Machine Learning for Healthcare 6.871, HST.956

Lecture 22: Dynamic treatment regimes & off-policy reinforcement learning

David Sontag

Acknowledgement: some slides adapted from Fredrik Johansson (Chalmers), Marie Davidian (NC State) and Barbra Dickerman (HMS)

A path to personalized medicine

- Clinical practice: Clinicians make (a series of) treatment decision(s) over the course of a patient's disease or disorder
 - Key decision points in the disease process
 - Could be a fixed schedule, a milestone in the disease process, or an event necessitating a decision
 - Several treatment options at each decision point
- Thus: treatment in practice involves sequential decision-making based on accruing information

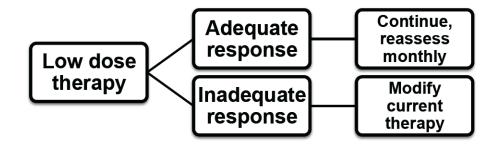
(Marie Davidian, An Introduction to Dynamic Treatment Regimes)

Dynamic treatment regime

- Sequential decision rules, each corresponding to a key decision point
- Each rule tells us treatment to be given from among the available options based on the accrued information on the patient to that point
- Taken together, the rules define an algorithm for making treatment decisions
- *Dynamic* because the treatment action can vary depending on the accrued information

(Marie Davidian, An Introduction to Dynamic Treatment Regimes)

Example: ADHD therapy

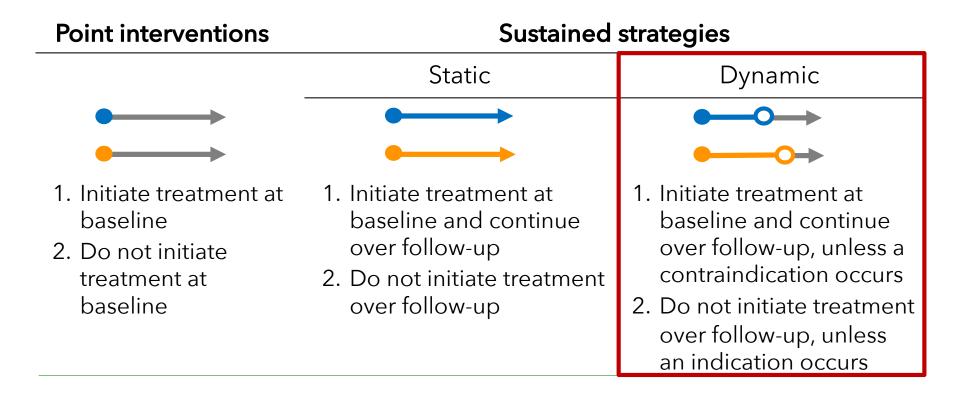


- Decision 1: Low-dose therapy 2 options: medication or behavior modification
- Subsequent monthly decisions:
 - Responders: Continue initial therapy
 - Non-responders 2 options: add the other therapy or increase dose of current therapy
- Objective: maximize *end-of-school-year performance*

(Material from Marie Davidian, An Introduction to Dynamic Treatment Regimes; example from Susan Murphy)

- Treatment regimes: Initiate 1 of 6 physical activity strategies at baseline and continue it over follow-up <u>until</u> development of a condition limiting physical activity
- (Vigororous activity) <u>Regime 1</u>: 1.25 hrs/wk; <u>Regime 2</u>: 2.5 hrs/wk; <u>Regime 3</u>: 3.75 hrs/wk
- (Moderate activity) <u>Regime 4</u>: 2.5 hrs/wk; <u>Regime 5</u>: 5.0 hrs/wk; <u>Regime 6</u>: 7.5 hrs/wk
- Outcome: all-cause mortality within 10 years of diagnosis

• This is a dynamic treatment strategy because of the decision when to stop



Example: First-line treatment for multiple myeloma

- Decision 1: Induction chemotherapy (options C₁, C₂)
- Decision 2:
 - Maintenance treatment for patients who *respond* (options M_1 , M_2)
 - Start a different cancer treatment for those who don't respond (options S₁, S₂)
- Objective: maximize *survival time*
- Example rules for decision 1:
 - C₁: If "age < 65 and in excellent physical health", give bortezomib, lenalidomide, dexamethasone chemotherapy followed by autologous stem cell transplant. Otherwise, treat with daratumumab, bortezomib, melphalan, & prednisone.
 - C₂: treat everyone with daratumumab, bortezomib, melphalan, & prednisone

