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Outline for today’s class

1. Using ML for risk stratification (continued)
– Alternative framing: survival modeling
– Evaluation: metrics, interpretability

2. Physiological time-series: application to 
detecting irregular heart arrythmias
– Small data approach
– Big data approach
– Current research 



Reminder: (One) framing for ML as binary 
classification

2009 2010 2011 2012 2013

Feature 
construction Derive outcome

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]

Exclusion criteria:
• Diabetes diagnosis (according to our rule) observed prior to 

January 1, 2009
• Less than 6 months of enrollment in feature construction 

window
• Member left health insurance prior to Jan. 1, 2011



Alternative framing: ML with survival 
models

• Regression (i.e., predict time to event) with right-
censored data

1:4 P. Wang et al.

their time to event is greater than the observation time, we can only have the censored
time (C) which may be the time of withdrawn, lost or the end of the observation. They
are considered to be censored instances in the context of survival analysis. In other
words, here, we can only observe either survival time (Ti) or censored time (Ci) but
not both, for any given instance i. If and only if yi = min(Ti, Ci) can be observed during
the study, the dataset is said to be right-censored, which is a common scenario that
arises in many practical problems [Marubini and Valsecchi 2004].

In Figure 1, an illustrative example is given for a better understanding of the def-
inition of censoring and the structure of survival data. Six instances are observed in
this longitudinal study for 12 months and the event occurrence information during this
time period is recorded. From Figure 1, we can find that only subjects S4 and S6 have
experienced the event (marked by ‘X’) during the follow-up time and the observed time
for them is the event time. While the event did not occur within the 12 months period
for subjects S1, S2, S3 and S5, which are considered to be censored and marked by red
dots in the figure. More specifically, subjects S2 and S5 are censored since there was
no event occurred during the study period, while subjects S1 and S3 are censored due
to the withdrawal or being lost to follow-up within the study time period.

Fig. 1: An illustration to demonstrate the survival analysis problem.

Problem Statement: For a given instance i, represented by a triplet (Xi, yi, �i),
where Xi 2 R1⇥P is the feature vector; �i is the binary event indicator, i.e., �i = 1 for
an uncensored instance and �i = 0 for a censored instance; and yi denotes the observed
time and is equal to the survival time Ti for an uncensored instance and Ci otherwise,
i.e.,

yi =

⇢
Ti if �i = 1
Ci if �i = 0

(1)

It should be noted that Ti is a latent value for censored instances since these instances
did not experience any event during the observation time period.

The goal of survival analysis is to estimate the time to the event of interest Tj for
a new instance j with feature predictors denoted by Xj . It should be noted that, in
survival analysis problem, the value of Tj will be both non-negative and continuous.

2.2. Survival and Hazard Function
The survival function, which is used to represent the probability that the time to the
event of interest is not earlier than a specified time t [Lee and Wang 2003; Klein and
Moeschberger 2005], is one of the primary goals in survival analysis. Conventionally,

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: March 2017.

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]

Event occurrence
e.g., death, college graduation, diabetes onset
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T



Alternative framing: ML with survival 
models

• Advantages over window-based classification
– More data for training (fewer exclusions)
– Allows for more fine-grained metrics in evaluation

• Why not just minimize mean-squared error with 
observed events using least squares linear regression?
– Time-to-event is non-negative (and non-Gaussian)
– Naively removed censored events could introduce 

substantial bias

1:4 P. Wang et al.
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ML with survival models (more on this later 
in the semester)

• f(t) = P(t) be the probability of death at time t
• Learn (conditional) survival function:

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]

Machine Learning for Survival Analysis: A Survey 1:5

survival function is represented by S, which is given as follows:

S(t) = Pr(T � t). (2)

The survival function monotonically decreases with t, and the initial value is 1 when
t = 0, which represents the fact that, in the beginning of the observation, 100% of the
observed subjects survive; in other words, none of the events of interest have occurred.

On the contrary, the cumulative death distribution function F (t), which represents
the probability that the event of interest occurs earlier than t, is defined as F (t) =
1� S(t), and death density function can be obtained as f(t) = d

dtF (t) for continuous
cases, and f(t) = [F (t+�t)� F (t)]/�t, where �t denotes a small time interval, for
discrete cases. Figure 2 shows the relationship among these functions.

Time in years

Fig. 2: Relationship among different entities f(t), F (t) and S(t).

In survival analysis, another commonly used function is the hazard function (h(t)),
which is also called the force of mortality, the instantaneous death rate or the condi-
tional failure rate [Dunn and Clark 2009]. The hazard function does not indicate the
chance or probability of the event of interest, but instead it is the rate of event at time
t given that no event occurred before time t. Mathematically, the hazard function is
defined as:

h(t) = lim
�t!0

Pr(t  T < t+�t | T � t)

�t
= lim

�t!0

F (t+�t)� F (t)

�t · S(t) =
f(t)

S(t)
(3)

Similar to S(t), h(t) is also a non-negative function. While all the survival functions,
S(t), decrease over time, the hazard function can have a variety of shapes. Consider
the definition of f(t), which can also be expressed as f(t) = � d

dtS(t), so the hazard
function can be represented as:

h(t) =
f(t)

S(t)
= � d

dt
S(t) · 1

S(t)
= � d

dt
[lnS(t)]. (4)

Thus, the survival function defined in Eq. (2) can be rewritten as

S(t) = exp(�H(t)) (5)

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: March 2017.

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]

2.1 Hazard and Survival Function 9

2.1 Hazard and Survival Function

We first present the basic definitions of survival and hazard function and their rela-
tionships, which are the fundamental quantities for parametric and nonparametric
inference on survival data.

Assume that failure time T is a nonnegative continuous random variable with a
density function f (t) and a corresponding distribution function F(t) = P(T ≤ t).
The survival function of T , the probability of an individual surviving beyond time t
or not experiencing a failure up to time t , is defined by

S(t) = P(T > t) =
∫ ∞

t
f (x)dx .

For a distribution of lifetimes of an industrial item, S(t) is referred to as the reliability
function of T (Crowder et al. 1991). From the definition of F(t), we have that

S(t) = 1 − P(an individual fails before or at t) = 1 − F(t).

Notice that S(t) is a monotonically decreasing continuous function with

S(0) = 1 and S(∞) = limt→∞S(t) = 0.

The hazard function is defined by

λ(t) = lim%t→0
P(t ≤ T < t + %t |T ≥ t)

%t

= lim%t→0
P(t ≤ T < t + %t)/%t

P(T ≥ t)

= f (t)
S(t)

which is the instantaneous failure rate at time t , given the individual surviving just
prior to t . In particular, λ(t)%t is the approximate probability of dying in [t, t + %t),
given survival just prior to time t . The hazard function is also referred as the hazard
rate, failure rate, the force of mortality, and intensity function. The corresponding
cumulative (or integrated) hazard function is defined as

!(t) =
∫ t

0
λ(x)dx .

From the definition λ(t) = f (t)/S(t), we have the following relationships:

λ(t) = − d
dt

log S(t)
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“Table 1” – who did this study include?

beneficiaries’ characteristics are included in Table 1. Of
these, 19,307 developed diabetes within the prediction
window. After training, 967 variables were selected
for the enhanced model. For predicting onset of type
2 diabetes between January 1, 2010, and January 1,
2012 (gap period 1 year), a total of 697,502 beneficiaries
matched the inclusion criteria; of these 13,835 benefi-
ciaries developed diabetes within the prediction win-
dow. After training, 769 variables were selected in the
enhanced model as predictive. For predicting onset of
type 2 diabetes between January 1, 2011, and January
1, 2013, 629,817 beneficiaries matched our inclusion
criteria, 8498 of which had a positive label in the pre-
diction window. After training, 538 variables were se-
lected as predictive.

Prediction results
For immediate prediction of diabetes, the enhanced
model had an AUC of 0.80 compared with an AUC
of 0.75 for the baseline parsimonious model ( p <
0.0001). The AUCs of the enhanced models were
also superior to those of the parsimonious models for
prediction of diabetes in the 1- or 2-year gap periods
(Table 2). Similarly, PPV values for the top 100, 1000,
and 10,000 beneficiaries predicted to be diabetic were
between 1.6 and 2.3 times higher in the enhanced

model than the parsimonious model (Table 2). Our
models are highly specific, and the sensitivity increases
to 21% at the 10,000 level. The ROC curves corre-
sponding to the enhanced versus parsimonious models
for different gap periods are included in Figure 2. Pre-
dicting onset of diabetes further into the future, with a
larger gap between data collection and the evaluation
window, is (expectedly) less accurate.

Table 3 shows the top predictive variables for imme-
diate onset of diabetes. Most top variables are directly
related to prediabetes or diabetes, including history
of prediabetes or related conditions, elevated glucose,
elevated HbA1c, and Metformin medication utilization.
However, other variables, such as history of sleep
apnea, acute bronchitis, hypothyroidism, and anemia,
as well as high serum alanine aminotransferase, have
significant predictive value for immediate confirmation
of onset of diabetes. Measures of healthcare utilization
also contribute to the prediction of onset of type 2 di-
abetes. Expanded lists of the laboratory values and dis-
ease history that are predictive of diabetes diagnosis are
included in Supplementary Tables S1 and S2. Notewor-
thy is the difference in the OR within the young,
middle-aged, and older population for different fac-
tors. Specifically, the OR of all risk factors is higher
when the factor is observed in younger individuals.
OR of factors such as elevated HbA1c and glucose in
the young population is almost thrice that of the middle-
aged population, and almost four times that of the
older population.

Table 4 shows the top predictive variables for diabe-
tes onset within 1 to 3 years after the data collection
period (gap = 1). Not surprisingly, previously identi-
fied risk factors such as high glucose, high HbA1c, obe-
sity, and impaired fasting glucose emerged as strongly
predictive of diabetes diagnosis. Interestingly, 1 year

Table 1. Subjects’ characteristics of the cohort included
in training and validation

Characteristic
Total

population
Population

with diabetes

Average age (SD) 47.69 (17.1) 58.57 (13.3)
Female ratio 55% 51%
Average length of data in years (SD) 3.3 (1.0) 3.4 (1.0)
Hypertension (ICD9 401) 30.2% 62%
Hypercholesterolemia (ICD9 272.0) 18.7% 33.6%

SD, standard deviation.

