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Today’s lecture

• Overview of privacy-utility tradeoff in ML for
healthcare
– Differential privacy: how to train ML models that 

do not leak patient data
– Synthetic data generation and its limitations

• Guest lecture by Fei Wang on federated 
learning



ML in healthcare needs lots of data

• Why might institutions be hesitant to share 
health records for research and 
commercialization?

• Data governance and ownership vs. security 
and privacy



Re-identification attacks are possible

• We saw in PS2 how NLP can be used to identify and hide 

personal health information (PHI)

• Latanya Sweeney showed that it is possible, with side-

information, to re-identify patient records:

L. Sweeney. Maintaining Patient Confidentiality When Sharing Medical Data Requires a Symbiotic Relationship 
Between Technology and Policy. Artificial Intelligence Laboratory, Massachusetts Institute of Technology, AIWP-
WP344, May 1997
L. Sweeney. Weaving Technology and Policy Together to Maintain Confidentiality. Journal of Law, Medicine & Ethics, 
25, nos. 2&3 (1997): 98-110.

Volume 2S:2&3, Summer & Fall 1997

me without IRB review. The decision is made locally and
acted on.

Recent presentadons by the secretary of the Depart-
ment of Health and Human Services emphasize the threats
to privacy stemming from misuse of personal health infor-
madon.'" There have been abuses; here are just a few. A
banker cross-referenced a list of padents with cancer against
a list of people who had outstanding loans at his bank.
Where he found matches, he called in the outstanding
loans." A survey of 87 Eortune 500 companies with a total
of 3.2 million employees found that 35 percent of respon-
dents used medical records to make decisions about em-
ployees.'^ Cases have been reported of snooping in large
hospital computer networks by hospital employees,'^ even
though the use of a simple audit trail—a list of each person
who looked up a padent's record—could curtail such be-
havior.'"* Consumer Reports found that 40 percent of insurers
disclose personal health informadon to lenders, employers, or
marketers without customer permission.'^ Abuses like the
preceding underscore the need to develop safeguards.

Data and anonymity
I begin by stating definitions of deidentifted data and anony-
mous data. In deidendfied data, all expUcit identifiers, such
as SSN, name, address, and telephone number, are removed,
generalized, or replaced with a made-up alternadve. Deiden-
tifying data does not guarantee that the result is anony-
mous. The term anonymous implies that the data cannot
be manipulated or linked to identify an individual. Even
when information shared with secondary parties is deiden-
tified, it is often far from anonymous.

There are three major difficuldes in providing anony-
mous data. The first problem is that anonymity is in the
eye of the beholder. The knowledge a viewer of the data
may hold or bring to bear on the data is usually not known
beforehand by the person releasing the data, and such
knowledge may be useful in idendfying individuals. Con-
sider an HIV tesdng center located in a heavily populated
community within a large metropolitan area. If Table 1
shows the results for two days, then it may not appear very
anonymous if the leftmost column contains the date, the
middle column contains the padent's telephone number, and

the rightmost column
holds the results. An elec-
tronic telephone directory
can match each phone
number to a name and
address. Although this
does not identify the spe-
cific member of the house-
hold tested, the possible

Table 1. Possibly Anonymous choices have been narrowed
HIV test data. to a pardcular address.

970202
970202
970202
970203
970203
970203

4973251
7321785
8324820
2018492
9353481
3856592

N
Y
N
N
Y
N

ZIP Code

33171
02657

20612

Birth Date

7/15/71
2/18/73

3/12/75

Gender

m
f

m

Race

Caucasian
Black

Asian

Alternatively, if the middle column in Table 1 holds
random numbers assigned to samples, then idendfying in-
dividuals becomes more difficult; nonetheless, one sdll
cannot guarantee the data are anonymous. If a person with
inside knowledge (for example, a doctor, padent, nurse,
attendant, or even a friend of the patient) recalls who was
the second person tested that day, then the results are not
anonymous to the insider. Similarly, medical records dis-
tributed with a provider code assigned by an insurance com-
pany are often not anonymous with respect to the pro-
vider, because hundreds of administrators typically have
directories that link the provider's name, address, and tele-
phone number to the assigned code.