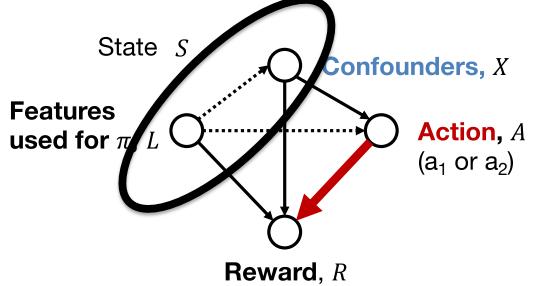
Example: First-line treatment for multiple myeloma

- Which is the best treatment regime (policy)?
- Evaluate each of the following 8 dynamic regimes:
 - 1. Give C_1 followed by (M_1 if response, S_1 if no response)
 - 2. Give C_1 followed by (M_1 if response, S_2 if no response)
 - 3. Give C_1 followed by (M_2 if response, S_1 if no response)
 - 4. Give C_1 followed by (M_2 if response, S_2 if no response)
 - 5. Give C_2 followed by (M_1 if response, S_1 if no response)
 - 6. Give C_2 followed by (M_1 if response, S_2 if no response)
 - 7. Give C_2 followed by (M_2 if response, S_1 if no response)
 - 8. Give C_2 followed by (M_2 if response, S_2 if no response)
- Goal: evaluate the average *outcome* if all patients in the population were to follow each regime

(Marie Davidian, An Introduction to Dynamic Treatment Regimes)

Warm up: policies for point interventions (also, static policies)

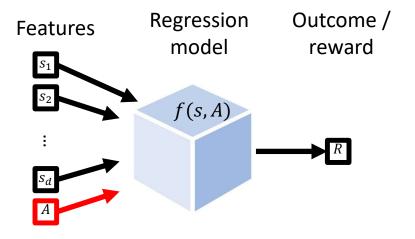
- Suppose someone gave us a policy $\pi(l)$ that outputs a_1 vs a_2
- How do we evaluate it?
- In Lecture 12, we gave two approaches, one based on potential outcomes and the other based on propensity scores
- In both cases, we have to first consider the causal graph that underlies the *observational data*



Switched notation to what's more typically used in RL action A: Treatment T reward R: Outcome Y

Evaluating policies using covariate adjustment (from lecture 12)

 First, use machine learning to obtain a model that can predict potential outcomes (we need ignorability, overlap)

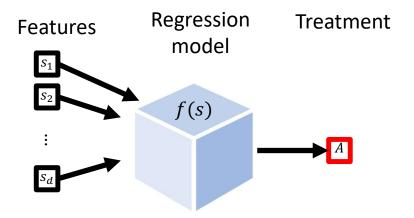


 Then, use this model to estimate average reward of actions this policy would take:

$$\hat{Q}(\pi) = \frac{1}{n} \sum_{i=1}^{n} f(l_i, x_i, \pi(l_i))$$

Evaluating policies using inverse propensity scores (from lecture 12)

• First, use machine learning to obtain $\hat{p}(A|s) = f(s)$, estimated propensity scores



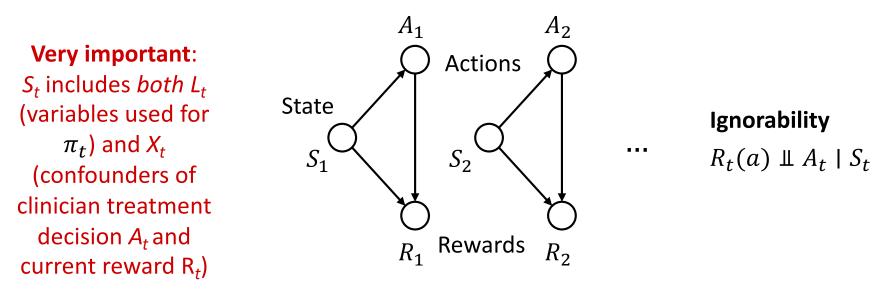
• Then, use this model to reweight the observed rewards, accounting for dataset shift from observational policy to policy we wish to evaluate:

$$\hat{Q}^{IPW}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \frac{1[a_i = \pi(l_i)]}{\hat{p}(a_i \mid s_i)} R_i$$

- Consider the *true* causal graph that generated the sequential treatment decisions observed in the data
- Best case scenario: independent decisions!

