between 0 and P 
• Here, 0: black, 1: white 
• Larger P in Lab Week 08

1 0 1 0 0
1 0 1 0 1
1 1 1 0 0
1 0 1 0 1
1 0 1 0 1

…

How do we input an image 
into a neural network?

Image credit: Tamara Broderick
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Images
• We’ll focus on grayscale 

images 
• Each pixel takes a value 

between 0 and P 
• Here, 0: black, 1: white 
• Larger P in Lab Week 08

1 0 1 0 0
1 0 1 0 1
1 1 1 0 0
1 0 1 0 1
1 0 1 0 1

1
1
1
1
1
0
0
1
0
0

…

How do we input an image 
into a neural network?
Idea: make it a vector and use FNN!



Fully connected network?

But, we know more about images:
• Spatial locality
• Translation invariance
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Images
• We’ll focus on grayscale 

images 
• Each pixel takes a value 

between 0 and P 
• Here, 0: black, 1: white 
• Larger P in Lab Week 08

1 0 1 0 0
1 0 1 0 1
1 1 1 0 0
1 0 1 0 1
1 0 1 0 1

1
1
1
1
1
0
0
1

Fully connected layer: every input 
is connected to every output



Fully connected network?

x0 = [0,1,1 , … , 0] x1 = [0,0,1, … , 0]

Small padding, very different feature vectors!



Fully connected network?

But, we know more about images:
• Spatial locality
• Translation invariance

3

Images
• We’ll focus on grayscale 

images 
• Each pixel takes a value 

between 0 and P 
• Here, 0: black, 1: white 
• Larger P in Lab Week 08

1 0 1 0 0
1 0 1 0 1
1 1 1 0 0
1 0 1 0 1
1 0 1 0 1

1
1
1
1
1
0
0
1

Fully connected layer: every input 
is connected to every output

Example: 

200*200 image

40K hidden units

2B parameters 




Advanced Neural networks
‣ We need specialized architectures/approaches to 

effectively handle complex objects

- RNNs, CNNs, GNNs, transformers, etc.

Convolutional Neural Network
Y LeCun

MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

(Krizhevsky et al., 12’)

images / video (CNNs)

graphs (GNNs)

text / sequences  (RNNs, transformers)

Fragment-based lead generation has led to several successful
examples of clinical candidates as evidenced in this analysis.
Johnson and colleagues reviewed 27 recent examples of
successful fragment-to-lead published case studies in 2015 as
well as 28 in 2016.111,112 On the basis of their analysis, kinases
were by far the largest target class reported in fragment-to-lead
examples (33%), with only 4% GPCRs most likely owing to
the challenge of using structure-based drug design of these
targets. Advances in technology to generate stabilized
membrane proteins may increase the use of FLBG in GPCR
as target classes, with a recent example of protease-activated
receptor 2 (PAR2) as a good case study on how both FBLG
and DEL can be applied to these targets.113 A wide variety of
screening techniques can be used in FBLG. For example, it was
found that biochemical screens (28% of reported studies)
followed by thermal shift (17%) and ligand observed NMR
(17%) were the most frequently used techniques. Of the four
cases documented in this report, three were identified by NMR
methods (BET, BACE, and IRAK4)13,14,72,105 and one was
identified in a thermal shift assay (BET).16

Only one clinical candidate in this cohort was discovered by
DNA-encoded library technology (Table 1, entry 63).103 Of
the lead generation technologies highlighted in this review, it is
the most recent of the screening technologies8 and, as such,
might require time and development to truly come of age and
demonstrate impact on drug discovery. At least one other
example of a known successful clinical candidate from this
technology has been reported, namely, the soluble epoxide
hydrolase inhibitor GSK2256294).114 Another factor owing to
the limited impact is that only a few of the large
pharmaceutical companies and contract research organizations
currently have access to the technology. There are also
limitations to the types of chemistry that can be used to
construct libraries on DNA. A review by Franzini and
Randolph highlighted this as a current challenge, coupled
with the limitations on large libraries to low MW and low
lipophilicity.115 Advances in library design with more diverse
and compatible chemistry may likely lead to an increased
application and could provide similar impact to other lead
generation strategies covered in this review.
Phenotypic Screens. The opportunities and potential