For another example, consider Table 2. If the contents
of this table
are a subset of
an extremely
large and di-
verse data base,
then the three
records may
appear anony- Table 2. Deidendfied Data that Are Not
mous. Suppose Anonymous.
the ZIP code 33171 primarily consists of a redrement com-
munity. A logical inference is that few young people Uve
there. Likewise, 02657 is the postal code for Provincetown,
Massachusetts, where about five black women live year-
round. The ZIP code 20612 may contain only one Asian
family. In these cases, informadon outside the data identi-
fies the individuals.

Most towns and cities sell locally collected census data
or voter registration hsts that include the date of birth,
name, and address of each resident. This informadon can
be linked to medical data that include a date of birth and
ZIP code, even if padents' names, SSNs, and addresses are
not present. Census data are usually not very accurate in
college towns and areas that have large transient commu-
nides, but, for much of the adult population in the United
States, local census information can be used to reidendfy
deidendfied data because other personal characteristics, such
as gender, date of birth, and ZIP code, often combine
uniquely to identify individuals.

The 1997 voting list for Cambridge, Massachusetts,
contains demographics on 54,805 voters. Of these, birth
date, which contains the month, day, and year of birth,
alone can uniquely idendfy the name and address of 12
percent of the voters. One can identify 29 percent of the
list by just birth
date and gender,
69 percent with
only a birth date
and a 5-digit ZIP
code, and 97 per-
cent (53,033 vot-

birth date alone 12%
birth date and gender 29%
birth date and 5-digit ZIP code 69%
birth date and full postal code 97%
Table 3. Uniqueness of Demographic
Fields in Cambridge, Massachusetts,
Voter List.

100

Looks anonymous, right? But 02657 is Provincetown, MA 

where (in ‘97) five black women live year-round.



What else can we do, instead of 
releasing original data?

• Release statistics derived from the data
– Must fudge to not reveal anything
– Of limited utility for machine learning. Non-starter.

• Put data in a secure data enclave for R&D
• Release ML models derived from the data

– How do we know these models do not reveal anything 
about the training data?

• Release synthetic data
– How do we know it doesn’t just reproduce the original 

training data?



Classifiers can reveal information 
about training data

• An attack called model inversion can be used to 
reverse engineer training data

• Example: dataset from International Warfarin
Pharmacogenetics Consortium
– Linear regression to predict initial dose outperforms 

standard clinical regimen
– But… when one knows a target patient’s background

and stable dosage, their genetic markers could be
predicted 22% more accurately than guessing based on 
marginal distributions

M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart. Privacy in pharmacogenetics: An end-to-
end case study of personalized warfarin dosing. In USENIX Security Symposium, pages 17–32, 2014.
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1. Input: zK = (x1, . . . ,xk,y), f , p1,...,d,y

2. Find the feasible set X̂⊆ X, i.e., such that ∀x ∈ X̂

(a) x matches zK on known attributes: for 1≤ i≤ k,xi = xi.

(b) f evaluates to y as given in zK : f (x) = y.

3. If |X̂|= 0, return ⊥.

4. Return xt that maximizes
∑

x∈X̂:xt=xt

∏
1≤i≤d pi(xi)

(a) A0: Model inversion without performance statistics.

1. Input: zK = (x1, . . . ,xk,y), f , π , p1,...,d,y

2. Find the feasible set X̂⊆ X, i.e., such that ∀x ∈ X̂

(a) x matches zK on known attributes: for 1≤ i≤ k, xi = xi.

3. If |X̂|= 0, return ⊥.

4. Return xt that maximizes
∑

x∈X̂:xt=xt
πy, f (x)

∏
1≤i≤d pi(xi)

(b) Aπ : Model inversion with performance statistics π .

Figure 2: Model inversion algorithm.

the model. Based on the known priors, and how well the
model’s output on that row coincides with α’s known
response value, the candidate rows are weighted. The
target attribute with the greatest weight, computed by
marginalizing the other attributes, is returned.

Below, we describe this algorithm in more detail. We
derive each step by showing how to compute the least
biased estimate of the target attribute’s likelihood, which
the model inversion algorithm maximizes to form a pre-
diction. As we reason below, this approach is optimal in
the sense that it minimizes the expected misclassification
rate when the adversary has no other information (i.e.,
makes no further assumptions) beyond what is given in
Section 3.1.