Causal graph for dynamic treatment regimes

- Consider the *true* causal graph that generated the sequential treatment decisions observed in the data
- Best case scenario: independent decisions!

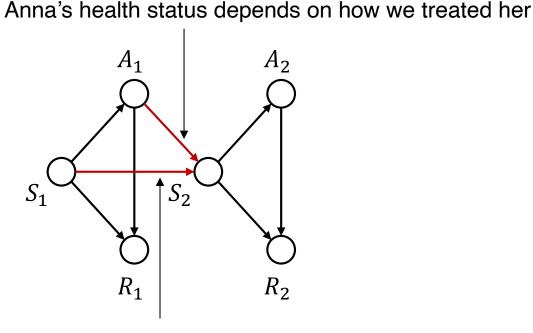


t = 1 t = 2

At each time step, we get completely fresh information that impacts next treatment decision

• Consider the *true* causal graph that generated the sequential treatment decisions observed in the data

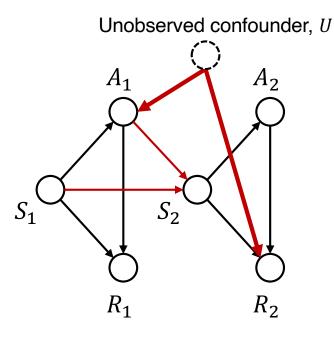
Very important: To maintain ignorability, S_t should include both L_t (variables used for π_t) and X_t (confounders of clinician treatment decision A_t and current and future rewards R_t , R_{t+1} , ...)



It is likely that if Anna is diabetic, she will remain so

• Consider the *true* causal graph that generated the sequential treatment decisions observed in the data

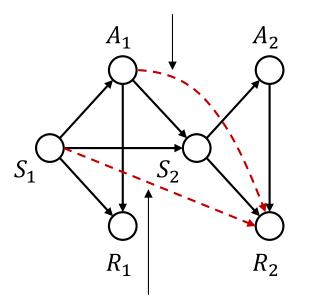
Very important: To maintain ignorability, S_t should include both L_t (variables used for π_t) and X_t (confounders of clinician treatment decision A_t and current and future rewards R_t , R_{t+1} , ...)



Ignorability violated

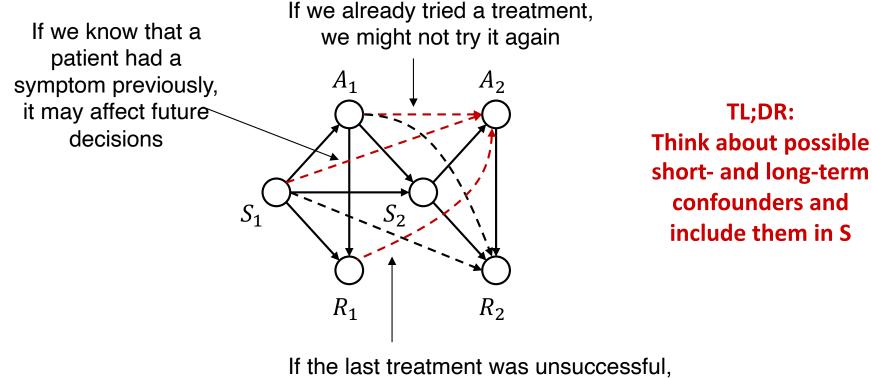
• Consider the *true* causal graph that generated the sequential treatment decisions observed in the data

The outcome at a later time point may depend on earlier choices



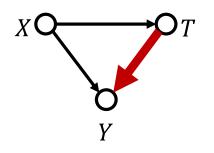
The outcome at a later time may depend on an earlier state

• Consider the *true* causal graph that generated the sequential treatment decisions observed in the data



it may change our next choice

Assumptions for evaluation of dynamic treatment regimes

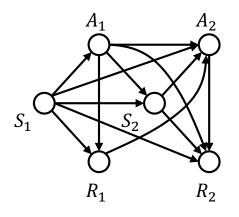


Single-step case

Strong ignorability: $Y(0), Y(1) \perp T \mid X$ "No *hidden* confounders"