pitfalls of phenotypic based screening have been recently
reviewed by Moffat et al.116 Many successful drugs have been
brought to the market through this approach.117 However, very
few examples are found in this set. Thus, most of the screens
reported in this study utilize target-based biochemical screens.
The Merck NS5A candidate is an exception (Table 1, entry
53),90−92 where a viral replication assay not biased to any
target or mechanism was used to identify a stilbene scaffold
resulting in a lead series of compounds and clinical candidates.
Another antiviral example comes from the HIV attachment
inhibitor temsavir (Table 1, entry 56)95 which was discovered
by a phenotypic screen and later proposed to work via

inhibition of HIV attachment. The Ebola compound
discovered by Gilead and USAMRIID (Table 1, entry 55)94

was also identified through a phenotypic cell based screen.
Outside the infection therapeutic area, one compelling example
was the discovery of small molecules that are splicing modifiers
of the SMN2 gene. Implementation of a cell based
(HEK293H) SMN2 mini-gene screen led to multiple chemical
series, ultimately resulting in clinical candidate RG7800 after
medicinal chemical optimization (Table 1, entry 49).83−85

With the increased implementation of gene-editing technolo-
gies and access to patient-derived stem cells, phenotypic
screening presents a very attractive method to more directly
link the lead generation screen to the disease of interest. Since
the clear majority of case studies in this article come from
target-based biochemical screens, it does suggest that
phenotypic screening, at the moment, is most beneficial to
infection-based screens. Perhaps there are several reasons for
this.116 One of the primary bottlenecks of phenotypic screens
may arise from deconvolution of these hits, which can be
significantly complicated and resource-intense. If indeed target
identification is required by management in the pharmaceutical
company (it is not a requirement by regulatory authorities)
before proceeding to lead optimization, it can take an
indefinite amount of time. Project teams may have to embark
on a tool compound campaign to build tagged molecules for
target pull-down and chemoproteomics experiments. There are
many drugs where the mechanism of action is still not known,
and not all diseases can be sorted under the “one target, one
disease” theory. Humans are complex, and drugs are likely to
affect several biochemical responses simultaneously, which in
turn can cause feedback reactions on the effected pathways. A
lesson learned from the fate of AstraZeneca’s drug pipeline
prior to 2010 was that 40% of the AZ internal drug projects
lacked a clear link between the main target and disease.118

Without knowledge of (or claiming to know) the mode-of-
action, publication can be challenging, possibly limiting the
number of examples in the scientific literature.

Do New Drugs Come Directly from Existing Hits? There is
one example in this analysis where the drug candidate appears
to have been discovered directly in the screen, namely, the
Ebola drug candidate GS-5734 (Table 1, entry 55)94 which
was discovered by a directed screen of nucleoside analogs. It
should be noted that the final drug candidate was ultimately
the phosphoramidate prodrug of the screening hit. This
highlights the difficulty in identifying drugs or “near-drugs”
(e.g., prodrugs) directly from a screen.
The concept to screen drug and drug-like molecules or

“pharmacologically active” compounds is an area of current
interest.119 Related to this, drug repurposing is where current
drugs or clinical compounds are screened to identify new
therapeutic opportunities. A review by Baker et al. has shown
that two-thirds of all drugs have been evaluated in at least one
other disease area.120 Not surprisingly many successful

Figure 5. Example of hit-clinical success from small, directed screening sets.

Journal of Medicinal Chemistry Perspective

DOI: 10.1021/acs.jmedchem.8b00675
J. Med. Chem. XXXX, XXX, XXX−XXX

O



Locality and translation invariance



Desiderata
‣ Capture spatial dependencies: pixel position and 

neighborhood have semantic meaning


‣ Handle Translations: Elements of interest can appear 
anywhere in the image


‣ Robustly scale for large images



CNN key ideas

‣ Capture spatial dependencies: convolutions

- spatial locality


‣ Handle Translations: pooling

- abstract away locality


‣ Robustly scale for large images: weight sharing

- apply the same detector to all the patches



Convolutional Layer: 1D example
• 1D image

• Filter

• After 
convolution

0 0 1 1 1 0 1 0 0 0

-1 1 -1

-1



Convolutional Layer: 1D example
• 1D image

• Filter

• After 
convolution

0 0 1 1 1 0 1 0 0 0

-1 1 -1

-1



Convolutional Layer: 1D example
• 1D image

• Filter

• After 
convolution

0 0 1 1 1 0 1 0 0 0

-1 1 -1

-1 0 Weight sharing:
same filter applied
to both (all) patches

Stride: by how much
do we shift the filter



Convolutional Layer: 1D example
• 1D image

• Filter

• After 
convolution

0 0 1 1 1 0 1 0 0 0

-1 1 -1

-1 0 -1 0 -2 1 -1 0

Big advantage: due to weight sharing, needs much 
fewer weights than a fully connected network



