Machine Learning for Medical Imaging

Adam Yala MIT Jameel Clinic and CSAIL

Machine Learning for Medical Imaging

These presentation uses slides from Regina Barzilay, Stefanie Jegelka, Tommi Jaakkola, Yann Le Cun, Marc'Aurelio Ranzato, Alyosha Efros, Jonathan Shewchuk, and Ruizhi "Ray" Liao

Agenda

Data: What is medical imaging?

Method Foundations: How do we build models on imaging data?

Applications: How can we catch cancer earlier?

Interpretation: How can we audit our models?

Data: What is medical imaging?

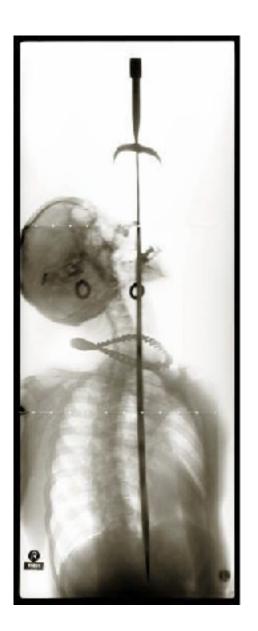
Method Foundations: How do we build models on imaging data?

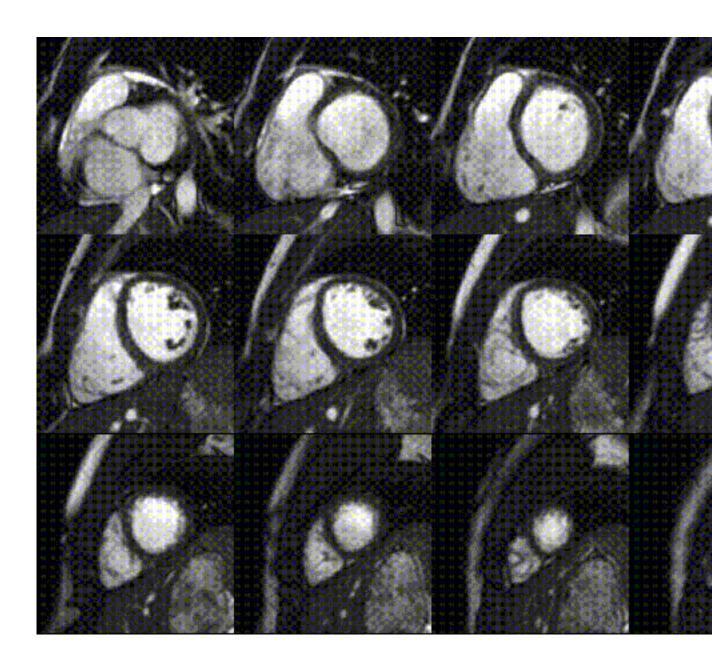
Applications: How can we catch cancer earlier?

Interpretation: How can we audit our models?

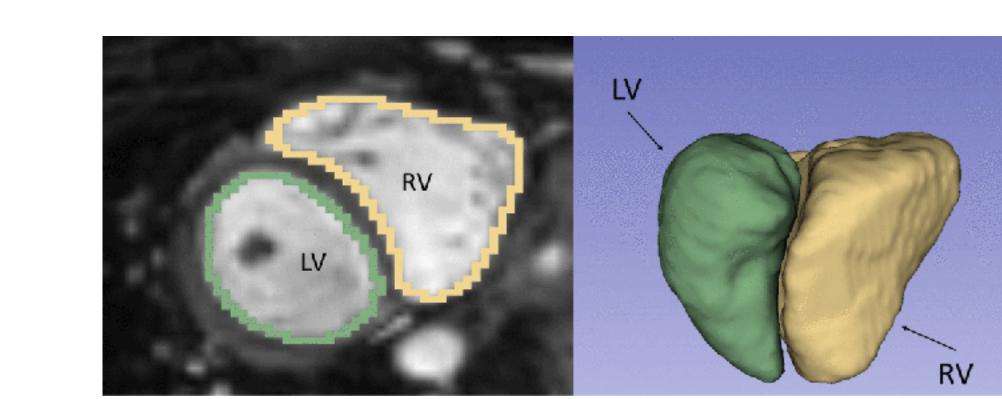
What is medical imaging?

- Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention.
- Critical for diagnosis, treatment, monitoring disease and more





Source: https://en.wikipedia.org/wiki/Medical_imaging



Fundamentals of medical imaging

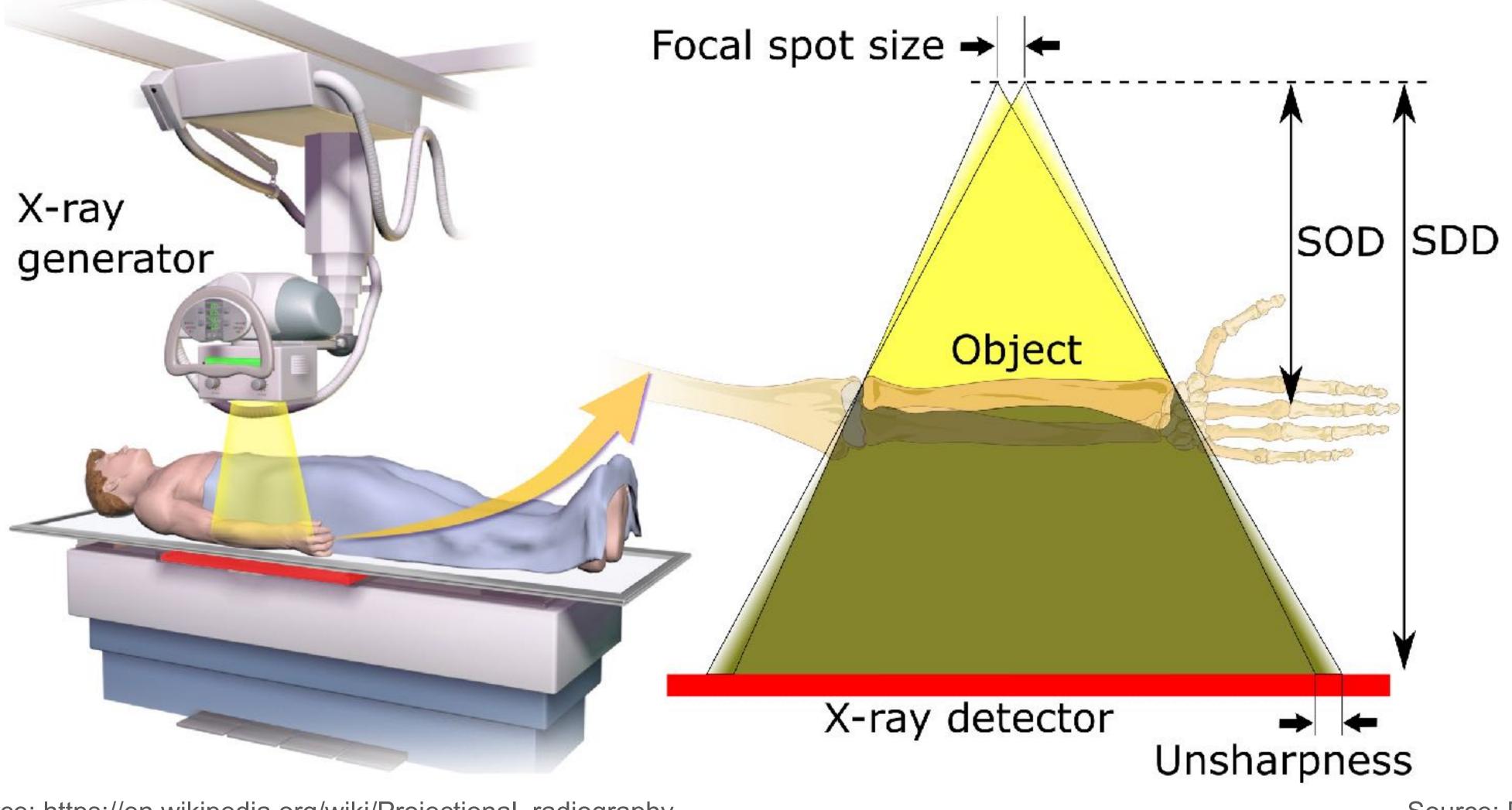
- A generator releases energy.
 - Create "invisible light"
- Body tissues interact with the energy.

Examples:

- Projectional radiography (X-rays), CT: electromagnetic radiation
- MRI: perturbation of magnetic field
- Ultrasound: sound waves

A receptor reconstructs an image based on the remaining/reflected energy.

Projectional radiography / x-ray

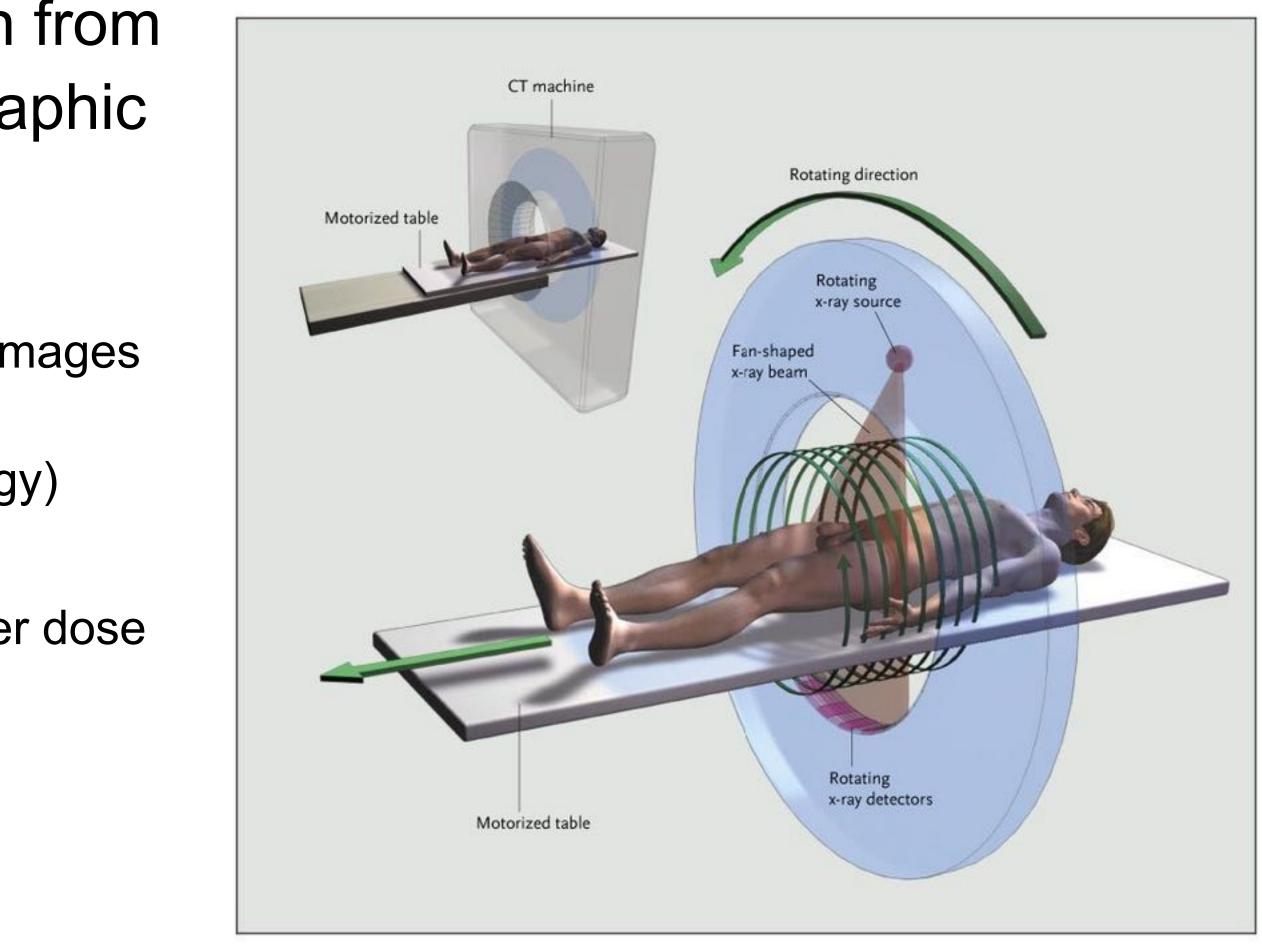


Source: https://en.wikipedia.org/wiki/Projectional_radiography

SOD: sourceobject distance SDD: sourcedetector distance

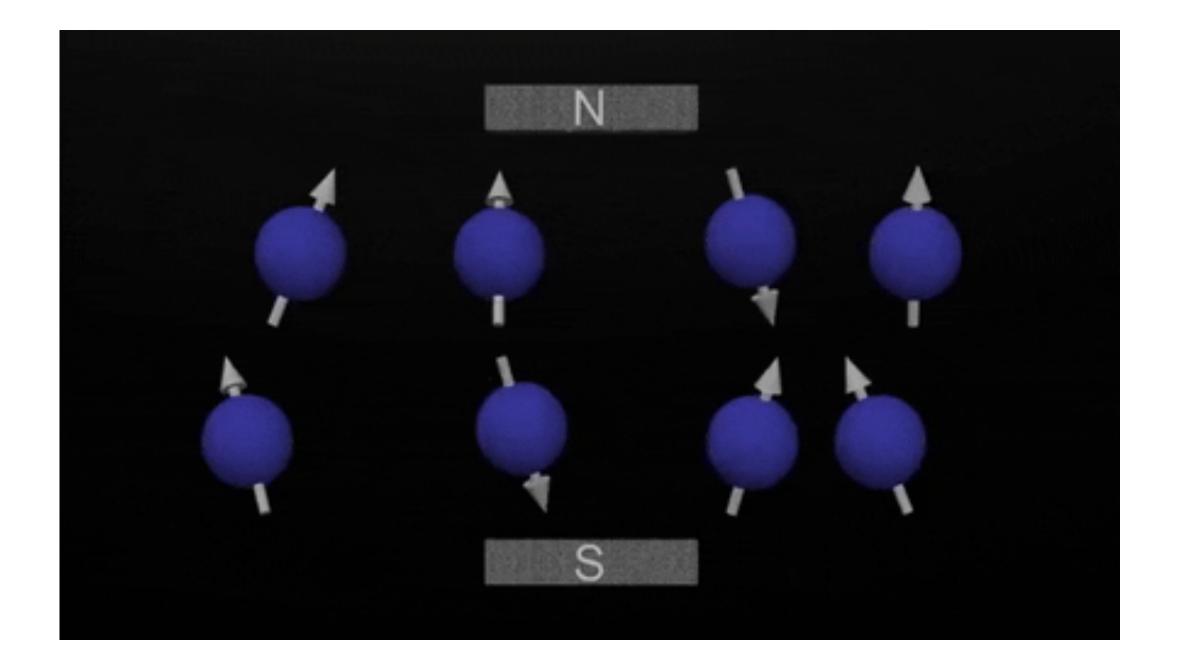
Computed tomography (CT) scan

- Multiple x-ray measurements taken from different angles to produce tomographic images of a body.
- Advantages
 - Eliminating the superimposition of 2D x-ray images (due to its 3D nature)
 - High resolution (due to it high radiation energy)
- Adverse effect
 - One scan can have 100 to 1,000 times higher dose than 2D x-rays



Magnetic resonance imaging (MRI)

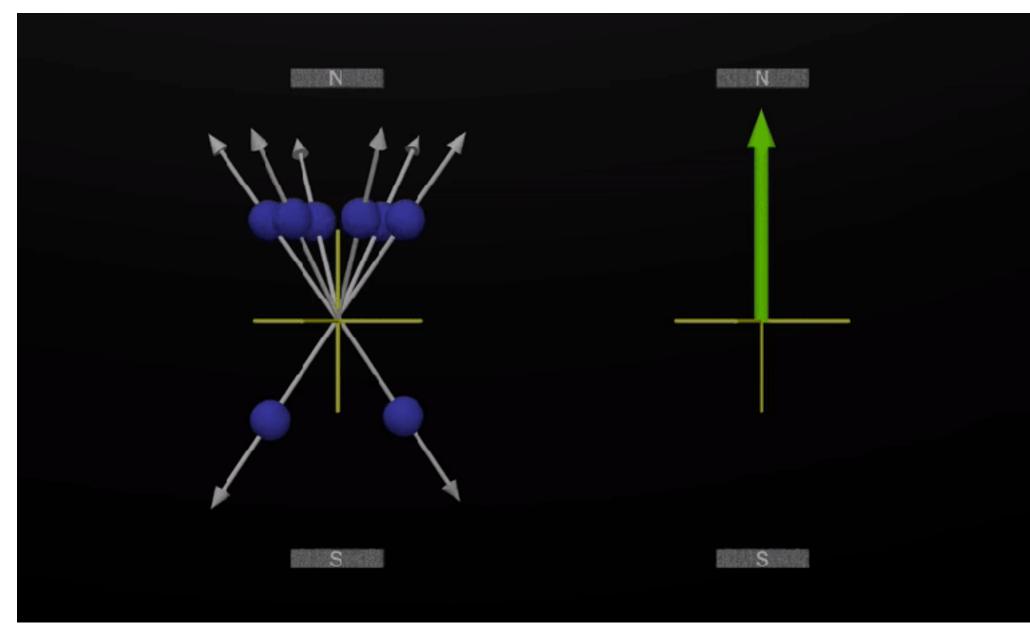
 Nuclei with spin have a magnetic moments (spin magnetic moments). By itself, there is no energetic difference for any particular orientation of the nuclear magnet.



Source: https://en.wikipedia.org/wiki/Nuclear_magnetic_resonance

Magnetic resonance imaging (MRI)

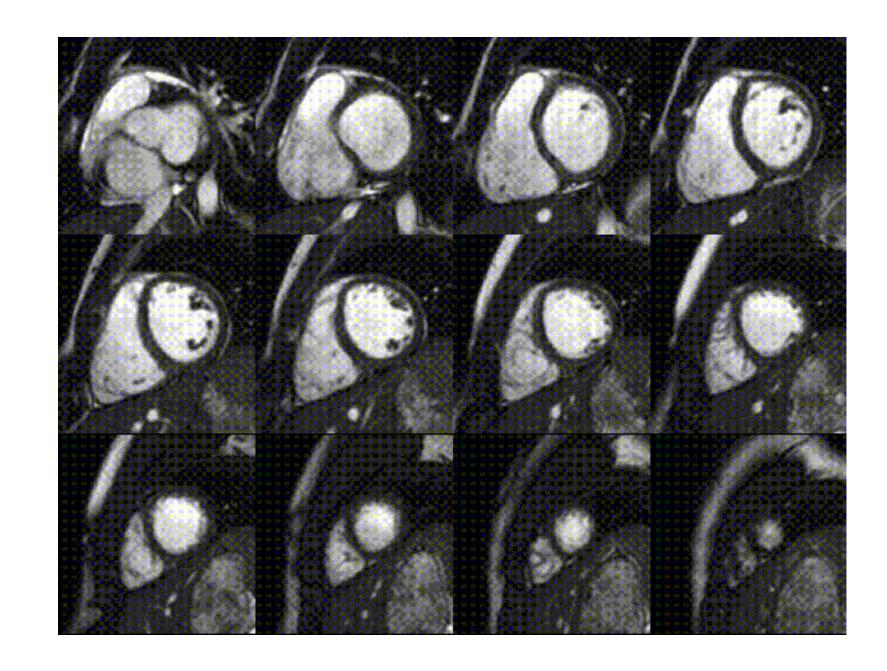
- A strong constant magnetic field is perturbed by a weak oscillating magnetic field.
- In response, the spin orientations of nuclei perturbe from equilibrium.
- Nuclei return to their thermal equilibrium states of the spins. The receptor detects and characterizes the relaxation time to reconstruct MRI images.



MRI captures chemical characteristics of body tissues

Tissue	T1 (ms)	T2 (ms)
Fat (adipose)	250	80
Liver	500	45
Kidney	650	60
White matter	800	90
Grey matter	900	100
Cerebrospinal fluid	2,400	280

Source: http://www.ajnr.org/content/27/3/475/F1

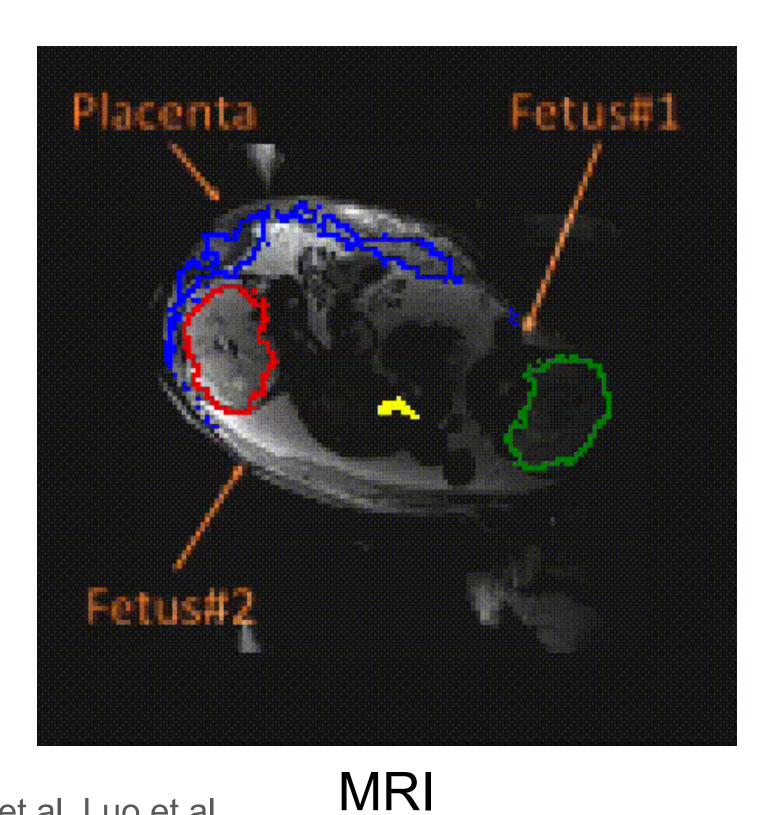


Source: Ruizhi "Ray" Liao

11

Why do we need to understand medical image modalities?

 Because the intensity values of diff characteristics of body tissues.



Liao et al, Luo et al.

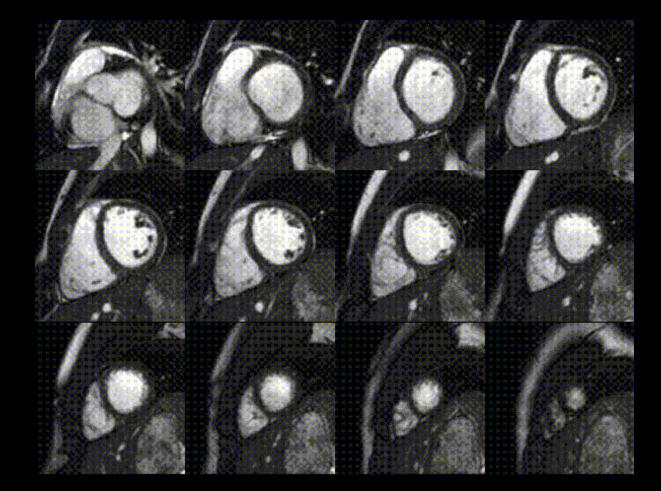
Because the intensity values of different modalities may capture different

Ultrasound

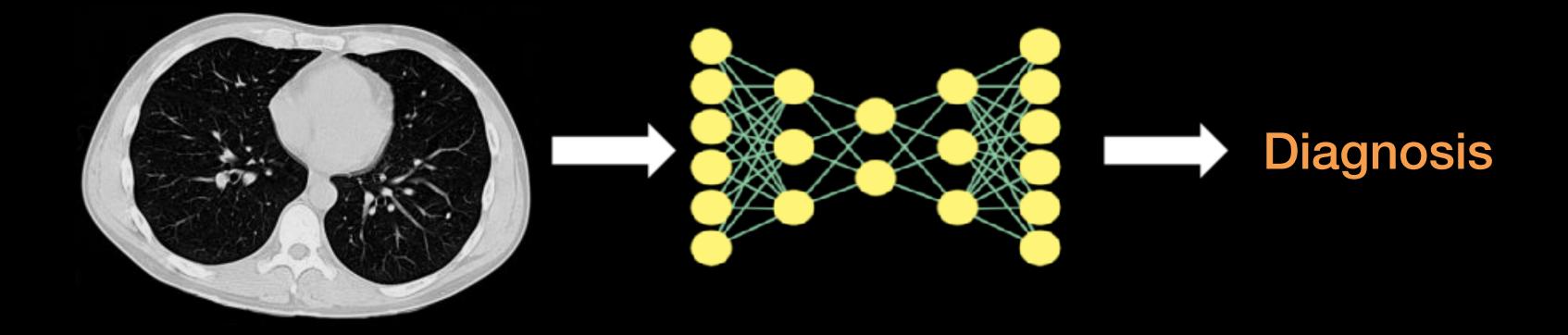
Why model medical images?