Overlap:

 $\forall x, t: p(T = t | X = x) > 0$ "All actions possible"



Sequential case

Sequential randomization:

 $\forall t' \geq t: R_t, \perp A_t \mid \overline{S_t}, \overline{A_{t-1}}$

"Reward indep. of policy given history"

Positivity:

 $\forall a, t: p(A_t = a \mid \overline{S_t}, \overline{A_{t-1}}) > 0$ "All actions possible at all times"

- Treatment regimes: Initiate 1 of 6 physical activity strategies at baseline and continue it over follow-up <u>until</u> development of a condition limiting physical activity vs.
- Outcome: all-cause mortality within 10 years of diagnosis

What data do we need to collect?

Web Table 2. Covariates Used to Model 10-Year Risk of All-Cause Mortality Among Men With Nonmetastatic Prostate Cancer, Health Professionals Follow-Up Study.

A. Time-fixed covariates	Functional form as predictor	Variable name	Categories
Baseline (assessed in first post-diagn	ostic questionnaire)		
Age	4 categories	baseage_1 baseage_2 baseage_3 baseage_4	<65 years
Clinical stage at diagnosis	2 categories	stage_1 stage_2	T1 T2, T3, T4, N1/M0
Prostate-specific antigen level at diagnosis	2 categories	psa_1 psa_2	<4 ng/mL ≥4 ng/mL
Gleason grade at diagnosis	3 categories	gleason_1 gleason_2 gleason_3	<7 7 >7
Primary treatment	3 categories	treat_1 treat_2 treat_3	Radical prostatectomy Radiation Hormones, watchful waiting, other
Parental history of myocardial infarction before age 60	Indicator	fhxmi	Yes/No

- **Treatment regimes:** Initiate 1 of 6 physical activity strategies at base in and continue it over follow-up <u>until</u> development of a condition limiting physical activity χ^{*} vs. χ^{*}
- Outcome: all-cause mortality within 10 years of diagnosis

What data do we need to collect?

Pre-baseline (assessed in first pre-diagnostic questionnaire)

	,		
BMI	4 categories	bmi_pre_1	<18.5 kg/m ²
		bmi_pre_2	18.5-24.9 kg/m ²
		bmi_pre_3	25.0-29.9 kg/m ²
		bmi_pre_4	≥30 kg/m²
Vigorous physical activity	4 categories	vigact_pre_1	<1.25 hour/week
		vigact_pre_2	1.25-2.49 hours/week
		vigact_pre_3	2.50-3.74 hours/week
		vigact_pre_4	≥3.75 hours/week
Moderate physical activity	4 categories	modact_pre_1	<2.5 hours/week
		modact_pre_2	2.5-4.9 hours/week
		modact_pre_3	5-7.4 hours/week
		modact_pre_4	≥7.5 hours/week
Smoking history	Indicator	smkhx	Yes/No

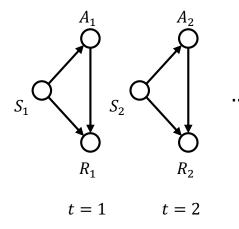
- Treatment regimes: Initiate 1 of 6 physical activity strategies at baseline and continue it over follow-up <u>until</u> development of a condition limiting physical activity vs. vs.
- Outcome: all-cause mortality within 10 years of diagnosis

B. Time-varying covariates ^a	Modeling as dependent	Variable name	Functional form as predictor	Category or knot locations
Period of follow-up	Not predicted	period	5 period indicators	N/A
BMI	Linear (on log scale) ^b	bmi	4 categories	18.5, 25, 30 kg/m²
Vigorous physical activity	Logistic, then log-linear ^c	vigact	Restricted cubic splines, 3 knots	1.25, 2.5, 3.75 hours/week
Moderate physical activity	Linear ^b	modcat	Restricted cubic splines, 3 knots	2.5, 5, 7.5 hours/week
Development of functional impairment, metastasis, myocardial infarction, stroke, congestive heart failure, or amyotrophic lateral sclerosis	Logistic to failure ^d	xcond	Indicator and time since switch	N/A

What data do we need to collect?

