
Machine Learning for Healthcare
6.871, HST.956

Lecture 4: Risk stratification

David Sontag



Course announcements

• Office hours:
Monday 4:00-5:00pm (Room 26-168)
Friday 4:00-5:00pm (Room 36-112)

• Problem set 1 due Weds. Feb 16 11:59pm ET



Outline for today’s class

1. Introduction to risk stratification
2. Case study: Early detection of Type 2 

diabetes
– Encoding longitudinal structured health data

3. Framing as supervised learning problem
– Deriving labels from EHR



What is risk stratification?

• Separate a patient population into high-risk
and low-risk of having an outcome
– Predicting something in the future

• Coupled with interventions that target high-
risk patients

• Goal is typically to reduce cost and improve 
patient outcomes



Examples of risk stratification

(Saria et al., Science Translational 
Medicine 2010)

Preterm infant’s 
risk of severe 
morbidity? 7

TABLE I
PHYSIOLOGICAL MEASUREMENT CHANNELS

Channel name Label

Core body temperature (�C) Core temp.
Diastolic blood pressure (mmHg) Dia. Bp

Heart rate (bpm) HR
Peripheral body temperature (�C) Periph. temp.
Saturation of oxygen in pulse (%) SpO2
Systolic blood pressure (mmHg) Sys. Bp

Transcutaneous partial pressure of CO2 (kPa) TcPCO2
Transcutaneous partial pressure of O2 (kPa) TcPO2

C. Learning normal dynamics

In training the FSLDS model for this application, we first learn
the “normal” dynamics for a baby. Much of the time, infants in
intensive care are in a stable condition. Because infants with a low
gestational age are usually asleep and motionless, there tends to be
low variability in their vital signs when in a stable condition. The
physiological systems underlying the observation channels are
too complicated to model explicitly, being governed by complex
interactions between a number of different sub-systems including
the central nervous system. Instead, the approach adopted here
is to try to find relatively simple models that are statistically
compelling.

The approach used here for fitting linear Gaussian state-space
models to each observation channel is first illustrated with heart
rate observations, which are generally the least stable and most
difficult to model of the observed channels. We then go on to
show how this approach is adapted to model the other observed
channels. Our resulting joint model is univariate in each observa-
tion channel, so that A and Q have a block diagonal structure.
This makes it easy to add or remove channels from the overall
model, and to specify the dependence of the state and channel
dynamics on various factors.

1) Normal heart rate dynamics: Looking at examples of
normal heart rate dynamics as in the top left and right panels
of Figure 5, it can be observed first of all that the measurements
tend to fluctuate around a slowly drifting baseline. This motivates
the use of a model with two hidden components: the signal xt, and
the baseline bt. These components are therefore used to represent
the true heart rate, without observation noise. The dynamics can
be formulated using autoregressive (AR) processes, such that an
AR(p1) signal varies around an AR(p2) baseline, as given by the
following equations:

xt � bt ⇠ N
 p1X

k=1

↵k(xt�k � bt�k), ⌘1

!
, (11)

bt ⇠ N
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�kbt�k, ⌘2

!
, (12)

where ⌘1, ⌘2 are noise variances. For example, an AR(2) signal
with AR(2) baseline has the following state-space representation:
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Fig. 5. In these two examples, HR measurements (in the top left and top
right panels) are varying quickly within normal ranges. The estimates of the
underlying signal (bottom left and bottom right panels) are split into a smooth
baseline process and zero-mean high frequency component.
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It is straightforward to adjust this construction for different values
of p1 and p2. The measurements are therefore generally taken
to be made up of a baseline with low frequency components
and a signal with high frequency components. We begin training
this model with a heuristic initialisation, in which we take
sequences of training data and remove high frequency components
by applying a symmetric 300-point moving average filter. The
resulting signal is taken to be the low frequency baseline. The
residual between the original sequences and the moving-averaged
sequences are taken to contain both stationary high frequency
hemodynamics as well as measurement noise. These two signals
can be analysed according to standard methods and modelled as
AR or integrated AR processes (specific cases of autoregressive
integrated moving average (ARIMA) processes [37]) of arbitrary
order. Heart rate sequences were found to be well modelled by
an AR(2) signal varying around an ARIMA(1,1,0) baseline. An
ARIMA model is a compelling choice for the baseline, because
with a low noise term it produces a smooth drift2. Having found
this initial setting of the model parameters, EM updates are then
applied [17]. This has been found to be particularly useful for
refining the estimates of the noise terms Q and R.