Table 2. Performance for prediction of diabetes, using patient data through December 31, 2008, within the different
prediction windows

Prediction window Model AUCa,b

Top 100b Top 1000b Top 10,000b

Sensitivity Specificity PPV Sensitivity Specificity PPV Sensitivity Specificity PPV

2009–2011 Parsimonious model 0.75 0.001 0.999 0.12 0.014 0.996 0.10 0.114 0.967 0.08
Enhanced model 0.80 0.005 0.999 0.37 0.033 0.997 0.23 0.216 0.969 0.15

2010–2012 Parsimonious model 0.74 0.001 0.999 0.06 0.014 0.996 0.07 0.117 0.962 0.06
Enhanced model 0.78 0.002 0.999 0.15 0.035 0.996 0.17 0.203 0.963 0.10

2011–2013 Parsimonious model 0.72 0.0009 0.999 0.03 0.012 0.995 0.04 0.118 0.957 0.03
Enhanced model 0.76 0.003 0.999 0.10 0.024 0.995 0.07 0.195 0.958 0.06

aDifferences in AUC significant with p < 0.0001 in this validation set.
bAll reported values have 95% CI of less than 0.002.
AUC, area under curve; CI, confidence interval; PPV, positive predictive value.

PREDICTION OF TYPE 2 DIABETES FROM CLAIMS DATA 281

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]

But what about… Past hospitalizations? Number of years of historical 
data? Race/ethnicity? 



“Table 1”, better example

Copyright 2016 American Medical Association. All rights reserved.

these hospitalizations, 6549 (13.9%) carried a diagnosis of heart
failure in any position and 1214 (2.6%) carried a principal di-
agnosis of heart failure (Table 1).

The inclusion of heart failure on the problem list (algo-
rithm 1) was associated with a sensitivity of 0.52 and a PPV of
0.96 for identification of heart failure based on the discharge
diagnosis code criterion standard in the validation set (Table 2).
Heart failure on the problem list had a sensitivity of 0.40 and
a PPV of 0.96 in the validation set using the criterion stan-
dard of sampling with physician medical record review. Algo-
rithm 2, defined as the presence of heart failure on the prob-
lem list, an inpatient loop diuretic, or a BNP level of 500 pg/mL
or higher, was associated with sensitivities of 0.84 and 0.77
and PPVs of 0.58 and 0.64 compared with discharge diagno-
sis and physician review criterion standards in the validation
set, respectively.

The third algorithm, in which heart failure was classified
using logistic regression, included 30 structured data ele-
ments in the model. Variables that had an association with heart
failure included heart failure on the problem list, any prior di-
agnosis of heart failure, inpatient diuretics, outpatient heart
failure β-blocker use, and high BNP level (eTable 1 in the Supple-
ment). This algorithm had an AUC of 0.953 in validation, a sen-
sitivity of 0.76, and a PPV of 0.8 (Table 2 and Figure 1). In vali-
dation using the physician review criterion standard, the
algorithm had a sensitivity of 0.68 with a PPV of 0.90 (Table 2).

The fourth algorithm, which used a machine-learning ap-
proach on free text, included 1118 elements in the final model.
The top prognostic factors in the algorithm were all clinically
relevant and included the terms chf, hf, nyha, failure, conges-
tive, and Lasix (eTable 2 in the Supplement). This model had
an AUC of 0.969 in validation and a sensitivity of 0.84 with a
PPV of 0.80 in the validation set using the discharge diagno-
sis criterion standard.

The fifth algorithm used a machine-learning approach to
identify 947 unstructured and structured data elements in the
final model. The top prognostic factor for this model was heart
failure in the problem list, followed by mention of chf and hf
in free text (eTable 3 in the Supplement). This algorithm had
an AUC of 0.974. The algorithm had a sensitivity of 0.86 with
a PPV of 0.80 using the discharge diagnosis and a sensitivity
of 0.83 with a PPV of 0.90 using the physician review.

Of 1631 hospitalizations for a principal or secondary diag-
nosis of heart failure in the validation set, 195 (12.0%) did not
have a prior echocardiogram. Of these hospitalizations, 66
(33.8%) had heart failure listed on the problem list (algorithm
1). Algorithm 3 increased the number of these patients iden-
tified as having heart failure by 34, whereas algorithms 2, 4,
and 5 increased the number of patients identified by between
69 and 74 over algorithm 1 (Figure 2). The PPV for identifica-
tion of heart failure among patients without an echocardio-
gram was 0.92, 0.30, 0.71, 0.71, and 0.67 for algorithms
1 through 5, respectively. Among 430 hospitalizations for a di-
agnosis of heart failure and a known EF of 40% or less, pa-
tients in 109 hospitalizations (25.3%) were not discharged with
an ACE inhibitor or ARB, whereas 91 (21.2%) were not dis-
charged with an evidence-based β-blocker. With the use of the
problem list alone, heart failure was classified in 76 heart fail-

Table 1. Characteristics of 47 119 Hospitalized Patients

Characteristic Findinga

Age, mean (SE), y 60.9 (18.15)

Female 23 952 (50.8)

Black/African American race 5258 (11.2)

Hispanic/Latino ethnicity 3667 (7.8)

Medicaid 8303 (17.6)

Heart failure in problem list 3630 (7.7)

Prior diagnosis of any heart failure 2985 (6.3)

Prior diagnosis of primary heart failure 615 (1.3)

Prior echocardiography 15 938 (33.8)

Loop diuretics

Inpatient 6837 (14.5)

Outpatient 6427 (13.6)

ACE inhibitors or ARB

Inpatient 13 166 (27.9)

Outpatient 14 797 (31.4)

β-Blockers

Inpatient 19 748 (41.9)

Outpatient 14 870 (31.6)

Heart failure with β-blockers

Inpatient 6310 (13.4)

Outpatient 8644 (18.4)

Blood pressure, mean (SE), mm Hg

Systolic 123.3 (18.3)

Diastolic 67.8 (12.8)

Creatinine, mean (SE), mg/dL 1.01 (1.1)

Sodium, mean (SE), mEq/L 138.4 (3.7)

BNP, pg/mL

<500 1721 (23.4)

500-999 878 (12.0)

1000-4999 2498 (34.0)

5000-9999 931 (12.7)

10 000-19 999 652 (8.9)

≥20 000 667 (9.1)

Blood pressure

Any systolic 46 982 (99.7)

Any diastolic 46 982 (99.7)

Any creatinine 46 598 (98.9)

Any sodium 46 613 (98.9)

Any BNP 7347 (15.6)

Problem list

Acute MI 952 (2.0)

Atherosclerosis 6147 (13.0)

Final discharge diagnosis of heart failure

Any diagnosis 6549 (13.9)

Principal diagnosis 1214 (2.6)

Abbreviations: ACE, angiotensin-converting enzyme; ARB, angiotensin receptor
blocker; BNP, brain natriuretic peptide; MI, myocardial infarction.
SI conversion factors: to convert creatinine to micromoles per liter, multiply by
88.4; sodium to millimoles per liter, multiply by 1; and BNP to nanograms per
liter, multiply by 1.
a Data are presented as number (percentage) of hospitalized patients unless

otherwise indicated.
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these hospitalizations, 6549 (13.9%) carried a diagnosis of heart
failure in any position and 1214 (2.6%) carried a principal di-
agnosis of heart failure (Table 1).

The inclusion of heart failure on the problem list (algo-
rithm 1) was associated with a sensitivity of 0.52 and a PPV of
0.96 for identification of heart failure based on the discharge
diagnosis code criterion standard in the validation set (Table 2).
Heart failure on the problem list had a sensitivity of 0.40 and
a PPV of 0.96 in the validation set using the criterion stan-
dard of sampling with physician medical record review. Algo-
rithm 2, defined as the presence of heart failure on the prob-
lem list, an inpatient loop diuretic, or a BNP level of 500 pg/mL
or higher, was associated with sensitivities of 0.84 and 0.77
and PPVs of 0.58 and 0.64 compared with discharge diagno-
sis and physician review criterion standards in the validation
set, respectively.

The third algorithm, in which heart failure was classified
using logistic regression, included 30 structured data ele-
ments in the model. Variables that had an association with heart
failure included heart failure on the problem list, any prior di-
agnosis of heart failure, inpatient diuretics, outpatient heart
failure β-blocker use, and high BNP level (eTable 1 in the Supple-
ment). This algorithm had an AUC of 0.953 in validation, a sen-
sitivity of 0.76, and a PPV of 0.8 (Table 2 and Figure 1). In vali-
dation using the physician review criterion standard, the
algorithm had a sensitivity of 0.68 with a PPV of 0.90 (Table 2).

The fourth algorithm, which used a machine-learning ap-
proach on free text, included 1118 elements in the final model.
The top prognostic factors in the algorithm were all clinically
relevant and included the terms chf, hf, nyha, failure, conges-
tive, and Lasix (eTable 2 in the Supplement). This model had
an AUC of 0.969 in validation and a sensitivity of 0.84 with a
PPV of 0.80 in the validation set using the discharge diagno-
sis criterion standard.

The fifth algorithm used a machine-learning approach to
identify 947 unstructured and structured data elements in the
final model. The top prognostic factor for this model was heart
failure in the problem list, followed by mention of chf and hf
in free text (eTable 3 in the Supplement). This algorithm had
an AUC of 0.974. The algorithm had a sensitivity of 0.86 with
a PPV of 0.80 using the discharge diagnosis and a sensitivity
of 0.83 with a PPV of 0.90 using the physician review.