Images offer rich phenotype of tissue

Opportunities: Improve diagnosis and procedures Understanding of treatment response Enable new treatments

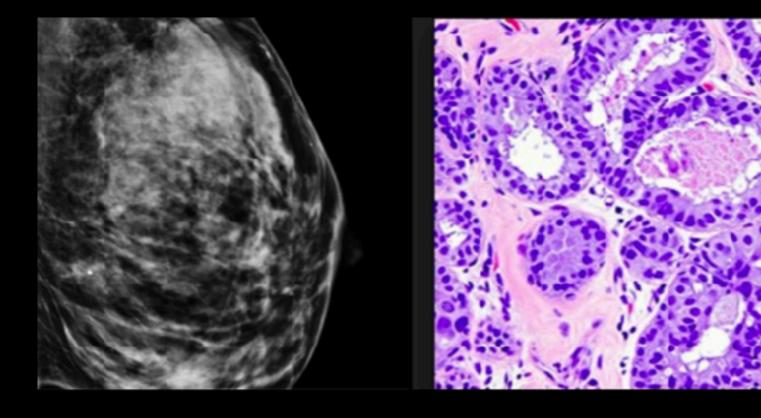


A wealth of opportunities: Lower cost

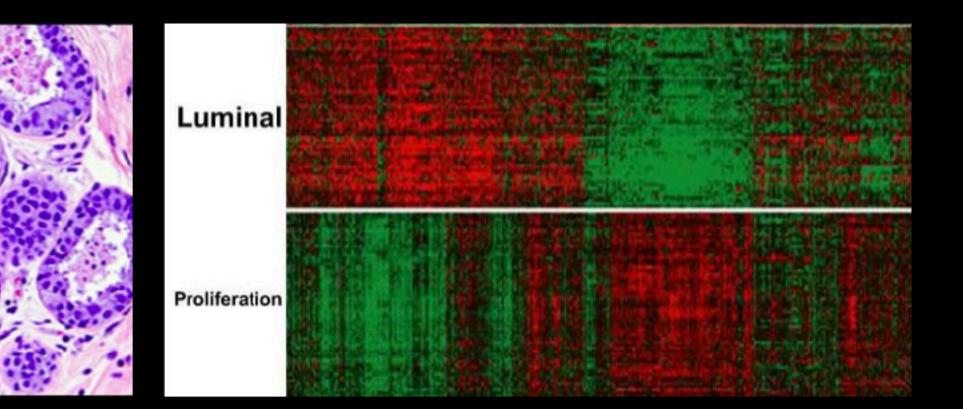


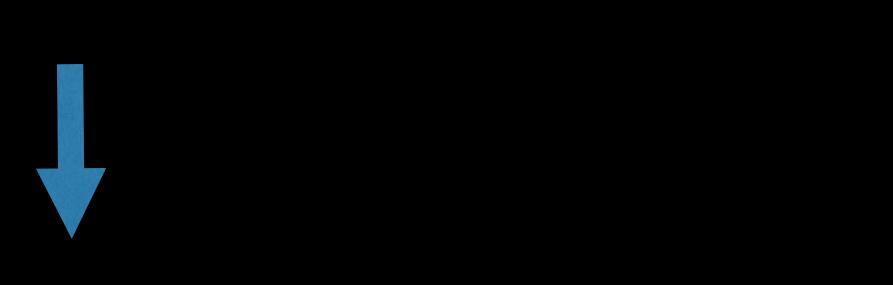
Improve global access to care

Predict Recurrences, Sensitivity to Treatment, **Population at Risk**

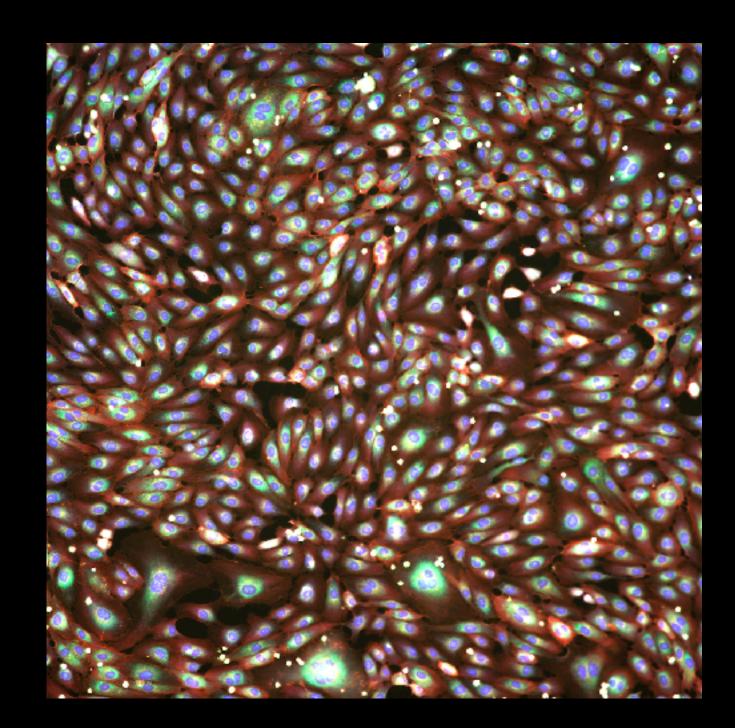


A wealth of opportunities: Better outcomes





A wealth of opportunities: New discoveries



Identify drugs that perturb cells to "healthy" states

Review Article | Published: 22 December 2020

Image-based profiling for drug discovery: due for a machine-learning upgrade?

Srinivas Niranj Chandrasekaran, Hugo Ceulemans, Justin D. Boyd & Anne E. Carpenter 🖂

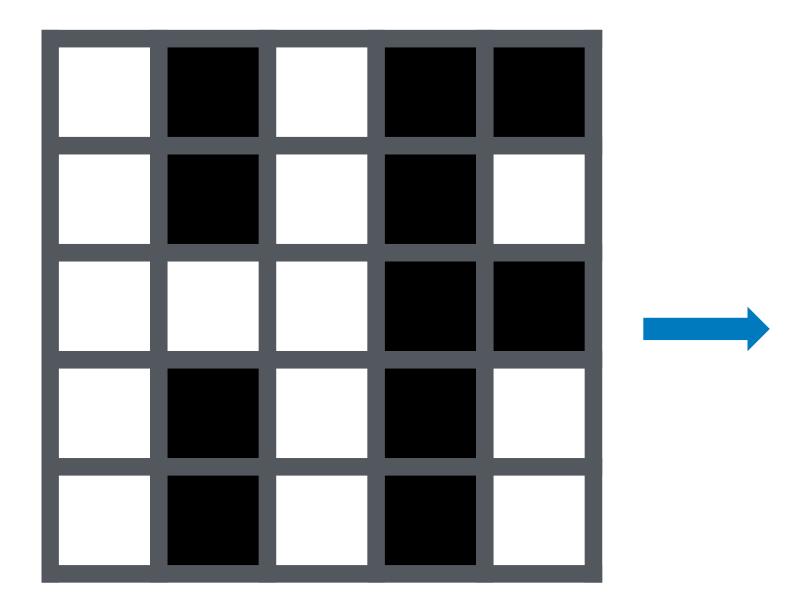
Data: What is medical imaging?

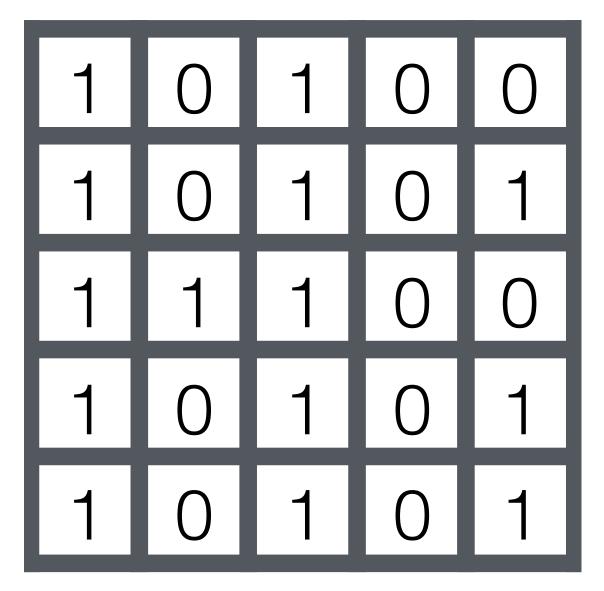
Method Foundations: How do we build models on imaging data?

Applications: How can we catch cancer earlier?

Interpretation: How can we audit our models?

Images are matrices (tensors)

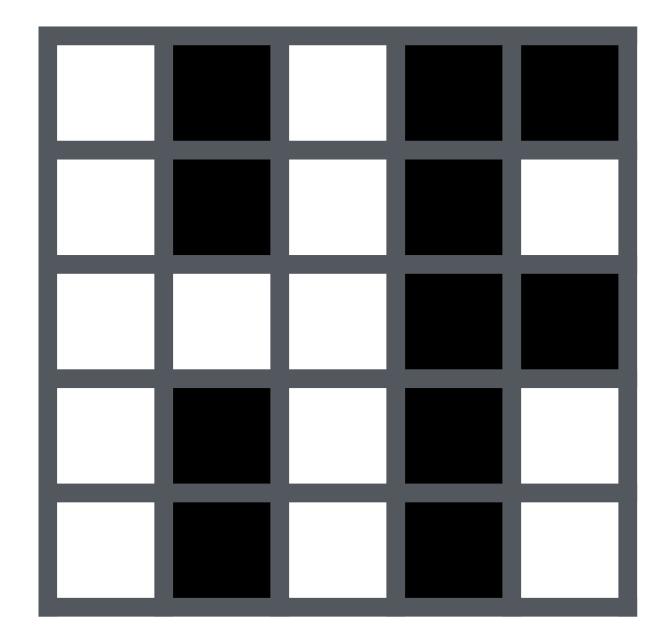


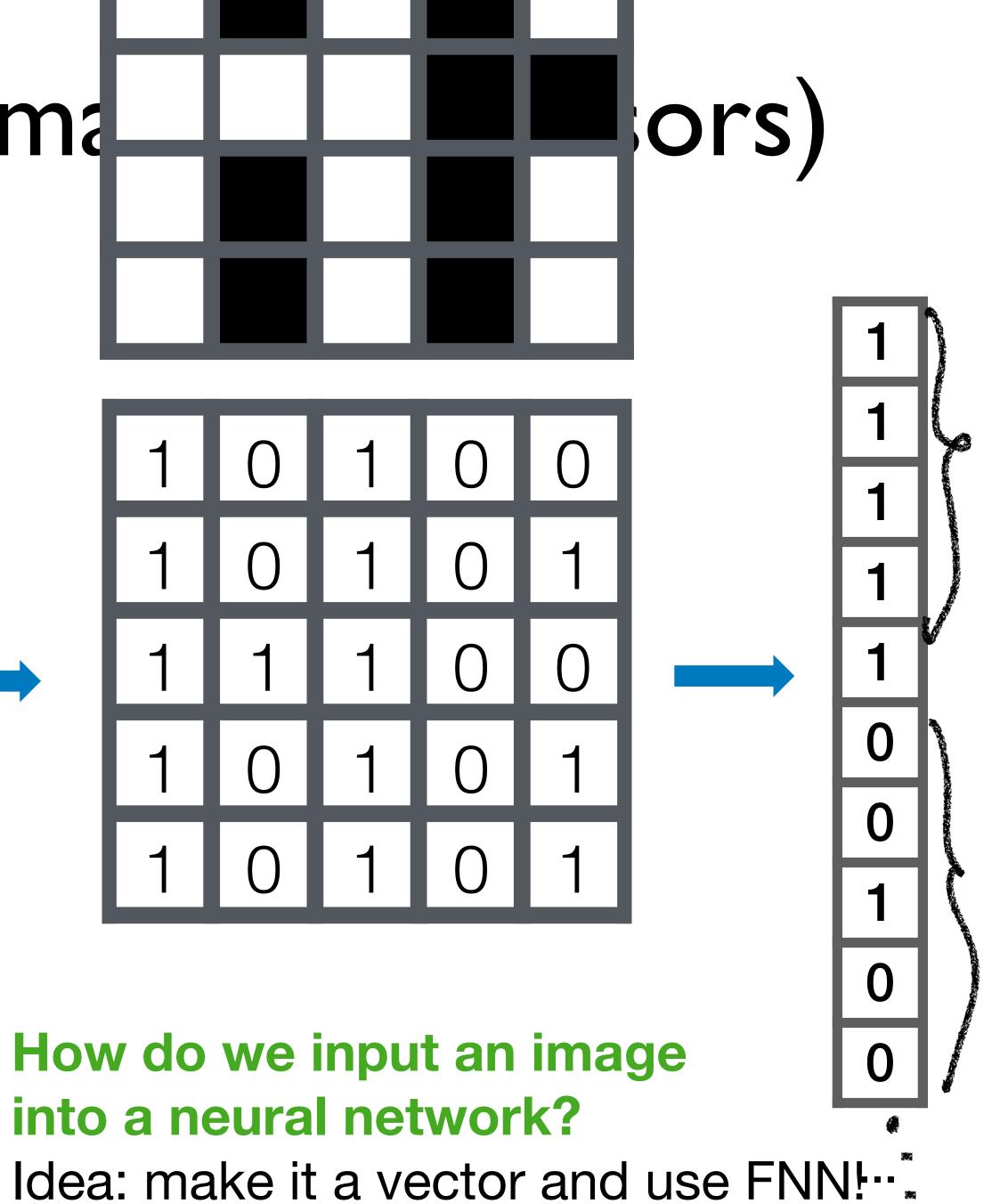


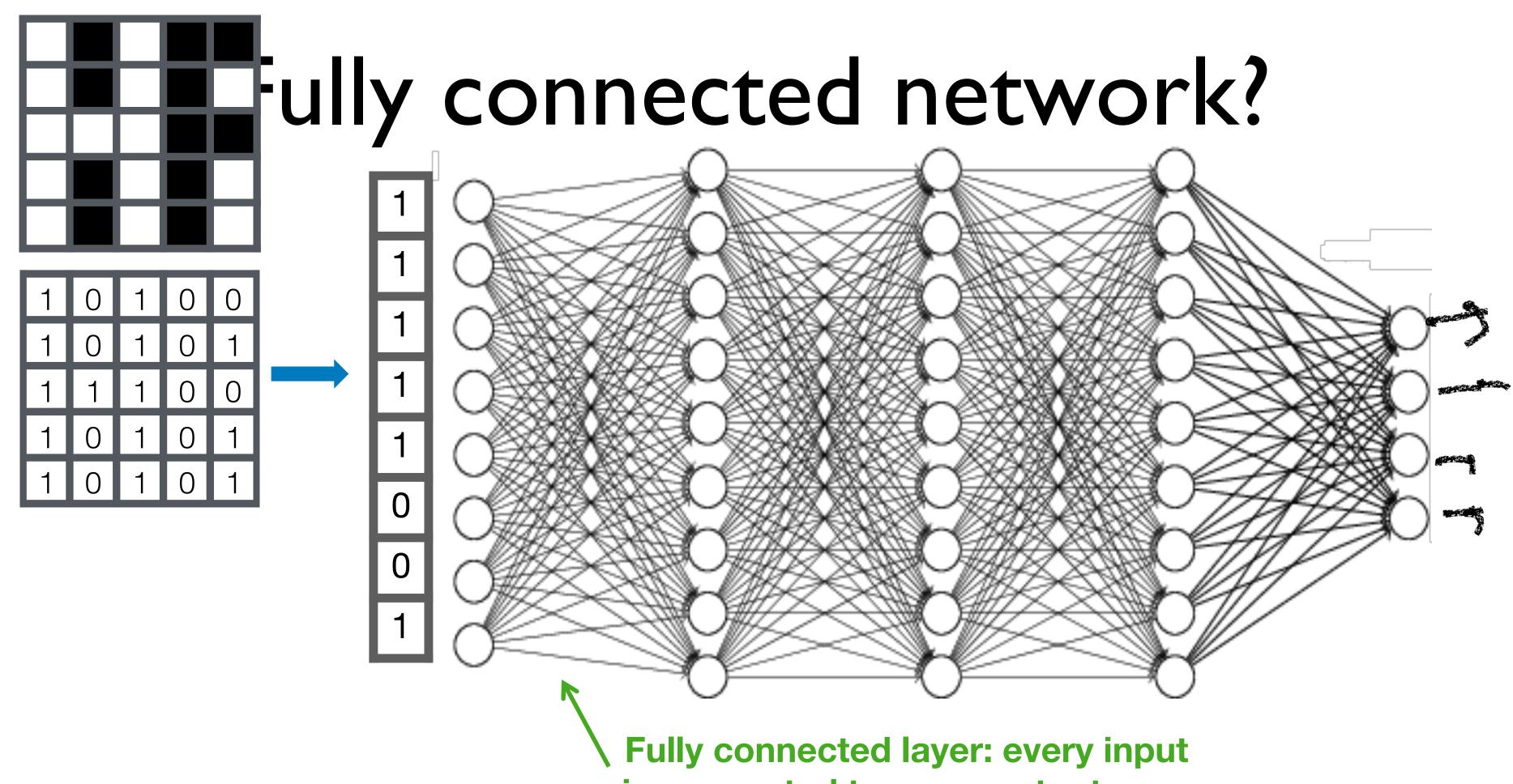
How do we input an image into a neural network?

Image credit: Tamara Broderick

Images are ma



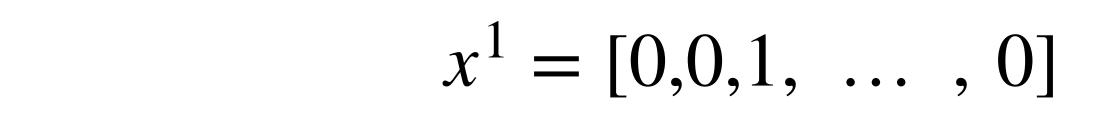




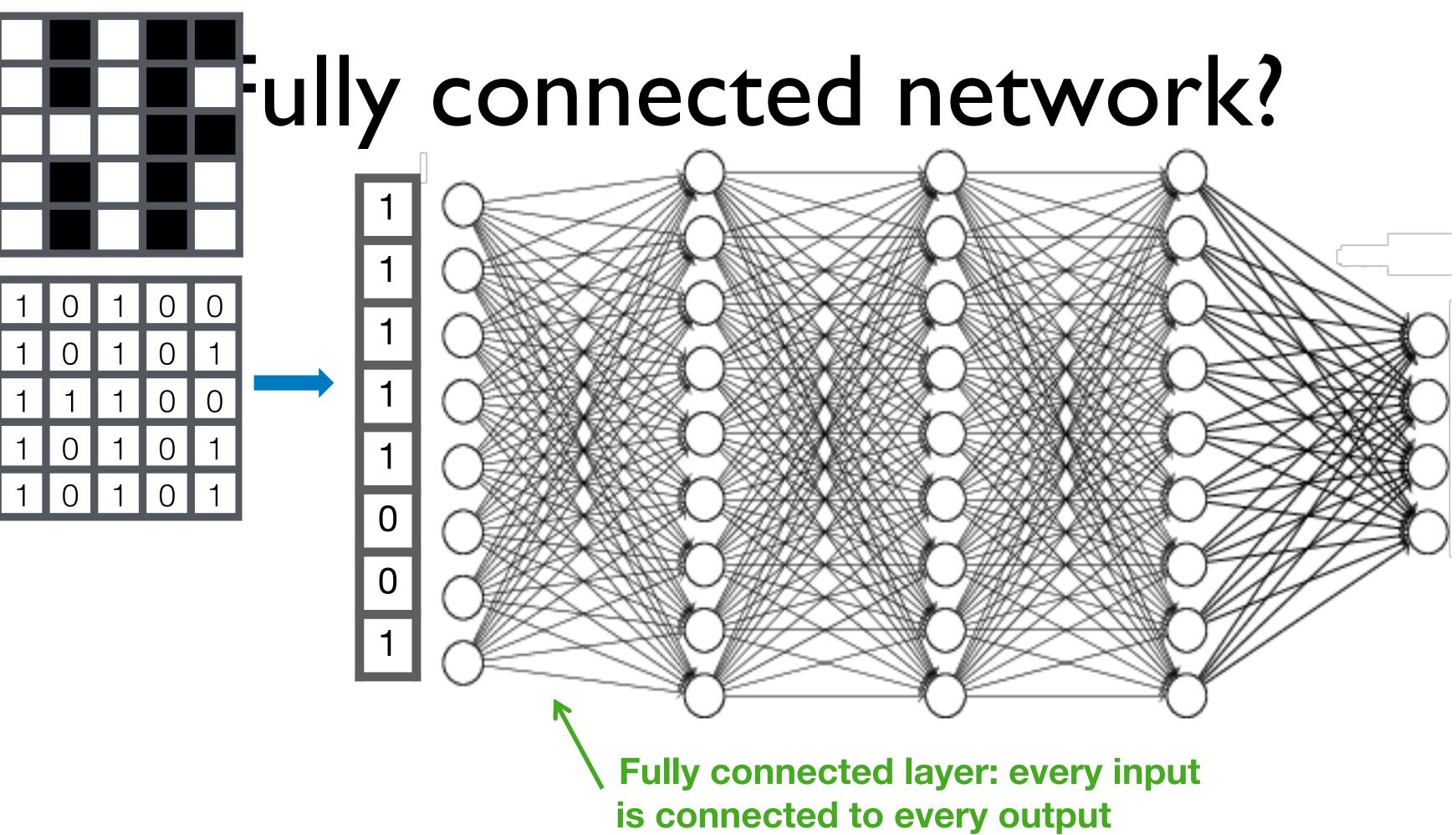
is connected to every output

Fully connected network?

$x^0 = [0, 1, 1, \dots, 0]$

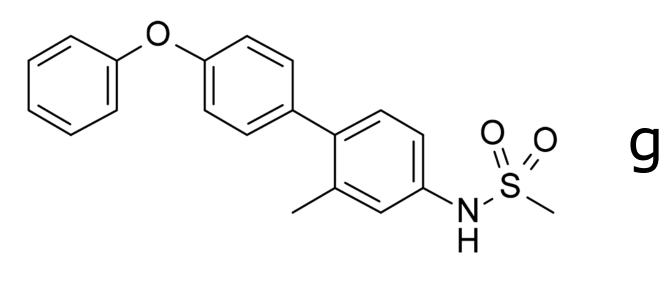


Small padding, very different feature vectors!



Example: 200*200 image **40K hidden units 2B** parameters

 We need specialized architectures/approaches to effectively handle complex objects - RNNs, CNNs, GNNs, transformers, etc.