Convolutional Layer: 1D example
• 1D image

• Filter

• After 
convolution

• After ReLu

0 0 1 1 1 0 1 0 0 0

-1 1 -1

-1 0 -1 0 -2 1 -1 0



Padding
• 1D image

• Filter

• After 
convolution

• After ReLu

0 0 1 1 1 0 1 0 0 0

-1 1 -1

-1 0 -1 0 -2 1 -1 0

0 0 0 0 0 1 0 0

Output is smaller! (why?)

Remedy: pad input with zeros



Padding
• 1D image

• Filter

• After 
convolution

• After ReLu

0 0 0 1 1 1 0 1 0 0 0 0

-1 1 -1

0 -1 0 -1 0 -2 1 -1 0 0

0 0 0 0 0 0 1 0 0 0

Output is smaller! (why?)

Remedy: pad input with zeros



2D Convolutions



Convolutional Layer



Convolutional Layer



Convolutional Layer



Convolutional Layer



Convolutional Layer



Convolution with Padding

source: Theano, deeplearning.net



Question: How would you apply this 
idea to a CT-scan?



Question: How would you apply this 
idea to a CT-scan?

3D Convolutions



Examples of Convolutions



Convolutional of Two Signals

*        
-1 0 1
-1 0 1
-1 0 1

=        
mask

(vector, NOT a matrix!)

Examples of Convolutions



Examples of Convolutions



Question: How can we make convolutions 
more expressive?



Question: How can we make convolutions 
more expressive?

Width: Many kernels in parallel 

Depth: Composing kernels



Multiple channels/filters

Channels:
outputs of 
convolution

F1
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Filter bank:
Collection of

filters in a layer

F4
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images. Computer vision people used to spend a lot of time hand-designing filter banks. A
filter bank is a set of sets of filters, arranged as shown in the diagram below.

Image

All of the filters in the first group are applied to the original image; if there are k such
filters, then the result is k new images, which are called channels. Now imagine stacking
all these new images up so that we have a cube of data, indexed by the original row and
column indices of the image, as well as by the channel. The next set of filters in the filter
bank will generally be three-dimensional: each one will be applied to a sub-range of the row
and column indices of the image and to all of the channels.

These 3D chunks of data are called tensors. The algebra of tensors is fun, and a lot like We will use a popular
piece of neural-network
software called Tensor-

flow because it makes
operations on tensors
easy.

matrix algebra, but we won’t go into it in any detail.
Here is a more complex example of two-dimensional filtering. We have two 3⇥ 3 filters

in the first layer, f1 and f2. You can think of each one as “looking” for three pixels in a
row, f1 vertically and f2 horizontally. Assuming our input image is n ⇥ n, then the result
of filtering with these two filters is an n ⇥ n ⇥ 2 tensor. Now we apply a tensor filter
(hard to draw!) that “looks for” a combination of two horizontal and two vertical bars
(now represented by individual pixels in the two channels), resulting in a single final n⇥n
image. When we have a color

image as input, we treat
it as having 3 channels,
and hence as an n⇥n⇥3
tensor.f2

f1

tensor
filter

We are going to design neural networks that have this structure. Each “bank” of the
filter bank will correspond to a neural-network layer. The numbers in the individual fil-
ters will be the “weights” (plus a single additive bias or offset value for each filter) of the
network, which we will train using gradient descent. What makes this interesting and
powerful (and somewhat confusing at first) is that the same weights are used many many
times in the computation of each layer. This weight sharing means that we can express a
transformation on a large image with relatively few parameters; it also means we’ll have
to take care in figuring out exactly how to train it!

Last Updated: 05/04/20 08:09:22



32

32

3

Hidden layer of “depth” 5:  
five neurons all looking at 
the same patch; five 
different masks.

Apply the same 5 masks to 
each patch.  Five neurons 
per patch.



convolving the input with the first mask 
gives the first output slice







What Humans Do? 
  