Examples of the heart rate model being applied as a Kalman
filter to heart rate sequences are shown in Figure 5. The top panels
show sequences of noisy heart rate observations, and the lower
panel shows estimates of the high frequency and low frequency
components of the heart rate.

2) Other channels : Most of the remaining observation chan-
nels are modelled according to the same principle. Heart rate,

2The ARIMA(1,1,0) model has the form (Xt � �Xt�1) = ↵1(Xt�1 �
�Xt�2) + Zt where � = 1 and Zt ⇠ N(0, �2

Z). This can be expressed in
un-differenced form as a non-stationary AR(2) model. In our implementation
we set � = 0.999 and with |↵1| < 1 we obtain a stable AR(2) process, which
helps to avoid problems with numerical instability. This slight damping makes
the baseline mean-reverting, so that the resulting signal is stationary. This has
desirable convergence properties for dropout modelling.



Examples of risk stratification

(Pozen et al., NEJM 1984)

Does this patient 
need to be 
admitted to the 
coronary-care 
unit?

Figure sources:
https://www.drmani.com/heart-attack/ (top)
https://www.emra.org/emresident/article/acute-mi-case-report/ (right)



Examples of risk stratification
Will this woman 
develop breast 
cancer in the next 
5 years?

Yala et al., Sci. Transl. Med. 13, eaba4373 (2021)     27 January 2021
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points. Although it is possible to train separate models to assess risk 
for each time point based on patients with the corresponding amount 
of follow-up (1 to 5 years), this approach can result in mutually in-
consistent risk assessments. For instance, a model could predict that 
a patient has a higher risk of developing cancer within 2 years than 
within 5 years. Moreover, this approach does not leverage the inherent 
relationship between assessing risk at different time points. We ad-
dress this by training a single model to predict risk at all time points 
and by explicitly designing the architecture to produce self-consistent 
predictions. This formulation also enables the model to learn from 
data with variable amounts of follow-up.

Although our method primarily focuses on mammograms, we 
also wanted to leverage nonimage risk factors (for example, age and 
hormonal factors) if they were available. An obvious mechanism for 
incorporating nonimage risk factors is to add them as an input to 
the model jointly with the image. However, this design would pre-
vent hospitals that do not collect this kind of information from us-
ing the model. Although we could impute this missing information 
by using a reference population, that would not take into account 
the relationship between the mammogram and the risk factors. To 
address this challenge, we trained our model to predict risk factor 
values from the mammogram, enriching our original objective with 
this new prediction task. This formulation enabled the model to 
benefit from available risk factor data while allowing it to impute the 
information if it is missing.

To incorporate deep learning risk models into clinical guidelines, 
the models must be consistent across a range of mammography de-
vices, in other words, they must predict the same risk for a patient 
regardless of the mammography device. We addressed this challenge 
by adopting a conditional-adversarial training scheme (31). This 
training regime forces the model to induce image representation in 
a device-invariant fashion and to produce consistent risk assessments.

