Machine Learning for Healthcare 6.871, HST.956

Lecture 4: Risk stratification

David Sontag

Course announcements

 Office hours: Monday 4:00-5:00pm (Room 26-168) Friday 4:00-5:00pm (Room 36-112)

• Problem set 1 due Weds. Feb 16 11:59pm ET

Outline for today's class

- **1. Introduction to risk stratification**
- Case study: Early detection of Type 2 diabetes
 - Encoding longitudinal structured health data
- 3. Framing as supervised learning problem
 - Deriving labels from EHR

What is risk stratification?

 Separate a patient population into high-risk and low-risk of having an outcome

- Predicting something in the future

- Coupled with interventions that target highrisk patients
- Goal is typically to reduce cost and improve patient outcomes

Figure sources: https://www.drmani.com/heart-attack/ (top) https://www.emra.org/emresident/article/acute-mi-case-report/ (right) Does this patient need to be admitted to the coronary-care unit?

(Pozen et al., NEJM 1984)

Will this woman develop breast cancer in the next 5 years?

(Yala et al., Science Translational Medicine 2021)

David, your genetics are associated with a **typical likelihood** of developing type 2 diabetes.

	ETHNICITY	AUC VALUE
	European	0.652
Based on data from 23andMe research participants, people of European descent with genetics	South Asian	0.603
the ages of 37 (your current age) and 80.	Hispanic/Latino	0.638
22%	East Asian	0.609
22.70	African	0.588
0% 100%	DNA Deoxyribonucle	eic acid
TYPICAL RANGE		

Summary

This report is based on a statistical model that estimates the likelihood of developing type 2 diabetes by looking at genetic variants at 1,244 places in your DNA. We identified these variants and created this model using data from more than 1,110,000 23andMe research participants of European descent.

(Source: 23andme. https://permalinks.23andme.com/pdf/23_19-Type2Diabetes_March2019.pdf)

How does risk stratification differ from differential diagnosis?

Differential diagnosis	Risk stratification
Usually iterative/active	Usually passive
Often considers a large set of conditions	Often just one condition
Has to consider rare conditions (needs hybrid knowledge/ML approaches)	Often focuses on settings where there is enough training data

Old vs. New

• Traditionally, risk stratification was based on simple scores using human-entered data

	0 Points	1 Po	1 Point 2 Points		Points totaled	
Activity (muscle tone)	Absent	Arms and legs flexed		Active movement		
Pulse	Absent	Below 100 bpm		elow 100 bpm Over 100 bpm		
Grimace (reflex irritability)	Flaccid	Some flexion of Extremities		Active motion (sneeze, cough, pull away)		
Appearance (skin color)	Blue, pale	Body pink, Extremities blue		Completely pink		
Respiration	Absent	Slow, irregular		Vigorous cry		
		-			+	
			Se	everely depresse	d 0-3	
			Moderately depressed 4-6			
			Ex	cellent condition	n 7-10	

APGAR SCORING SYSTEM

Old vs. New

- Traditionally, risk stratification was based on simple scores using human-entered data
- Now, based on machine learning on highdimensional data
 - Fits more easily into workflow
 - Higher accuracy
 - Quicker to derive (can special case)
- But, ML approach comes with new challenges

 to be discussed

So, what do we need?

- Specification of prediction time / index date
- A way of encoding the data we have on the patient
 - CNN for images
 - Bag of words for text document
 - Longitudinal structured data...?
- A target, typically derived from the EHR
- Choice of appropriate supervised ML algorithm — Regression? Classification?

Outline for today's class

- 1. Introduction to risk stratification
- 2. Case study: Early detection of Type 2 diabetes
 - Encoding longitudinal structured health data
- 3. Framing as supervised learning problem
 - Deriving labels from EHR

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. '16]

Type 2 Diabetes: A Major public health challenge

\$245 billion: Total costs of diagnosed diabetes in the United States in 2012
\$831 billion: Total fiscal year federal budget for healthcare in the United
States in 2014

Type 2 Diabetes Can Be Prevented *

Requirement for successful large scale prevention program

1. Detect/reach truly at risk population

2. Improve the interventions

3. Lower the cost of intervention

* Diabetes Prevention Program Research Group. "Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin." The New England journal of medicine 346.6 (2002): 393.