Of 1631 hospitalizations for a principal or secondary diag-
nosis of heart failure in the validation set, 195 (12.0%) did not
have a prior echocardiogram. Of these hospitalizations, 66
(33.8%) had heart failure listed on the problem list (algorithm
1). Algorithm 3 increased the number of these patients iden-
tified as having heart failure by 34, whereas algorithms 2, 4,
and 5 increased the number of patients identified by between
69 and 74 over algorithm 1 (Figure 2). The PPV for identifica-
tion of heart failure among patients without an echocardio-
gram was 0.92, 0.30, 0.71, 0.71, and 0.67 for algorithms
1 through 5, respectively. Among 430 hospitalizations for a di-
agnosis of heart failure and a known EF of 40% or less, pa-
tients in 109 hospitalizations (25.3%) were not discharged with
an ACE inhibitor or ARB, whereas 91 (21.2%) were not dis-
charged with an evidence-based β-blocker. With the use of the
problem list alone, heart failure was classified in 76 heart fail-

Table 1. Characteristics of 47 119 Hospitalized Patients

Characteristic Findinga

Age, mean (SE), y 60.9 (18.15)

Female 23 952 (50.8)

Black/African American race 5258 (11.2)

Hispanic/Latino ethnicity 3667 (7.8)

Medicaid 8303 (17.6)

Heart failure in problem list 3630 (7.7)
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Creatinine, mean (SE), mg/dL 1.01 (1.1)
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Blood pressure
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Any sodium 46 613 (98.9)
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Acute MI 952 (2.0)

Atherosclerosis 6147 (13.0)

Final discharge diagnosis of heart failure

Any diagnosis 6549 (13.9)

Principal diagnosis 1214 (2.6)

Abbreviations: ACE, angiotensin-converting enzyme; ARB, angiotensin receptor
blocker; BNP, brain natriuretic peptide; MI, myocardial infarction.
SI conversion factors: to convert creatinine to micromoles per liter, multiply by
88.4; sodium to millimoles per liter, multiply by 1; and BNP to nanograms per
liter, multiply by 1.
a Data are presented as number (percentage) of hospitalized patients unless
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Logistic regression with L1 regularization

• Penalizing the L1 norm of the weight vector 
leads to sparse (read: many 0’s) solutions for w.

• Let’s understand why…
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• Penalizing the L1 norm of the weight vector 
leads to sparse (read: many 0’s) solutions for w.
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• 769 variables have non-zero weight. Look at most 
positive & most negative

• Positively weighted diagnosis codes include

Pituitary dwarfism (253.3), Hepatomegaly(789.1), Chronic Hepatitis C 
(070.54), Hepatitis (573.3), Calcaneal Spur(726.73), Thyrotoxicosis without 
mention of goiter(242.90), Sinoatrial Node dysfunction(427.81), Acute 
frontal sinusitis (461.1 ), Hypertrophic and atrophic conditions of 
skin(701.9), Irregular menstruation(626.4), …

• Positively weighted laboratory features include

Albumin/Globulin (Increasing -Entire history), Urea nitrogen/Creatinine -
(high - Entire History), Specific gravity (Increasing, Past 2 years), Bilirubin 
(high -Past 2 years), …

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]

Logistic regression with L1 regularization



Interpreting high-dimensional linear 
models

• How do we interpret such high dimensional models…?
• A useful trick to build intuition: use higher value of 𝜆 (i.e., 

more regularization) than needed

• What will the effect be?
• Intuition: often many predictive yet highly correlated 

features. Selects a representative set which still performs 
well

min
w

X

i

`(xi, yi;w) + �||w||1



Features selected using model learned 
with more L1 regularization

History of Disease
Impaired Fasting Glucose (Code 790.21)

Abnormal Glucose NEC (790.29)

Hypertension (401)

Obstructive Sleep Apnea (327.23)

Obesity (278)

Abnormal Blood Chemistry (790.6)

Hyperlipidemia (272.4)

Shortness Of Breath (786.05)

Esophageal Reflux (530.81)

Top Lab Factors
Hemoglobin A1c /Hemoglobin.Total (High - past 2 years)

Glucose (High- Past 6 months)

Cholesterol.In VLDL (Increasing - Past 2 years)  

Potassium (Low  - Entire History)

Cholesterol.Total/Cholesterol.In HDL (High  - Entire History)
Erythrocyte mean corpuscular hemoglobin concentration -(Low -
Entire History) 
Eosinophils (High  - Entire History)

Glomerular filtration rate/1.73 sq M.Predicted (Low -Entire History)

Alanine aminotransferase (High  Entire History)

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]



Debugging ML setup through model 
interpretation

• Suppose a highly weighted positive feature is for “injection 
of aflibercept”, a treatment for diabetic macular edema. 
What could we infer?

• Suppose we see many features for flu vaccines with high 
positive and negative weights. Looking up the NDC code 
for one of them, we see it is “influenza A virus A/Hong 
Kong/4801/2014 (H3N2) antigen 0.03 MG”. What could we 
infer?

• Note, these would have been much harder to diagnose 
using the deep model



Receiver-operator characteristic curve

Full model  AUC=0.78
Traditional risk factors
AUC = 0.74

False positive rate

True 
positive 
rate

Random AUC = 0.5

Diabetes
1-year gap

Recall the 
23andme results:



Comparison with the deep models

We consider three prediction tasks. Over a horizon of 3 
to 9 months into the future, predict:

End of Life
(EOL)

Surgical 
Procedures
(Surgery)

Likelihood of 
Hospitalization

(LoH)

Evaluate using de-identified dataset of ~120K Medicare 
Advantage members

Kodialam et al., Deep Contextual Clinical Prediction with Reverse Distillation, AAAI ‘21



ML methods that we compare

• SARD (Kodialam et al. 2021)
• BEHRT (Li et al. 2020): another transformer-based 

neural network for claims data
• RETAIN (Choi et al. 2016): a recurrent neural network 

designed with interpretability in mind
• Windowed linear model (Razavian et al. 2015)

Kodialam et al., Deep Contextual Clinical Prediction with Reverse Distillation, AAAI ‘21



Results on the 3 prediction tasks

AUC-ROC scores on test set 

SARD uses “reverse distillation” (RD) for pre-training (see Kodialam et al. ‘21) 

Kodialam et al., Deep Contextual Clinical Prediction with Reverse Distillation, AAAI ‘21



Closing reflections for risk stratification

• How can we build models that work with multi-
modal data?
– Multiple choices for neural network architectures
– Will often be missing one or more modalities

• How do we choose which target to predict? Has 
implications for health equity

• What is a “good” result? Depends on the use case 
– high PPV for targeting interventions, high NPV 
(negative predictive value) for screening



Outline for today’s class

1. Using ML for risk stratification
– Alternative framing: survival modeling
– Evaluation: metrics, interpretability

2. Physiological time-series: application to 
detecting irregular heart arrythmias
– Small data approach
– Big data approach
– Current research



Detecting atrial fibrillation
The AliveCor ECG Device

● 3 generations of a single-channel (LA-RA lead I 
equivalent) ECG

● Transmitted to smartphone or tablet into the 
microphone (over the air) which digitizes at 44.1 
kHz and 24-bit resolution with software 
demodulation in real-time. 

● Frequency modulated with a carrier frequency of 
19 kHz and a 200 Hz/mV modulation index. 

● Stored as 300 Hz, 16-bit data with bandwidth 
0.5-40 Hz  with +/- 5 mV dynamic range. 

AliveCore ECG 
device
ECG = electrocardiogram



Detecting atrial fibrillation

Apple Watch



What type of heart rhythm?
Normal rhythm

AF rhythm

Other rhythm

Noisy recording

Classify short ECG data into:

[Clifford, Liu, Moody, Mark. PhysioNet Computing in Cardiology Challenge 2017]



 

Abstract—ECG Feature Extraction plays a significant role in 
diagnosing most of the cardiac diseases. One cardiac cycle in an 
ECG signal consists of the P-QRS-T waves. This feature 
extraction scheme determines the amplitudes and intervals in the 
ECG signal for subsequent analysis. The amplitudes and 
intervals value of P-QRS-T segment determines the functioning 
of heart of every human. Recently, numerous research and 
techniques have been developed for analyzing the ECG signal. 
The proposed schemes were mostly based on Fuzzy Logic 
Methods, Artificial Neural Networks (ANN), Genetic Algorithm 
(GA), Support Vector Machines (SVM), and other Signal 
Analysis techniques. All these techniques and algorithms have 
their advantages and limitations. This proposed paper discusses 
various techniques and transformations proposed earlier in 
literature for extracting feature from an ECG signal. In addition 
this paper also provides a comparative study of various methods 
proposed by researchers in extracting the feature from ECG 
signal. 
 

Keywords—Artificial Neural Networks (ANN), Cardiac Cycle, 
ECG signal, Feature Extraction, Fuzzy Logic, Genetic Algorithm 
(GA), and Support Vector Machines (SVM). 

I. INTRODUCTION 
The investigation of the ECG has been extensively used for 

diagnosing many cardiac diseases. The ECG is a realistic 
record of the direction and magnitude of the electrical 
commotion that is generated by depolarization and re-
polarization of the atria and ventricles. One cardiac cycle in an 
ECG signal consists of the P-QRS-T waves. Figure 1 shows a 
sample ECG signal. The majority of the clinically useful 
information in the ECG is originated in the intervals and 
amplitudes defined by its features (characteristic wave peaks 
and time durations). The improvement of precise and rapid 
methods for automatic ECG feature extraction is of chief 
importance, particularly for the examination of long 
recordings [1]. 

The ECG feature extraction system provides fundamental 
features (amplitudes and intervals) to be used in subsequent 
automatic analysis. In recent times, a number of techniques 
have been proposed to detect these features [2] [3] [4]. The 
previously proposed method of ECG signal analysis was based 
on time domain method. But this is not always adequate to 
study all the features of ECG signals. Therefore the frequency 
representation of a signal is required. The deviations in the 
normal electrical patterns indicate various cardiac disorders. 
Cardiac cells, in the normal state are electrically polarized [5]. 