Our full model, named Mirai, is depicted in Fig. 1. It takes as 
input all standard views of a mammogram: left craniocaudal (L CC), 
left mediolateral-oblique (L MLO), right craniocaudal (R CC), and 
right mediolateral-oblique (R MLO). Mirai consists of four modules: 
an image encoder, an image aggregator, a risk factor predictor, and 
an additive-hazard layer. A run through the model works as follows: 
first, we pass each mammogram view independently through the 
image encoder. Next, we take each image representation as well as 
which view it came from (for example, L CC and R MLO), and pass 
it into the image aggregation module to combine information 
across views and obtain a representation of the entire mammogram. 
Given this rich representation of the mammogram, we then predict 
a patient’s traditional risk factors as used in Tyrer-Cuzick (such as 
age, weight, and hormonal factors) and refer to this as our risk fac-
tor prediction module. If risk factor information is not available at 
inference time, we then use the predicted values. Next, we take the 
mammogram representation from our image aggregator, combined 
with our risk factor information (predicted or given), and predict a 
patient’s risk with an additive-hazard layer. The additive-hazard layer 
predicts a patient’s risk for each year over the next 5 years. Architec-
tural details for each module are presented in the Supplementary 
Materials and Methods, and all code is released.

Training and testing at MGH
We developed Mirai using the Massachusetts General Hospital (MGH) 
dataset, which consists of 210,819, 25,644, and 25,855 examinations 
from 56,786, 7020, and 7005 patients, for the training, validation, 

and test sets, respectively. This dataset contained detailed risk factor 
information, as used in Tyrer-Cuzick version 8 (TCv8), that was 
available at the time of mammography. The distribution of clinical 
risk factors in the MGH dataset, as used by TCv8, is shown in table 
S1. A flowchart illustrating the construction on the MGH dataset is 
shown in Fig. 2.

To determine the impact of using predicted risk factors on 
Mirai’s performance, we evaluated the model both when using the 
electronic health record-based and predicted risk factors, referring 
to the two scenarios as “Mirai with risk factors” and “Mirai without 
risk factors,” respectively. We compared Mirai against three alter-
native risk models: Hybrid DL (25), Image-Only DL (25), and TCv8. 
Hybrid DL is a deep learning model based on both mammograms 
and traditional risk factors, and Image-Only DL is a deep learning 
model based only on mammograms. Hybrid DL requires traditional 
risk factors to predict risk, whereas Image-Only DL does not use such 
information. We note that Hybrid DL and Image-Only DL were 
both developed using the same MGH dataset as Mirai, and so, differ-
ences in perform ance can only be attributed to the algorithm design. 
Image-Only DL is equivalent to the image encoder component of 
Mirai trained by itself as a 5-year risk classifier. TCv8 is a traditional 
risk model that combines a variety of risk factors including age, 
family history, and hormonal factors and is a current clinical stan-
dard. We obtained TCv8 risk assessments using the Command-Line 
version of the IBIS Breast Cancer Risk Evaluation tool (version 8).

Fig. 1. Schematic description of Mirai. The four standard views of an individual 
mammogram were fed into Mirai. The image encoder mapped each view to a vector, 
and the image aggregator combined the four view vectors into a single vector for 
the mammogram. In this work, we used a single shared ResNet-18 as an image en-
coder, and a transformer as our image aggregator. The risk factor predictor module 
predicted all the risk factors used in the Tyrer-Cuzick model, including age, detailed 
family history, and hormonal factors, from the mammogram vector. The additive 
hazard layer combined information from both the image aggregator and risk fac-
tors (predicted or given) to predict coherent risk assessments across 5 years (Yr).
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(Yala et al., Science Translational Medicine 2021)



Examples of risk stratification

(Source: 23andme.   https://permalinks.23andme.com/pdf/23_19-Type2Diabetes_March2019.pdf)



How does risk stratification differ from 
differential diagnosis?

Differential diagnosis Risk stratification

Usually iterative/active Usually passive

Often considers a large set of 
conditions

Often just one condition

Has to consider rare 
conditions (needs hybrid 
knowledge/ML approaches)

Often focuses on settings 
where there is enough 
training data



Old vs. New

• Traditionally, risk stratification was based on 
simple scores using human-entered data



Old vs. New

• Traditionally, risk stratification was based on 
simple scores using human-entered data

• Now, based on machine learning on high-
dimensional data
– Fits more easily into workflow
– Higher accuracy
– Quicker to derive (can special case)

• But, ML approach comes with new challenges 
– to be discussed



So, what do we need?