Advanced Neural networks

text / sequences (RNNs, transformers)

images / video (CNNs)

graphs (GNNs)

Locality and translation invariance

- Capture spatial dependencies: pixel position and neighborhood have semantic meaning
- Handle Translations: Elements of interest can appear anywhere in the image
- Robustly scale for large images

Desiderata

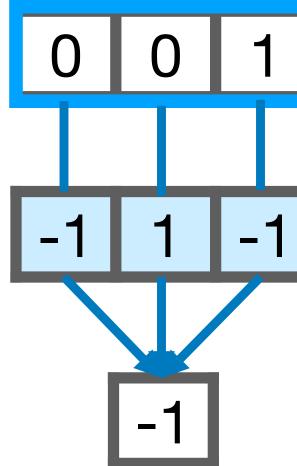
Capture spatial dependencies: convolutions - spatial locality

Handle Translations: pooling - abstract away locality

Robustly scale for large images: weight sharing - apply the same detector to all the patches

Convolutional Layer: ID example

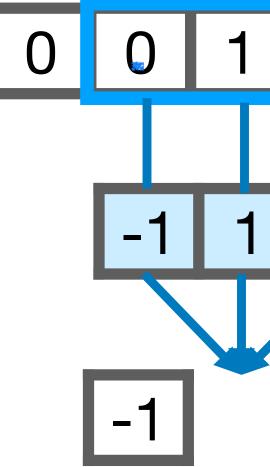
- 1D image
- Filter
- After convolution



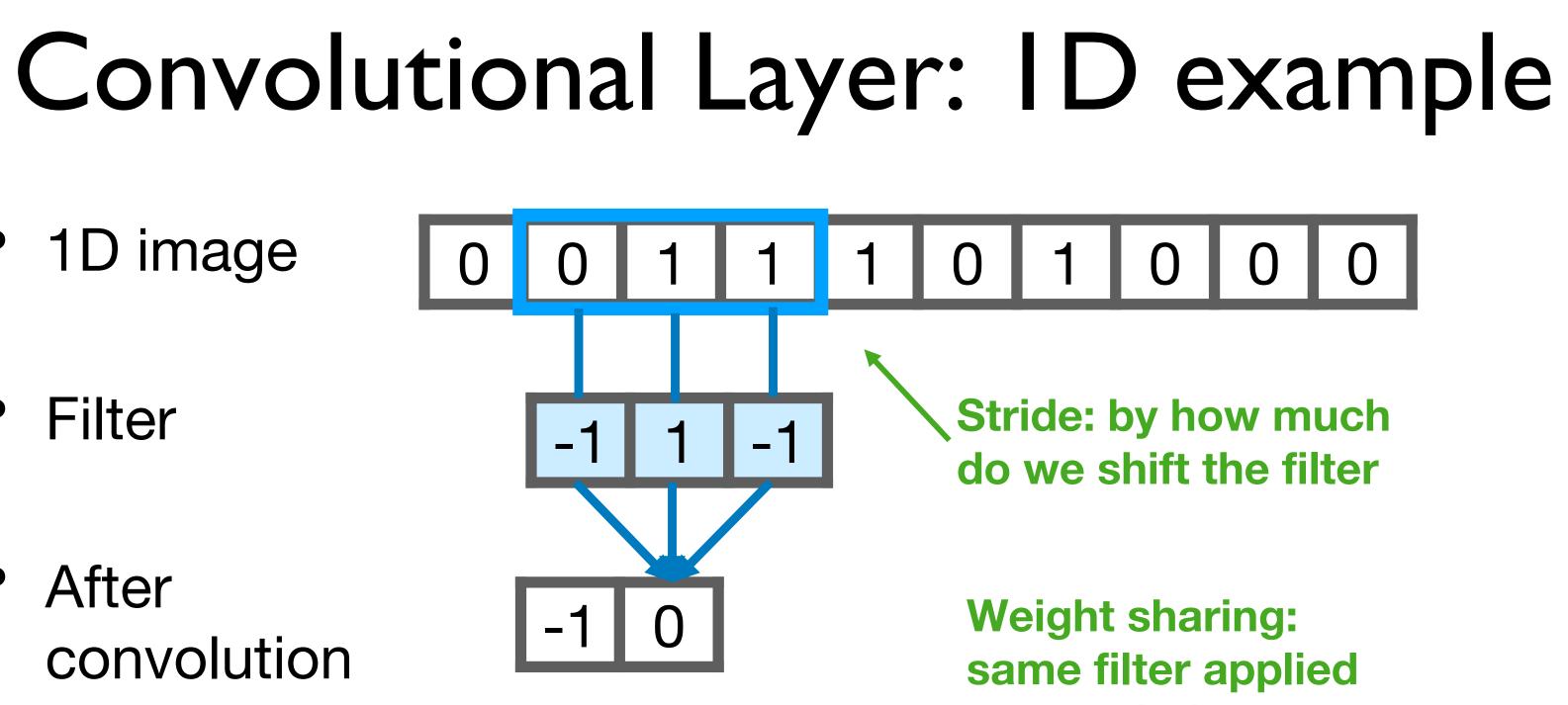
1 1 0 1 0 0

Convolutional Layer: ID example 0 0 0 0 -1 -1

- 1D image
- Filter
- After convolution

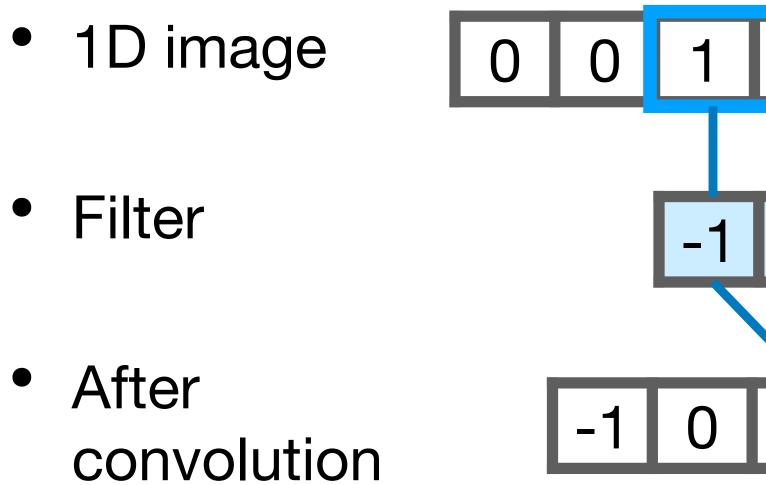


- 1D image
- Filter
- After convolution



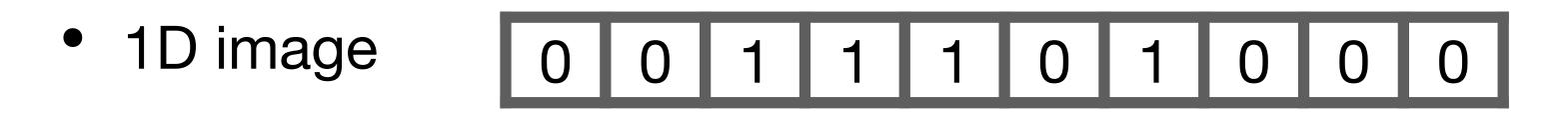
to both (all) patches

Convolutional Layer: ID example • 0 0 0 0 -1 -1 0 -2 1 0 -1 -1| -1

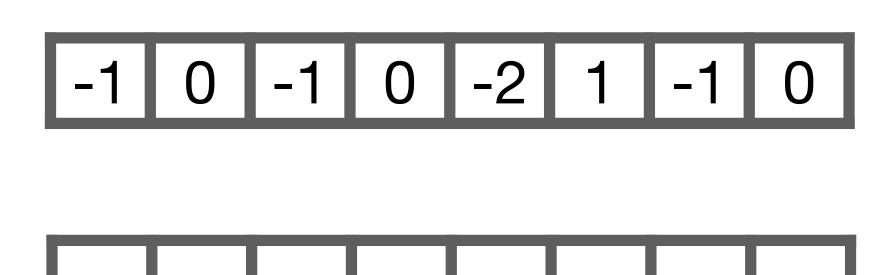


Big advantage: due to weight sharing, needs much fewer weights than a fully connected network

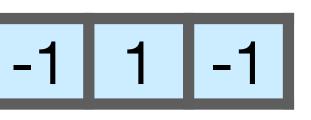
Convolutional Layer: ID example

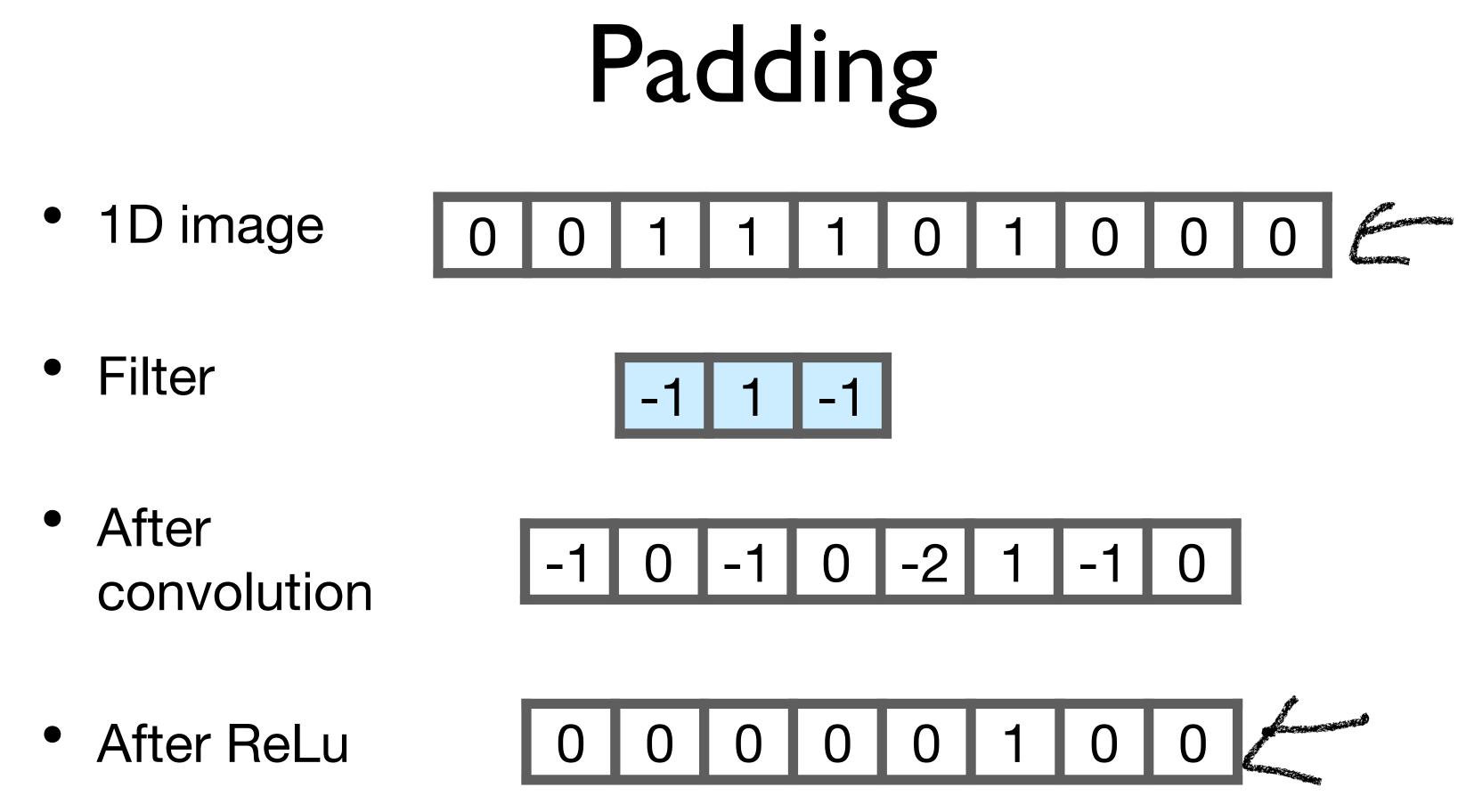


- Filter
- After convolution



After ReLu





Output is smaller! (why?) Remedy: pad input with zeros

Output is smaller! (why?) Remedy: pad input with zeros

Padding

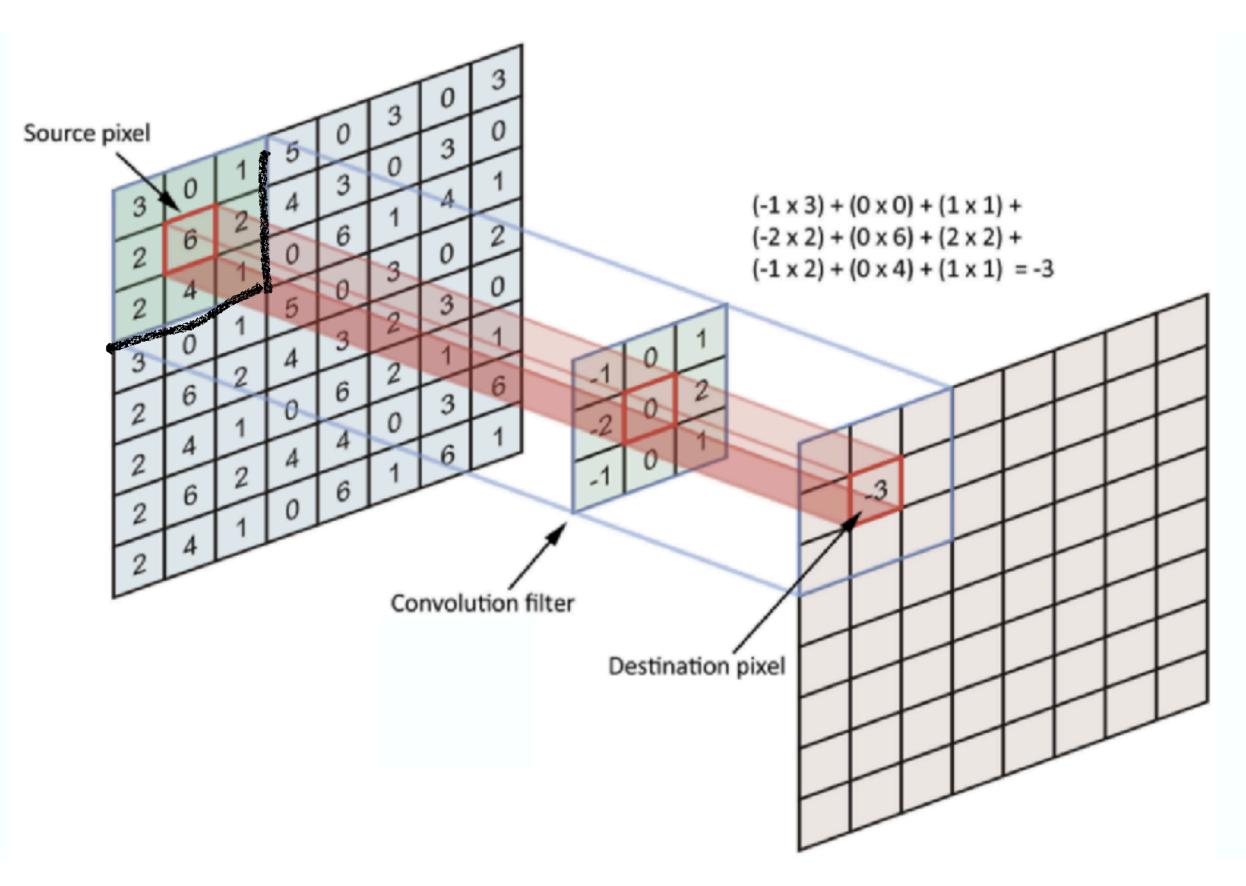
0000 0 1

-1

0 -1 0 -1 0 -2 1 -1 0 0

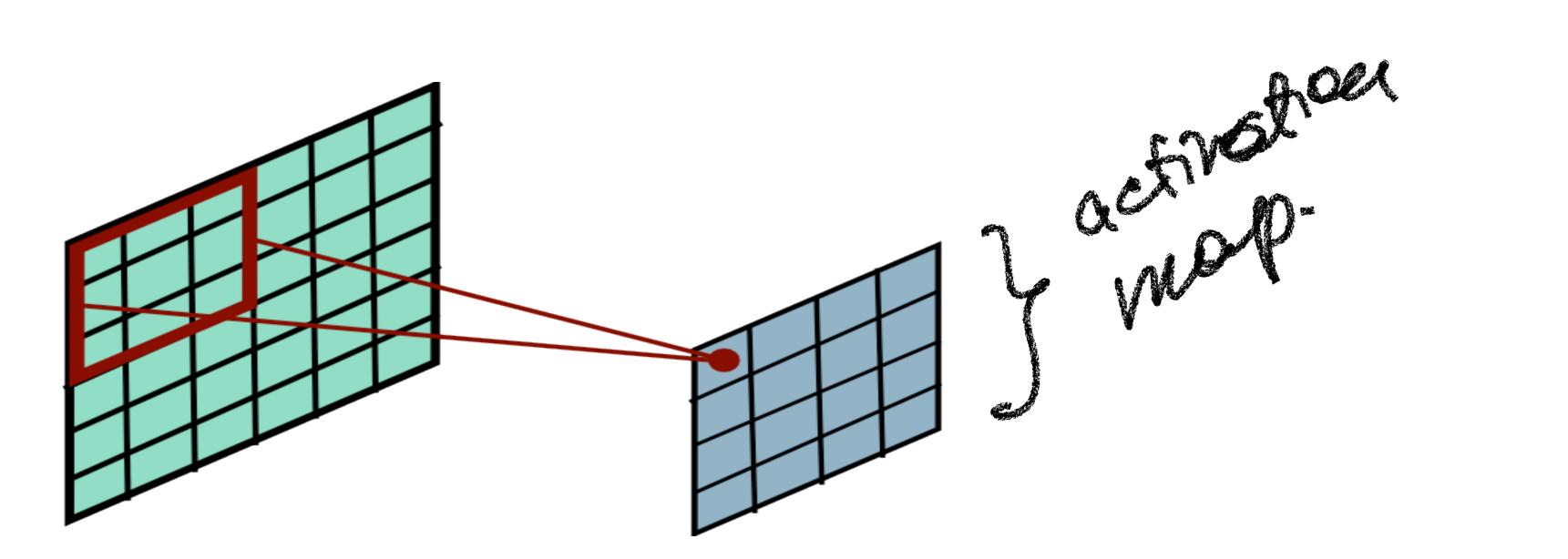
0000000000000

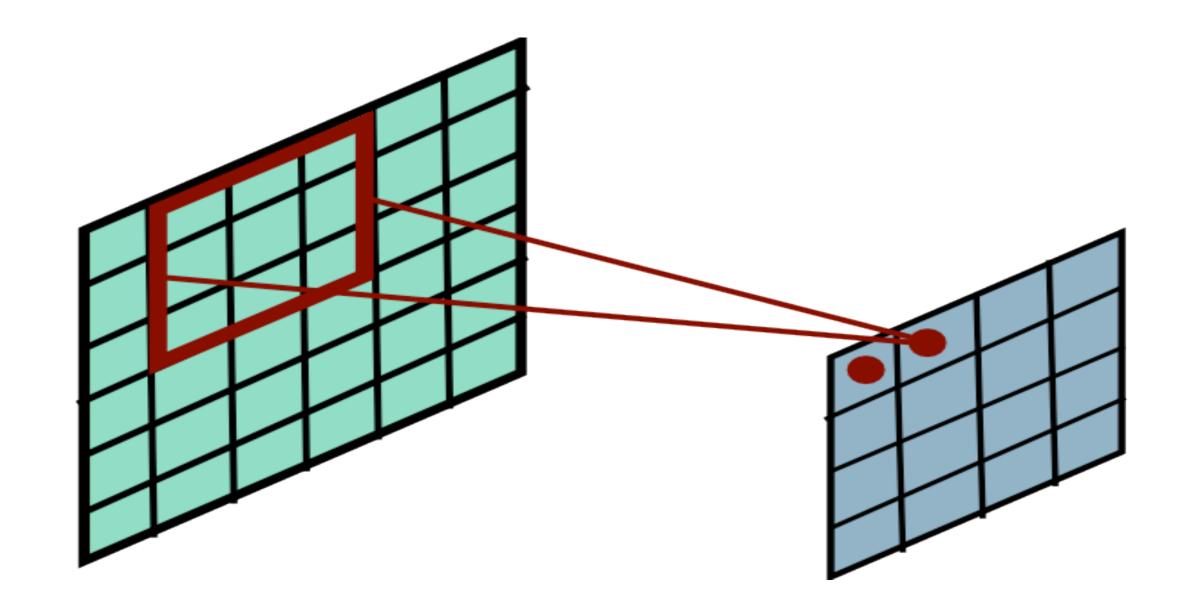
2D Convolutions



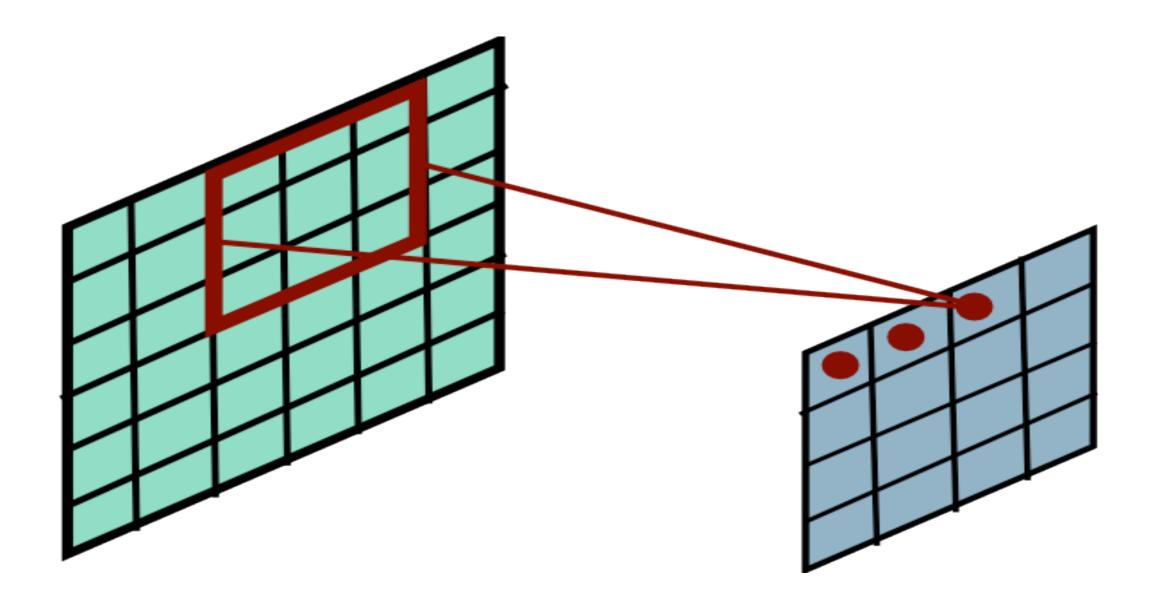
The convolution operation.

Convolutional Layer

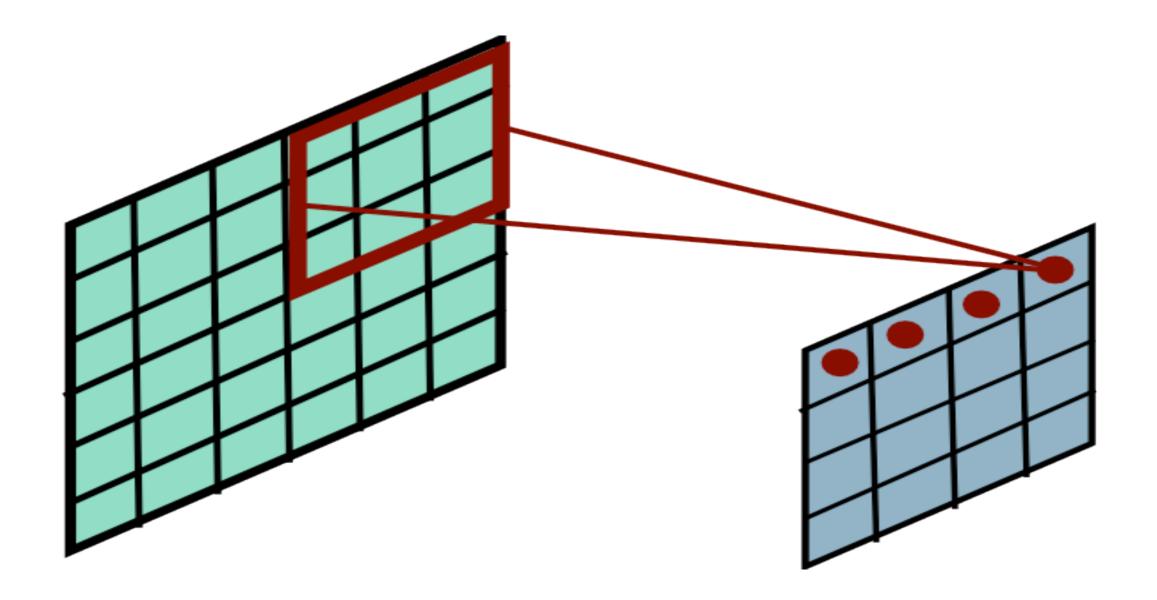




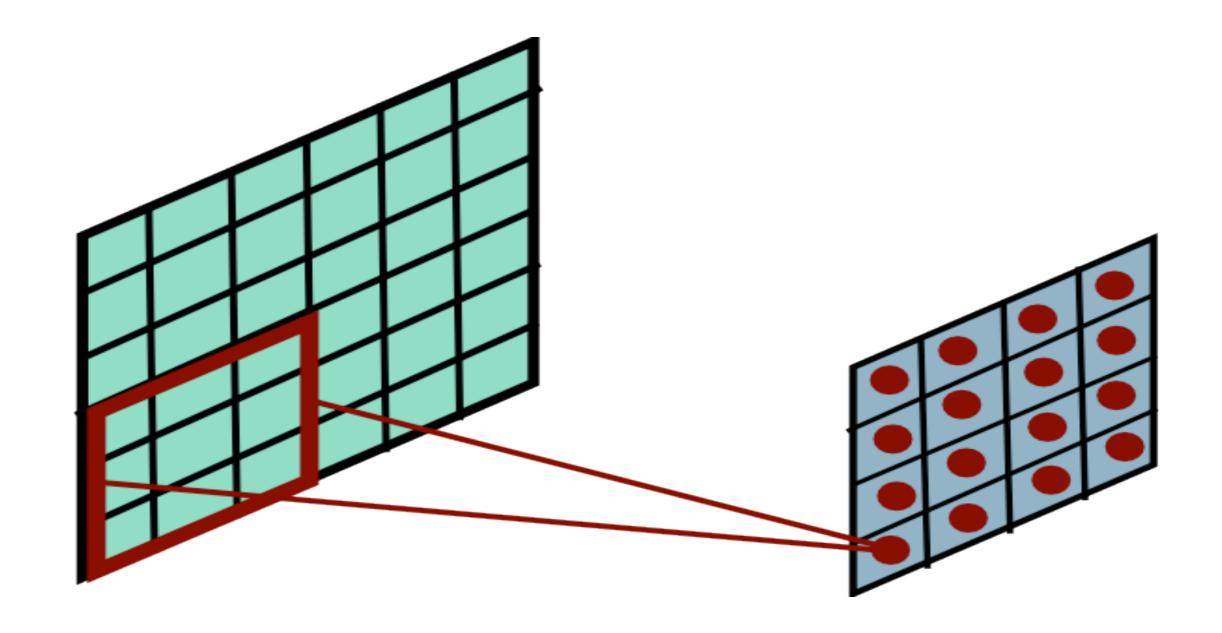
Convolutional Layer



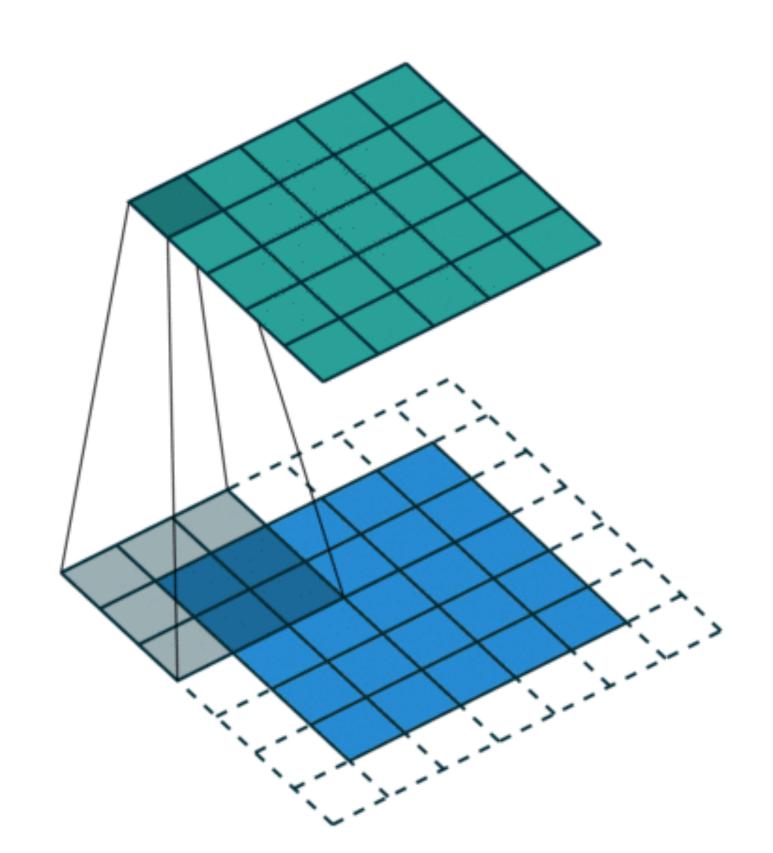
Convolutional Layer



Convolutional Layer

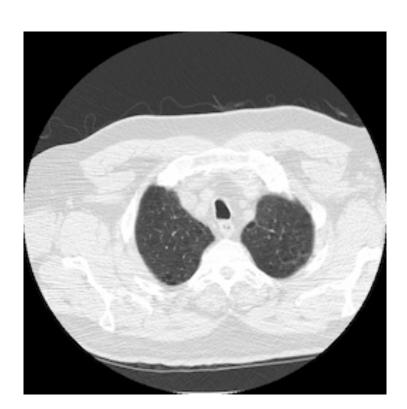


Convolution with Padding



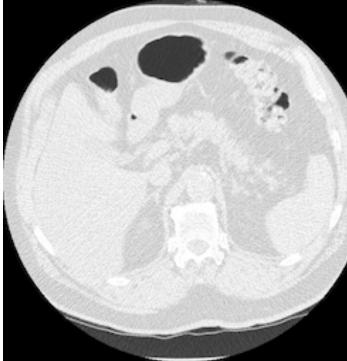
source: Theano, deeplearning.net

Question: How would you apply this idea to a CT-scan?