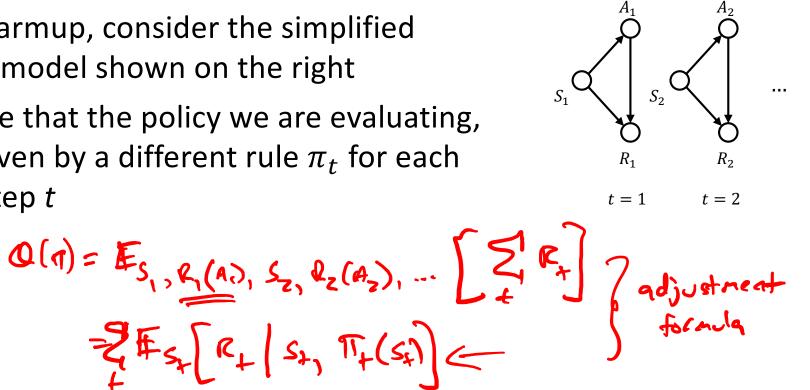
Warm up: Evaluating dynamic treatment regimes

- As a warmup, consider the simplified causal model shown on the right
- Assume that the policy we are evaluating, π , is given by a different rule π_t for each time step t



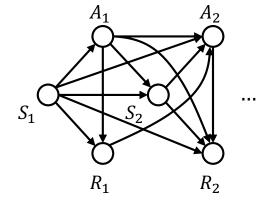
Warm up: Evaluating dynamic treatment regimes

- As a warmup, consider the simplified ulletcausal model shown on the right
- Assume that the policy we are evaluating, π , is given by a different rule π_t for each time step t

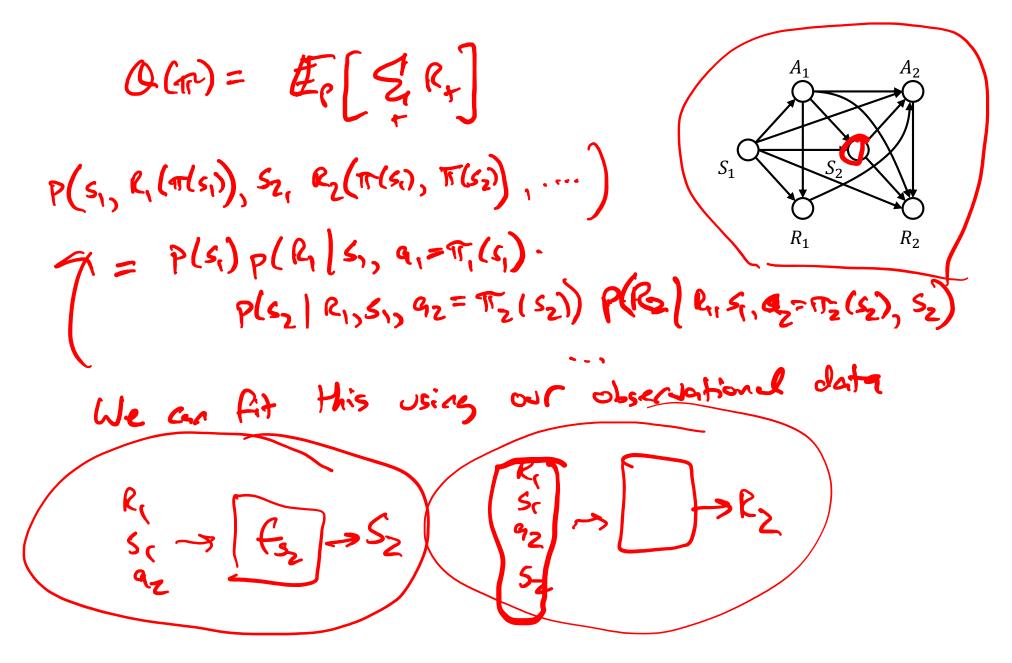


Evaluating dynamic treatment regimes

- Notice that the same estimator *does not* make sense when, e.g., S₂ depends on A₁
- The distribution of states S₂ will be affected by the policy's choice of actions A₁
 - Cannot use the observational distribution



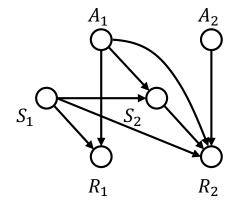
Evaluating dynamic treatment regimes



Evaluating dynamic treatment regimes: parametric G-formula

 Fit parametric regression models for confounders and death at each follow-up time t as a function of treatment and covariate history among those under follow-up at time t

2 Monte Carlo simulation to generate a 10,000-person population under each strategy by sampling with replacement from the original study population (to estimate the standardized cumulative risk under a given strategy)



③ Repeat in 500 bootstrap samples to obtain 95% confidence intervals (CIs)

Concern: Errors may compound; also, may be insufficient data for any one time step.