• Specification of prediction time / index date
• A way of encoding the data we have on the 

patient
– CNN for images
– Bag of words for text document
– Longitudinal structured data…?

• A target, typically derived from the EHR
• Choice of appropriate supervised ML algorithm
– Regression? Classification?



Outline for today’s class

1. Introduction to risk stratification
2. Case study: Early detection of Type 2 

diabetes
– Encoding longitudinal structured health data

3. Framing as supervised learning problem
– Deriving labels from EHR

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]



Type 2 Diabetes: A Major public health 
challenge

1994 2000

<4.5%         4.5%–5.9%           6.0%–7.4%        7.5%–8.9%            >9.0%

2013

$245 billion: Total costs of diagnosed diabetes in the United States in 2012
$831 billion: Total fiscal year federal budget for healthcare in the United 
States in 2014



Type 2 Diabetes Can Be Prevented *

Requirement for successful large scale 
prevention program
1. Detect/reach truly at risk population

2. Improve the interventions

3. Lower the cost of intervention

* Diabetes Prevention Program Research Group. "Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin." 
The New England journal of medicine 346.6 (2002): 393.



Traditional Risk Prediction Models
• Successful Examples

• ARIC
• KORA
• FRAMINGHAM
• AUSDRISC
• FINDRISC
• San Antonio Model 

• Easy to ask/measure in the 
office, or for patients to do 
online

• Simple model:
can calculate scores by 
hand



Population-Level Risk Stratification 

• Key idea: Use readily available administrative, 
utilization, and clinical data

Source for figure:  http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry



Population-Level Risk Stratification 

• Key idea: Use readily available administrative, 
utilization, and clinical data

• Machine learning will find surrogates for risk 
factors that would otherwise be missing

• Perform risk stratification at the population 
level – millions of patients



A Data-Driven approach on 
Longitudinal Data 

• Looking at individuals who got diabetes today, (compared to 
those who didn’t) 
– Can we infer which variables in their record could have predicted their 

health outcome?

TodayA Few 
Years Ago



Administrative & Clinical Data

Patient:

Eligibility Record:
-Member ID
-Age/gender
-ID of subscriber
-Company code

Medical Claims:
-ICD9 diagnosis codes
-CPT code (procedure)
-Specialty
-Location of service
-Date of Service

Lab Tests:
-LOINC code (urine or 
blood test name)
-Results (actual values)
-Lab ID
-Range high/low-Date

Medications:
-NDC code (drug 
name) 
-Days of supply
-Quantity
-Service Provider ID
-Date of fill

time



Disease count
401.1 Benign hypertension 447017
272.4 Hyperlipidemia NEC/NOS 382030
401.9 Hypertension NOS 372477
250.00 DMII wo cmp nt st
uncntr 339522
272.0 Pure hypercholesterolem 232671
272.2 Mixed hyperlipidemia 180015
V72.31 Routine gyn examination 178709
244.9 Hypothyroidism NOS 169829
780.79 Malaise and fatigue NEC 149797
V04.81 Vaccin for influenza 147858
724.2 Lumbago 137345
V76.12 Screen mammogram 
NEC 129445
V70.0 Routine medical exam 127848

Disease count
719.47 Joint pain-ankle 28648
300.4 Dysthymic disorder 28530
268.9 Vitamin D deficiency 
NOS 28455
V72.81 Preop cardiovsclr
exam 27897
724.3 Sciatica 27604
787.91 Diarrhea 27424
V2.21 Supervis oth normal 
preg 27320
365.01 Opn angl brderln lo 
risk 26033
379.21 Vitreous 
degeneration 25592
424.1 Aortic valve disorder 25425
616.10 Vaginitis NOS 24736
702.19 Other sborheic
keratosis 24453
380.4 Impacted cerumen 24046