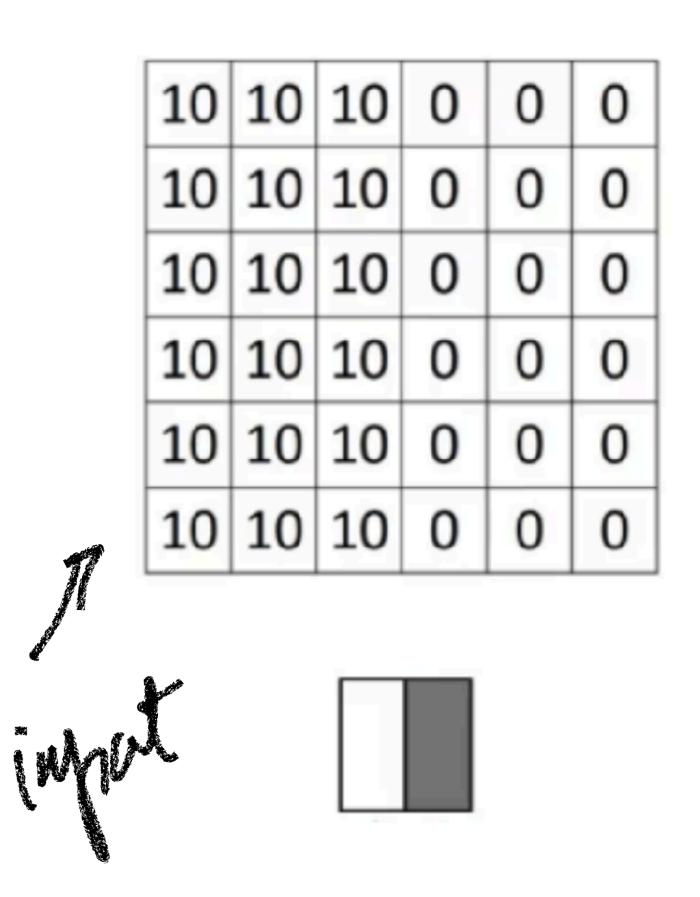


Question: How would you apply this idea to a CT-scan?

3D Convolutions

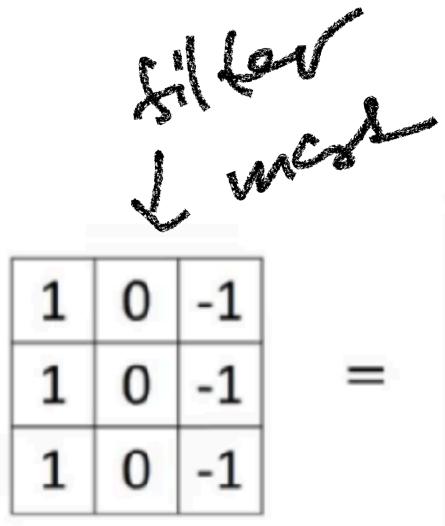


Examples of Convolutions



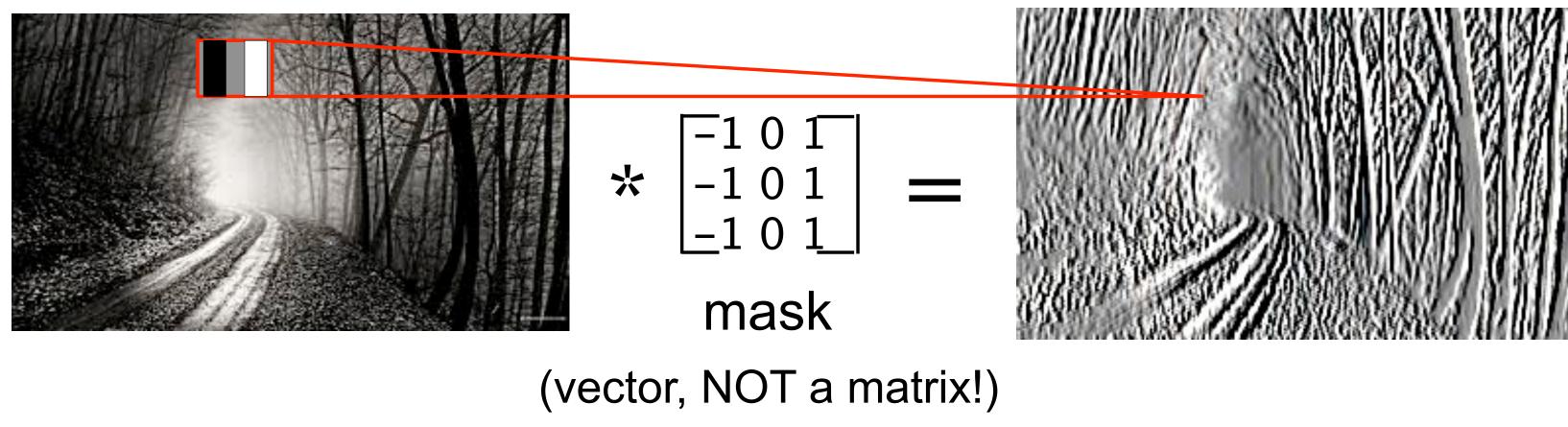
*

*

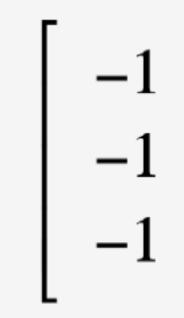


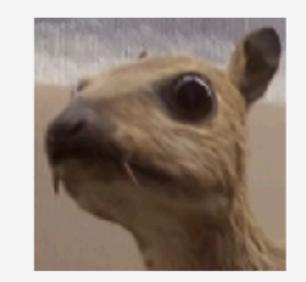
0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

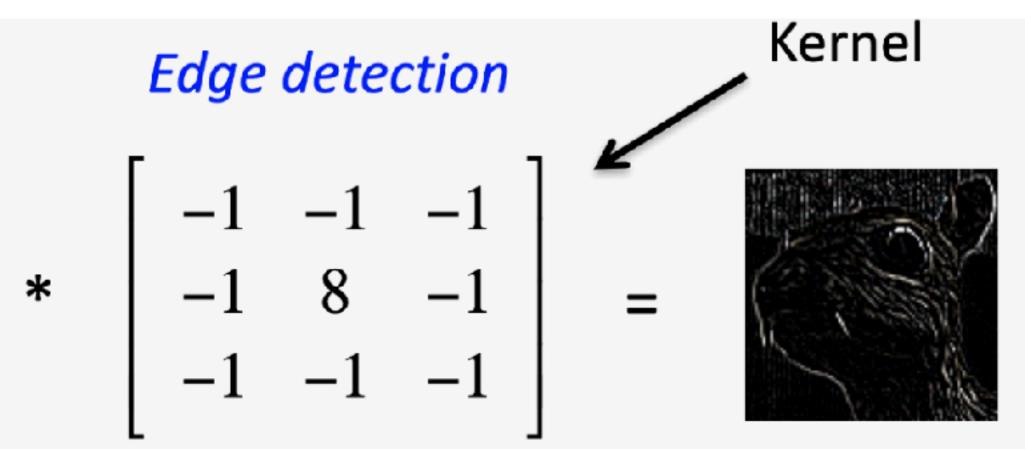
Examples of Convolutions



Examples of Convolutions

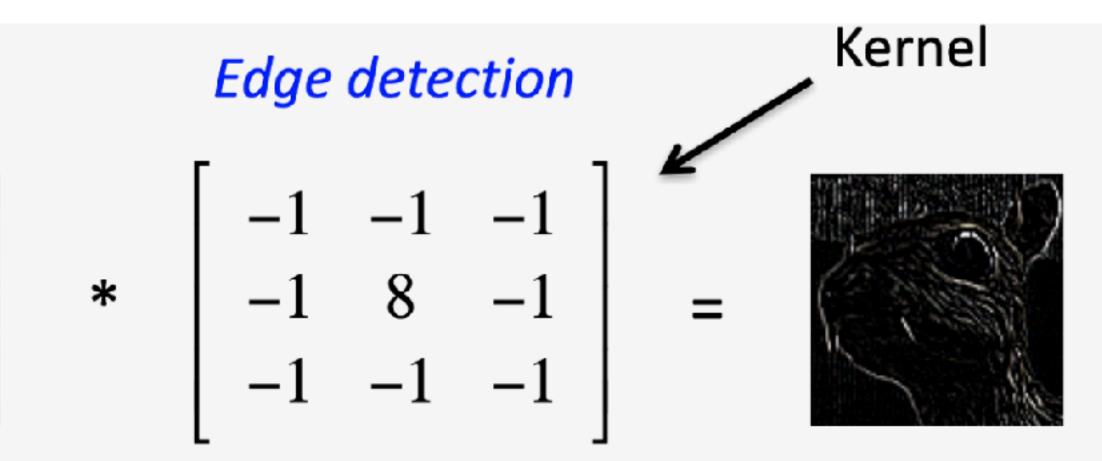




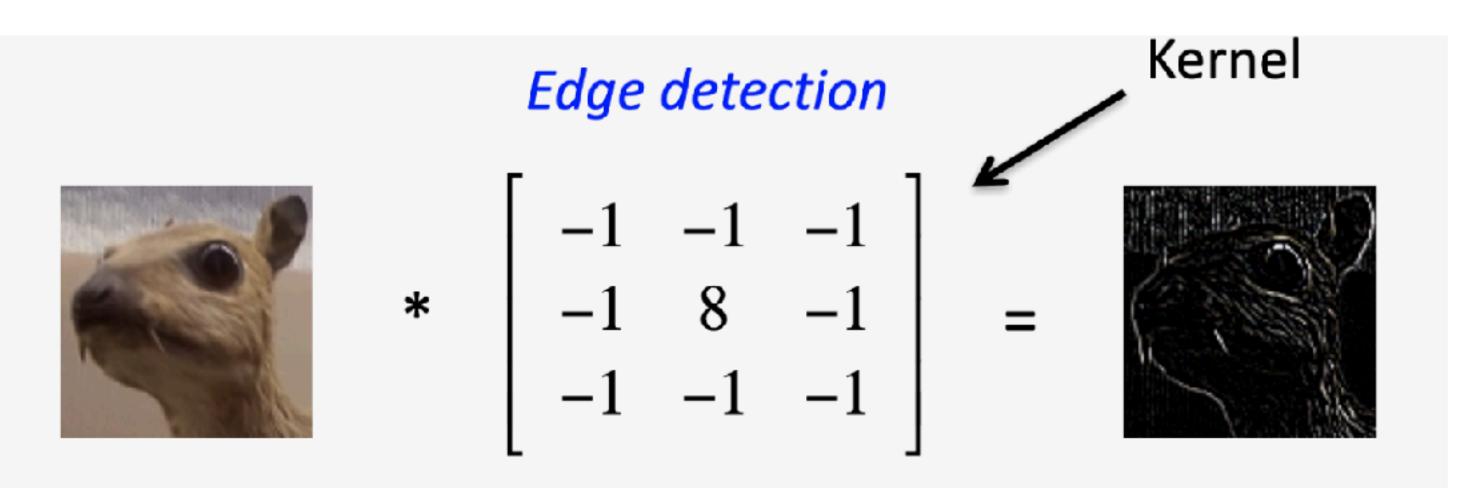


Sharpen

Question: How can we make convolutions more expressive?

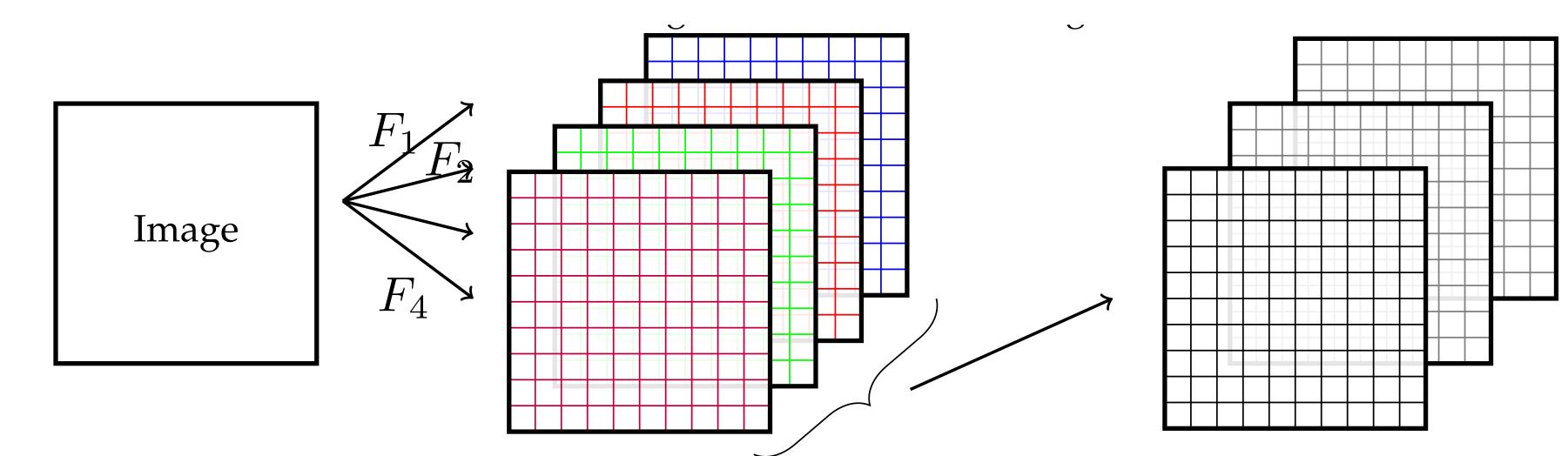


Question: How can we make convolutions more expressive?



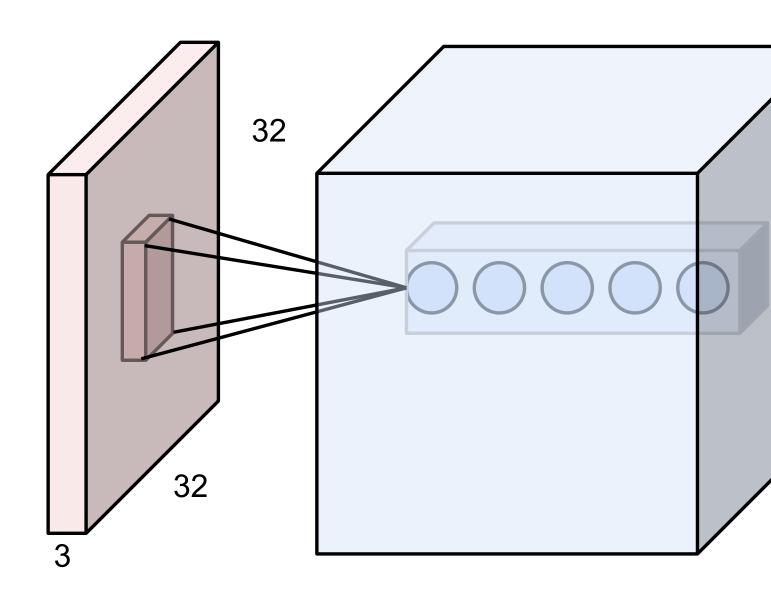
Width: Many kernels in parallel Depth: Composing kernels

Multiple channels/filters



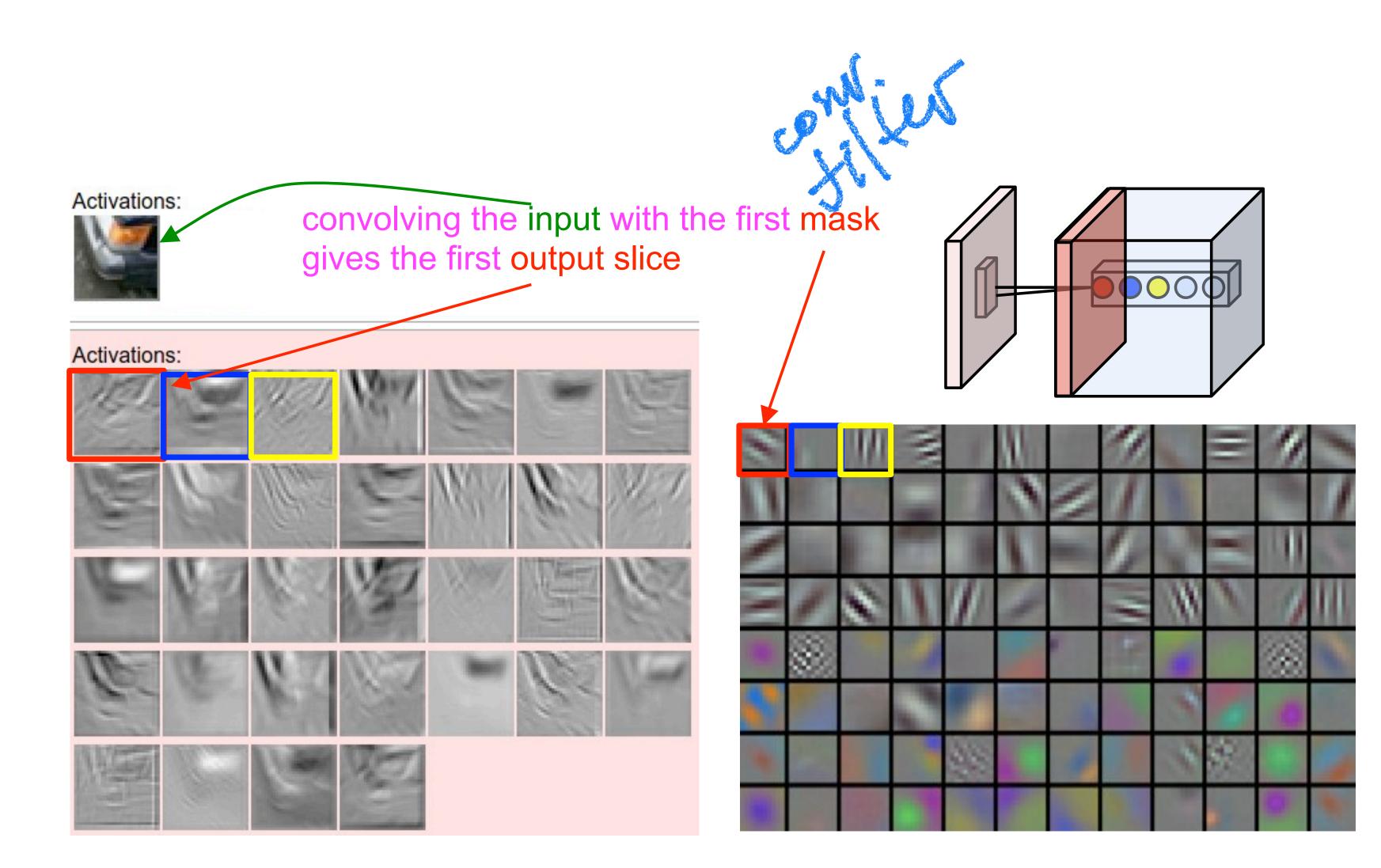
Channels: outputs of convolution

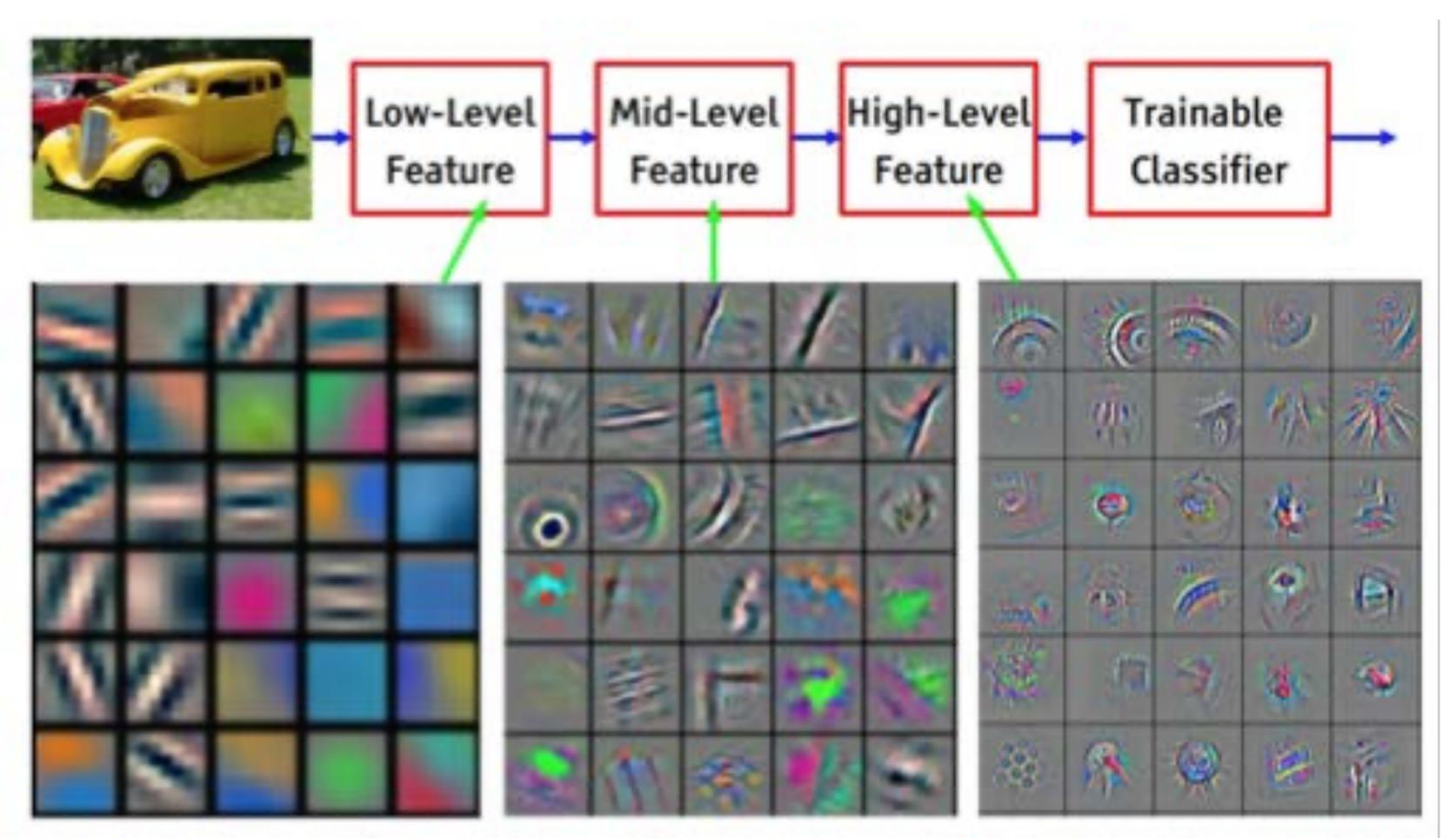
Filter bank: Collection of filters in a layer



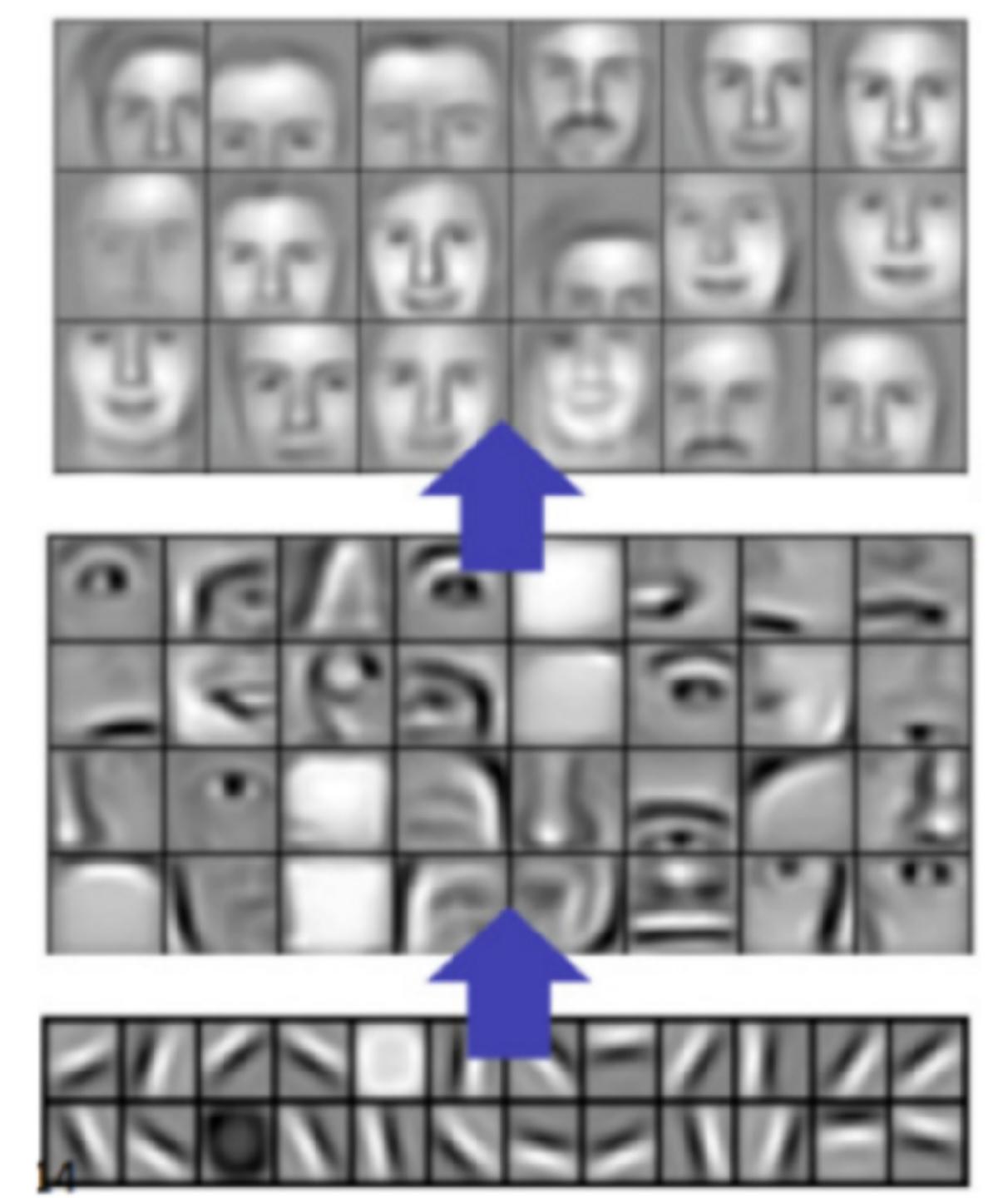
Hidden layer of "depth" 5: five neurons all looking at the same patch; five different masks.