 

ECG is essentially responsible for patient monitoring and 
diagnosis. The extracted feature from the ECG signal plays a 
vital in diagnosing the cardiac disease. The development of 
accurate and quick methods for automatic ECG feature 
extraction is of major importance. Therefore it is necessary 
that the feature extraction system performs accurately. The 
purpose of feature extraction is to find as few properties as 
possible within ECG signal that would allow successful 
abnormality detection and efficient prognosis.  

 
 

Figure.1 A Sample ECG Signal showing P-QRS-T Wave 
 

In recent year, several research and algorithm have been 
developed for the exertion of analyzing and classifying the 
ECG signal. The classifying method which have been 
proposed during the last decade and under evaluation includes 
digital signal analysis, Fuzzy Logic methods, Artificial Neural 
Network, Hidden Markov Model, Genetic Algorithm, Support 
Vector Machines, Self-Organizing Map, Bayesian and other 
method with each approach exhibiting its own advantages and 
disadvantages. This paper provides an over view on various 
techniques and transformations used for extracting the feature 
from ECG signal. In addition the future enhancement gives a 
general idea for improvement and development of the feature 
extraction techniques.  

 
The remainder of this paper is structured as follows. Section 

2 discusses the related work that was earlier proposed in 
literature for ECG feature extraction. Section 3 gives a general 
idea of further improvements of the earlier approaches in ECG 

ECG Feature Extraction Techniques - A Survey 
Approach 
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the actual detection in order to attenuate
other signal components and artifacts, such
as P-wave, T-wave, baseline drift, and
incoupling noise. Whereas the attenuation
of the P- and T-wave as well as baseline
drift requires high-pass filtering, the sup-
pression of incoupling noise is usually ac-
complished by a low-pass filter. The
combination of low and high pass means
effectively the application of a bandpass
filter, in this case with cut-off frequencies
at about 10 Hz and 25 Hz.

In many algorithms, high- and low-pass
filtering are carried out separately. Some
algorithms, such as [3, 7, 33, 38, 45, 78,
83], use only the high-pass filter part. The
filtered signals are then used for the gener-
ation of a feature signal in which the occur-
rence of a QRS complex is detected by
comparing the feature against fixed or
adaptive thresholds. Almost all algorithms
use additional decision rules for the reduc-
tion of false-positive detections.

Derivative-Based Algorithms
The high-pass filter is often, in particu-

lar in the older algorithms, realized as a
differentiator. This points out the usage of
the characteristic steep slope of the QRS
complex for its detection. Difference
equations of possible differentiator filters
are [3, 7, 33, 38, 45, 78, 83]

y n x n x n1 1 1( ) ( ) ( )= + − − (1)

y n x n x n

x n x n
1 2 2 1

1 2 2

( ) ( ) ( )

( ) ( )

= + + +
− − − − (2)

y n x n x n1 1( ) ( ) ( )= − − (3)

y n x n x n1 1( ) ~( ) ~( )= − − (4)

where

~( )
| ( )| | ( )|

| ( )| .
x n

x n x n

x n
=

≥
<





Θ
Θ Θ (5)

and Θ is an amplitude threshold deter-
mined from the measured ECG signal
x n( ). In most cases, the differentiator from
Eq. (1) is used. Some algorithms also
compute the second derivative. It can be
estimated by [3, 7]

y n x n x n x n2 2 2 2( ) ( ) ( ) ( )= + − + − . (6)

Typical features z n( ) of such algo-
rithms are the differentiated signal itself
[33, 38, 78]

z n y n( ) ( )= 1 , (7)

a linear combination of the magnitudes of
the first and the second derivative [7]

z n y n y n( ) . | ( )| . | ( )|= +13 111 2 , (8)

or a linear combination of the smoothed
first derivative magnitude and the magni-
tude of the second derivative [3]

z n y n y n( ) ~ ( ) | ( )|= +1 2 (9)

where ~ ( ) { . , . , . }*| ( )|y n y n1 10 25 0 5 0 25= and
*denotes the linear convolution operator.

The detection of a QRS complex is ac-
complished by comparing the feature
against a threshold. Usually the threshold
levels are computed signal dependent
such that an adaption to changing signal
characteristics is possible. For the feature
in Eq. (7), the threshold [33, 38, 78]

Θx x= ⋅0 3 0 4. . max[ ]K (10)

is proposed, where the maximum is deter-
mined online or from the current signal
segment. Most QRS detectors use this or a
similar method to determine the threshold.

The peak detection logic is frequently
completed by further decision rules that
are applied in order to reduce the number
of false-positive detections. Such rules
usually put heuristically found constraints
on the timing and the sign of the features
or introduce secondary thresholds to ex-
clude non-QRS segments of the ECG with

QRS-like feature values [3, 7, 33, 38, 45,
78, 81, 103].

Algorithms Based on Digital Filters
Algorithms based on more sophisti-

cated digital filters were published in [12,
26, 29, 30, 41, 55, 65, 67, 81, 83, 85, 101,
106, 107, 123].

In [83] an algorithm is proposed where
the ECG is filtered in parallel by two dif-
ferent low-pass filters with different
cut-off frequencies. The difference be-
tween the filter outputs is effectively the
bandpass filtered ECG y n1( ), which is af-
terwards further processed by

y n y n y n k
k m

m

2 1 1
2

2

( ) ( ) ( )= +




= −

∑ .
(11)

This nonlinear operation leads to a rel-
ative suppression of small values and a
slight smoothing of the peaks. The feature
signal z n( ) is formed out of y n2( ) by putt-
ing additional sign constraints on the out-
put signal of the low pass with the higher
cut-off frequency. The threshold is com-
puted adaptively by Θ = max[ ( )] /z n 8.

In [106] and [107] the MOBD (multi-
plication of backward difference) algo-
rithm is proposed. It is essentially an
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P-Wave

Q-Wave
S-Wave

T-Wave

R-Wave

QRS Complex

1. The QRS complex within the ECG signal.

Linear
Filtering

Nonlinear
Filtering

ECG
x(n)

Preprocessing Stage

Peak
Detection

Logic
Decision

Decision Stage

2. Common structure of the QRS detectors.

[Kohler, Hennig, Orglmeister. The Principles of Software QRS Detection, IEEE 
Engineering in Medicine & Biology, 2002]

Traditional approach



AND-combination of adjacent magnitude
values of the derivative. The MOBD of
the order N is then defined by

z n x n k x n k
k

N

( ) | ( ) ( )|= − − − −
=

−

∏
0

1

1 .
(12)

In order to avoid a high feature signal
during noisy segments, an additional sign
consistency constraint is imposed; i.e.,

z n

x n k x n k

( )

[ ( )] [ ( )],

=
− ≠ − −

0

1if sign sign
(13)

where k N= −0 1 2, , ,K . A proposed value
for the order of MOBD is N = 4 [107].
The threshold Θ is set to the feature maxi-
mum zmax after the refractory period and
then halved whenever a fixed time period
is elapsed. The threshold is bounded by a
lower limit that is also adaptive.

The algorithms described in [41] and
[85] use basically the same preprocessor.
The ECG is bandpass filtered and after-

wards differentiated. The feature signal z n( )
is computed by squaring and averaging the
output of the differentiator. The bandpass
and differentiator use filter coefficients that
are particularly suited for an implementa-
tion on fixed-point processors with a short
word length. For the peak detection, a vari-
able v is introduced that contains the value
of the most recent feature maximum. Peaks
in the feature signal are detected by compar-
ing the feature againstv. If the feature drops
below v 2 a peak is detected. Then the cur-
rent value of v is taken as the peak height
andv is reset to the current value of the fea-
ture signal; i.e., v z n= ( ). The principle of
the peak detection is shown in Fig. 3. The
fiducial mark is set to the location of the
largest peak in the bandpass-filtered signal
in an interval from 225 ms to 125 ms pre-
ceding a peak detection. The fiducial mark
and the height of the peak are put into an
event vector that is further processed by the
decision stage. In the decision stage, a QRS
peak level LP and a noise level LN are esti-
mated recursively by

L n L n AP P P P P( ) ( ) ( )= ⋅ − + − ⋅λ λ1 1

(14)

L n L n AN N N N P( ) ( ) ( )= ⋅ − + − ⋅λ λ1 1 ,

(15)

where λN and λP are forgetting factors
(e.g., λ ≈ 0 98. ) and AP is the peak ampli-
tude. Depending on whether a peak is
classified as QRS complex or as a noise
peak, either the QRS peak level LP or the
noise level LN is updated using Eq. (14) or
Eq. (15), respectively. Eventually, the de-
tection threshold is determined from

Θ = + ⋅ −L L LN P Nτ ( ), (16)

where the positive threshold coefficient
τ <1 is a design parameter.

In [67] the feature signal z n( ) is com-
puted in a way similar to [41] and [85] but
using different filters. In contrast to [41]
and [85], the feature signal is divided into
segments of 15 points. The maximum of
each segment is compared to an adaptive
noise level and an adaptive peak level esti-
mate and classified depending on the dis-
tance to each of the estimates. The fiducial
point of the QRS complex is set to the loca-
tion within the QRS segment where the
maximum of the ECG and a zero crossing
in its first derivative occur at the same time.

Although [26] describes an ECG
waveform detection by neural networks,
the QRS detection is accomplished using
a feature extractor based on digital filter-
ing. The feature signal z n( ) is generated by
filtering the ECG with two different
bandpass filters and afterwards multiply-
ing the filter outputs w n( ) and f n( ); i.e.,

z n w n f n( ) ( ) ( )= ⋅ . (17)

This procedure is based on the assump-
tion that a QRS complex is characterized
by simultaneously occurring frequency
components within the passbands of the
two bandpass filters. The multiplication
operation performs the AND-combina-
tion. That is, only if both filter outputs are
high then the feature is high and indicates
a QRS complex. The location of the maxi-
mum amplitude in the feature is taken as
the location of the R-wave.