Traditional Risk Prediction Models

TYPE

- Successful Examples
 - ARIC
 - KORA •
 - FRAMINGHAM •
 - AUSDRISC
 - FINDRISC •
 - San Antonio Model
- Easy to ask/measure in the office, or for patients to do online
- Simple model: can calculate scores by hand

ТҮ	PE 2 DIABETES RISK	ASSE	SSMENT FORM
Circle	e the right alternative and add up your pe	oints.	
1. Ag	e Under 45 week	6. Hav	ve you ever taken anti-hypertensive
ор. 2 р.	45–54 years	medic	ation regularly?
3 p. 4 p.	55–64 years Over 64 years	0 p. 2 p.	No Yes
2. Bo	dy-mass index	7. Hav	ve you ever been found to have high
(See r	everse of form)	blood	glucose (e.g. in a health examination,
0 p.	Lower than 25kg/m ²	during	g an illness, during pregnancy)?
1 p.	25-30 kg/m ²		
3 p.	Higher than 30 kg/m ²	0 p.	No
		5 p.	Yes
3. Wa	ist circumference measured below the		
ribs (usually at the level of the navel)	8. Hav	re any of the members of your
0 -	MEN WOMEN	imme	diate family or other relatives been
0 p.	Less than 94cm Less than 80cm	diagn	osed with diabetes (type 1 or type 2)?
5 p.	More than 102 cm More than 88 cm	0.0	No
4 p.	More than 102 cm More than 55 cm	3 p.	No Ves: grandparent aunt uncle or first
		5 p.	cousin (but no own parent, brother sister
			or child)
		5 p.	Yes: parent, brother, sister or own child
	+++		
		Total	risk score
		:	The risk of developing
			type 2 diabetes within 10 years is
		: Lower	than 7 Low: estimated 1 in 100
4 00	you usually have daily at least 20		will develop disease
4. D0	tes of physical activity at work and/or	7-11	Slightly elevated:
durin	a leisure time (including normal daily	:	estimated 1 in 25
activ	ity)?	1	will develop disease
0 p.	Yes	12-14	Moderate: estimated 1 in 6
2 p.	No		will develop disease
- p.		; 15-20	will develop disease
5. Ho	w often do you eat vegetables, fruit'or	Higho	r Very high:
berri	es?	than	20 estimated 1 in 2
0 p.	Every day	: that a	will develop disease
1 p.	Not every day	·	······································
			Please turn over

Finnish Diabetes Association

Test designed by Professor Jaakko Tuomilehto, Department of Public Health, University of Helsinki, and Jaana Lindström, MFS. National Public Health Institute

Population-Level Risk Stratification

• Key idea: Use readily available administrative, utilization, and clinical data

Source for figure: http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry

Population-Level Risk Stratification

- Key idea: Use readily available administrative, utilization, and clinical data
- Machine learning will find surrogates for risk factors that would otherwise be missing
- Perform risk stratification at the population level – millions of patients

A Data-Driven approach on Longitudinal Data

- Looking at individuals who got diabetes *today*, (compared to those who didn't)
 - Can we infer which variables in their record could have predicted their health outcome?