Apply the same 5 masks to each patch. Five neurons per patch.





Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

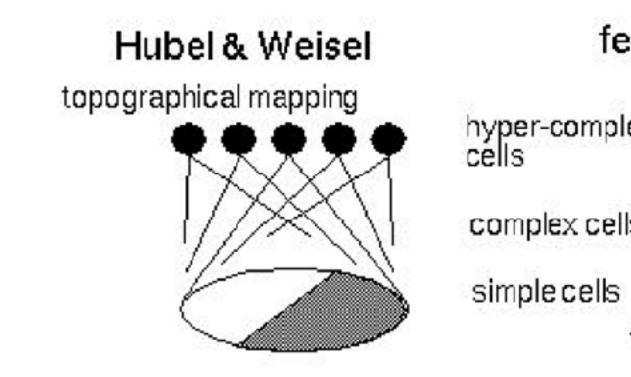


Layer 3

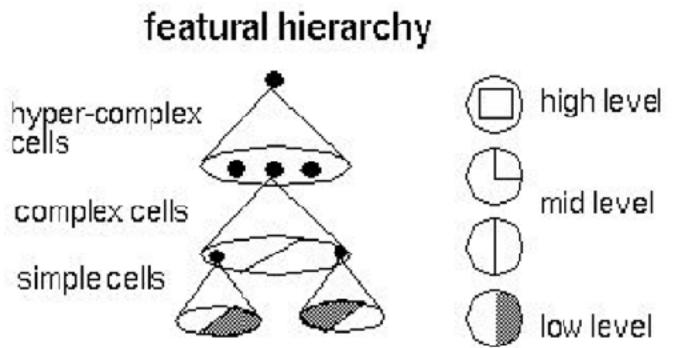
Layer 2

Layer 1

- Hierarchical pattern recognition - edges -> simple parts-> parts -> objects -> scenes
- Hubel/Wiesel Architecture (1959, 1962, Nobel Prize, 1981)



What Humans Do?



 Capture spatial dependencies: convolutions - spatial locality

• Handle Translations: pooling - abstract away locality

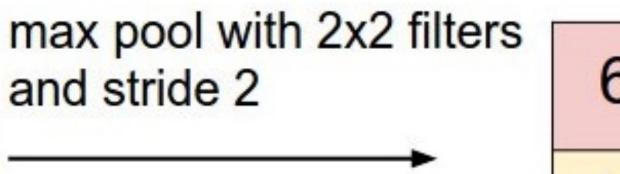
Robustly scale for large images: weight sharing - apply the same detector to all the patches

single slice

x	1	1	2	4
	5	6	7	8
	3	2	1	0
	1	2	3	4
				y

of a weighted sum

Max Pooling

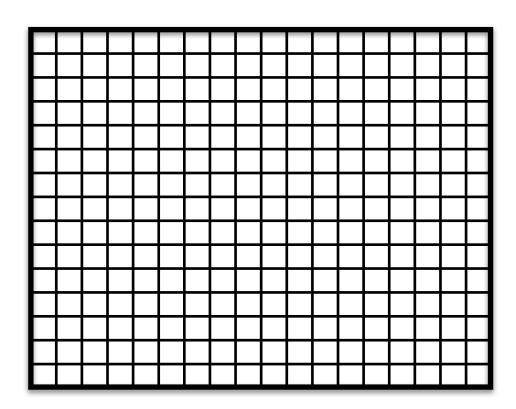


6	8
3	4

Similar to filtering, but output the maximum entry instead

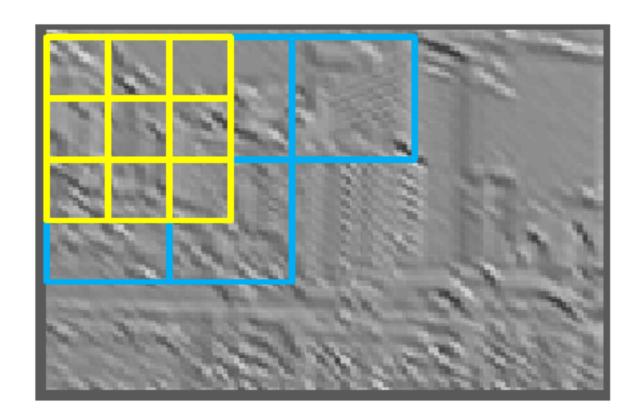
We wish to know whether a feature was there but not exactly where it was

feature map



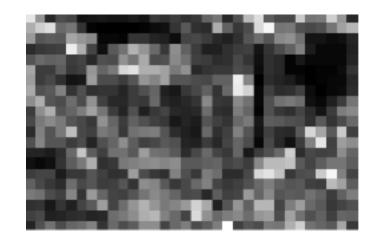
pooled map

- Pooling region and "stride" may vary resolution
 - stride reduces the size of the resulting feature map

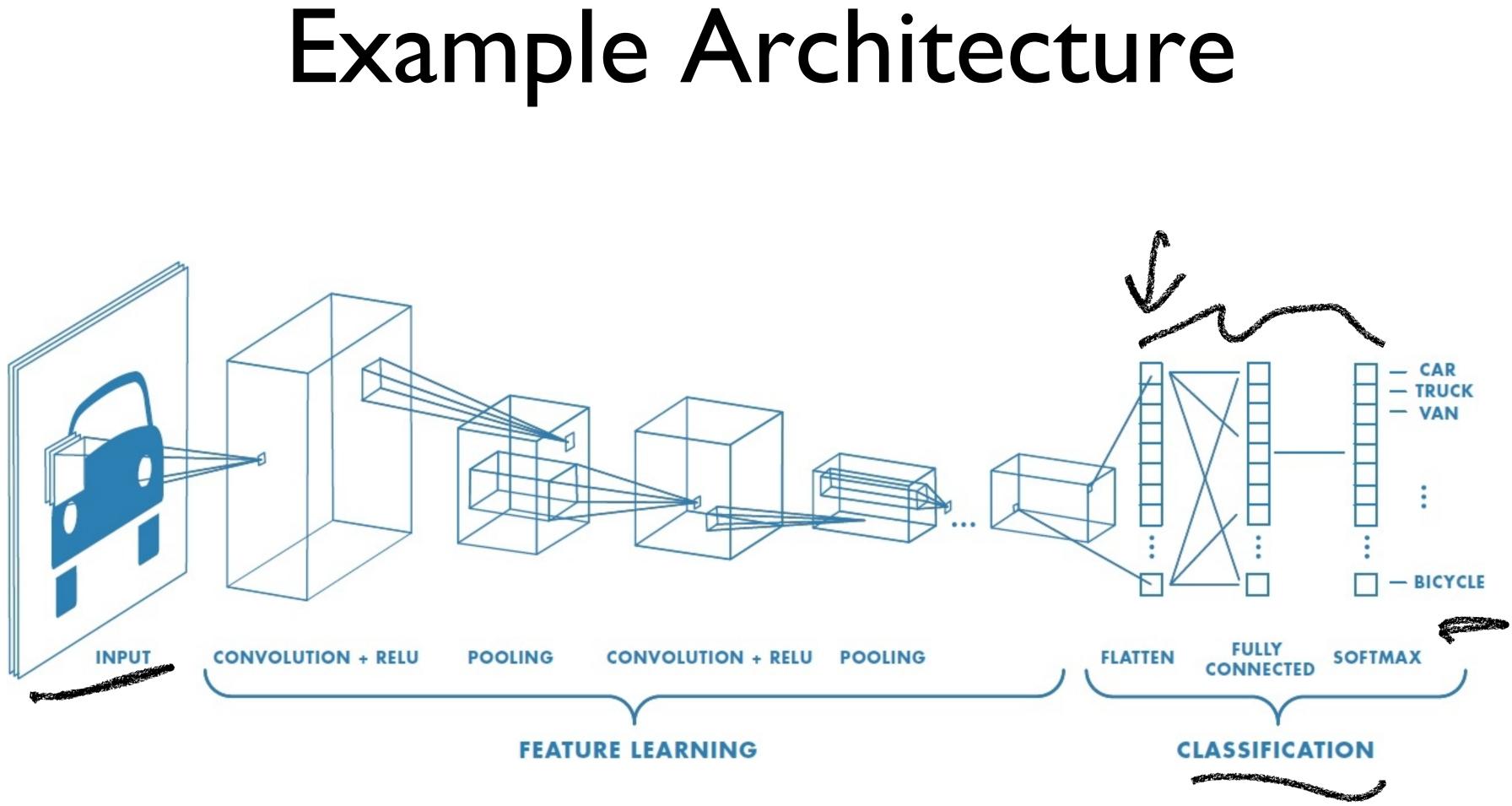


feature map

- pooling induces translation invariance at the cost of spatial



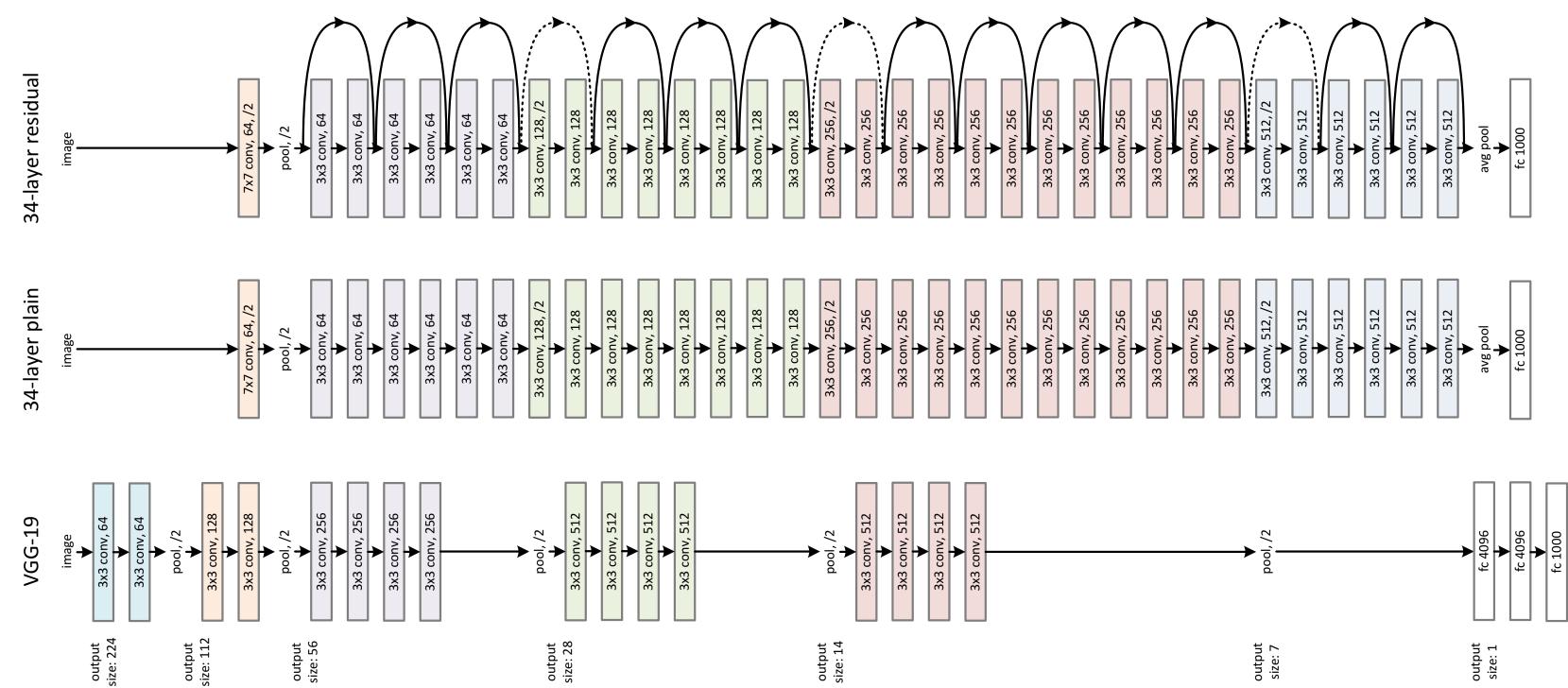
feature map after max pooling



Trainable via SGD and back-propagation

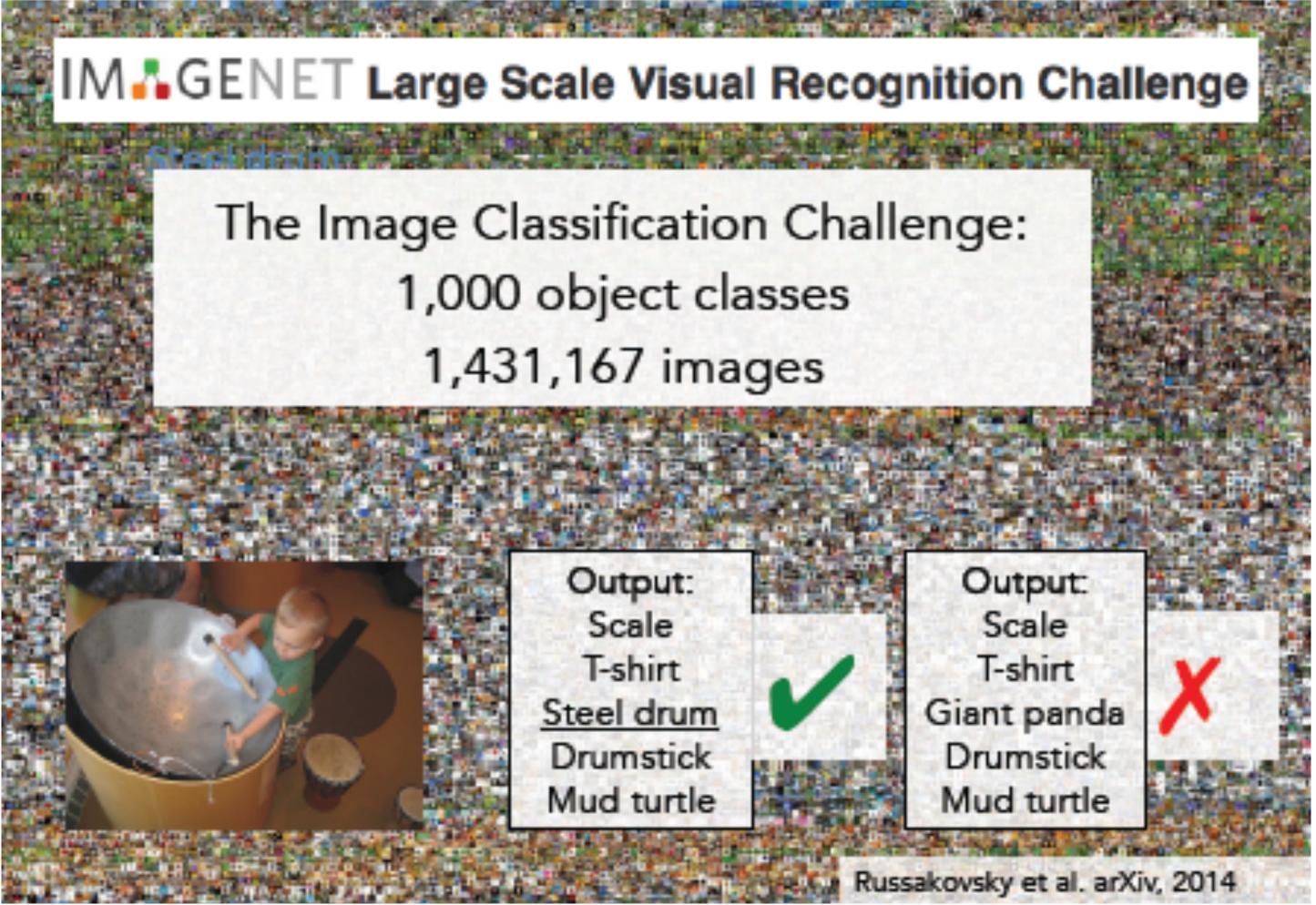
https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html

A bit more modern...



Resnet (2015)

[He et al. 2015]



 ImageNet classification (what's it about) - over a million images, 1K image categories

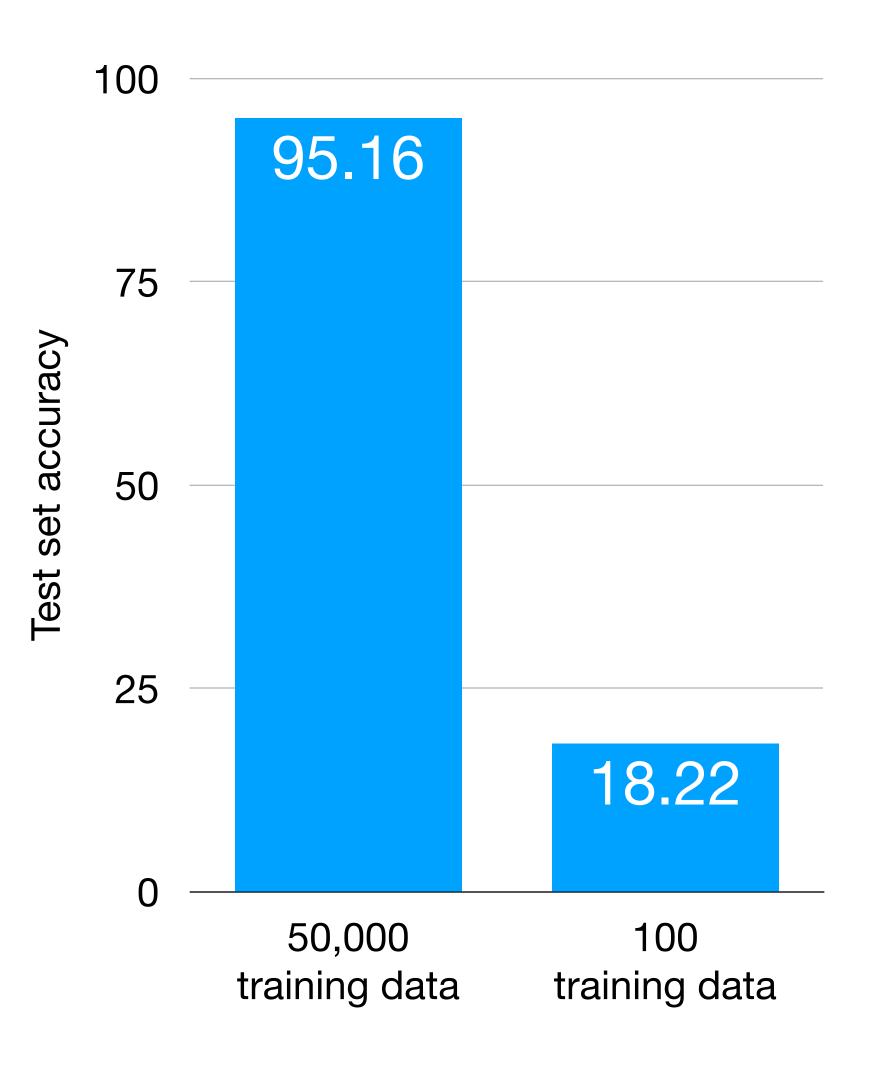
2012 Teams	%error	2013 Teams	%error		2014 Teams	%error
Supervision (Toronto)	15.3	Clarifai (NYU spinoff)	11.7		GoogLeNet	6.6
ISI (Tokyo)	26.1	NUS (singapore)	12.9		VGG (Oxford)	7.3
VGG (Oxford)	26.9	Zeiler-Fergus (NYU)	13.5		MSRA	8.0
XRCE/INRIA	27.0	A. Howard	13.5		A. Howard	8.1
UvA (Amsterdam)	29.6	OverFeat (NYU)	14.1	۱	DeeperVision	9.5
INRIA/LEAR	33.4	UvA (Amsterdam)	14.2		NUS-BST	9.7
		Adobe	15.2		TTIC-ECP	10.2
		VGG (Oxford)	15.2	,	XYZ	11.2
		VGG (Oxford)	23.0		UvA	12.1

[Figure by Yann LeCun]