The use of recursive and nonrecursive
median filters, i.e.

y n y n m y n

x n x n x n m
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= − −
+ +
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1
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K

1

1 (19)

is proposed, for example, in [123]. The
median operator applied to a vector
x = [ , , ]x xN1 K means sorting the ele-
ments of the vector according to their val-
ues and then taking the midpoint
y N= xsorted ( / )2 as the filter output. In
[123] a combination of two median filters
and one smoothing filter is used to form a
bandpass filter. The additional signal pro-
cessing steps are similar to [41, 85].

Generalized digital filters for ECG
processing with the transfer function

H z z z K LK L( ) ( )( ) ,= − + >− −1 1 01

(20)
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3. Peak detector proposed in [41].

The detection of a
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accomplished by

comparing the feature

against a threshold.

[Kohler, Hennig, Orglmeister. The Principles of Software QRS Detection, IEEE 
Engineering in Medicine & Biology, 2002]



physionet.org/physiobank/database/mitdb). The atrial fibrilla- 
tion database contains 300 atrial fibrillation episodes, sampled at 
250 Hz for 10 h from Holter tapes of  25 subjects. The onset/end 
of atrial fibrillation was annotated by trained observers. The 
timing of each QRS complex was determined by an automatic 
detector. 

The contents of  the MIT-BIH atrial fibrillation database are 
summarised in Table 1. The MIT-BIH arrhythmia database 
includes two categories (the 100 series and the 200 series) and 
contains 48 subjects: The 100 series consists of  23 subjects, 
and the 200 series consists of  25 subjects. The 100 series 
includes normal sinus rhythm, paced rhythm, bigeminy, 
trigeminy and supraventricular tachycardia, but it does not 
have atrial fibrillation. The 200 series includes eight atrial 
fibrillation subjects out of 25. The 200 series also includes 
atrial bigeminy, atrial flutter, supraventricular tachyarrhythmia 
ventricular flutter and ventricular tachycardia. More detailed 
information about the MIT-BIH arrhythmia database can be 
found at http://www.physionet.org/physiobank/database/ 
html/mitdbdir/tables.htm. In the preliminary work (TATENO 
and GLASS, 2000), we used only eight atrial fibrillation subjects 
from the 200 series as test data. Here, we use all the subjects of  
the 200 series and the 100 series. 

Fig. 1 shows a typical time series of RR intervals from a 
patient with atrial fibrillation. The solid line represents the 
duration of atrial fibrillation. This line is set to atrial fibrillation 
when atrial fibrillation occurs; otherwise, it is set to N, which 
signifies a rhythm that is not atrial fibrillation. At the onset of  
atrial fibrillation, the rhythm dramatically changes and becomes 
irregular, with large fluctuations. In paroxysmal atrial fibrilla- 
tion, there is sudden starting and stopping of atrial fibrillation, as 
indicated in Fig. 1. 

ARR is defined as being the difference between two succes- 
sive RR intervals. We prepared standard density histograms as a 
template for atrial fibrillation detection from the MIT-BIH atrial 
fibrillation database. Blocks of  50 successive beats were con- 
sidered during atrial fibrillation in all subjects in the MIT-BIH 
atrial fibrillation database. Each block falls into one of 16 

Table 1 Profile o f  MIT-BIH atrial qbrillation database 

Hours Episodes Beats 

Atrial fibrillation 91.59 299 510293 
Atrial flutter 1.27 13 10640 
Other 156.12 309 700626 

Total 248.98 621 1221559 

different classes, identified by the mean value: 350-399ms, 
400-449 ms, 450-499 ms etc. 

2.1 C V  test 

The coefficient of variation is the standard deviation of the RR 
intervals divided by the mean RR interval. The coefficient of  
variation of ARR is defined to be the standard deviation of the 
ARR intervals divided by the mean RR interval. (As the ARR 
histograms are symmetrical and the mean value in each of the 
ARR histograms is approximately 0, it is not useful to divide the 
standard deviation of the ARR intervals by the mean ARR 
interval.) As the coefficients of  variation of both the RR and 
the ARR intervals are approximately constant during atrial 
fibrillation, we should be able to use the coefficients of  variation 
to detect atrial fibrillation. 

The coefficients of  variation of the RR and ARR intervals in a 
test record are compared with the standard coefficients of  
variation to detect atrial fibrillation. The standard density histo- 
grams give us the standard coefficients of  variation. To test for 
atrial fibrillation, we consider the 100 beat segment centred on 
each beat in the record and obtain the coefficient of  variation of 
the segment. We define an acceptable range of the coefficient of  
variation R~. i f  the coefficient of  variation of the test record is 
within the standard coefficient of  variation -4-R~ %, the rhythm 
is labelled as atrial fibrillation. We call this the CV test. 

2.2 Kolmogorov-Smirnov test 

We compare the N~e v (= 20, 50, 100,200) beat segment 
centred on each beat in the record. For each beat, we determine 
the density histogram of the RR and ARR intervals and compare 
these with the standard density histograms. The differences 
between the density histograms in a given patient and the 
standard histograms are evaluated using the Kolmogorov- 
Smirnov test (see P~ESS et al. (1992), Section 14.3). Fig. 2 
shows an example of  cumulative probability distributions of  the 
standard histogram and a test histogram. 

In the Kolmogorov-Smirnov test, the greatest distance D 
between the cumulative probability distributions is measured. In 
other words, we assess whether two given distributions are 
different from each other. The Kolmogorov-Smirnov test 
returns ap-value as follows: 

o o  • 

p =  Q(2)= 2 Z ( - 1 ) J  2j222 

j = l  

where 2 = ( d ~ e  + 0.12 + 0 . 1 1 / d ~ e  ) * D. N e = N t N 2 / ( N t +  
N2). N t is the number of data points in the standard distribution. 
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Fig. 1 Time series showing RR intervals from subject 202 from 
MIT-BIH arrhythmia database. ( ) Assessment o f  atrial 
fibrillation (AF) or non-atrial fibrillation (N) as reported in 
database 

Fig. 2 
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Kolmogorov-Smirnov test. Distribution based on data is 
compared with standard distribution. Cumulative probability 
distribution is derived from density histogram. D = greatest 
distance between two cumulative distributions 

Medical & Biological Engineering & Computing 2001, Vol. 39 665 [Tateno & Glass, Automatic detection of atrial fibrillation using the coefficient of variation and density 
histograms of RR and ΔRR intervals. MBEC, 2001]
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A sequence of heart-beat intervals (R-R wave intervals) is automatically trans-
formed into a  three-symbol  Markov chain sequence.  For  convenience the symbols
used may be thought of as S-R-L for short, regular, and long heart-beat intervals,
respectively. The probabihty  that the observed sequence was generated by each of a
set  of  prototype models  character is t ic  of  different  cardiac disorders  is  computed.
That prototype corresponding to the largest probability of observed sequence gener-
ation is designated as the disorder. This procedure is the equivalent of Kullback’s
classification by the minimization of directed divergence procedure.

In a p~Iimina~  experiment p~marily using data  sequences  of  100 hear t -beat
intervals ,  35 dif ferent  known cases  were  automat ical ly  c lass i f ied into  s ix  cardiac
disorders without error. The disorders considered were atrial obviation,  APC  and
VPC,  b igeminy,  s inus  tachycardia  wi th  occas ional  b igeminy.  s inus  tachycardia ,
and ventricular tachycardia.

An automatic procedure to classify cardiac arrhythmjas using a Markov chain
interpretation of heart-beat interval data is reported. A sequence of heart-beat
intervals (R-R wave intervaIs)  is automatically transformed into a three-symbol
Markov chain sequence.’ For convenience the symbols used may be thought of
as S-R-L for short, regular and long heart-beat intervals, respectively. A measure
of the probability  that the observed sequence was generated by each of a set of
prototypic models characteristic of different cardiac disorders is computed. That
prototype corresponding to the largest probability of observed sequence genera-

* The work was supported in part by grant $5  ROl  HE 11022-03 SGYA, “Arrhythmia Recog-
nition After Cardiac Surgery,” National Heart Institute, National Institutes of Health. Computa-
t ions were performed at  the ACME facil i ty of  the Stanford Unive~ity  Medical  Center.

t Wil l  Gersch is  on leave f rom Purdue Univers i ty ,  Center  of  Appl ied  Storhastics,  School  of
Aero, Astro, and Engineering Science, Lafayette, Indiana.

$ David M. Eddy,  M.D. is  a  Postdoctoral  Research Fellow, Bay Area Heart  Research Com-
mittee.

$ Eugene Dong, Jr., M.D. is an Established Investigator of the American Heart Association.
1 Accomplished by a computing algorithm that operates on the derivative of the EKG data to

select the onset of successive QRS  compiexes.
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Abstract 

Artificial neural network8 (ANN#) were used a8 pat- 
tern detectors to  detect atrial fibrillation (AF) in the 
MIT-BIH Arrhythmia Database. ECG data war repre- 
rented uring generalized interval tranrition matrices, an 
in Markov model AF detectors[l]. A training file war 
developed, uring there transition matricer, for a back- 
propagation ANN. Thir file conrirted of approzimately 
15 minuter each of AF and non-AF data. The ANN 
was ruccerfully trained uring thir data. Three rtandard 
databases were ured to  test network performance. Port- 
processing of the ANN output yielded an AF renaitivity 
of 92.86% and an AF positive predictive accuracy of 
92.34%. 

1 Introduction 

Cardiac arrhythmias may be classified using both mor- 
phology analysis, which classifies beats by shape, and 
timing analysis, which classifies beats by their arrival 
rates. Timing analysis is used to classify a subset of 
rhythms that includes premature beats, rapid heart 
rate, slow heart rate, and more generally, beats with ir- 
regular arrival times. Atrial fibrillation (AF) is a heart 
rhythm which is usually characterized by beats with 
normal morphology and with irregular arrival times. 
AF detection is most often based upon timing analy- 
sis. 