A Few Years Ago

Today

Administrative & Clinical Data

Top diagnosis codes

				Disease	count
				719.47 Joint pain-ankle	28648
Disease	count	Disease	count	300.4 Dysthymic disorder	28530
401.1 Benign hypertension	447017	530.81 Esophageal reflux	121064	268.9 Vitamin D deficiency	
272.4 Hyperlipidemia NEC/NOS	382030	427.31 Atrial fibrillation	113798	NOS	28455
401.9 Hypertension NOS	372477	729.5 Pain in limb	112449	V72.81 Preop cardiovsclr	
250.00 DMII wo cmp nt st		414.01 Crnry athrscl natve vssl	104478	exam	27897
uncntr	339522	285.9 Anemia NOS	103351	724.3 Sciatica	27604
272.0 Pure hypercholesterolem	232671	786 50 Chest nain NOS	91999	787.91 Diarrhea	27424
272.2 Mixed hyperlipidemia	180015	599.0 Urin tract infection NOS	87982	V2.21 Supervis oth normal	
V72.31 Routine gyn examination	178709	V58 69 Long-term use meds		preg	27320
244 9 Hypothyroidism NOS	169829	NFC	85544	365.01 Opn angl brderIn lo	
780 79 Malaise and fatigue NEC	1/0707	196 Chrainway obstruct NEC	78585	risk	26033
	143737		70505	379.21 Vitreous	
V04.81 Vaccin for influenza	14/858	477.9 Allergic minitis NOS	//963	degeneration	25592
724.2 Lumbago	137345	414.00 Cor ath unsp vsl ntv/gft	75519	424.1 Aortic valve disorder	25425
V76.12 Screen mammogram				616 10 Vaginitis NOS	24736
NEC	129445			702 10 Other shorthaid	24730
V70.0 Routine medical exam	127848				24452
				keratosis	24453
Out of 135K patie	ents w	/ho had laboratory (data	380.4 Impacted cerumen	24046

Top lab test results

Lab test	
2160-0 Creatinine	1284737
3094-0 Urea nitrogen	1282344
2823-3 Potassium	1280812
2345-7 Glucose	1299897
1742-6 Alanine	
aminotransferase	1187809
1920-8 Aspartate	
aminotransferase	1187965
2885-2 Protein	1277338
1751-7 Albumin	1274166
2093-3 Cholesterol	1268269
2571-8 Triglyceride	1257751
13457-7 Cholesterol.in LDL	1241208
17861-6 Calcium	1165370
2951-2 Sodium	1167675

1155666
1152726
1147893
1037730
561309
1070832
1062980
1062445
1063665

Lab test	
770-8 Neutrophils/100	
leukocytes	952089
731-0 Lymphocytes	943918
704-7 Basophils	863448
711-2 Eosinophils	935710
5905-5 Monocytes/100	
leukocytes	943764
706-2 Basophils/100	
leukocytes	863435
751-8 Neutrophils	943232
742-7 Monocytes	942978
713-8 Eosinophils/100	
leukocytes	933929
3016-3 Thyrotropin	891807
4548-4 Hemoglobin	
A1c/Hemoglobin.total	527062

Count of people who have the test result (ever)

Encoding the longitudinal health data

- Is the value increasing?
- Is the value decreasing?
- Is the value fluctuating?

Encoding the longitudinal health data

10s-100s of thousands of features

There may be a varying amount of history per patient

Encoding the longitudinal health data

How does this deal with missing data? What are its limitations?

Alternative encoding using selfattention / transformers

Li et al., *BEHRT: Transformer for Electronic Health Records*, Scientific Reports '20 Kodialam et al., *Deep Contextual Clinical Prediction with Reverse Distillation*, AAAI '21

The latter can make use of unsupervised learning of concept embeddings

Outline for today's class

- 1. Introduction to risk stratification
- Case study: Early detection of Type 2 diabetes
 - Encoding longitudinal structured health data
- 3. Framing as supervised learning problem
 - Deriving labels from EHR

Where do the labels come from?

Typical pipeline:

- 1. Manually label several patients' data by "chart review"
- 2. A) Come up with a simple rule to automatically derive label for all patients, **or**

B) Use machine learning to get the labels themselves

Step 1:

Visualization of individual patient data is an important part of chart review

https://github.com/nyuvis/patient-viz https://github.com/BenGlicksberg/PatientExploreR Figure 1: Algorithm for identifying T2DM cases in the EMR.