• Hierarchical pattern recognition


- edges -> simple parts-> parts -> objects -> scenes 

• Hubel/Wiesel Architecture (1959, 1962, Nobel Prize,1981) 



CNN key ideas

‣ Capture spatial dependencies: convolutions

- spatial locality


‣ Handle Translations: pooling

- abstract away locality


‣ Robustly scale for large images: weight sharing

- apply the same detector to all the patches



Max Pooling

• Similar to filtering, but output the maximum entry instead 
of a weighted sum

single slice



Pooling
‣ We wish to know whether a feature was there but not 

exactly where it was 

feature map pooled map



Pooling (max)
‣ Pooling region and “stride” may vary


- pooling induces translation invariance at the cost of spatial 
resolution


- stride reduces the size of the resulting feature map

feature map

after max poolingfeature map



Example Architecture

• Trainable via SGD and back-propagation

https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html



Resnet (2015)
‣ A bit more modern…
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Example: computer vision ’12-
‣ ImageNet classification (what’s it about)


- over a million images, 1K image categories

ImageNet classification winners, 
2012, 2013, 2014

84http://on-demand.gputechconf.com/gtc/2014/webinar/gtc-express-convolutional-networks-webinar.pdf

Figure by Yann Lecun

[Figure by Yann LeCun]



Models are Data Hungry

CIFAR-10 dataset 
# classes: 10 
# img per class: 5000

Te
st

 s
et

 a
cc

ur
ac

y
0

25

50

75

100

50,000 
training data

100 
training data

18.22

95.16



Initialization via Pre-Training

ImageNet dataset: 
1.2M labeled images
ImageNet dataset: 

1.2M labeled images

Transfer knowledge acquired from other dataset

Dog

Cat

Bird

Lion

Training



Yes
Fine tuning

Weights in red are initialized from the pre-trained model.

Weights in black are initialized from scratch and 
are updated by SGD during fine tuning stage.

Breast cancer 
detection dataset

No

Initialization via Pre-Training



Summary: CNNs

• Convolution: “local detectors”
spatial locality

• Weight sharing: 
apply same detector to all image patches
efficiency: much fewer parameters!, translation invariance

• Pooling
abstract away locality



Data: What is medical imaging?

Method Foundations: How do we build models on imaging data?


Applications:  How can we catch cancer earlier?


Interpretation: How can we audit our models?


Agenda



5-
ye

ar
 s

ur
vi

va
l

0.5

1

Stage

0.27

0.850.99

Localized Regional
Distant

Early Detection is critical

5-
ye

ar
 s

ur
vi

va
l

0.0

0.5

1.0

Stage

0.07
0.35

0.63

Localized Regional
Distant

Breast Cancer Lung Cancer

67



68Year 0 Year 5

Predict Cancer Risk Create personalized screening policy

How to catch cancer earlier
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Year 0 Year 5

Predict Cancer Risk

- Identify which population is at risk of developing cancer

How to catch cancer earlier
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AUC: 0.63
AUC: 0.61 without Density

Density 

88% binary accuracy on previous logs
97% agreement with an expert radiologist

Traditional approach: use expert knowledge

RiskModel

Age
Family History

Prior Breast Procedure
Breast Density
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Learning to predict future cancer from imaging
Predicting Future CancerPatient Future Outcome

3 year cancer

No cancer 

5 year cancer



Standard Architecture

Resnet-182. ResNet 



Standard Architecture

Resnet-18

Augmentation:

Image  


Rotations

Initialization:

Imagenet

Optimization:

Large Batches,

Normalization

2. ResNet 

3. Image DL 



Standard Architecture

Resnet-18

Augmentation:

Image  


Rotations

Initialization:

Imagenet

Optimization:

Large Batches,

Normalization

Advanced Modeling:

 New Objective, Predicting Risk Factors, Multi-

Image Modeling, Device Invariance

2. ResNet 

3. Image DL 

4. MIRAI 



5 Year Breast Cancer Risk

MIRAI: Assessing Breast Cancer Risk
U

no
’s

 C
-in

de
x

0.69

0.8

MGH Test Set

0.77

0.73
0.620.63

Tyrer-Cuzick (Prior State of Art) ResNet Image DL (Ours) MIRAI (Ours - New Result)

Trained at MGH 
Tested on 26,000 holdout exams



Maintains accuracy across diverse populations

0.625

0.8

MGH Novant Emory Maccabi-Assuta Karolinska CGMH Barretos

0.820.790.780.750.760.750.76

AU
C

0.69

0.8

MGH Test Set

0.76

0.62

Tyrer-Cuzick (Prior State of Art)
MIRAI (Ours - New Result)



Selecting patients for supplemental imaging
3-

ye
ar

 c
an

ce
r r

at
e

1.0

6.0

MGH Test Set

4.50
2.60

Mirai Low but Tyrer-Cuzick High
Mirai High but Tyrer-Cuzick Low

1.7x higher cancer yield, same MRI 
volume as current care.