Models are Data Hungry

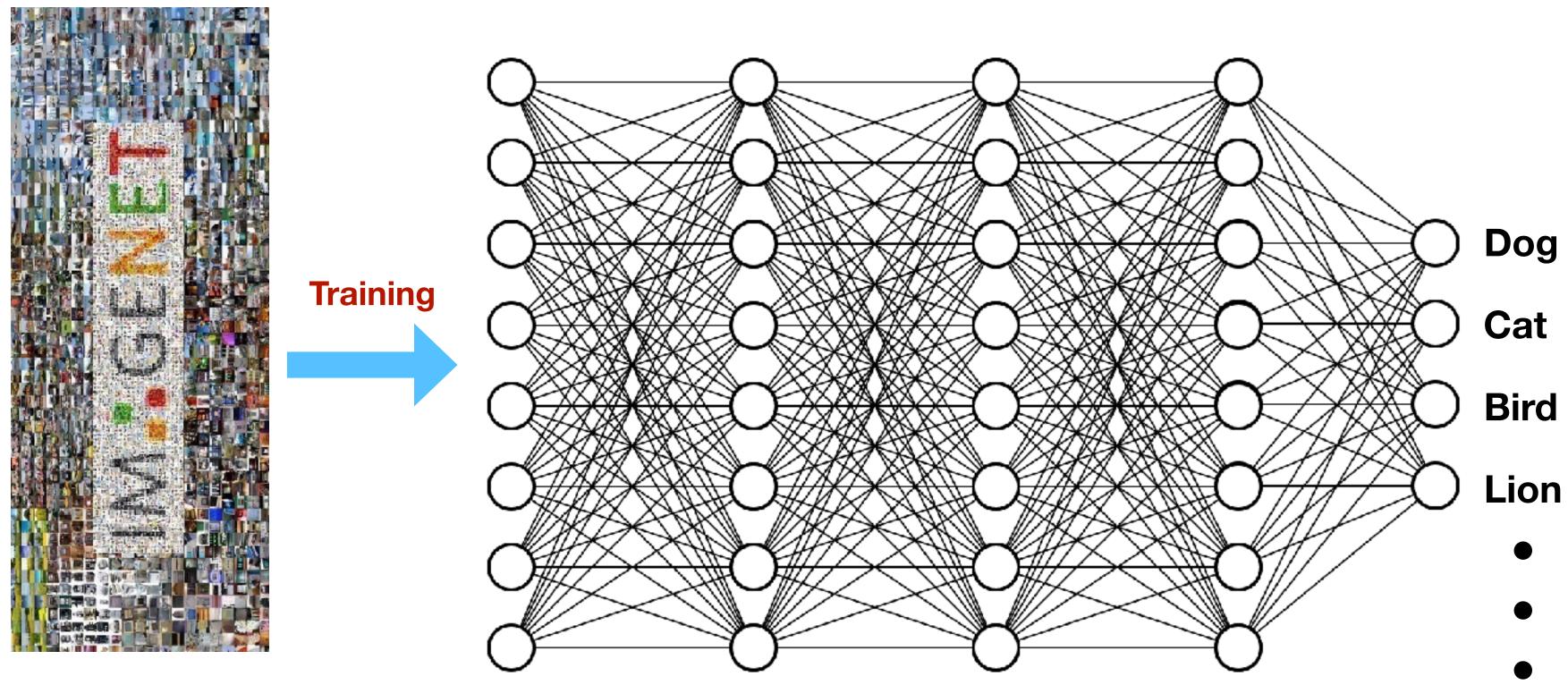
CIFAR-10 dataset

classes: 10
img per class: 5000



Initialization via Pre-Training

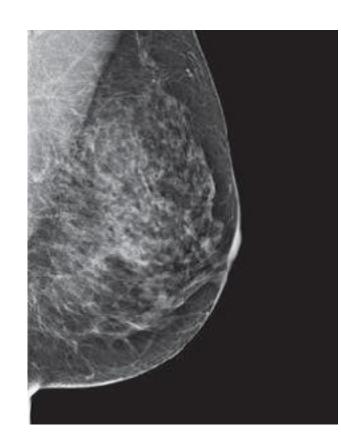
Transfer knowledge acquired from other dataset



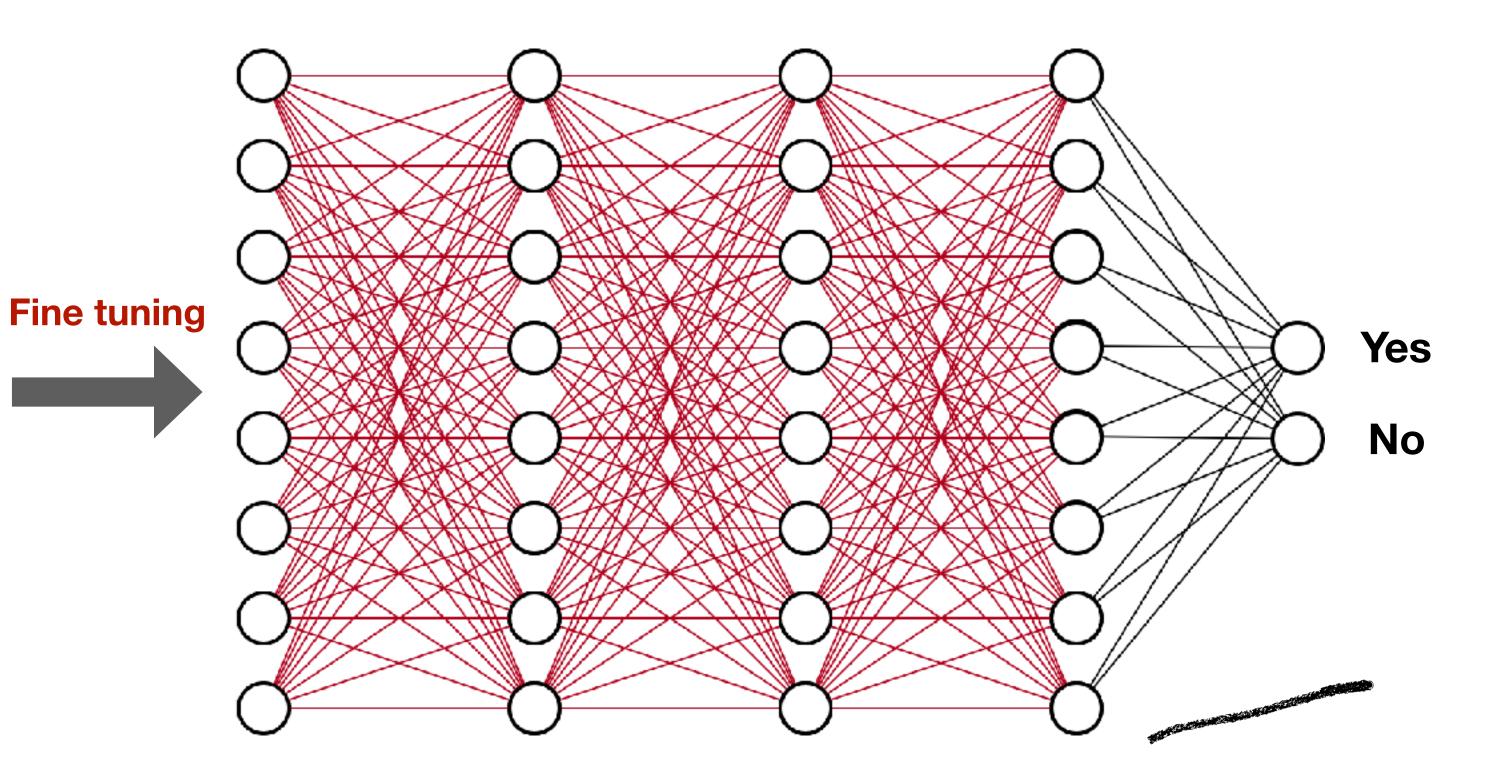
ImageNet dataset: 1.2M labeled images

Initialization via Pre-Training

Weights in red are initialized from the pre-trained model.



Breast cancer detection dataset



Weights in black are initialized from scratch and are updated by SGD during fine tuning stage.

Summary: CNNs

- Convolution: "local detectors" spatial locality
- Weight sharing: apply same detector to all image patches
- Pooling abstract away locality

efficiency: much fewer parameters!, translation invariance

Agenda

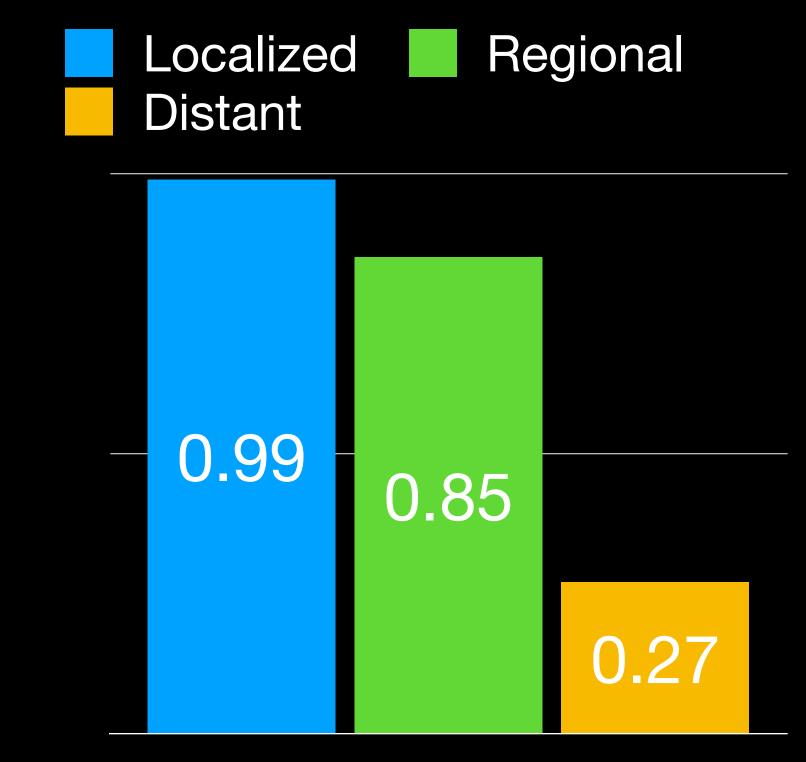
Data: What is medical imaging?

Method Foundations: How do we build models on imaging data?

Applications: How can we catch cancer earlier?

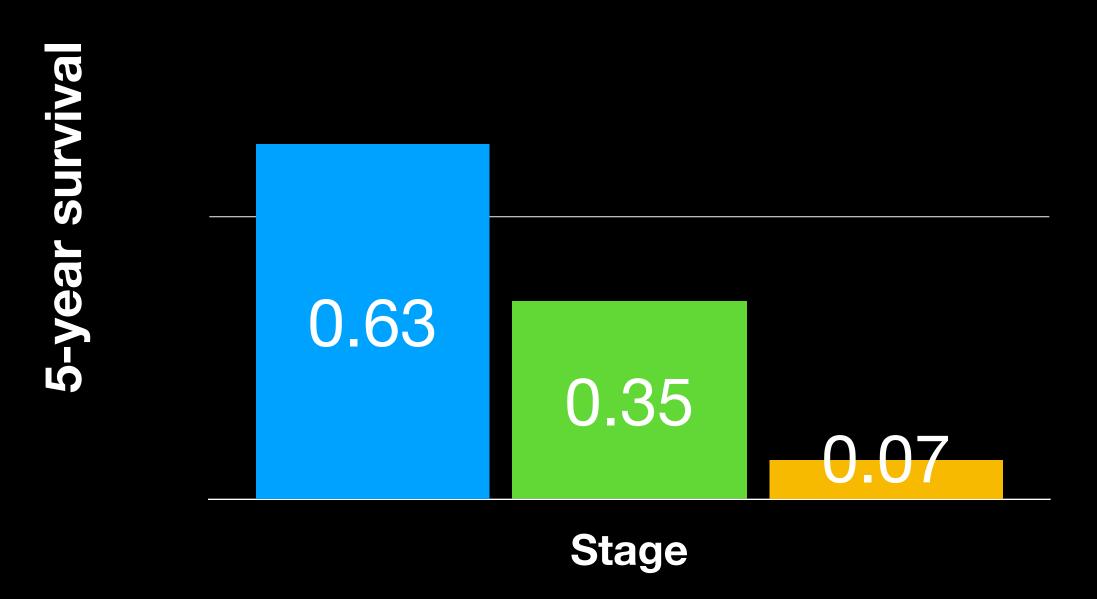
Interpretation: How can we audit our models?

Early Detection is critical



5-year survival

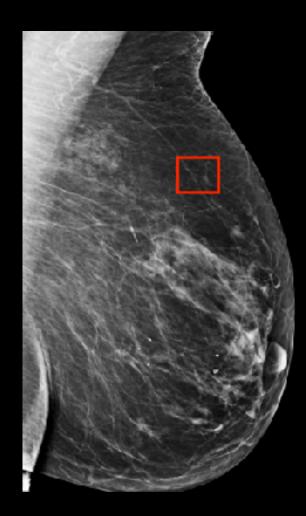
Breast Cancer

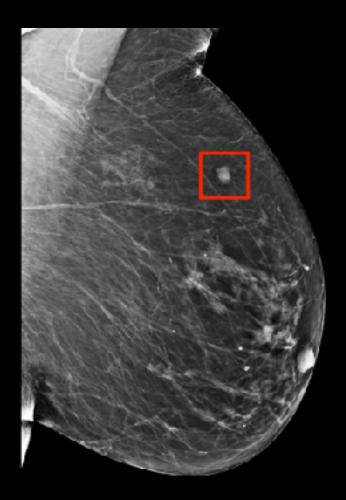


Lung Cancer

How to catch cancer earlier

Predict Cancer Risk

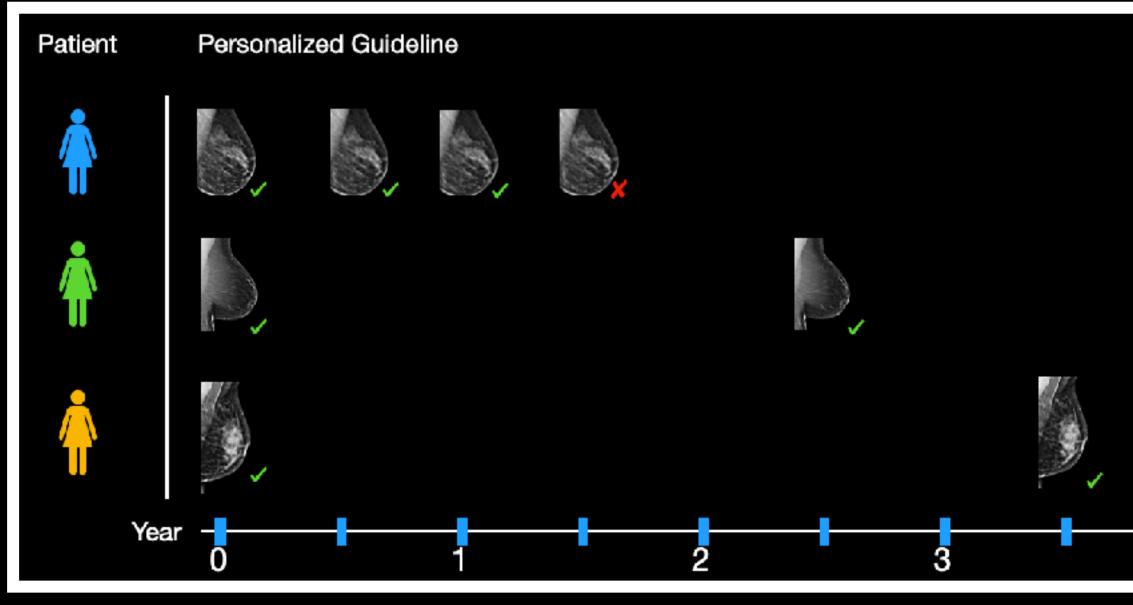




Year 0

Year 5

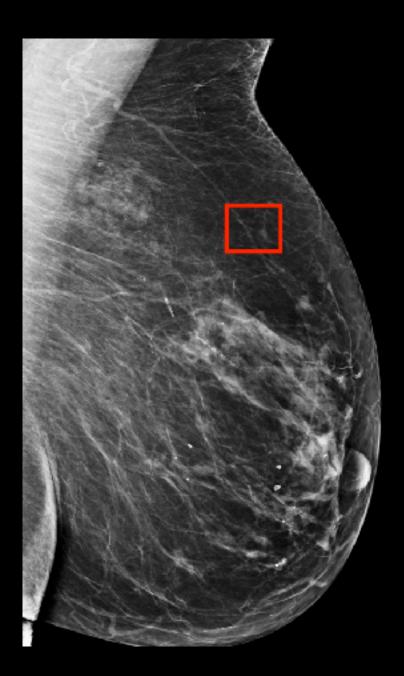
Create personalized screening policy

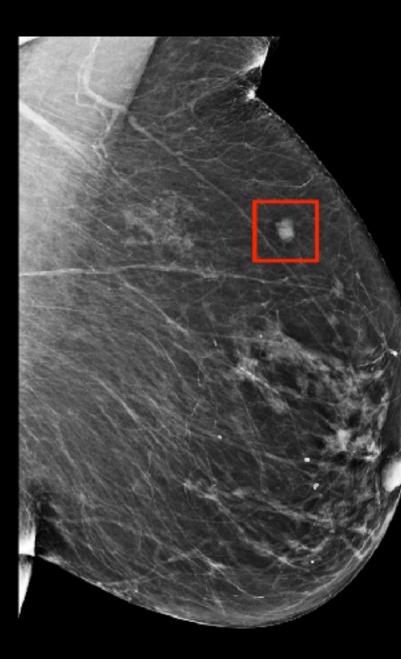


How to catch cancer earlier

Predict Cancer Risk

- Identify which population is at risk of developing cancer





Year 0

Year 5

Journal of Clinical Oncology® An American Society of Clinical Oncology Journal

Multi-Institutional Validation of a Mammography-Based Breast Cancer Risk Model

Adam Yala, MEng^{1,2}; Peter G. Mikhael, BS^{1,2}; Fredrik Strand, MD, PhD^{3,4}; Gigin Lin, MD, PhD⁵; Siddharth Satuluru, BS⁶;

SCIENCE TRANSLATIONAL MEDICINE

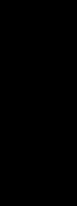
Toward robust mammography-based models for breast cancer risk

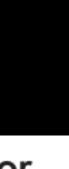
Adam Yala^{1,2}*, Peter G. Mikhael^{1,2}, Fredrik Strand^{3,4}, Gigin Lin⁵, Kevin Smith^{6,7}, Yung-Liang Leslie Lamb⁸, Kevin Hughes⁹, Constance Lehman^{8†}, Regina Barzilay^{1,2†}

Radiology

A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction

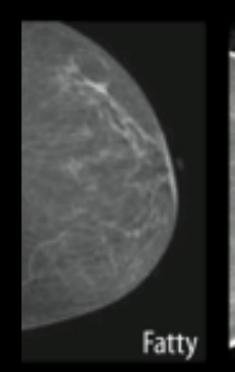
Adam Yala, MEng • Constance Lehman, MD, PhD • Tal Schuster, MS • Tally Portnoi, BS • Regina Barzilay, PhD

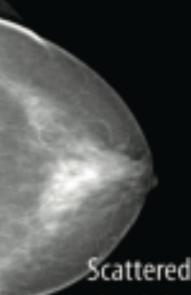




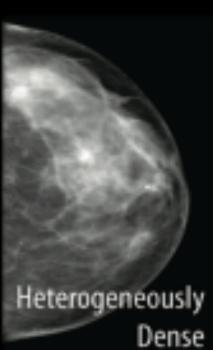
Traditional approach: use expert knowledge

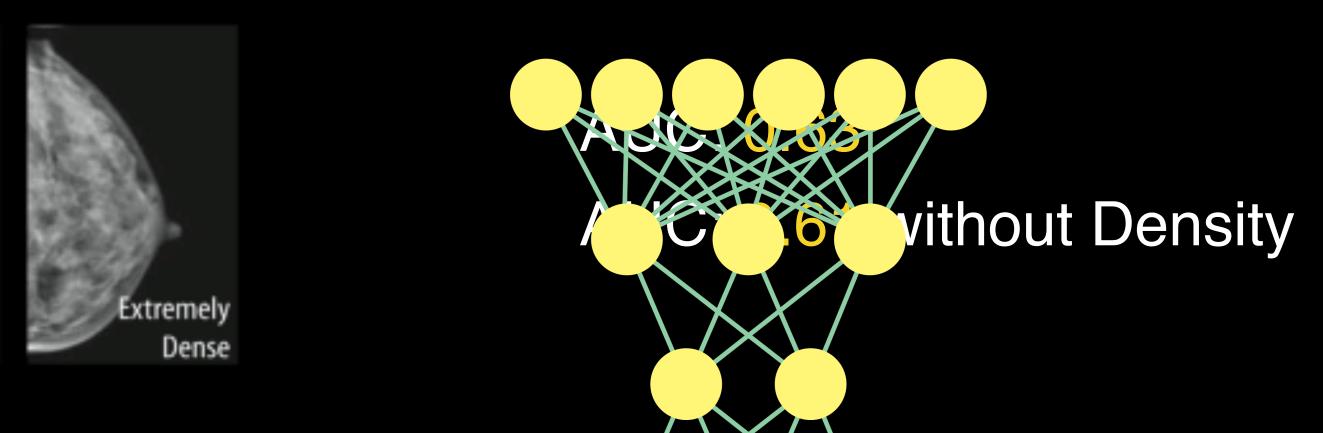
Age **Family History Prior Breast Procedure Breast Density**

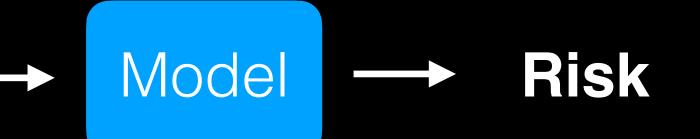




Fibroglandulaı







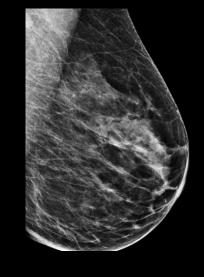
J Natl Cancer Inst. 2006 Sep 6;98(17):1204-14.

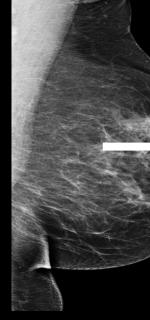
Prospective breast cancer risk prediction model for women undergoing screening mammography.

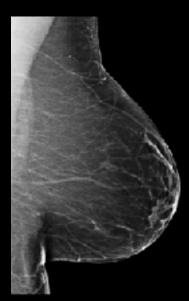
Barlow WE¹, White E, Ballard-Barbash R, Vacek PM, Titus-Ernstoff L, Carney PA, Tice JA, Buist DS, Geller BM, Rosenberg R, Yankaskas BC, Kerlikowske K.

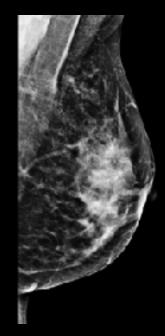
Learning to predict future cancer from imaging

Patient

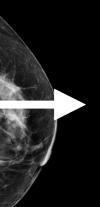








Future Outcome



3 year cancer

No cancer

5 year cancer

2. ResNet

Standard Architecture Resnet-18

2. ResNet

Standard Architecture Resnet-18

3. Image DL

Augmentation: Image **Rotations**

Optimization: Large Batches, Normalization

2. ResNet

3. Image DL

Augmentation: Image Rotations

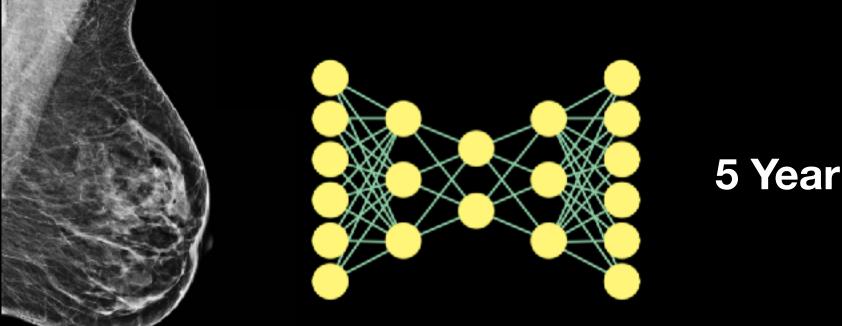
4. MIRAI

Advanced Modeling: New Objective, Predicting Risk Factors, Multi-Image Modeling, Device Invariance

Standard Architecture Resnet-18

Initialization: Imagenet **Optimization: Large Batches, Normalization**

MIRAI: Assessing Breast Cancer Risk

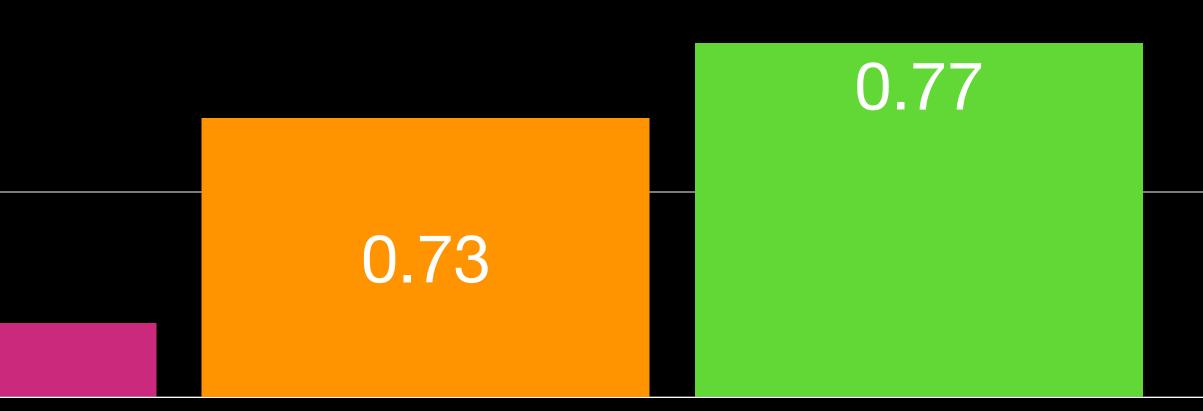


5 Year Breast Cancer Risk

Tyrer-Cuzick (Prior State of Art) ResNet

Trained at MGH Tested on 26,000 holdout exams

Image DL (Ours) MIRAI (Ours - New Result)



MGH Test Set

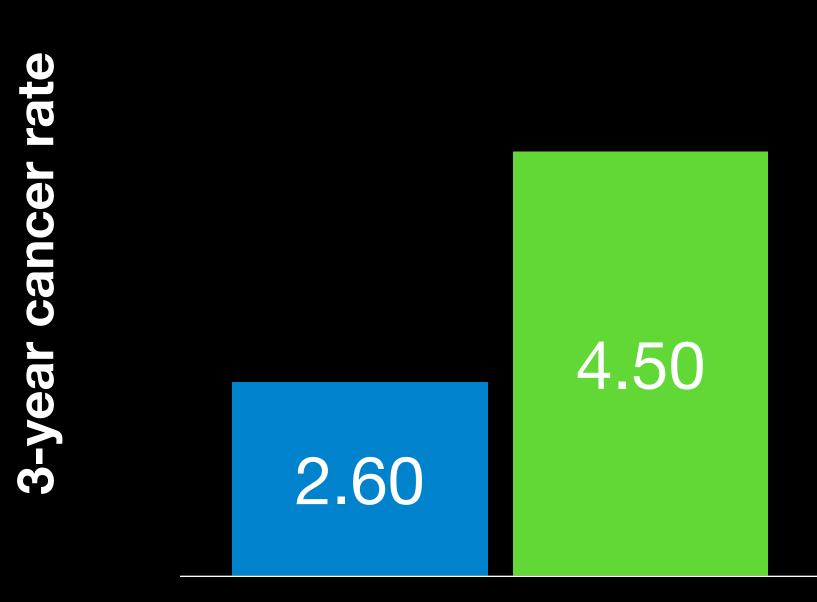
Maintains accuracy across diverse populations

AUC

MGH Test Set

Selecting patients for supplemental imaging

Mirai Low but Tyrer-Cuzick High Mirai High but Tyrer-Cuzick Low



MGH Test Set

Retrospective analysis

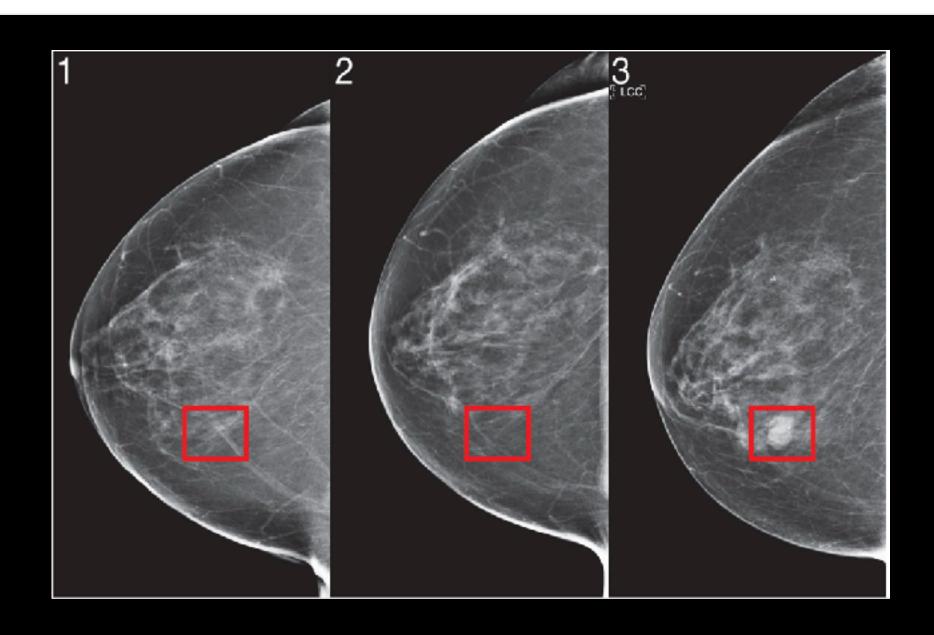
1.7x higher cancer yield, same MRI volume as current care.