Derivation. We begin the description with a simpler
restricted case in which the model always produces the
correct response. Assume for now that f is perfect, i.e.,
it never makes a misprediction, and we can assume that
f (x) = y almost surely for any sample (x,y); this case is
covered by A0 in Figure 2. In the following, we assume
the sample corresponds to the individual α , and drop the
superscript for clarity. Suppose the adversary wishes to
learn the probability that xt takes a certain value xt , i.e.,
Pr [xt = xt |xK ,y], given some known attributes xK , re-
sponse variable y, and the model f . Here, and in the fol-
lowing discussion, the probabilities in Pr [·] expressions
are always over draws from the unknown joint prior p un-
less stated otherwise. Let X̂ = {x′ : x′K = xK and f (x′) =
y} be the subset of X matching the given information xK
and y. Then by straightforward computation,

Pr [xt |xK ,y] =
Pr [xt ,xK ,y]

Pr [xK ,y]
=

∑
x′∈X̂:x′t=xt

p(x′,y)
∑

x′∈X̂ p(x′,y)
(1)

Now, the adversary does not know the true underlying
joint prior p. He only knows the marginals p1,...,d,y,
so any distribution with these marginals is a possible
prior. To characterize the unbiased prior that satisfies
these constraints, we apply the prinicipal of maximum

entropy2 [22], which in our setting gives the prior:

p(x,y) = p(y) ·
∏

1≤i≤d p(xi) (2)

Continuing with the previous expression, we now have,

Pr [xt |xK ,y] =

∑
x′∈X̂:x′t=xt

p(y)
∏

i p(x′i)∑
x′∈X̂ p(y)

∏
i p(x′i)

(3)

∝
∑

x′∈X̂:x′t=xt

∏
i p(x′i) (4)

This last step follows because the denominator is inde-
pendent of the choice of xt . Notice that this is exactly
the quantity that is maximized by the value returned by
A0 (Figure 2 (a)). This is the maximum a posteriori
probability (MAP) estimate, which minimizes the adver-
sary’s expected misclassification rate. Under these as-
sumptions, A0 is an optimal algorithm for model inver-
sion.

Aπ in Figure 2 (b) generalizes this reasoning to the
case where f is not assumed to be perfect, and the ad-
versary has information about the performance of f over
samples drawn from p. We model this information with
a function π , defined in terms of a random sample z from
p,

π(y,y′) = Pr
[
zy = y| f (zx) = y′

]
(5)

In other words, π(y,y′) gives the probability that the
true response drawn with attributes zx is y given that the
model outputs y′. We write πy,y′ to simplify notation. In
practice, π can be estimated using statistics commonly
released with models, such as confusion matrices or stan-
dardized regression error.

Because f is not assumed to be perfect in the general
setting, X̂ is defined slightly differently than in A0; the
second restriction, that f (xα) = yα , is removed. After
constructing X̂, Aπ uses the marginals and π to weight
each candidate x ∈ X̂ by the probability that f behaves
as observed (i.e., outputs f (x)) when the response vari-
able matches what the adversary knows to be true (i.e.,

2cf. Jaynes [22], “[The maximum entropy prior] is least biased es-
timate possible on the given information; i.e., it is maximally noncom-
mittal with regard to missing information.”
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Classifiers can reveal information 
about training data

• An attack called model inversion can be used 
to reverse engineer training data

M. Fredrikson, S. Jha, T. Ristenpart. Model Inversion Attacks that Exploit Confidence Information and Basic 
Countermeasures. CCS ‘15.

Algorithm 1 Inversion attack for facial recognition models.

1: function MI-Face(label ,↵,�, �,�)

2: c(x)
def
= 1� f̃label(x) +AuxTerm(x)

3: x0  0
4: for i 1 . . .↵ do
5: xi  Process(xi�1 � � ·rc(xi�1))
6: if c(xi) � max(c(xi�1), . . . , c(xi��)) then
7: break
8: if c(xi)  � then
9: break
10: return [argminxi

(c(xi)),minxi(c(xi))]

resentation (typically in a smaller space), and then maps it
back (i.e., reconstructs) into the original feature space. Au-
toencoders are trained to minimize reconstruction error, so
vectors in the latent space can be thought of as compressed
encodings of the feature space that should decode well for in-
stances in the training data. The hope with this architecture
is that these encodings capture the main factors of variation
in feature space (much like Principal Component Analysis),
leading to greater separability for the softmax layer.