Atrial fibrillation detection is important because it is 
a common arrhythmia which often indicates underlying 
heart disease. AF can also complicate automated de- 
tection of other arrhythmias. This happens because it 
becomes impossible to define the prematurity of a beat 
in relation to its surrounding beats in AF. Because of 
this, atrial fibrillation detectors are usually included 
in automated arrhythmia analyzers. AF detection is 
difficult, however, because beat intervals in AF form 
no recognizable pattern, unlike other cardiac arrhyth- 
mias. Attempts have been made to detect AF based 

on R-R interval sequences using a variety of statistical 
methods [I] but there is room for improvement in these 
techniques. 

Pattern classifiers exist in many forms, and artificial 
neural networks ( ANNs) represent an important sub- 
set of these classifiers. ANNs are attractive for solving 
pattern recognition problems because few assumptions 
about the underlying data need to be made. The task 
of the operator of an ANN is to separate the data into 
subsets. The network wil l  be able classify these sub- 
sets according to type as long as they are distinct. Neu- 
ral network training requires appropriate training data, 
pre-processing and post-processing algorithms, an a p  
propriate network topology, and a training algorithm, 
as well as evaluation databases. This document will 
present the design and evaluation of a technique which 
detects AF in the presence of other cardiac arrhythmias 
using a backpropagation artificial neural network. 

2 Databases 

Three databases were used throughout this study. 
The first consisted of a subset of the MIT-BIH ECG 
database, summarized in table 1, which was used as a 
development database. A subset of this database was 
used for training of the ANN. The second database, 
used as an evaluation database and summarized in 
table 2, has been collected from Holter recordings 
specifically to test R-R interval-basedAF detectors. 
This database, called the MIT-BIH Atrial Fibrilla- 
tion/Flutter Database [2] contains 25 ten-hour records, 
each from a unique subject, and including over 300 
episodes of AF. The database consists of two anno- 
tation files for each recording - one containing QRS 
complex arrival times (for R-R interval measurements) 
and the other containing accurate rhythm change an- 
notations. In this database, beat labels indicate the 
time, but not the type, of each beat so the quantities 
of APBs, PVCs, Normal beats, and other beats are un- 
known. The third database was the AHA Database for 

17 3 
0-81 86-’U85-X/92 $3.00 Q 1992 IEEE 

Proceedings Computers in Cardiology (1991)



Winning approach in 2017 Physionet
challenge

• Training data: ~8500 ECGs
• Best algorithms use a combination of expert-

derived features and machine learning

[Teijeiro, Garcia, Castro, Felix. arXiv:1802.05998, 2018]
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Table 1: Set of features used to train the global classifier

tSR: Proportion of the record length interpreted as

a regular rhythm (Normal rhythm, tachycardia or

bradycardia).

t1b: Number of milliseconds from the beginning of the

record to the first interpreted heartbeat.

tOR: Number of milliseconds interpreted as a non-regular

rhythm.

longTch: Longest period of time with heart rate over

100bpm.

RR: Median RR interval of regular rhythms. RRd_std: Standard deviation of the instant RR variation.

RRd: Median Absolute Deviation (MAD) of the RR

interval in regular rhythms.

MRRd: Max. absolute variation of the RR interval in

regular rhythms.

RR_MIrr: Max. RR irregularity measure. RR_Irr: Median RR irregularity measure.

PNN{10,50,100}: Global PNNx measures. o_PNN50: PNN50 of non-regular rhythms.

mRR: Min. RR interval of regular rhythms. o_mRR: Min. RR interval of non-regular rhythms.

n_nP: Proportion of heartbeats with detected P-wave

inside regular rhythms.

n_aT: Median of the amplitude of the T waves inside

regular rhythms.

n_PR: Median PR duration inside regular rhythms. Psmooth: Median of the ratio between the standard

deviation and the mean value of P-waves’ derivative

signal.

Pdistd: MAD of the measure given by the P wave

delineation method.

MPdist: Max. of the measure given by the P wave

delineation method.

prof: Profile of the full signal. pw_profd: MAD of pw_prof.

xcorr: Median of the maximum cross-correlation

between QRS complexes interpreted in regular rhythms.

o_xcorr: Median of the maximum cross-correlation

between QRS complexes interpreted in non-regular

rhythms.

PRd: Global MAD of the PR durations. QT: Median of the corrected QT measure.

TP: Median of the prevailing frequency in the TP

intervals.

TPfreq: Median of the frequency entropy in the TP

intervals.

pw_prof: Profile measure of the signal in the P-wave area. nT: Proportion of QRS complexes with detected T waves.

n_Txcorr: Median of the maximum cross-correlation

between T-waves inside regular rhythms.

n_Pxcorr: Median of the maximum cross-correlation

between P-waves inside regular rhythms.

baseline: Profile of the baseline in regular rhythms. o_baseline: Profile of the baseline in non-regular

rhythms.

wQRS: Proportion of wide QRS complexes (duration

longer than 110ms).

wQRS_xc: Median of the maximum cross-correlation

between wide QRS complexes.

wQRS_prof: Median of the signal profile in the 300ms

before each wide QRS complex.

w_PR: Proportion of heartbeats with long PR interval

(longer than 210 ms).

x_xc: Median of the maximum cross-correlation between

ectopic beats.

x_rrel: Median of the ratio between the previous and

next RR intervals for each ectopic beat.

such an algorithm. Probably, the most labor-intensive task of our proposal was the
elucidation of the expert criteria underlying the training and test sets, and the ensuing
data relabeling to make these criteria as consistent as possible along the dataset.

Certainly, the most difficult class to define an appropriate discrimination knowledge
is the O class, inasmuch as the only provided information (the class name) is excessively
vague and it may include a range of pathophysiological processes showing very different
morphologies and rhythms. Hence, since this class is opposed to atrial fibrillation and
normal sinus rhythm, one expert may consider that only rhythm alterations should be
included in this class, while another expert may contemplate any event that is out of
normality, such as conduction delays or chamber enlargements, among others.

Thanks to the physiological meaning of the features provided by the interpretation,
it has been possible to throw light on some well-known ECG alterations that seem to
be considered as O representatives in the training set. A simple but valuable tool is the
per-class distribution of each feature. Figure 4 shows the distributions of three features

[Teijeiro, Garcia, Castro, Felix. arXiv:1802.05998, 2018]



Not enough data for deep learning? 
Wrong architectures?

“However, the fact that a standard random 
forest with well chosen features performed as 
well as more complex approaches, indicates 
that perhaps a set of 8,528 training patterns 
was not enough to give the more complex 
approaches an advantage. With so many 
parameters and hyperparameters to tune, the 
search space can be enormous and significant 
overtraining was seen…”

[Clifford et al. AF Classification from a Short Single Lead ECG Recording: the 
PhysioNet/Computing in Cardiology Challenge, Computing in Cardiology 2017]



[Rajpurkar et al., arXiv:1707.01836, 2017; Hannun et al. Nature Medicine ‘19]



Differences with previous work

• Sensor is a Zio patch – conceivably much less 
noisy:

• ~90K ECG records annotated (from ~50K patients)
• Identify 12 heart arrhythmias, sinus rhythm and 

noise for a total of 14 output classes



Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks

Appendix

Train + Val Test
Class Description Example Patients Patients

AFIB Atrial Fibrilla-
tion 4638 44

AFL Atrial Flutter 3805 20

AVB TYPE2
Second degree
AV Block Type
2 (Mobitz II)

1905 28

BIGEMINY Ventricular
Bigeminy 2855 22

CHB Complete Heart
Block 843 26

EAR Ectopic Atrial
Rhythm 2623 22

IVR Idioventricular
Rhythm 1962 34



Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks

Train + Val Test
Class Description Example Patients Patients

JUNCTIONAL Junctional
Rhythm 2030 36

NOISE Noise 9940 41

SINUS Sinus Rhythm 22156 215

SVT Supraventricular
Tachycardia 6301 34

TRIGEMINY Ventricular
Trigeminy 2864 21

VT Ventricular
Tachycardia 4827 17

WENCKEBACH Wenckebach
(Mobitz I) 2051 29

Table 2. A list of all of the rhythm types which the model classifies. For each rhythm we give the label name, a more descriptive name
and an example chosen from the training set. We also give the total number of patients with each rhythm for both the training and test
sets.
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Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks

to-end on a single-lead ECG signal sampled at 200Hz and
a sequence of annotations for every second of the ECG
as supervision. To make the optimization of such a deep
model tractable, we use residual connections and batch-
normalization (He et al., 2016b; Ioffe & Szegedy, 2015).
The depth increases both the non-linearity of the compu-
tation as well as the size of the context window for each
classification decision.

We construct a dataset 500 times larger than other datasets
of its kind (Moody & Mark, 2001; Goldberger et al., 2000).
One of the most popular previous datasets, the MIT-BIH
corpus contains ECG recordings from 47 unique patients.
In contrast, we collect and annotate a dataset of about
30,000 unique patients from a pool of nearly 300,000 pa-
tients who have used the Zio Patch monitor1 (Turakhia
et al., 2013). We intentionally select patients exhibiting ab-
normal rhythms in order to make the class balance of the
dataset more even and thus the likelihood of observing un-
usual heart-activity high.

We test our model against board-certified cardiologists. A
committee of three cardiologists serve as gold-standard an-
notators for the 336 examples in the test set. Our model
exceeds the individual expert performance on both recall
(sensitivity), and precision (positive predictive value) on
this test set.

2. Model

Problem Formulation

The ECG arrhythmia detection task is a sequence-to-
sequence task which takes as input an ECG signal X =
[x1, ..xk], and outputs a sequence of labels r = [r1, ...rn],
such that each ri can take on one of m different rhythm
classes. Each output label corresponds to a segment of the
input. Together the output labels cover the full sequence.

For a single example in the training set, we optimize the
cross-entropy objective function

L(X, r) =
1

n

nX

i=1

log p(R = ri | X)

where p(·) is the probability the network assigns to the i-th
output taking on the value ri.