Disease count
530.81 Esophageal reflux 121064
427.31 Atrial fibrillation 113798
729.5 Pain in limb 112449
414.01 Crnry athrscl natve vssl 104478
285.9 Anemia NOS 103351
786.50 Chest pain NOS 91999
599.0 Urin tract infection NOS 87982
V58.69 Long-term use meds 
NEC 85544
496 Chr airway obstruct NEC 78585
477.9 Allergic rhinitis NOS 77963
414.00 Cor ath unsp vsl ntv/gft 75519

Out of 135K patients who had laboratory data

Top diagnosis codes



Lab test
2160-0 Creatinine 1284737
3094-0 Urea nitrogen 1282344
2823-3 Potassium 1280812
2345-7 Glucose 1299897
1742-6 Alanine 
aminotransferase 1187809
1920-8 Aspartate 
aminotransferase 1187965
2885-2 Protein 1277338
1751-7 Albumin 1274166
2093-3 Cholesterol 1268269
2571-8 Triglyceride 1257751
13457-7 Cholesterol.in LDL 1241208
17861-6 Calcium 1165370
2951-2 Sodium 1167675

Lab test

2085-9 Cholesterol.in HDL 1155666
718-7 Hemoglobin 1152726
4544-3 Hematocrit 1147893
9830-1 
Cholesterol.total/Cholester
ol.in HDL 1037730
33914-3 Glomerular 
filtration rate/1.73 sq
M.predicted 561309

785-6 Erythrocyte mean 
corpuscular hemoglobin 1070832
6690-2 Leukocytes 1062980
789-8 Erythrocytes 1062445

787-2 Erythrocyte mean 
corpuscular volume 1063665

Lab test
770-8 Neutrophils/100 
leukocytes 952089
731-0 Lymphocytes 943918
704-7 Basophils 863448
711-2 Eosinophils 935710
5905-5 Monocytes/100 
leukocytes 943764
706-2 Basophils/100 
leukocytes 863435
751-8 Neutrophils 943232
742-7 Monocytes 942978
713-8 Eosinophils/100 
leukocytes 933929
3016-3 Thyrotropin 891807
4548-4 Hemoglobin 
A1c/Hemoglobin.total 527062

Count of people who have the test result (ever)

Top lab test results



Demographics (age, sex, etc.)

Health insurance coverage

Procedures performed 
(457 features)

Specialty of doctors seen
(cardiology, rheumatology, …)

Encoding the longitudinal health data
Service place
(urgent care, inpatient, 
outpatient, …)

Laboratory indicators 
(7000 features)

For the 1000 most frequent lab tests:
• Was the test ever administered?
• Was the result ever low?
• Was the result ever high?
• Was the result ever normal?
• Is the value increasing?
• Is the value decreasing?
• Is the value fluctuating?

Medications taken (999 features)
(laxatives, metformin, anti-
arthritics, …)

16,000 ICD-9 
diagnosis codes
(all history)



Demographics (age, sex, etc.)

Health insurance coverage

Procedures performed 
(457 features)

Specialty of doctors seen
(cardiology, rheumatology, …)

Encoding the longitudinal health data
Service place
(urgent care, inpatient, 
outpatient, …)

Laboratory indicators 
(7000 features)

Medications taken (999 features)
(laxatives, metformin, anti-
arthritics, …)

16,000 ICD-9 
diagnosis codes
(all history)

All history 24 month 
history

6 month 
history

10s-100s of thousands of features



plete medical history included in the dataset.
The BEHRT baseline uses code-level inputs instead of

visit-level inputs. We quantify the amount of information
we have per patient at the code level in Figure 11. Here, a
patient’s history is truncated to include only her 512 most
recent codes, again for computational efficiency purposes;
after this truncation, 57.17% of patients have their complete
medical history included in the dataset.

Figure 9: Histogram of the number of visits per patient. We
clip the histogram at 800 visits, though a small subset of
patients (0.4%) have more visits. Histogram buckets have a
width of 10 visits.

Figure 10: Histogram of recorded medical history length per
patient.

Figure 11: Histogram of the number of codes per patient. We
clip the histogram at 3000 codes, though a small subset of
patients (0.4%) have more codes. Histogram buckets have a
width of 10 codes.