Model Error
Softmax 7.5%
MLP 4.2%
DAE 3.3%

Figure 6: Model
accuracy.

Dataset. We trained each type
of model over the AT&T Lab-
oratories Cambridge database of
faces [2]. This set contains ten
black-and-white images of 40 indi-
viduals in various lighting condi-
tions, facial expressions, and de-
tails (e.g., glasses/no glasses), for
a total of 400 images. We divided
the images of each person into a training set (7 images) and
a validation set (3 images), and trained each model using
pylearn2’s stochastic gradient descent algorithm [15] until
the model’s performance on the training set failed to im-
prove after 100 iterations. The error rate for each model is
given in Figure 6.

Basic MI attack. We now turn to inversion attacks against
the models described above. The features that we will at-
tempt to invert in this case are the full vector of pixel intensi-
ties that comprise an image, and each intensity corresponds
to a floating-point value in the range [0, 1]. In all of the at-
tacks we consider, we do not assume that the attacker knows
exact values for any of the pixels in the vector he is trying to
infer. These factors combine to make this type of inversion
substantially di↵erent from the previous cases we consider,
so these attacks require new techniques.

Assuming feature vectors with n components and m face
classes, we model each facial recognition classifier as a func-
tion, f̃ : [0, 1]n 7! [0, 1]m. Recall that the output of the
model is a vector of probability values, with the ith compo-
nent corresponding to the probability that the feature vector
belongs to the ith class. We write f̃i(x) as shorthand for the
ith component of the output.

We use gradient descent (GD) to minimize a cost func-
tion involving f̃ to perform model inversion in this setting.
Gradient descent finds the local minima of a di↵erentiable
function by iteratively transforming a candidate solution to-
wards the negative of the gradient at the candidate solution.
Our algorithm is given by the function MI-Face in Algo-
rithm 1. The algorithm first defines a cost function c in

Algorithm 2 Processing function for stacked DAE.

function Process-DAE(x)
encoder .Decode(x)
x NLMeansDenoise(x)
x Sharpen(x)
return encoder .Encode(vecx)

Figure 7: Reconstruction without using Process-
DAE (Algorithm 2) (left), with it (center), and the
training set image (right).

terms of the facial recognition model f̃ and a case-specific
function AuxTerm, which uses any available auxiliary in-
formation to inform the cost function. We will describe an
instantiation of AuxTerm when we discuss facial deblur-
ring. MI-Face then applies gradient descent for up to ↵
iterations, using gradient steps of size �. After each step of
gradient descent, the resulting feature vector is given to a
post-processing function Process, which can perform vari-
ous image manipulations such as denoising and sharpening,
as necessary for a given attack. If the cost of the candidate
fails to improve in � iterations, or if the cost is at least as
great as �, then descent terminates and the best candidate
is returned.

MI-Face needs to compute the gradient of the cost func-
tion c, which in turn requires computing the gradient of the
facial recognition model f̃ . This means that f̃ must be dif-
ferentiable for the attack to succeed. rf̃ can be computed
manually or automatically using symbolic techniques. Our
experiments use symbolic facilities to implement the latter
approach.

5.2 Reconstruction Attack
The first specific attack that we consider, which we will re-

fer to as Face-Rec, supposes that the adversary knows one of
the labels output by the model and wishes to reconstruct an
image depicting a recognizable face for the individual corre-
sponding to the label. This attack is a fairly straightforward
instantiation of MI-Face (Algorithm 1). The attacker has
no auxiliary information aside from the target label, so we

define AuxTerm(x)
def
= 0 for all x. Our experiments set the

parameters for MI-Face to: ↵ = 5000,� = 100, � = 0.99,
and � = 0.1; we arrived at these values based on our ex-
perience running the algorithm on test data, and out of
consideration for the resources needed to run a full set of
experiments with these parameters.