Model Architecture and Training

We use a convolutional neural network for the sequence-to-
sequence learning task. The high-level architecture of the
network is shown in Figure 2. The network takes as input
a time-series of raw ECG signal, and outputs a sequence
of label predictions. The 30 second long ECG signal is

1iRhythm Technologies, San Francisco, California
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Figure 2. The architecture of the network. The first and last layer
are special-cased due to the pre-activation residual blocks. Over-
all, the network contains 33 layers of convolution followed by a
fully-connected layer and a softmax.

sampled at 200Hz, and the model outputs a new prediction
once every second. We arrive at an architecture which is 33
layers of convolution followed by a fully connected layer
and a softmax.

In order to make the optimization of such a network
tractable, we employ shortcut connections in a similar man-
ner to those found in the Residual Network architecture (He
et al., 2015b). The shortcut connections between neural-
network layers optimize training by allowing information
to propagate well in very deep neural networks. Before
the input is fed into the network, it is normalized using a

Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks

Train + Val Test
Class Description Example Patients Patients

JUNCTIONAL Junctional
Rhythm 2030 36

NOISE Noise 9940 41

SINUS Sinus Rhythm 22156 215

SVT Supraventricular
Tachycardia 6301 34

TRIGEMINY Ventricular
Trigeminy 2864 21

VT Ventricular
Tachycardia 4827 17

WENCKEBACH Wenckebach
(Mobitz I) 2051 29

Table 2. A list of all of the rhythm types which the model classifies. For each rhythm we give the label name, a more descriptive name
and an example chosen from the training set. We also give the total number of patients with each rhythm for both the training and test
sets.

Input

[Rajpurkar et al., arXiv:1707.01836, 2017; Nature Medicine ‘19] Output

• 1-D signal sampled at 200Hz, 
labeled at 1 sec intervals

• 34 layers
• Shortcut connections (ala 

residual networks) with max-
pooling

• Subsampled every other layer 
(28 in total)



Example of 1D convolution
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Train + Val Test
Class Description Example Patients Patients

JUNCTIONAL Junctional
Rhythm 2030 36

NOISE Noise 9940 41

SINUS Sinus Rhythm 22156 215

SVT Supraventricular
Tachycardia 6301 34

TRIGEMINY Ventricular
Trigeminy 2864 21

VT Ventricular
Tachycardia 4827 17

WENCKEBACH Wenckebach
(Mobitz I) 2051 29

Table 2. A list of all of the rhythm types which the model classifies. For each rhythm we give the label name, a more descriptive name
and an example chosen from the training set. We also give the total number of patients with each rhythm for both the training and test
sets.

Input

2 3 1Filter

Output3 4 5 3 4 5 3

= <1,0,1>*<2,3,1> = 1*2 + 0*3 + 1*1 = 3.

?

Stride=1
(Not showing 
padding)



Evaluation: beat-level (‘Seq’) vs. patient-level (‘Set’)
Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks

Seq Set

Model Cardiol. Model Cardiol.

Class-level F1 Score

AFIB 0.604 0.515 0.667 0.544
AFL 0.687 0.635 0.679 0.646
AVB TYPE2 0.689 0.535 0.656 0.529
BIGEMINY 0.897 0.837 0.870 0.849
CHB 0.843 0.701 0.852 0.685
EAR 0.519 0.476 0.571 0.529
IVR 0.761 0.632 0.774 0.720
JUNCTIONAL 0.670 0.684 0.783 0.674
NOISE 0.823 0.768 0.704 0.689
SINUS 0.879 0.847 0.939 0.907
SVT 0.477 0.449 0.658 0.556
TRIGEMINY 0.908 0.843 0.870 0.816
VT 0.506 0.566 0.694 0.769

WENCKEBACH 0.709 0.593 0.806 0.736

Aggregate Results

Precision (PPV) 0.800 0.723 0.809 0.763
Recall (Sensitivity) 0.784 0.724 0.827 0.744
F1 0.776 0.719 0.809 0.751

Table 1. The top part of the table gives a class-level comparison of
the expert to the model F1 score for both the Sequence and the Set
metrics. The bottom part of the table shows aggregate results over
the full test set for precision, recall and F1 for both the Sequence
and Set metrics.

ical, requiring immediate attention (Dubin, 1996).

Table 2 in the Appendix also shows the number of unique
patients in the training (including validation) set and test
set for each rhythm type.

4. Results

Evaluation Metrics

We use two metrics to measure model accuracy, using the
cardiologist committee annotations as the ground truth.

Sequence Level Accuracy (F1): We measure the aver-
age overlap between the prediction and the ground truth
sequence labels. For every record, a model is required to
make a prediction approximately once per second (every
256 samples). These predictions are compared against the
ground truth annotation.

Set Level Accuracy (F1): Instead of treating the labels for
a record as a sequence, we consider the set of unique ar-
rhythmias present in each 30 second record as the ground
truth annotation. Set Level Accuracy, unlike Sequence
Level Accuracy, does not penalize for time-misalignment
within a record. We report the F1 score between the unique
class labels from the ground truth and those from the model
prediction.

In both the Sequence and the Set case, we compute the
F1 score for each class separately. We then compute the
overall F1 (and precision and recall) as the class-frequency
weighted mean.

Model vs. Cardiologist Performance

We assess the cardiologist performance on the test set. Re-
call that each of the records in the test set has a ground
truth label from a committee of three cardiologists as well
as individual labels from a disjoint set of 6 other cardiolo-
gists. To assess cardiologist performance for each class, we
take the average of all the individual cardiologist F1 scores
using the group label as the ground truth annotation.

Table 1 shows the breakdown of both cardiologist and
model scores across the different rhythm classes. The
model outperforms the average cardiologist performance
on most rhythms, noticeably outperforming the cardiolo-
gists in the AV Block set of arrhythmias which includes
Mobitz I (Wenckebach), Mobitz II (AVB Type2) and com-
plete heart block (CHB). This is especially useful given
the severity of Mobitz II and complete heart block and the
importance of distinguishing these two from Wenckebach
which is usually considered benign.

Table 1 also compares the aggregate precision, recall and
F1 for both model and cardiologist compared to the ground
truth annotations. The aggregate scores for the cardiolo-
gist are computed by taking the mean of the individual car-
diologist scores. The model outperforms the cardiologist
average in both precision and recall.

5. Analysis

The model outperforms the average cardiologist score on
both the sequence and the set F1 metrics. Figure 4 shows
a confusion matrix of the model predictions on the test set.
Many arrhythmias are confused with the sinus rhythm. We
expect that part of this is due to the sometimes ambiguous
location of the exact onset and offset of the arrhythmia in
the ECG record.

Often the mistakes made by the model are understand-
able. For example, confusing Wenckebach and AVB Type2
makes sense given that the two rhythms in general have
very similar ECG morphologies. Similarly, Supraventric-
ular Tachycardia (SVT) and Atrial Fibrillation (AFIB) are
often confused with Atrial Flutter (AFL) which is under-
standable given that they are all atrial arrhythmias. We also
note that Idioventricular Rhythm (IVR) is sometimes mis-
taken as Ventricular Tachycardia (VT), which again makes
sense given that the two only differ in heart-rate and are
difficult to distinguish close to the 100 beats per minute de-
lineation.

Recall = sensitivity
Precision = PPV
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Figure 4. A confusion matrix for the model predictions on the test
set. Many of the mistakes the model makes are not surprising.
For example, confusing second degree AV Block (Type 2) with
Wenckebach makes sense given the often similar expression of
the two arrhythmias in the ECG record.

One of the most common confusions is between Ectopic
Atrial Rhythm (EAR) and sinus rhythm. The main distin-
guishing criteria for this rhythm is an irregular P wave. This
can be subtle to detect especially when the P wave has a
small amplitude or when noise is present in the signal.

6. Related Work

Automatic high-accuracy methods for R-peak extraction
have existed at least since the mid 1980’s (Pan & Tomp-
kins, 1985). Current algorithms for R-peak extraction tend
to use wavelet transformations to compute features from
the raw ECG followed by finely-tuned threshold based clas-
sifiers (Li et al., 1995; Martı́nez et al., 2004). Because ac-
curate estimates of heart rate and heart rate variability can
be extracted from R-peak features, feature-engineered al-
gorithms are often used for coarse-grained heart rhythm
classification, including detecting tachycardias (fast heart
rate), bradycardias (slow heart rate), and irregular rhythms.
However, such features alone are not sufficient to distin-
guish between most heart arrhythmias since features based
on the atrial activity of the heart as well as other features
pertaining to the QRS morphology are needed.

Much work has been done to automate the extraction of
other features from the ECG. For example, beat classifica-
tion is a common sub-problem of heart-arrhythmia classifi-
cation. Drawing inspiration from automatic speech recog-
nition, Hidden Markov models with Gaussian observation
probability distributions have been applied to the task of

beat detection (Coast et al., 1990). Artificial neural net-
works have also been used for the task of beat detection
(Melo et al., 2000). While these models have achieved
high-accuracy for some beat types, they are not yet suffi-
cient for high-accuracy heart arrhythmia classification and
segmentation. For example, (Artis et al., 1991) train a
neural network to distinguish between Atrial Fibrillation
and Sinus Rhythm on the MIT-BIH dataset. While the
network can distinguish between these two classes with
high-accuracy, it does not generalize to noisier single-lead
recordings or classify among the full range of 15 rhythms
available in MIT-BIH. This is in part due to insufficient
training data, and because the model also discards critical
information in the feature extraction stage.

The most common dataset used to design and evaluate ECG
algorithms is the MIT-BIH arrhythmia database (Moody
& Mark, 2001) which consists of 48 half-hour strips of
ECG data. Other commonly used datasets include the
MIT-BIH Atrial Fibrillation dataset (Moody & Mark, 1983)
and the QT dataset (Laguna et al., 1997). While useful
benchmarks for R-peak extraction and beat-level annota-
tions, these datasets are too small for fine-grained arrhyth-
mia classification. The number of unique patients is in the
single digit hundreds or fewer for these benchmarks. A
recently released dataset captured from the AliveCor ECG
monitor contains about 7000 records (Clifford et al., 2017).
These records only have annotations for Atrial Fibrillation;
all other arrhythmias are grouped into a single bucket. The
dataset we develop contains 29,163 unique patients and 14
classes with hundreds of unique examples for the rarest ar-
rhythmias.