[James Robins. A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. Mathematical Modelling, 1986.

Estimated risk of all-cause mortality under several physical activity strategies

ediction Under

- Treatment regimes: Initiate 1 of 6 physical activity strategies at baseline and continue it over follow-up <u>until</u> development of a condition limiting physical activity vs.
- Outcome: all-cause mortality within 10 years of diagnosis

B. Time-varying covariates ^a	Modeling as dependent	Variable name	Functional form as predictor	Category or knot locations
Period of follow-up	Not predicted	period	5 period indicators	N/A
BMI	Linear (on log scale) ^b	bmi	4 categories	18.5, 25, 30 kg/m²
Vigorous physical activity	Logistic, then log-linear ^c	vigact	Restricted cubic splines, 3 knots	1.25, 2.5, 3.75 hours/week
Moderate physical activity	Linear ^b	modcat	Restricted cubic splines, 3 knots	2.5, 5, 7.5 hours/week
Development of functional impairment, metastasis, myocardial infarction, stroke, congestive heart failure, or amyotrophic lateral sclerosis	Logistic to failure ^d	xcond	Indicator and time since switch	N/A

What data do we need to collect?

Model 1 Outcome model		Parameter	DF	Estimate
		Intercept	1	-1.5533
The LOGISTIC Pr	ocedure	baseage 1	1	-0.6195
		baseage 2	1	-0.5315
Model Informa	tion	baseage_3	1	-0.2737
		smkhx _	1	0.0519
Data Set	WORK.PARAM	treat_1	1	-0.6531
Response Variable	event	treat_2	1	-0.1870
Number of Response Levels	2	stage_1	1	-0.0711
Weight Variable	_weight_	psa_1	1	0.1947
Model	binary logit	gleason_1	1	-0.8889
Optimization Technique	Fisher's scoring	gleason_2	1	-0.3619
		bmi_pre_1	1	-0.4894
		bmi_pre_2	1	0.1708
		bmi_pre_3	1	0.5384
		vigact_pre_1	1	0.1136
		vigact_pre_2	1	-0.0524
		vigact_pre_3	1	0.3216
		modact_pre_1	1	-0.2790
		modact_pre_2	1	0.0895
		modact_pre_3	1	-0.3047
		fhxmi	1	-0.4512
		period_1	1	-1.9668
A_1 A_2		period_2	1	-1.0941
		period_3	1	-0.7179
		period_4	1	-0.6624
		xcond	1	1.3141
		tsxcond_inter	1	-0.1149
\cap		modact	1	-0.2250
		modact_spl1	1	0.1548
S_1 S_2		bmi_1	1	1.8081
		bmi_2	1	0.7712
		bmi_3	1	0.2690
\cup \cup		vigact	1	-0.2727
R_1 R_2		vigact_spl1	1	0.1708

4

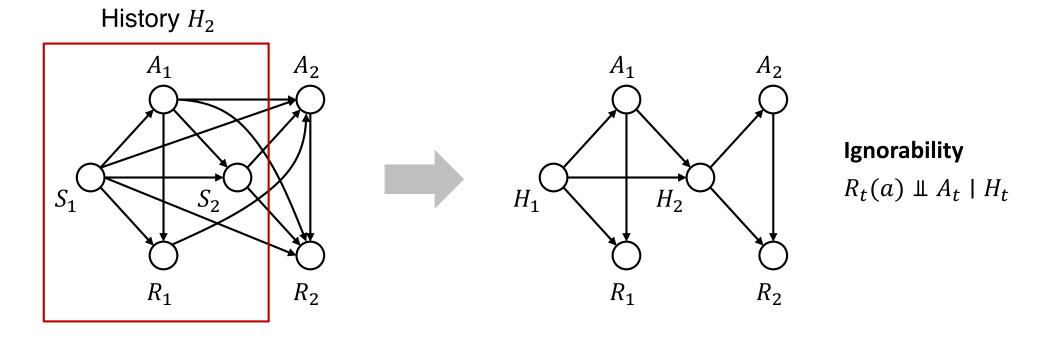
Model 2 Development of conditions limiting physical activity model (composite of functional impairment, metastasis, myocardial infarction, stroke, congestive heart failure, or amyotrophic lateral sclerosis)