Source: https://phekb.org/sites/phenotype/files/T2DM-algorithm.pdf

Step 2: Example of a rule-based phenotype

Coverage of Different Diabetes Outcome Definitions on Claims Data

Condition	Percentage
Have 250.x diagnosis, or have been on diabetic medication, or have	
any HbA1c ≥ 6.5	100 %
Have been diagnosed 250.xx	89.9 %
Have been on diabetic medications	15.0 %
Have HbA1c values ≥ 6.5	20.9 %
Have 250.xx diagnosis on more than one distinct date	40.0 %
(Have 250.xx diagnosis, or have been on diabetic medication, or have any HbA1c \geq 6.5) on more than one distinct date	44.0 %
(Have 250.xx diagnosis, or have been on diabetic medication, or	
have any HbA1c \geq 6.5) on two dates separated by at least a week	41.1 %

The earliest date the rule triggers is defined as the date of diabetes diagnosis

Definition selected

Step 2: Example of a rule-based phenotype

		or discovering pho	notynes		Login Re	quest Accour
nek	from electronic med	dical records	hotypes			Search
ome Phenotypes	Resources Contact U	ls		2		
1						
Public Phe	enotypes					
Public Collaboratio	on					
ublic phenotypes are belie	eved to be complete and final by	y their authors. When	you are logged in y	ou can view a	nd edit phenotypes	s in your
roups that are non public a	and in various stages of develop	oment.				
Login To View Private Group	Phenotypes	10000				
stitution	Type of Phenotype	Owner	r Phenotyping Grou	ips View Ph	enotyping Groups	
	Disease of Syndrome	•				
Apply						
		Data Modalities	Owner		Has	
Title	Institution	and Methods	Phenotyping	View Groups	new Status	Туре
		Used	dioups	eMERGE	content	
			AMERGE	Geisinger		Disease
Abdominal Aortic	Geisinger	CPT Codes, ICD 9	Geisinger	Group,	Final	or
Aneurysin (AAA)		Codes, Vital Signs	Group	eMERGE		Syndrome
				WG		
		ICD 9 Codes,		eMERGE		Disease
algorithm	CHOP	Medications, Natural Language	CHOP Group	Phenotype	Final	or
5		Processing		WG		Syndrome
		CPT Codes, ICD 9 Codes,	eMERGE	eMERGE		Disease
Appendicitis	Cincinnati Children's Hospital Medical Center	Medications,	CCHMC/BCH	Phenotype	Final	or
	indida conto	Natural Language Processing	Group	WG		Syndrome
		CPT Codes, ICD 9		Vanderbilt -		Disease
Atrial Fibrillation - Demonstration Project	Vanderbilt University	Codes, Natural	Vanderbilt -	SD/RD	Final	or
Demonstration reject		Processing	SD/RD Group	Group		Syndrome
	Cincipneti Children's Hespitel	ICD 9 Codes,	eMERGE	eMERGE		Disease
B Autism	Medical Center	Natural Language	CCHMC/BCH	Phenotype	Final	or
		Processing	Group	WG		Syndrome
		CPT Codes, ICD 9 Codes,	eMERGE	eMERGE		Disease
E Cataracts	Marshfield Clinic Research	Medications,	Marshfield	Phenotype	Final	or
	. Contraction	Natural Language Processing	Group	WG		Syndrome
		ICD 9 Codes,		Vanderbilt -		Disease
🐑 Crohn's Disease -	A designation of a state of the distance of the second state of	Medications,	Vanderbilt -	00/00	Einel	

6 Q 🛆 🛛

https://www.phekb.org/phenotypes?field_pgx_type_tid_1=398&field_data_model_value=All

Exclusion criteria:

- Diabetes diagnosis (according to our rule) observed prior to January 1, 2009
- Less than 6 months of enrollment in feature construction window
- Member left health insurance prior to Jan. 1, 2011
 What if someone is diagnosed with diabetes in 2012?
 Why not model as "patient develops diabetes anytime after 2009"?

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. '16]

Exclusion criteria:

- Diabetes diagnosis (according to our rule) observed prior to January 1, 2009 2011
- Less than 6 months of enrollment in feature construction window
- Member left health insurance prior to Jan. 1, 2011 2013

- Suppose we want to run the above model in August 2009. It may not have good performance due to *non-stationarity* in the data
- We now have data through 2021. Using a fixed prediction time / index date of Jan. 1, 2009 is ignoring most of the diabetes onsets!

• We can instead create *many* data points from each patient, using e.g. every month as an index date:

 Important: If multiple data points per patient, make sure each patient's data is in only train, validate, or test