Better early detection, same cost.

Mirai Use Cases

Organizing prospective trials for multiple use cases Highlight: Prioritize screening from covid backlog at MGH

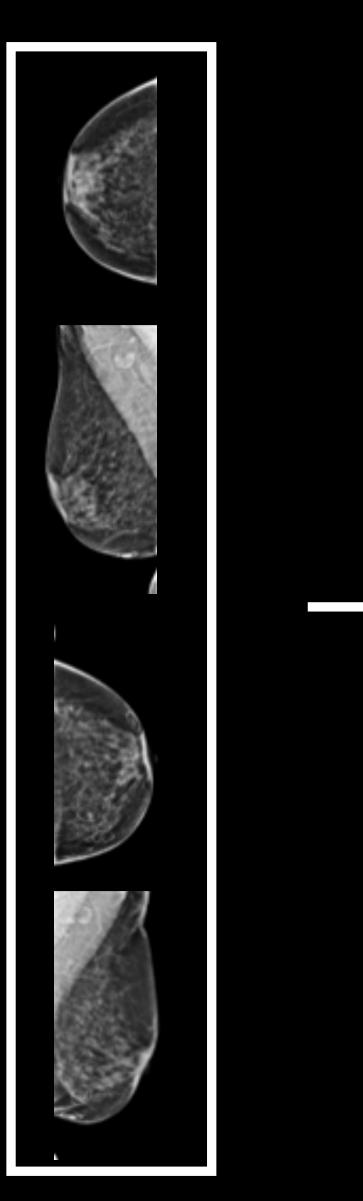
During the pandemic, thousands of women have skipped scans and check-ups. So physicians tapped an algorithm to predict those at the highest risk.

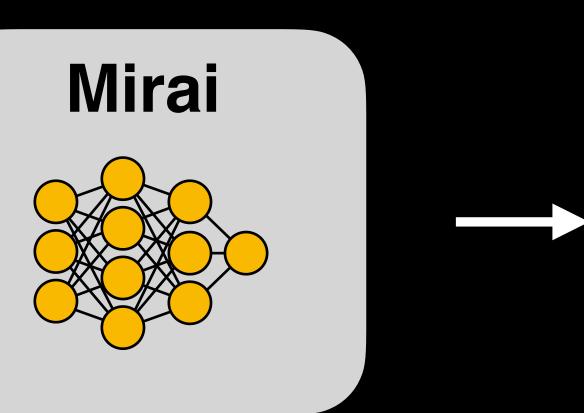


SICH IN

These Doctors Are Using AI to Screen for Breast Cancer

Mirai: Image-based Risk model







2. ResNet

3. Image DL

Augmentation: Image Rotations

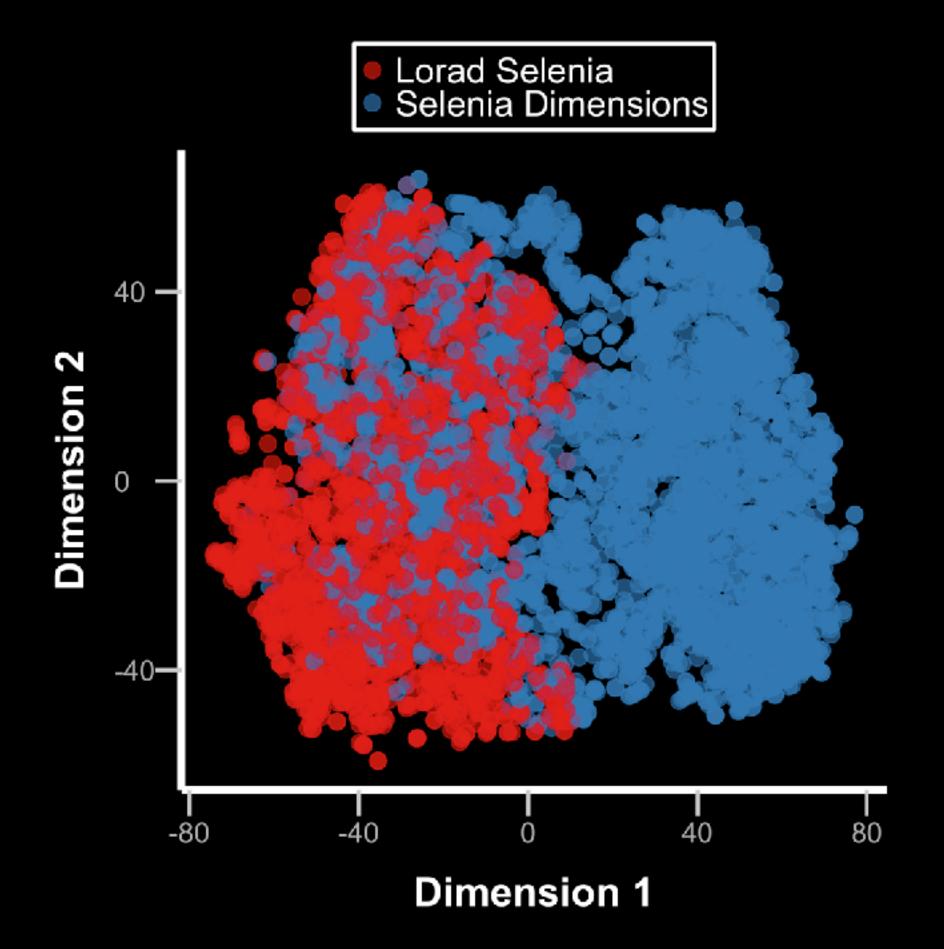
4. MIRAI

Advanced Modeling: New Objective, Predicting Risk Factors, Multi-Image Modeling, Device Invariance

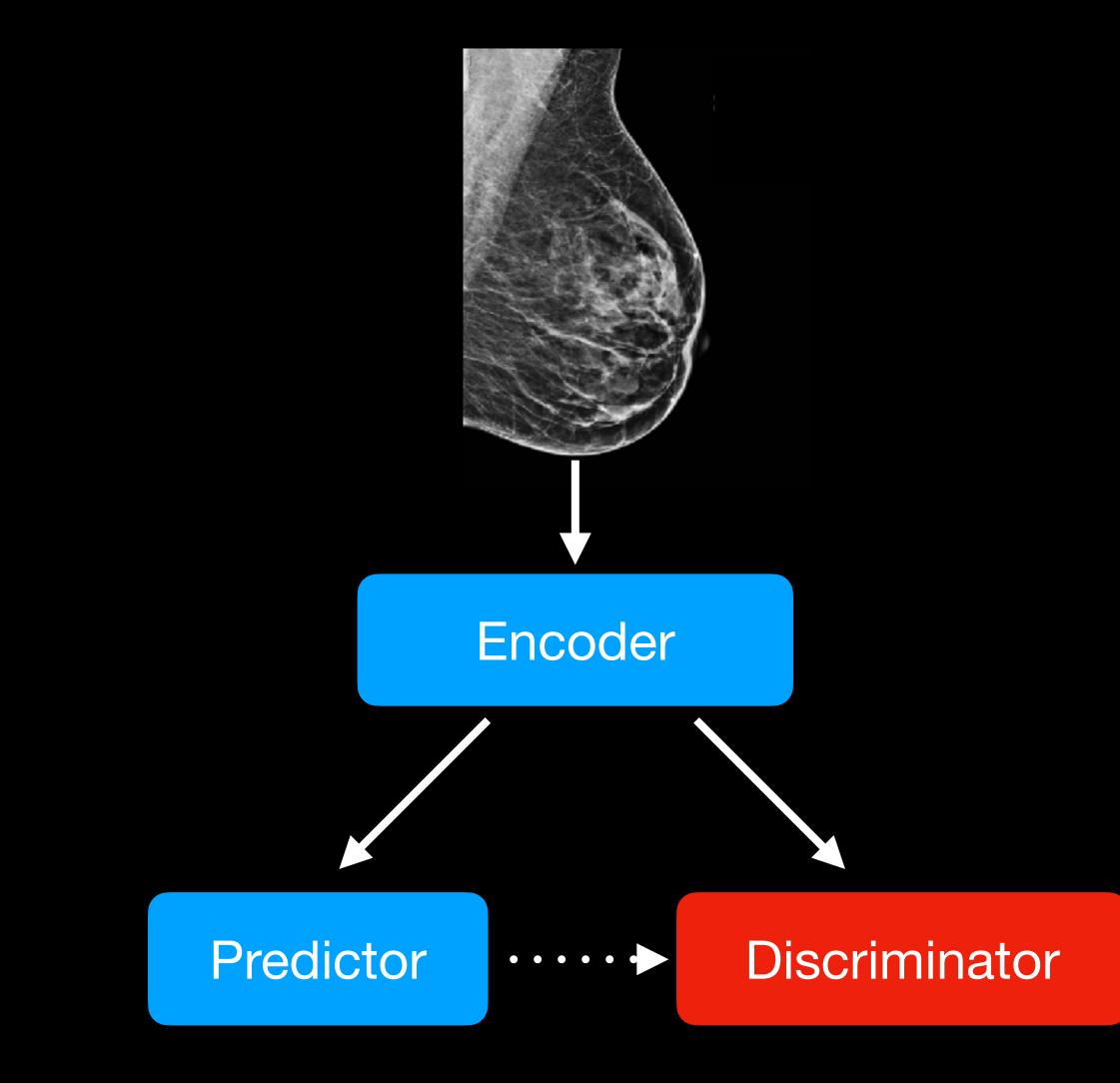
Standard Architecture Resnet-18

Initialization: Imagenet **Optimization: Large Batches, Normalization**

Problem 1: Device Invariance

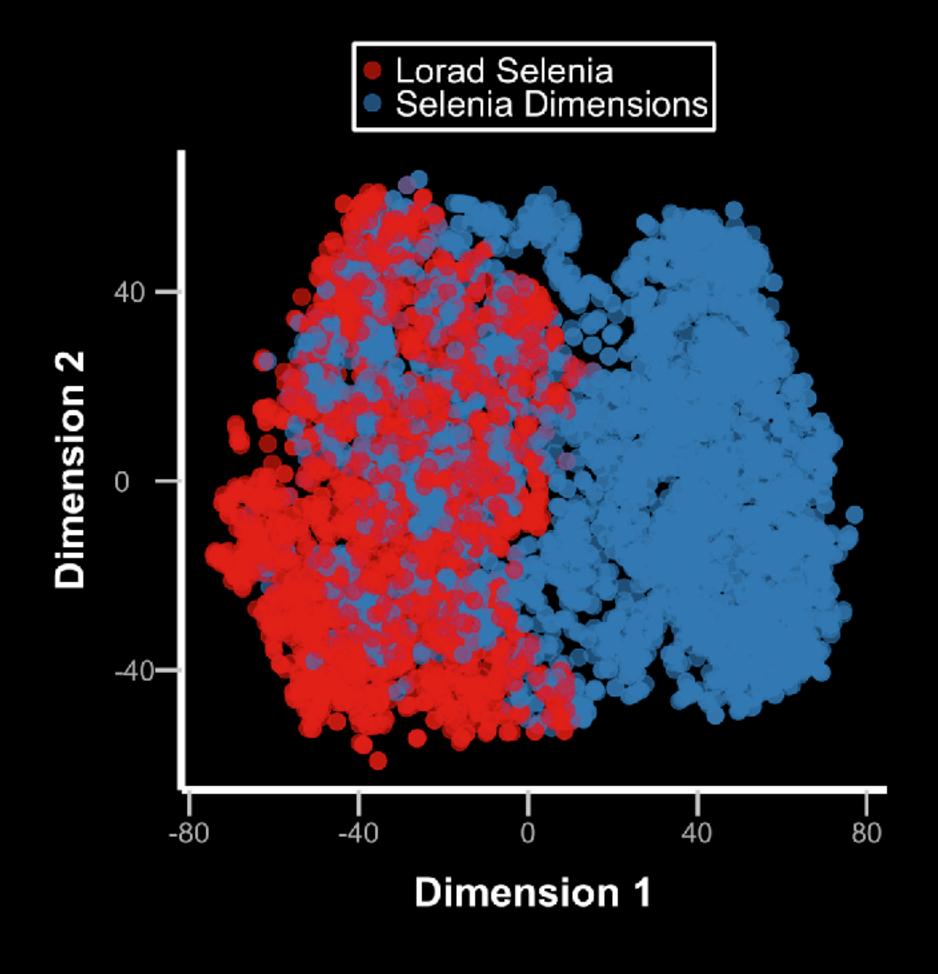


Problem 1: Device Invariance

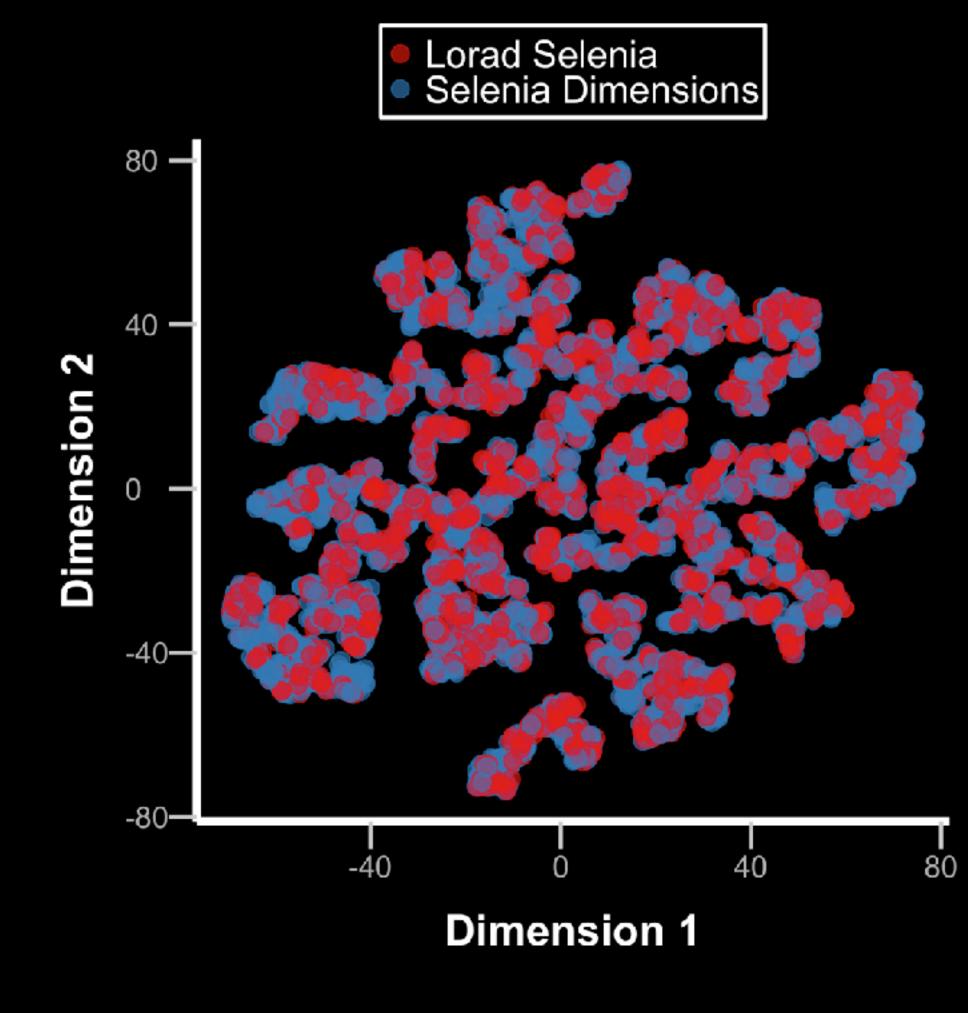


Objective: Max accuracy **Predictor** Min accuracy **Discriminator**

Problem 1: Device Invariance

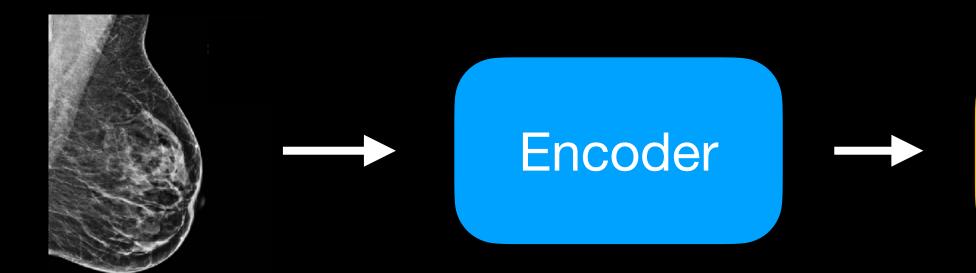


Without Adversary



With Adversary

Problem 2: Missing risk factor data



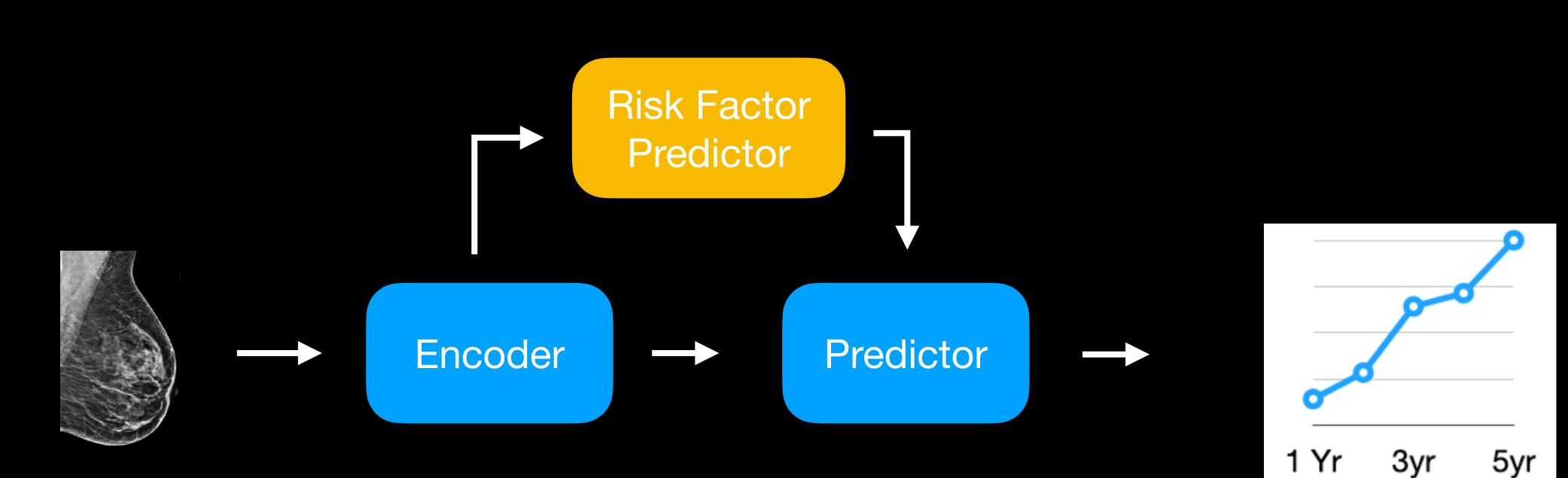
Risk Factor Predictor

Risk Factors

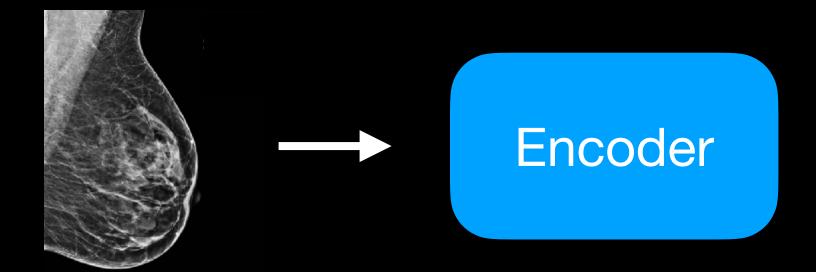
Age Family History Prior biopsy Num children

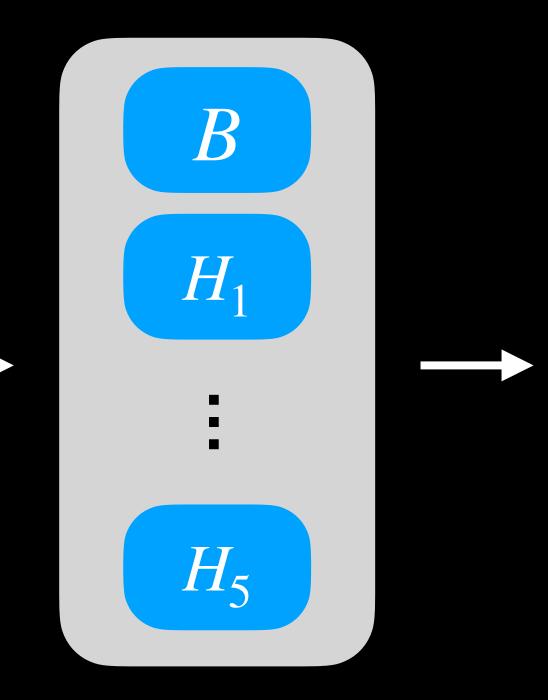
Menopause status

Problem 2: Missing risk factor data

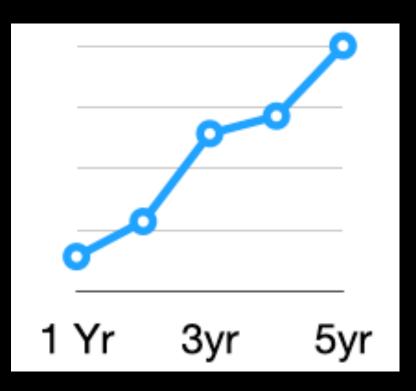


Problem 3: Modeling risk over time





Cumulative Risk



Maintains accuracy across diverse populations

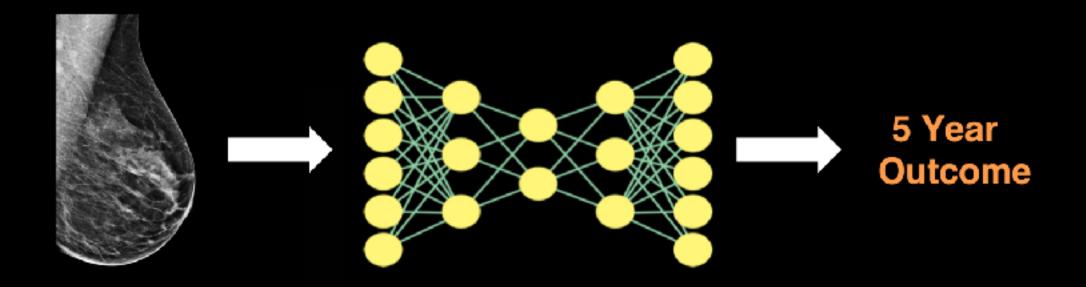
AUC

MGH Test Set

CANCER

Toward robust mammography-based models for breast cancer risk

Adam Yala^{1,2}*, Peter G. Mikhael^{1,2}, Fredrik Strand^{3,4}, Gigin Lin⁵, Kevin Smith^{6,7}, Yung-Liang Wan⁵, Leslie Lamb⁸, Kevin Hughes⁹, Constance Lehman^{8†}, Regina Barzilay^{1,2†}