		Parameter	DF	Estimate
The LOGISTIC Pro	ocedure			
		Intercept	1	-0.0539
Model Information		baseage_1	1	-1.2596
		baseage_2	1	-0.5674
Data Set	WORK.PARAM	baseage_3	1	-0.3398
Response Variable	xcond	smkhx	1	0.0342
Number of Response Levels	2	treat_1	1	-0.5107
		treat_2	1	-0.1951
		stage_1	1	-0.2366
		psa_1	1	-0.3521
		gleason_1	1	-0.6022
		gleason_2	1	-0.3454
		bmi_pre_1	1	-1.5383
		bmi_pre_2	1	-0.0499
		bmi_pre_3	1	-0.1727
		vigact_pre_1	1	-0.0748
		vigact_pre_2	1	-0.00800
		vigact_pre_3	1	0.1594
A A		modact_pre_1	1	0.1080
$A_1 \qquad A_2$		modact_pre_2	1	0.2414
\bigcirc \bigcirc		modact_pre_3	1	0.0816
Υ Υ		fhxmi	1	0.2013
		period_1	0	0
		period_2	1	-0.3085
→→ () \		period_3	1	-0.3899
S_2		period_4	1	-0.3082
		modact_11	1	-0.0839
		modact_l1_spl1	1	0.0492
\bigcirc		bmi_11_1	1	0.6708
		bmi_11_2	1	-0.6886
$R_1 R_2$		bmi_11_3	1	-0.3326
		vigact_l1	1	-0.1384
		vigact_l1_spl1	1	0.0617