Figure 12: Breakdown of the 37,004 features in our dataset
into their umbrella categories: drug administered, procedure
performed, condition recorded, or specialty encountered.
During a given visit, a patient will have features present from
one or more of these categories.

Number 
of 

patients

Peak at 
3 years

Long 
tail

plete medical history included in the dataset.
The BEHRT baseline uses code-level inputs instead of

visit-level inputs. We quantify the amount of information
we have per patient at the code level in Figure 11. Here, a
patient’s history is truncated to include only her 512 most
recent codes, again for computational efficiency purposes;
after this truncation, 57.17% of patients have their complete
medical history included in the dataset.

Figure 9: Histogram of the number of visits per patient. We
clip the histogram at 800 visits, though a small subset of
patients (0.4%) have more visits. Histogram buckets have a
width of 10 visits.

Figure 10: Histogram of recorded medical history length per
patient.

Figure 11: Histogram of the number of codes per patient. We
clip the histogram at 3000 codes, though a small subset of
patients (0.4%) have more codes. Histogram buckets have a
width of 10 codes.

Figure 12: Breakdown of the 37,004 features in our dataset
into their umbrella categories: drug administered, procedure
performed, condition recorded, or specialty encountered.
During a given visit, a patient will have features present from
one or more of these categories.

Truncate patient’s history to include 
only 512 most recent visits

There may be a varying amount of 
history per patient



Demographics (age, sex, etc.)

Health insurance coverage

Procedures performed 
(457 features)

Specialty of doctors seen
(cardiology, rheumatology, …)

Encoding the longitudinal health data
Service place
(urgent care, inpatient, 
outpatient, …)

Laboratory indicators 
(7000 features)

Medications taken (999 features)
(laxatives, metformin, anti-
arthritics, …)

16,000 ICD-9 
diagnosis codes
(all history)

All history 24 month 
history

6 month 
history

How does this deal with missing data? What are its limitations?



Alternative encoding using self-
attention / transformers

• SARD, a transformer architecture which uses an explicit
visit representation to better encode claims data. SARD
also uses a convolutional prediction head to ingest the
outputs of its transformer layers, in contrast to the linear
heads used in previous work.

• Reverse distillation, a novel and broadly applicable
method of initializing machine learning models using
high-performing linear models.

• An introspection analysis of how reverse distillation al-
lows SARD, and deep models in general, to generalize
better and make more accurate predictions by effectively
regularizing deep models to make good use of features
known to be clinically meaningful.

Related Work

Many recent works analyze how deep learning can be ap-
plied to clinical prediction (Choi et al. 2016a; Rajkomar
et al. 2018; Che et al. 2018; Steinberg et al. 2020; Choi
et al. 2016b; Harutyunyan et al. 2019; Gao et al. 2020; Ma
et al. 2018; Zhang et al. 2019). Several approaches use re-
current neural networks (RNNs) to ingest medical records,
and achieve excellent performance on tasks like predicting
in-patient mortality upon hospital admission (Choi et al.
2016a). Further refinements add learned imputation to ac-
count for missingness (Che et al. 2018), and improvements
in featurizing time by using architectures like bi-directional
RNNs (Ma et al. 2017), explicit temporal embeddings (Bay-
tas et al. 2017) and two-level attention mechanisms to find
the influence of past visits on a prediction (Choi et al. 2016b;
Kwon et al. 2018). Research has also focused on using con-
volutional neural networks (CNNs) to develop better em-
beddings of clinical concepts passed into a recurrent model
(Ma et al. 2018), and graphically representing the patient-
clinician relationship to augment health record data (Zhang
et al. 2019). Self-attention has also been used to develop re-
lationships between medical features that have already been
collapsed over the temporal dimension using recurrent meth-
ods (Ma et al. 2020) and to phenotype patients (Song et al.
2017). More recently, self-attention was used in BERT for
EHR, or BEHRT (Li et al. 2020), to simultaneously predict
the likelihood of 301 conditions in future patient visits.