In all cases except for the stacked DAE network, we set
Process to be the identity function. For stacked DAE net-
work, we use the function Process-DAE in Algorithm 2.
Since the adversary can inspect each of the model’s layers,
he can isolate the two autoencoder layers. We configure the
attack to generate candidate solutions in the latent space of
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Differentially private machine learning
• An algorithm is differentially private if its output is statistically

indistinguishable when applied to two input datasets that 

differ by only one record in the dataset

• One way to achieve is via differentially private stochastic

gradient descent (DP-SGD):

Abadi et al., Deep Learning with Differential Privacy. CCS 2016.

3.1 Differentially Private SGD Algorithm
One might attempt to protect the privacy of training data

by working only on the final parameters that result from the
training process, treating this process as a black box. Un-
fortunately, in general, one may not have a useful, tight
characterization of the dependence of these parameters on
the training data; adding overly conservative noise to the pa-
rameters, where the noise is selected according to the worst-
case analysis, would destroy the utility of the learned model.
Therefore, we prefer a more sophisticated approach in which
we aim to control the influence of the training data during
the training process, specifically in the SGD computation.
This approach has been followed in previous works (e.g., [52,
7]); we make several modifications and extensions, in par-
ticular in our privacy accounting.

Algorithm 1 outlines our basic method for training a model
with parameters ✓ by minimizing the empirical loss function
L(✓). At each step of the SGD, we compute the gradient
r✓L(✓, xi) for a random subset of examples, clip the `2 norm
of each gradient, compute the average, add noise in order to
protect privacy, and take a step in the opposite direction of
this average noisy gradient. At the end, in addition to out-
putting the model, we will also need to compute the privacy
loss of the mechanism based on the information maintained
by the privacy accountant. Next we describe in more detail
each component of this algorithm and our refinements.

Algorithm 1 Di↵erentially private SGD (Outline)

Input: Examples {x1, . . . , xN}, loss function L(✓) =
1
N

P
i L(✓, xi). Parameters: learning rate ⌘t, noise scale

�, group size L, gradient norm bound C.
Initialize ✓0 randomly
for t 2 [T ] do

Take a random sample Lt with sampling probability
L/N

Compute gradient

For each i 2 Lt, compute gt(xi) r✓tL(✓t, xi)
Clip gradient

ḡt(xi) gt(xi)/max
�
1, kgt(xi)k2

C

�

Add noise

g̃t  1
L

�P
i ḡt(xi) +N (0,�2

C
2
I)
�

Descent

✓t+1  ✓t � ⌘tg̃t

Output ✓T and compute the overall privacy cost (", �)
using a privacy accounting method.

Norm clipping: Proving the di↵erential privacy guarantee
of Algorithm 1 requires bounding the influence of each indi-
vidual example on g̃t. Since there is no a priori bound on
the size of the gradients, we clip each gradient in `2 norm;
i.e., the gradient vector g is replaced by g/max

�
1, kgk2

C

�
,

for a clipping threshold C. This clipping ensures that if
kgk2  C, then g is preserved, whereas if kgk2 > C, it gets
scaled down to be of norm C. We remark that gradient clip-
ping of this form is a popular ingredient of SGD for deep
networks for non-privacy reasons, though in that setting it
usually su�ces to clip after averaging.

Per-layer and time-dependent parameters: The pseu-
docode for Algorithm 1 groups all the parameters into a
single input ✓ of the loss function L(·). For multi-layer neu-
ral networks, we consider each layer separately, which allows

setting di↵erent clipping thresholds C and noise scales � for
di↵erent layers. Additionally, the clipping and noise param-
eters may vary with the number of training steps t. In results
presented in Section 5 we use constant settings for C and �.

Lots: Like the ordinary SGD algorithm, Algorithm 1 esti-
mates the gradient of L by computing the gradient of the
loss on a group of examples and taking the average. This av-
erage provides an unbiased estimator, the variance of which
decreases quickly with the size of the group. We call such a
group a lot, to distinguish it from the computational group-
ing that is commonly called a batch. In order to limit mem-
ory consumption, we may set the batch size much smaller
than the lot size L, which is a parameter of the algorithm.
We perform the computation in batches, then group several
batches into a lot for adding noise. In practice, for e�ciency,
the construction of batches and lots is done by randomly per-
muting the examples and then partitioning them into groups
of the appropriate sizes. For ease of analysis, however, we as-
sume that each lot is formed by independently picking each
example with probability q = L/N , where N is the size of
the input dataset.
As is common in the literature, we normalize the running

time of a training algorithm by expressing it as the number
of epochs, where each epoch is the (expected) number of
batches required to process N examples. In our notation,
an epoch consists of N/L lots.