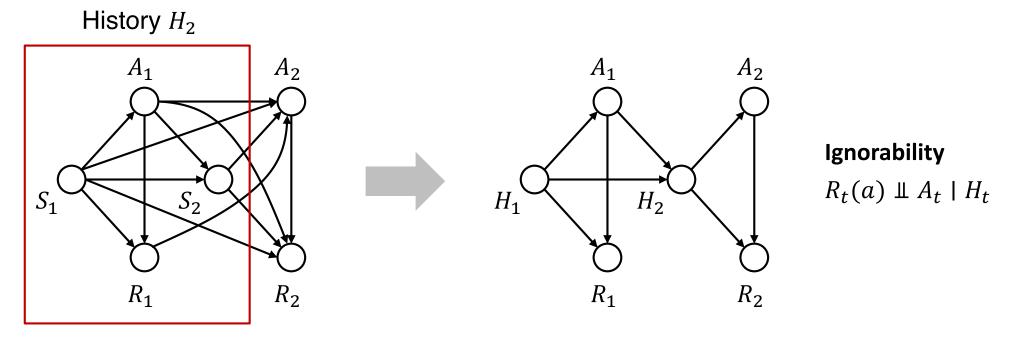
Parameter Estimates

Model 4 BMI model	Variable	DF	Parameter Estimate	Standard Error
The REG Procedure Model: MODEL1 Dependent Variable: bmi	Intercept baseage_1 baseage_2 baseage_3	1 1 1 1	3.46142 0.01699 0.01693 0.00810	0.00687 0.00271 0.00263 0.00249
Number of Observations Read6820Number of Observations Used6820	smkhx treat_1 treat_2 stage 1	1 1 1 1	0.00309 0.00411 0.00132 -0.00279	0.00166 0.00315 0.00307 0.00187
Root MSE 0.06711 R-Square 0.7217 Dependent Mean 3.24274 Adj R-Sq 0.7203 Coeff Var 2.06948	<pre>psa_1 gleason_1 gleason_2 bmi_pre_1 bmi_pre_2 bmi_pre_3 vigact_pre_1 vigact_pre_2 vigact_pre_3</pre>	1 1 1 1 1 1 1 1 1	-0.00291 -0.00258 -0.00532 -0.13960 -0.11586 -0.05476 0.00198 0.00270 0.00167	0.00243 0.00317 0.00339 0.01377 0.00451 0.00390 0.00273 0.00344 0.00305
A_1 A_2	<pre>modact_pre_1 modact_pre_2 modact_pre_3 fhxmi period_1 period_2 period_3 period_4</pre>	1 1 1 0 1 1 1	0.00249 0.00261 0.00085917 -0.00353 0 0.00642 0.00291 0.00144	0.00239 0.00247 0.00251 0.00248 0.00255 0.00258 0.00266
S_1 S_2 R_1 R_2 7	<pre>xcond tsxcond_inter modact_l1 modact_l1_spl1 bmi_l1_1 bmi_l1_2 bmi_l1_3 vigact_l1 vigact_l1_spl1 modact modact_spl1</pre>	1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{r} -0.00474 \\ 0.00171 \\ 0.00020698 \\ -0.00006509 \\ -0.38170 \\ -0.22560 \\ -0.12555 \\ -0.00171 \\ 0.00096989 \\ -0.00045448 \\ 0.00000458 \end{array}$	$\begin{array}{c} 0.00521\\ 0.00252\\ 0.00064776\\ 0.00047249\\ 0.01398\\ 0.00431\\ 0.00370\\ 0.00105\\ 0.00090280\\ 0.00062425\\ 0.00045730\\ \end{array}$

• To have sequential ignorability, we need to remember history

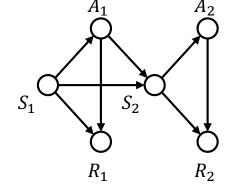


• To have sequential ignorability, we need to remember history



- The difficulty with history is that its **size grows with time**
- Use domain knowledge to summarize salient parts of history into a fixed set of time-dependent confounders
- Alternatively, learn a summary function that maintains what is relevant, e.g., using an RNN

 Look familiar? This is a Markov decision process (MDP), and we are doing (batch) reinforcement learning!



Will use S instead of H, but remember how we got here

- AlphaStar
- AlphaGo
- DQN Atari
- Open Al Five

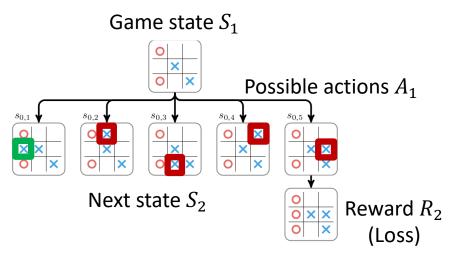


Figure by Tim Wheeler, tim.hibal.org

- Look familiar? This is a Markov decision process (MDP), and we are doing (batch) reinforcement learning!
- Up until now, we have only talked about *evaluation* of dynamic treatment regimes
- How do we find **optimal** policies?
 - Policy gradient using G-computation (estimate MDP first) or marginal structural models (inverse propensity scorebased estimator)
 - 2. Dynamic programming (G-estimation) or Q-learning

Summary

Significant care needed when performing off-policy RL in healthcare

- What are the decision points?
- What is the underlying causal graph? (Taking into consideration clinical practice today.)
- Is there hidden confounding? When does positivity (overlap) hold?
- What are reasonable ways to share parameters without creating hidden confounding?

Consider tackling evaluation of a few reasonable policies before attempting to use black-box methods to learn an optimal policy

Additional references

- Chakraborty & Moodie, <u>Statistical Methods for Dynamic Treatment</u> <u>Regimes: Reinforcement Learning, Causal Inference, and Personalized</u> <u>Medicine</u>. Springer, 2013
- O. Gottesman, F. Johansson, M. Komorowski, A. Faisal, D. Sontag, F. Doshi-Velez, L. Celi. <u>Guidelines for reinforcement learning in healthcare. Nature</u> <u>medicine</u>, 2019
- Li et al., <u>G-Net: a Recurrent Network Approach to G-Computation for</u> <u>Counterfactual Prediction Under a Dynamic Treatment Regime</u>. Proceedings of Machine Learning Research 158:282–297, 2021
- Hua, Mei, Zohar, Giral, Xu. <u>Personalized Dynamic Treatment Regimes in</u> <u>Continuous Time: A Bayesian Approach for Optimizing Clinical Decisions</u> <u>with Timing</u>. Bayesian Analysis. Advance Publication, 1-30, 2021