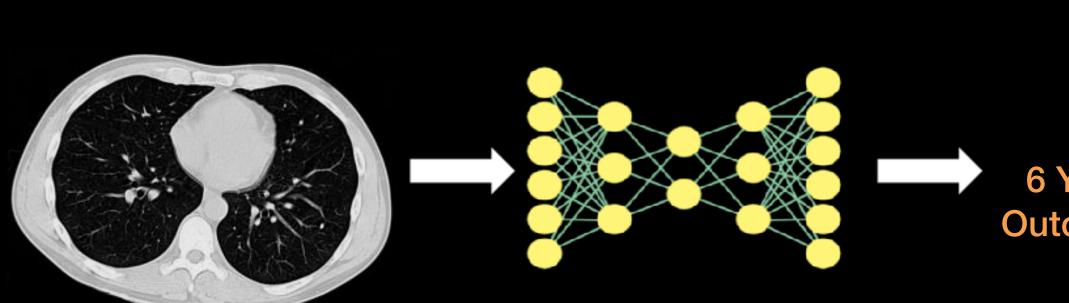
Tyrer-Cuzick (Prior State of Art) MIRAI (Ours - New Result)

MGH Test Set

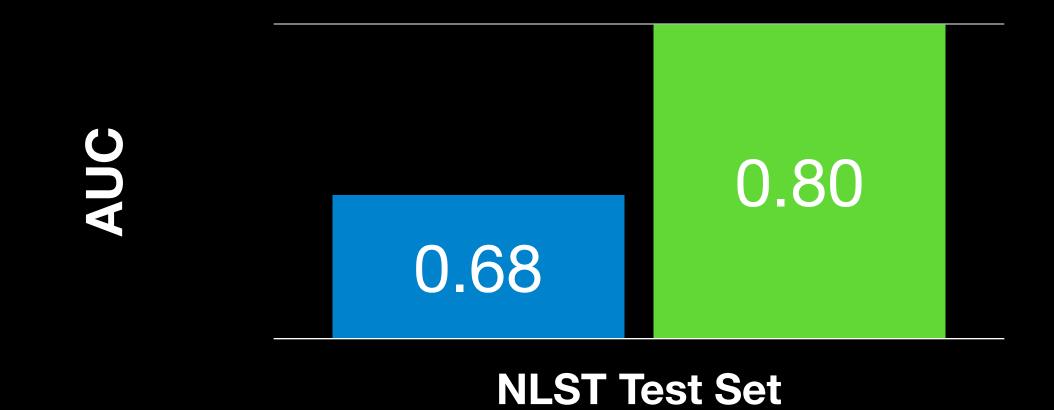
Under Review

Ask Sybil: Predicting Lung Cancer Risk with Low-dose Chest Computed Tomography

Peter G. Mikhael^{1,2,†,*}, Jeremy Wohlwend^{1,2,†}, Adam Yala^{1,2}, Justin Xiang^{1,2}, Angelo K. Takigami^{3,4}, Patrick P. Bourgouin^{3,4}, PuiYee Chan⁵, Sofiane Mrah⁴, Lecia V. Sequist^{3,5}, Florian J. Fintelmann^{3,4,*}, Regina Barzilay

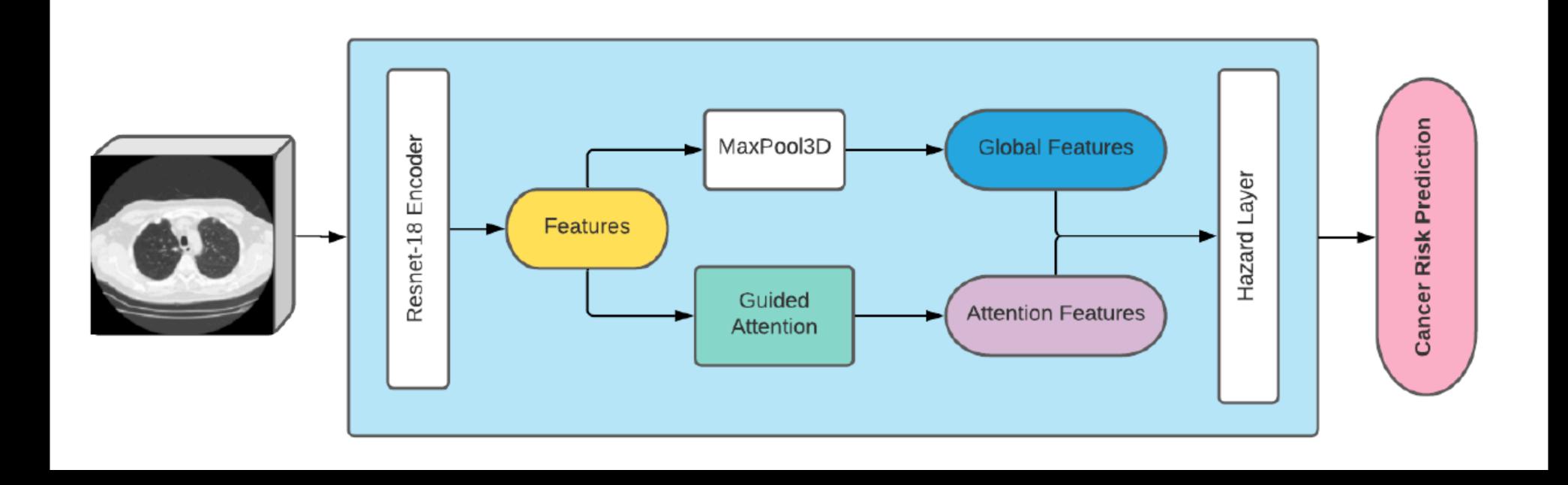


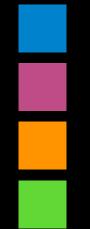
PLCOm2012 (Prior State of Art) Sybil (Ours - New Result)



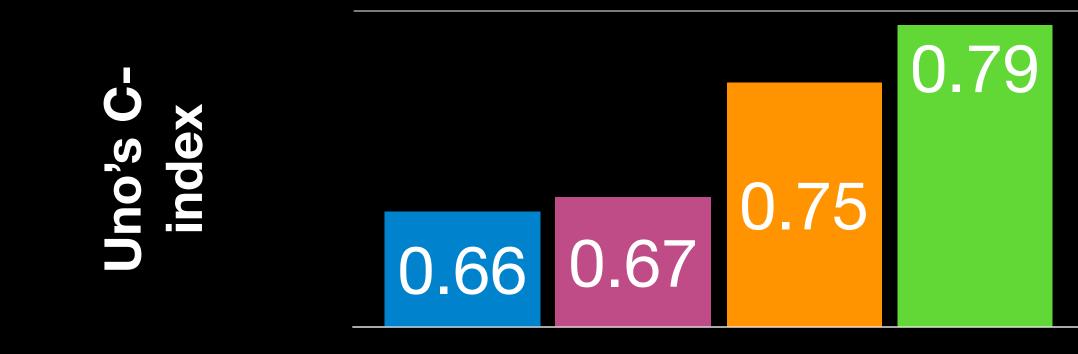
6 Year Outcome

Sybil Architecture





PLCOm2012 (Prior State of Art) ResNet Rand Init ResNet + Kinitics Init + Guided Attention Sybil (Ours - New Result)

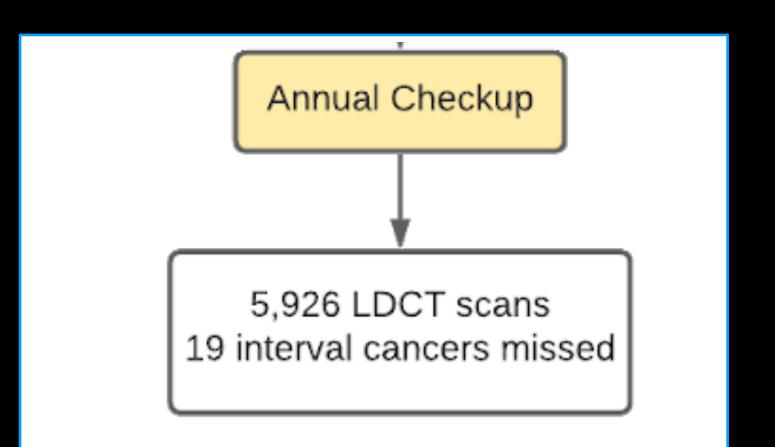


NLST Test Set

Sybil Clinical Impact : Workflow

Improve early detection and lower screening cost with riskbased followup.

Standard of Care

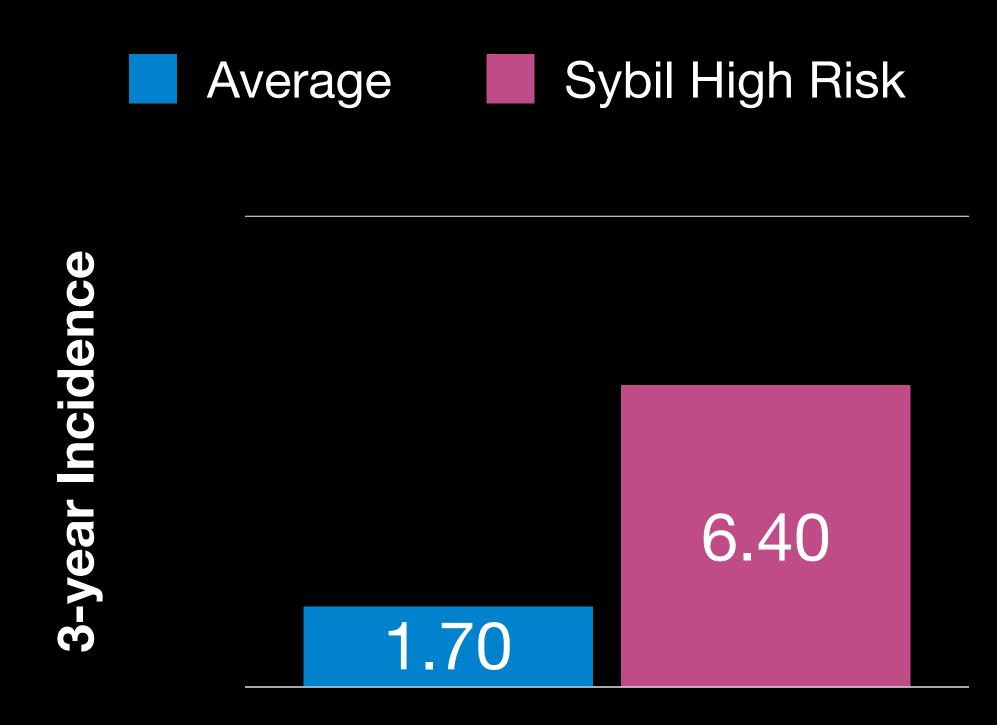


Sybil risk based screening



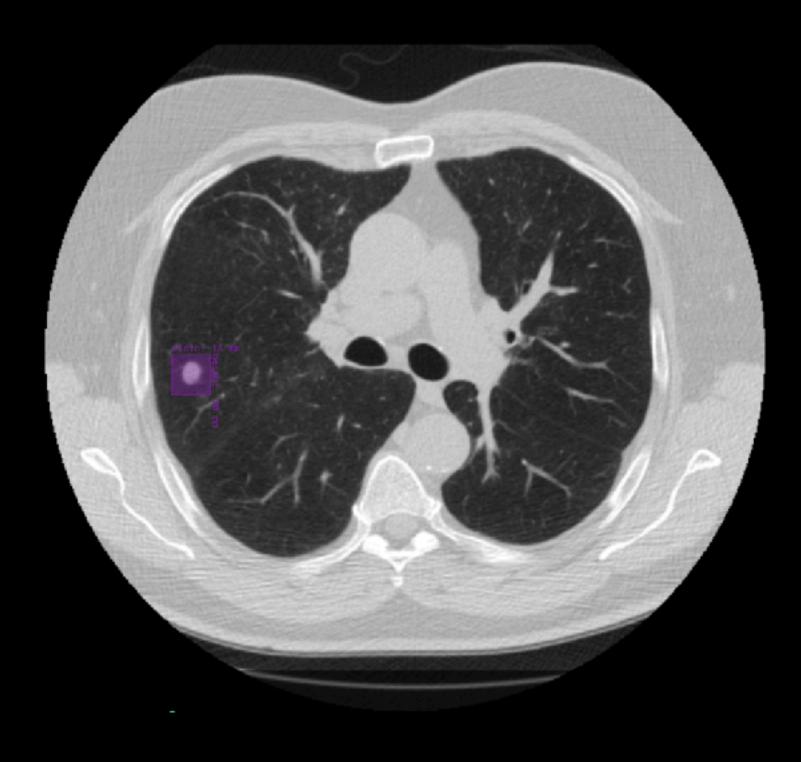
Sybil Clinical Impact : Prevention

Identifying high risk cohorts for clinical trails



Identifying future cancer location

83% accurate predicting future cancer side



Agenda

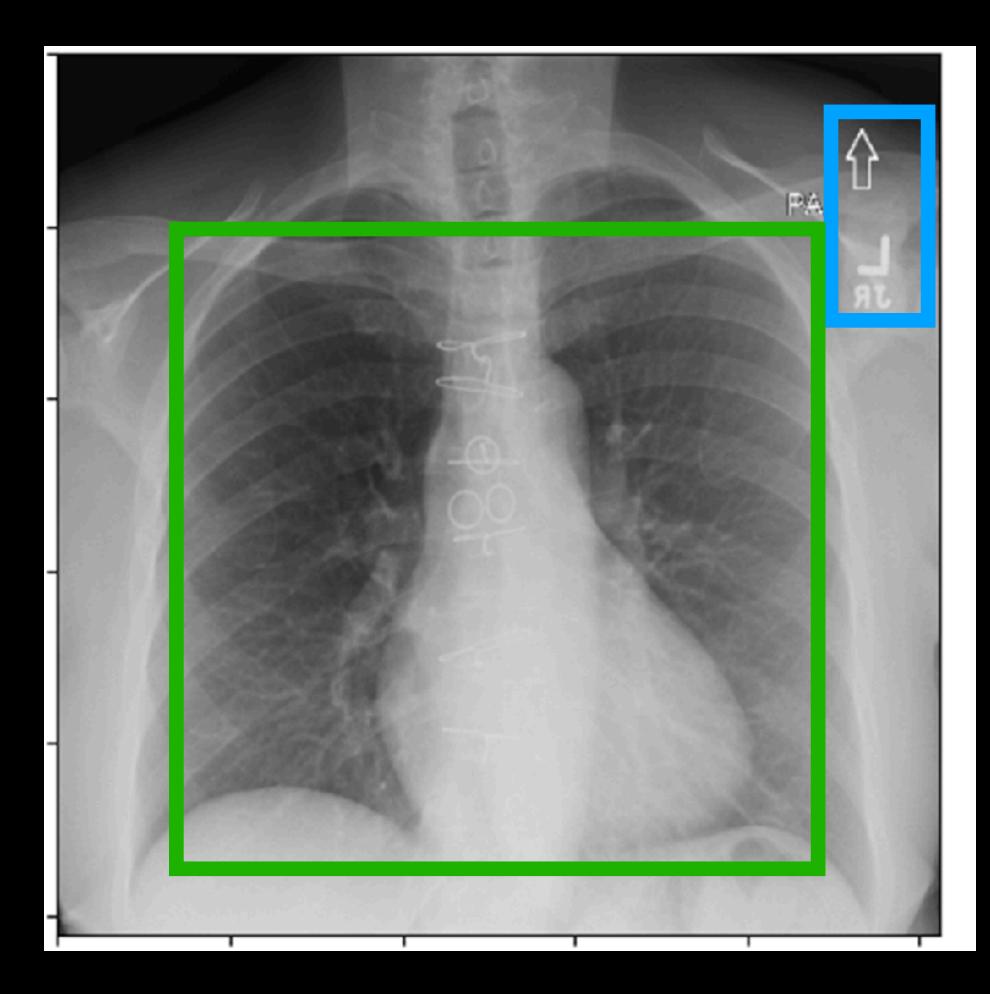
Data: What is medical imaging?

Method Foundations: How do we build models on imaging data?

Applications: How can we catch cancer earlier?

Interpretation: How can we audit our models?

Question: What is the model looking at?

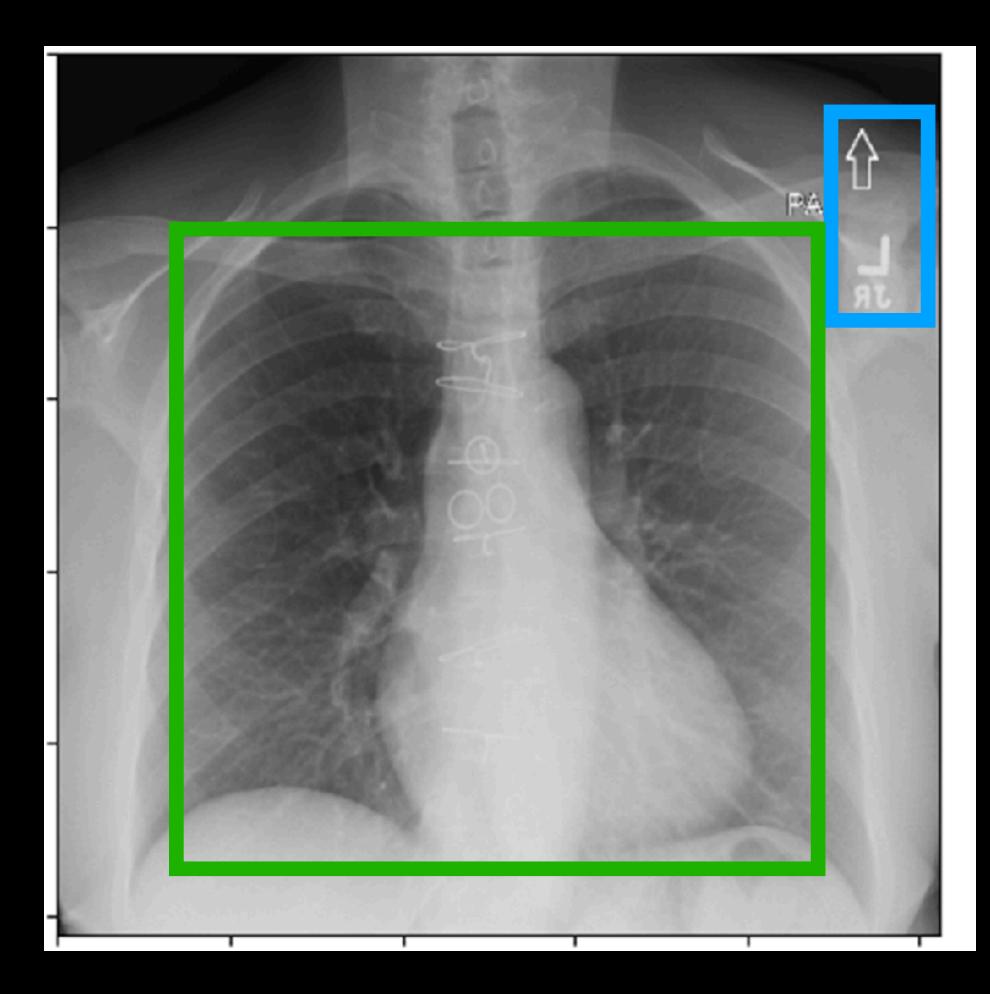


Question: What is the model looking at?

Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study

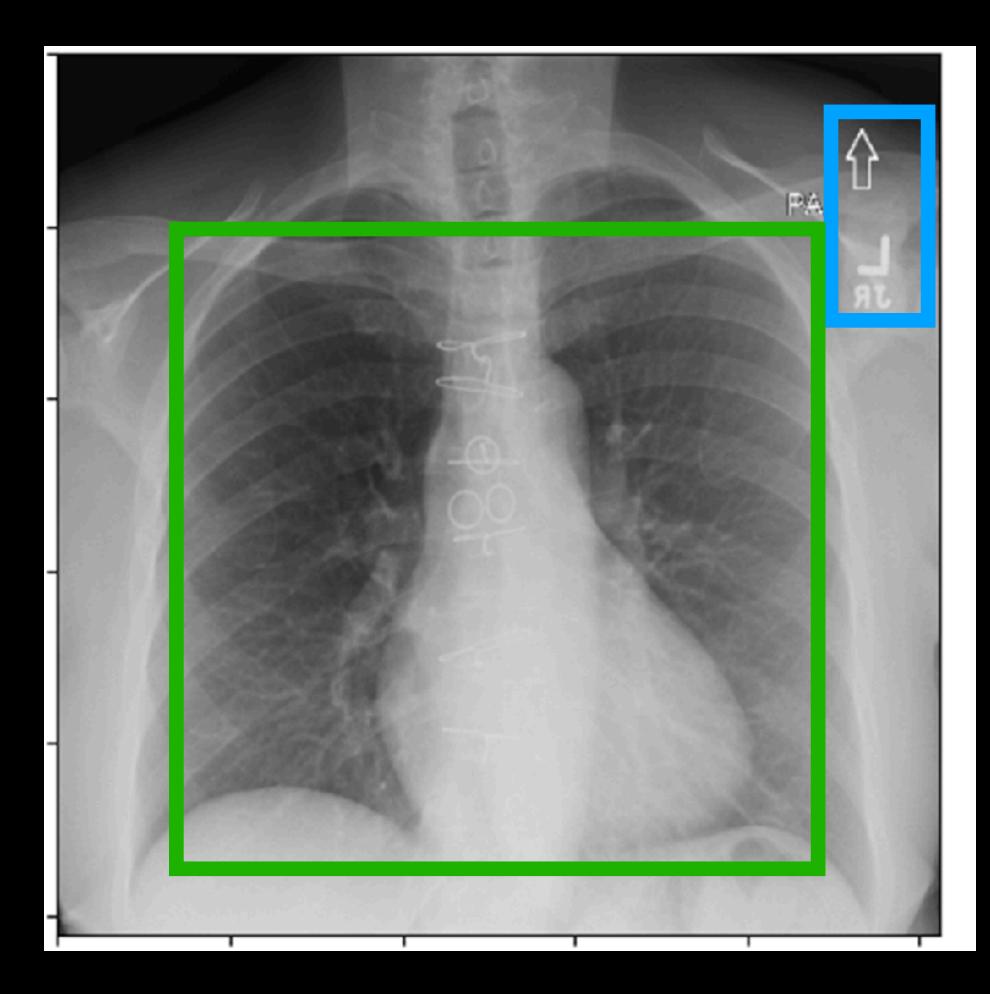
John R. Zech 🚾, Marcus A. Badgeley 🚾, Manway Liu, Anthony B. Costa, Joseph J. Titano, Eric Karl Oermann 🔤

Published: November 6, 2018 • https://doi.org/10.1371/journal.pmed.1002683



Question: What is the model looking at?

Key idea: *Saliency Maps* What inputs changing would change model predictions?



Question: What is the model looking at?

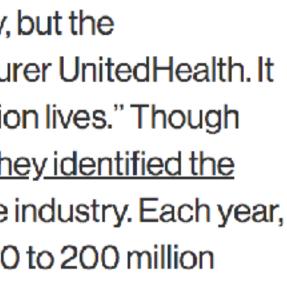
Key idea: *Saliency Maps* What inputs changing would change model predictions?

Compute gradient of predict in respect to **input**

Saliency Maps

What software was this? The researchers didn't say, but the Washington Post identifies it as Optum, owned by insurer UnitedHealth. It says its product is used to "manage more than 70 million lives." Though the researchers only focused on one particular tool, they identified the same flaw in the 10 most widely used algorithms in the industry. Each year, these tools are collectively applied to an estimated 150 to 200 million people in the US.

Journals -



Handling Diversity

A.I. Could Worsen Health Disparities

In a health system riddled with inequity, we risk making dangerous biases automated and invisible.

By Dhruv Khullar Dr. Khullar is an assistant professor of health care policy and research.

HEALTH TECH

Al systems are worse at diagnosing disease when training data is skewed by sex

By REBECCA ROBBINS @rebeccadrobbins / MAY 25, 2020

STAT+

Reprints

Performance Audits

Validate model performance across diverse populations

Test model performance by demographic group

Test model performance by imaging device, clinical setting, etc.

Summary

Data: Tissue response to generator energy

Method Foundations: Convolutional Neural Networks

Applications: Predicting future disease in breast and lung cancer

Interpretation: Saliency Maps and Performance Audits

Questions?