Privacy accounting: For di↵erentially private SGD, an
important issue is computing the overall privacy cost of the
training. The composability of di↵erential privacy allows
us to implement an “accountant” procedure that computes
the privacy cost at each access to the training data, and
accumulates this cost as the training progresses. Each step
of training typically requires gradients at multiple layers,
and the accountant accumulates the cost that corresponds
to all of them.

Moments accountant: Much research has been devoted
to studying the privacy loss for a particular noise distribu-
tion as well as the composition of privacy losses. For the
Gaussian noise that we use, if we choose � in Algorithm 1

to be
q

2 log 1.25
� /", then by standard arguments [20] each

step is (", �)-di↵erentially private with respect to the lot.
Since the lot itself is a random sample from the database,
the privacy amplification theorem [33, 8] implies that each
step is (O(q"), q�)-di↵erentially private with respect to the
full database where q = L/N is the sampling ratio per lot
and "  1. The result in the literature that yields the best
overall bound is the strong composition theorem [22].
However, the strong composition theorem can be loose,

and does not take into account the particular noise distribu-
tion under consideration. In our work, we invent a stronger
accounting method, which we call the moments accountant.
It allows us to prove that Algorithm 1 is (O(q"

p
T ), �)-

di↵erentially private for appropriately chosen settings of the
noise scale and the clipping threshold. Compared to what
one would obtain by the strong composition theorem, our
bound is tighter in two ways: it saves a

p
log(1/�) factor in

the " part and a Tq factor in the � part. Since we expect
� to be small and T � 1/q (i.e., each example is examined
multiple times), the saving provided by our bound is quite
significant. This result is one of our main contributions.
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D������ D��� T��� O������ V������� = 3 C������������� T��� T��� S��� P�������� A��������� E���������

������ ����

mimic_mortality T��� S����� ���ICU ��������� 21,877 (24,69) B����� L���� E�������� U,R, F

mimic_los_3 T��� S����� ������ �� ���� > 3 ���� 21,877 (24,69) B����� S���� E�������� U,R, F

mimic_intervention T��� S����� ����������� �������������� 21,877 (24,69) M��������� (4) S���� E�������� U,R, F

NIH_chest_x_ray I������ ���������� ������� ���������� 112,120 (256,256) M��������� ���������� (14) L������ S�� U,F

V����� B��������

mnist I������ ������ �������������� 60,000 (28,28) M��������� (10) N��� N/A U

fashion_mnist I������ �������� �������������� 60,000 (28,28) M��������� (10) N��� N/A U

Table 1: We analyze tradeo�s in two vision baseline datasets and two health care datasets. We use three prediction tasks in
MIMIC-III with di�erent tail sizes and focus our utility (U), robustness (R), and fairness (F) analyses on these tasks. Finally,
we choose NIH Chest X-Ray which is a larger dataset with the largest tail to examine whether increasing the dataset size has
an impact on utility and fairness tradeo�s.

which suggests that models need to perform similarly to physi-
cians [20]. The speci�c metric is dependent on the the task as high
positive predictive value may be preferred over high negative pre-
dictive value [55]. In this work, we focus on predictive accuracy
as AUROC and AUPRC, characterizing this loss as privacy levels
increase.

Robustness to Dataset Shift. The e�ect of dataset shift has been
studied in non-DP health care settings, demonstrating that model
performance often deteriorates when the data distribution is non-
stationary [21, 51, 88]. Recent work has demonstrated that perfor-
mance deteriorates rapidly on patient LOS and mortality prediction
tasks in the MIMIC-III EHR dataset, when trained on past years,
and applied to a future year [67]. We focus on this setting for a
majority of our experiments, leveraging year-to-year changes in
population as small dataset shifts, and a change in EHR software
between 2008 and 2009 as a large dataset shift.

Group Fairness. Disparities exist between white and Black pa-
tients, resulting in health inequity in the U.S.A [70, 72]. Further,
even the use of some sensitive data like ethnicity in medical practice
is contentious [97], and has been called into question in risk scores,
for instance in estimating kidney function [26, 62].