When making predictions with horizons of months or
years, the state-of-the-art is often still simple, linear mod-
els with carefully chosen features (Bellamy, Celi, and Beam
2020; Razavian et al. 2015; Ahmad et al. 2018). Recent work
exploring deep-learning based approaches to long-term clin-
ical prediction train neural networks directly on features
constructed using hand-picked time windows and summary
statistics (Avati et al. 2018) or use denoising autoencoders
to pre-process this type of data (Miotto et al. 2016), and do
not necessarily beat strong linear baselines (Rajkomar et al.
2018, Supplemental Table 1). Critically, many of these mod-
els rely on manual feature-engineering to create representa-
tions of the time-series data that forms a patient’s medical
record rather than learning this structure in tandem with the
task at hand.
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Figure 1: SARD Architecture for Longitudinal Claims Data

SARD Model Architecture

Our model builds upon self-attention architectures (Vaswani
et al. 2017), most recently applied in the clinical domain by
the BEHRT model. SARD differs from BEHRT in several
important ways. Firstly, SARD operates on visit embeddings
which summarize a patient’s medical events in that visit in
a single input, while BEHRT encodes each diagnosis sepa-
rately in a sequence, using separators to indicate the bound-
aries of each visit. This allows SARD to include significantly
more data from a patient’s history with the same computa-
tional efficiency. Secondly, SARD uses a convolutional pre-
diction head applied to all transformed visit embeddings,
while BEHRT uses dense layers applied to a single trans-
former output. Furthermore, BEHRT was demonstrated on
a feature dimension of 301 condition codes, which did not
include medications and procedures; in this paper, we apply
SARD on a much larger set of 37,004 codes, spanning con-
ditions, medications, procedures, and physician specialty.

We use a set encoding approach to address the challenge
of sparsity and the need to represent a set of data observed
at each visit, and a self-attention based architecture to allow
any visit’s embedding to interact with another visit embed-
ding through O(1) layers, thus ensuring that we can capture
temporal information and dependencies. An overview of the
architecture is provided in Figure 1.

We denote the set of visits made by a patient i by Vi, and
represent this patient’s jth visit by V i

j
. We further denote the

time of visit V i

j
by ti

j
and the set of codes assigned during

visit V i

j
with Ci

j
✓ C.

Input Embedding: We adapt the method of Choi, Chiu,
and Sontag (2016) to generate an initial concept embed-
ding map � : C ! Rde , learned only using data in the
training window to prevent label leakage. The vector rep-
resentation  (V i

j
) 2 Rde of each visit is calculated as

 (V i

j
) =

P
c2Ci

j
�(c), providing invariance to permutations

of the codes. This is similar to the Deep Sets paradigm, with
nonlinearity provided by the embedding � and downstream
components of our architecture (Zaheer et al. 2017).

Temporal Embedding: SARD does not explicitly encode
the order of events, and visits do not occur in regular in-
tervals. We embed the time of each visit into Rde using si-
nusoidal embeddings (Vaswani et al. 2017), and generate a
temporal embedding ⌧(V i

j
) = sin(t̃i

j
!)|| cos(t̃i

j
!), where

t̃i
j
= min(365, TA � ti

j
) and TA represents the prediction

Li et al., BEHRT: Transformer for Electronic Health Records, Scientific Reports ‘20
Kodialam et al., Deep Contextual Clinical Prediction with Reverse Distillation, AAAI ‘21



X1

714.0 (Rheumatoid 
arthritis)

710.0 (Systemic lupus 
erythematosus)

250.00 (Diabetes)

790.29 (Abnormal glucose)

X2

Metformin

Insulin

Hydroxychloroquine
Sulfate

Methrotrexate

443.0 (Raynaud’s
syndrome)

Choi, Chiu, Sontag. Learning low-dimensional 
representations of medical concepts. AMIA Summits 
on Translational Science Proceedings, ‘16
https://github.com/clinicalml/embeddings