Better early detection, same cost. 

Retrospective analysis 



Mirai Use Cases
Organizing prospective trials for multiple use cases

Highlight: Prioritize screening from covid backlog at MGH
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Mirai: Image-based Risk model

Mirai



Standard Architecture

Resnet-18

Augmentation:

Image  


Rotations

Initialization:

Imagenet

Optimization:

Large Batches,

Normalization

Advanced Modeling:

 New Objective, Predicting Risk Factors, Multi-

Image Modeling, Device Invariance

2. ResNet 

3. Image DL 

4. MIRAI 
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Problem 1: Device Invariance
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Encoder

Predictor Discriminator

Problem 1: Device Invariance

Objective: 
Max accuracy Predictor

Min accuracy Discriminator 
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Problem 1: Device Invariance

Without Adversary With Adversary



Problem 2: Missing risk factor data

Encoder Risk Factor

Predictor

Risk Factors

Age

Family History

Prior biopsy

Num children

Menopause status


…



Problem 2: Missing risk factor data

Encoder

Risk Factor

Predictor

: PredictorFPredictor



P(tcancer = k |x) = B(E(x)) + ∑ Hi(E(x))

Problem 3: Modeling risk over time

Encoder
H1

B

H5

…

1 Yr 3yr 5yr

Cumulative Risk



Maintains accuracy across diverse populations

0.625

0.8

MGH Novant Emory Maccabi-Assuta Karolinska CGMH Barretos

0.820.790.780.750.760.750.76

AU
C

0.69

0.8

MGH Test Set

0.76

0.62

Tyrer-Cuzick (Prior State of Art)
MIRAI (Ours - New Result)



88

Ask Sybil: Predicting Lung Cancer Risk with Low-dose Chest 
Computed Tomography 

Under Review

Peter G. Mikhael1,2,†,*, Jeremy Wohlwend1,2,†, Adam Yala1,2, Justin Xiang1,2, Angelo K. Takigami3,4, 
Patrick P. Bourgouin3,4, PuiYee Chan5, Sofiane Mrah4, Lecia V. Sequist3,5, Florian J. 
Fintelmann3,4,‡ , Regina Barzilay

AU
C

0.58

0.8

MGH Test Set

0.76
0.62

Tyrer-Cuzick (Prior State of Art)
MIRAI (Ours - New Result)

AU
C

0.58

0.8

NLST Test Set

0.80
0.68

PLCOm2012 (Prior State of Art)
Sybil (Ours - New Result)

6 Year 
Outcome



Sybil Architecture

U
no

’s
 C

-
in

de
x

0.58

0.8

NLST Test Set

0.79

0.75
0.670.66

PLCOm2012 (Prior State of Art)
ResNet Rand Init
ResNet + Kinitics Init + Guided Attention
Sybil (Ours - New Result)



Sybil Clinical Impact : Workflow

Sybil risk based screeningStandard of Care

Improve early detection and lower screening cost with risk-
based followup. 



Sybil Clinical Impact : Prevention
3-

ye
ar

 In
ci

de
nc

e

0.0

10.0

6.40
1.70

Average Sybil High Risk

Identifying high risk cohorts for 
clinical trails

Identifying future cancer location

83% accurate predicting future 
cancer side  



Data: What is medical imaging?

Method Foundations: How do we build models on imaging data?


Applications:  How can we catch cancer earlier?


Interpretation: How can we audit our models?


Agenda



Visualizing model behavior 

Question:

What is the model looking at?



Visualizing model behavior 

Question:

What is the model looking at?



Visualizing model behavior 

Question:

What is the model looking at?


Key idea: Saliency Maps

What inputs changing would 
change model predictions?



Visualizing model behavior 
Question:

What is the model looking at?


Key idea: Saliency Maps

What inputs changing would 
change model predictions?


Compute gradient of predict 
in respect to input



Saliency Maps



Learning from Outcomes:



 Handling Diversity 



Performance Audits

Validate model performance across diverse populations


Test model performance by demographic group


Test model performance by imaging device, clinical setting, etc.



Data: Tissue response to generator energy

Method Foundations: Convolutional Neural Networks


Applications:  Predicting future disease in breast and lung cancer


Interpretation: Saliency Maps and Performance Audits


Summary



Questions?