Much work has described the ability of machine learning models
to exacerbate disparities between protected groups [11]; even state-
of-the-art chest X-Ray classi�ers demonstrate diagnostic disparities
between sex, ethnicity, and insurance type [83]. We leverage recent
work in measuring the group fairness of machine learning models
for di�erent statistical de�nitions [40] in supervised learning.

We complement these standard metrics by also examining loss of
data importance through in�uence functions [57]; in�uence func-
tions have also been extended to approximate the e�ects of sub-
groups on a model’s prediction [58]. They demonstrate that mem-
orization is required for small generalization error on long tailed
distributions [28].

3 DATA
Details of each data source and prediction task are shown in Table 1.
The four datasets are intentionally of di�erent sizes, with respective
tasks that represent distributions with and without long tails.

3.1 Vision Baselines
We use MNIST [59] and FashionMNIST [102] to demonstrate the
benchmark privacy-utility tradeo�s in non-health settings with no
tails. We use the NIH Chest X-Ray dataset [99] (112,120 images,
details in Appendix B.2) to benchmark privacy-utility tradeo�s in a
medically based, but still vision-focused, setting with the longest
tails of all of our tasks.

3.2 MIMIC-III Time Series EHR Data
For the remainder of our analyses on privacy-robustness and privacy-
fairness, we use the MIMIC-III database [48]—a publicly available
anonymized EHR dataset of intensive care unit (ICU) patients
(21,877 unique patient stays, details in Appendix B.1). We focus on
two binary prediction tasks of predicting (1) ICUmortality (class im-
balanced), (2) LOS greater than 3 days (class balanced) and choose
one multiclass prediction tasks of predicting intervention onset for
(3) vasopressor administration (class balanced) [41, 98].

Source of Distribution Shift. InMIMIC-III, there is a known source
of dataset shift after 2008 due to a transition in the EHR used [1].
There are also smaller shifts in non-transition years as the patient
distribution is non-stationary [67].

4 METHODOLOGY
We use both DP-SGD and objective perturbation across three dif-
ferent privacy levels to evaluate the impact that DP learning has
on utility and robustness to dataset shift. Given the worse utility
and robustness tradeo�s using objective perturbation, we focus our
subsequent fairness analyses on DP-SGD in health care settings.

4.1 Model Classes
Vision Baselines. We use di�erent convolutional neural network

architectures for the MNIST and FashionMNIST prediction tasks
based on prior work [74]. We use DenseNet-121 pretrained on
ImageNet for the NIH Chest X-Ray experiments [83].

MIMIC EHR Tasks. For the MIMIC-III health care tasks analy-
ses, we choose one linear model and one neural network per task,
based on the best baselines, trained without privacy, outlined in
prior work creating benchmarks for the MIMIC-III dataset [98]. For
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V����� B��������

D������ M���� N��� (n, X) L�� (n, X) H��� (n, X)

MNIST CNN 98.83 ± 0.06 (1, 0) 98.58 ± 0.06 (2.6 · 105) 93.78 ± 0.25 (2.01)
F������MNIST CNN 87.92 ± 0.19 (1, 0) 87.90 ± 0.16 (2.6 · 105) 79.53 ± 0.10 (2.01)
MIMIC�III

T��� M���� N��� (n, X) L�� (n, X) H��� (n, X)

M�������� LR 0.82 ± 0.03 (1, 0) 0.76 ± 0.05 (3.50 · 105, 10�5) 0.60 ± 0.04 (3.54, 10�5)
GRUD 0.79 ± 0.03 (1, 0) 0.59 ± 0.09 (1.59 · 105, 10�5) 0.53 ± 0.03 (2.65, 10�5)

L����� �� S��� > 3 LR 0.69 ± 0.02 (1, 0) 0.66 ± 0.03 (3.50 · 105, 10�5) 0.60 ± 0.04 (3.54, 10�5)
GRUD 0.67 ± 0.03 (1, 0) 0.63 ± 0.02 (1.59 · 105, 10�5) 0.61 ± 0.03 (2.65, 10�5)