Beam et al., Clinical Concept Embeddings Learned 
from Massive Sources of Multimodal Medical Data. 
PSB ‘20

The latter can make use of unsupervised 
learning of concept embeddings

Mikolov et al., Efficient 
Estimation of Word 
Representations in 
Vector Space, ICLR ‘13

Figure: https://cbail.github.io/textasdata/word2vec/rmarkdown/word2vec.html

https://github.com/clinicalml/embeddings


Outline for today’s class

1. Introduction to risk stratification
2. Case study: Early detection of Type 2 

diabetes
– Encoding longitudinal structured health data

3. Framing as supervised learning problem
– Deriving labels from EHR



Where do the labels come from?

Typical pipeline:
1. Manually label several patients’ data by “chart 

review”
2. A) Come up with a simple rule to automatically 

derive label for all patients, or

B) Use machine learning to get the labels 
themselves



Step 1:
Visualization of individual patient data is 

an important part of chart review

Demographic information
Patient events list

Events, as they occur for the first time in patient history 

https://github.com/nyuvis/patient-viz
https://github.com/BenGlicksberg/PatientExploreR

https://github.com/nyuvis/patient-viz
https://github.com/BenGlicksberg/PatientExploreR


Figure 1: Algorithm for identifying T2DM cases in the EMR.

3

Source: https://phekb.org/sites/phenotype/files/T2DM-algorithm.pdf

Step 2:
Example of a 
rule-based
phenotype



Step 2: Example of a rule-based phenotype

Condition Percentage 

Have 250.x diagnosis, or have been on diabetic medication, or have 
any HbA1c ≥ 6.5 100 %

Have been diagnosed 250.xx 89.9 %

Have been on diabetic medications 15.0 % 

Have HbA1c values ≥ 6.5 20.9 %

Have 250.xx diagnosis on more than one distinct date 40.0 %

(Have 250.xx diagnosis, or have been on diabetic medication, or 
have any HbA1c ≥ 6.5) on more than one distinct date 44.0 % 

(Have 250.xx diagnosis, or have been on diabetic medication, or 
have any HbA1c ≥ 6.5) on two dates separated by at least a week 41.1 %

Coverage of Different Diabetes Outcome Definitions on Claims Data

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]

Definition selectedThe earliest date the rule triggers is defined as the date of diabetes diagnosis



Step 2:
Example of a 
rule-based
phenotype



Framing for supervised machine 
learning

2009 2010 2011 2012 2013

Feature 
construction Derive outcome

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]

Exclusion criteria:
• Diabetes diagnosis (according to our rule) observed prior to 

January 1, 2009
• Less than 6 months of enrollment in feature construction 

window
• Member left health insurance prior to Jan. 1, 2011

What if someone is diagnosed with diabetes in 2012?
Why not model as “patient develops diabetes anytime after 2009”?



Framing for supervised machine 
learning

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]

Exclusion criteria:
• Diabetes diagnosis (according to our rule) observed prior to 

January 1, 2009 2011
• Less than 6 months of enrollment in feature construction 

window
• Member left health insurance prior to Jan. 1, 2011 2013

2009 2010 2011 2012 2013

Feature 
construction Derive outcome



Framing for supervised machine 
learning

2009 2010 2011 2012 2013

Feature 
Construction

Derive 
outcome

• Suppose we want to run the above model in August 2009. It 
may not have good performance due to non-stationarity in the 
data

• We now have data through 2021. Using a fixed prediction time / 
index date of Jan. 1, 2009 is ignoring most of the diabetes 
onsets!



Framing for supervised machine 
learning

2009 2010 2011 2012 2013

Feature Construction Derive 
outcome

2009 2010 2011 2012 2013

Feature Construction Derive 
outcome

2009 2010 2011 2012 2013

Feature Construction Derive 
outcome

2009 2010 2011 2012 2013

Feature Construction Derive 
outcome

• We can instead create many data points from each patient, 
using e.g. every month as an index date:

• Important: If multiple data points per patient, make sure each 
patient’s data is in only train, validate, or test