Machine learning models based on deep neural networks
have consistently been able to approach and often exceed
human agreement rates when large annotated datasets are
available (Amodei et al., 2016; Xiong et al., 2016; He et al.,
2015c). These approaches have also proven to be effective
in healthcare applications, particularly in medical imaging
where pretrained ImageNet models can be applied (Esteva
et al., 2017; Gulshan et al., 2016). We draw on work in au-
tomatic speech recognition for processing time-series with
deep convolutional neural networks and recurrent neural
networks (Hannun et al., 2014; Sainath et al., 2013), and
techniques in deep learning to make the optimization of
these models tractable (He et al., 2016b;c; Ioffe & Szegedy,
2015).

7. Conclusion

We develop a model which exceeds the cardiologist perfor-
mance in detecting a wide range of heart arrhythmias from
single-lead ECG records. Key to the performance of the
model is a large annotated dataset and a very deep convolu-
tional network which can map a sequence of ECG samples



Outline for today’s class

1. Using ML for risk stratification
– Alternative framing: survival modeling
– Evaluation: metrics, interpretability

2. Physiological time-series: application to 
detecting irregular heart arrythmias
– Small data approach
– Big data approach
– Current research 



Predicting 1-year mortality using
12-lead ECGs

• >2 million ECGs from 500k 
patients seen at Geisinger 
(in Pennsylvania) over 30 
years

• Comparison of predictive 
performance (AUC):
– .876 – Deep model ECG + 

age, gender
– .86 – XGBoost using ECG 

measures + age, gender
– .816 - Charlson

comorbidity index
[Figures from: Raghunath et al., Prediction of mortality from 12-lead electro-cardiogram voltage 
data using a deep neural network, Nature Medicine 2020.
For related work, see also: Ribeiro et al., Automatic diagnosis of the 12-lead ECG using a deep 
neural network, Nature Communications 2020]
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Extended Data Fig. 4 | See next page for caption.
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with 
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within 1 
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Table 2 | Patient demographics and summary of data distribution across the predicted groups for the DNN model (M0) trained with 
ECGs, as well as age and sex

Holdout test dataset (total) Holdout test dataset

Predicted dead Predicted alive

ECGs (n) 168,914 38,702 130,212
Events (n) 14,207 11,004 3,203
Age (years) 58!±!18 73!±!14 53!±!17
Sex (male in %) 47 50 46
Patterns (31 categorical variables) as % of ECGs
 Ventricular tachycardia 0.04 0.2 0
 SVT 0.3 0.9 0.1
 Atrial flutter 0.6 1.9 0.2
 Atrial fibrillation 4.4 14.5 1.5
 Complete block 0.04 0.1 0.02
 Pacemaker 1.7 5.4 0.6
 Left BBB 1.7 4.8 0.7
 Incomplete left BBB 0.2 0.6 0.1
 Second-degree AV block 0.08 0.2 0.05
 Intraventricular block 1.3 3.2 0.7
 Fascicular block 2.2 5.4 1.3
 PVC 4.5 10.5 2.7
 Sinus tachycardia 7.9 17.9 5.0
 Ischemia 6.0 13.4 3.8
 Right BBB 3.9 8.6 2.5
 PAC 3.7 8.3 2.4
 Left axis deviation 6.3 13.5 4.2
 Prolonged QT 3.4 6.7 2.3
 Low QRS voltage 3.9 7.8 2.8
 Prior infarct 13.6 24.8 10.2
 First-degree AV block 4.2 7.2 3.4
 Acute MI 0.6 1.0 0.5
 Nonspecific ST abnormality 7.5 12.3 6.0
 Right axis deviation 2.0 3.0 1.7
 LVH 6.8 9.7 5.9
 Nonspecific T-wave abnormality 10.5 14.9 9.2
 Other bradycardia 0.08 0.1 0.08
 Incomplete right BBB 3.4 2.9 3.6
 Sinus bradycardia 14.6 5.8 17.3
 Normal 26.8 6.3 32.9
 Early repolarization 0.6 0.1 0.7
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Can we ‘push’ deep networks to 
discover new features?Using deep networks for scientific discovery in physiological signals

(a) Baseline (b) All

(c) P-Wave constrained (d) RR constrained

Figure 2: Mean class activation map templates for all four models, superimposed over the
mean QRS. The QRS and activation templates above are the result of averaging over 3839
detected QRS areas from all atrial fibrillation records in the test set.

peak which shifted toward the beginning of expected location of the theoretical P-wave
window. In addition, in the P-Wave model’s activation (i.e a model that is pushed to not

use P-wave-based features), it seems that the activation shifted toward the R-peak starting
point. As one of the hallmark features of AF is the loss of regularity of the intervals between
consecutive R-peaks, an increase in activation at the expected location of the R-peak seems
to reflect the shift of the internal representation. According to paired t-tests performed
on the activation within P-wave and QR windows as defined in medical literature: In the
P-wave window, RR model CAM > P-wave model CAM, p < 10�10. In the QR window,
P-wave model CAM > RR model CAM, p < 10�10. Further analysis of CAMs in the ECG
signal is brought in Appendix A.

These results strengthen our belief that the network automatically learned features
which temporally roughly correspond to the P-Wave and R-peaks. It also shows that our
method can selectively force the network not to use pre-specified aspects of the signal, even
if they are given as high-level features such as the RR and P-Wave features used here.
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[Beer, Eini-Porat, Goodfellow, Eytan, Shalit. Using deep networks for scientific discovery 
in physiological signals, Machine Learning in Healthcare 2020]
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the mean, leading to negative R
2 values. We take this to be an indication that our method

is successful in learning representations that are indeed independent of the hand-engineered
features used in each model.

We then proceed to examine the third auxiliary task, Rep2Label, whose goal is to
examine whether the learned representations still carry information about the target label.
We see that while the baseline model is highly predictive of the label (on par with the
best hand-engineered features), once we remove either the P-wave or the RR features, the
learned representation carries much less information about the labels, with performance
dropping precipitously. When we remove both feature sets, performance of using solely
the representation is not statistically significantly di↵erent from chance performance (n =
620, p = 0.2). The significant drop in classification accuracy of the models constrained by
only one of the feature sets can be explained by the fact that the two feature sets are highly
correlated; constraining one set causes the model to ignore some information reflected by
the other set.

Finally, we examine the accuracy and F1 scores of the full models, i.e. using the con-
strained representation g concatenated with the hand-engineered features f . These models
achieve slightly better performance than using merely the hand-engineered features.

We therefore come to the conclusion that state-of-the-art type DNNs for predicting
AF from ECG might not seem to learn much beyond the information contained in the
combined set of RR and P-Wave hand-engineered features. Remarkably, they seem to have
“rediscovered” without explicit guidance the best features as discovered over years of work
by human experts.

Feature Set Accuracy F1

RR feature set 93.9% 0.91
P-Wave feature set 87.3% 0.86

All feature set 95.5% 0.95

Table 3: Relevance task performance for the two hand engineered feature sets.

Model Accuracy F1 Avg. R2 (Independence) Rep2Label Accuracy

Baseline Model 89.8% 0.90 (0.51, 0.1) 94%
RR Model 94.5% 0.94 0.018 57%

P-Wave Model 89.7% 0.90 -0.082 58%
All Model 92.1% 0.92 -0.007 52%

Table 4: Accuracy and F1 are reported on main task. Average R2 and Rep2Label accuracy
are for the auxiliary tasks. Baseline model is DNN without access to hand engineered
features and without HSIC. RR model, P-Wave model and All Model are models with
access to the respective hand-engineered features, along with DNN representations explicitly
encouraged to be independent of the features.

Next, we examine the mean Class Activation Map template to observe the changes in
the focus of the nets. In Figure 2, for the RR model (whose representation is encouraged not

to use R-peak related information), we observe an almost smooth activation with a clear
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function of the network’s output is given by:

�HSIC ([f1, . . . fn]; [g1, . . . , gn]) +
nX

i=1

CrossEntropy (ŷi, yi) , (1)

where � is a hyperparameter controlling the degree of independence we induce between the
DNN representation gi and the hand-engineered representations fi. This parameter is tuned
to ensure both high performance on the original task and su�cient independence relative
to the external features. See section 4.1 and figure 7 for more details.

Figure 1: Network flow and objective computation: Input signals x are passed through
the DNN, yielding g, the latent representation. g is concatenated with extracted feature
set f and passed through the FC layer, generating the final class logits ŷ. Then, HSIC is
calculated for g and feature set f . Finally, the weighted HSIC loss is added to the cross
entropy loss of ŷ and true labels y. Note that the black arrows refer to the internal network
flow and the blue arrows refer to the calculation of the loss.

We chose the WaveNet architecture as similar models were used both for arrhythmia
detection from ECG signals (Goodfellow et al., 2018b) and for sleep stages classification
from EEG signals (Fernández-Varela et al., 2018), which are the two tasks we focus on in
our experiments.

Figure 1 schematically summarizes the described method.

2.1. Visualization of activation

Once we learn a representation g, we wish to understand its relation to the signal x, trying to
answer the question “which aspects of the signal does g capture and focus on?”. We address
this challenge using the idea of class activation maps, CAMs (Zhou et al., 2016). CAMs are

5

Class activation maps
(Zhou et al. 2016) 
followed by alignment 
& averaging



Do models generalize across 
institutions?

[Strodthoff, Wagner, Schaeffter, Samek. Deep learning for 
ECG Analysis: Benchmarks and Insights from PTB-XL, IEEE 
Journal of Biomedical and Health Informatics, 2020]
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[Alday et al., Classification of 12-lead ECGs: The 
PhysioNet/Computing in Cardiology Challenge 2020, 
Physiological Measurement, 2020]



Closing reflections for ML on 
physiological data

• We are often in realm of “not enough data”
– Modeling and incorporating prior knowledge can 

be critical to good performance

• Is machine learning actually picking up new 
features?

• How can we improve the interpretability and 
generalizability of the learned models?