I����������� O���� (V���) LR 0.90 ± 0.03 (1, 0) 0.87 ± 0.03 (1.63 · 107, 10�5) 0.77 ± 0.05 (0.94, 10�5)
CNN 0.88 ± 0.04 (1, 0) 0.86 ± 0.02 (5.95 · 107, 10�5) 0.68 ± 0.04 (0.66, 10�5)

NIH C���� X�R��

M����� M���� N��� (n, X) L�� (n, X) H��� (n, X)

A������ AUC D����N���121 0.84 ± 0.00 (1, 0) 0.51 ± 0.01 (1.74 · 105, 10�6) 0.49 ± 0.00 (0.84, 10�6)
B��� AUC D����N���121 0.98 ± 0.00 (H�����) 0.54 ± 0.04 (E����) 0.54 ± 0.05 (P������ T���������)
W���� AUC D����N���121 0.72 ± 0.00 (I�����������) 0.48 ± 0.02 (F�������) 0.47 ± 0.02 (P������ T���������)

Table 2: Health care tasks have a signi�cant tradeo� between the High and Low or None setting. The tradeo� is better in tasks
with small tails (length of stay and intervention onset), and worst in tasks such as mortality and NIH Chest X-Ray with long
tails. We provide the n, X guarantees in parentheses, where n represents the privacy loss (lower is better) and X represents the
probability that the guarantee does not hold (lower is better).

Figure 1: The e�ect of DP learning on robustness to non-stationarity and dataset shift. One instance of increased robustness
in the 2009 column for mortality prediction in the high privacy setting (A), but this does not hold across all tasks and models.
Performance drops in the 2009 column for LOS in both LR and GRU-D (B), and a much worse drop in the high privacy CNN
for intervention prediction (C).

for theoretical analyses about the e�ect of DP on out-of-distribution
generalization guarantees. We investigate the impact of DP to mit-
igating dataset shift for time series MIMIC-III tasks by analyzing
model performance across years of care. We �rst record generaliza-
tion as the di�erence in performance when a model is trained and
tested on data drawn from ? , versus performance on a shifted test

set drawn from @) and the malignancy of the shift. We then measure
the malignancy of the yearly shifts using a domain classi�er. Finally
we perform a Pearsons correlation test [86] between the model’s
generalization capacity and the shift malignancy.
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subtype and the unique features of the other 
two subtypes. The GAN also improves the 
accuracy of classification.

By closely mimicking real-world 
observational data, synthetic data could 
transform interoperability standards in the 
sharing of health data, and contribute to 
improving reproducibility24. For example, in 
lieu of revealing actual patient data, synthetic 
datasets that accurately capture the original 
distribution of the data would substantially 
lessen patient privacy concerns and could 
be freely shared. Unfortunately, current 
generative models are not ready for the 
off-the-shelf generation of synthetic data, and 
may even create vulnerabilities (which could 
lead to patient re-identification) if adopted 
carelessly across healthcare ecosystems. 
For example, if a clinician working with 
developmental disorders and using a 
generative model to capture phenotype 

diversity in adolescents with de novo 
mutations makes the weights of the trained 
GAN model publicly available, the GAN 
could be used by a third party to synthesize 
real faces of the adolescents, thus leaking 
PHI. This is an example of information 
leakage (and, in particular, of a membership 
interference attack25,26), one of many failure 
modes of generative models, wherein 
samples from the training dataset can be 
recovered from the probability distribution, 
owing to overfitting. Although information 
leakage can be mitigated with sophisticated 
modelling techniques such as differential 
privacy, the adaptation to clinical scenarios 
would require expertise in machine learning 
as well as medical-domain knowledge27–30. As 
best practices for generative models continue 
to be developed, better privacy guarantees 
should be put forward to minimize the 
possibility of a PHI leak31.

Challenges in adoption
The generation of synthetic data has 
garnered significant attention in medicine 
and healthcare13,14,17,32–34 because it can 
improve existing AI algorithms through data 
augmentation. For instance, among renal 
cell carcinomas, the chromophobe subtype 
is rare and accounts for merely 5% of all 
renal cell carcinoma cases35. By providing 
synthetic histology images of renal cell 
carcinoma as additional training input to a 
convolutional neural network, the detection 
accuracy of the subtype can be improved 
(Fig. 1, bottom).

However, the wider roles of synthetic 
data in AI systems in healthcare remain 
unclear. Unlike traditional medical devices, 
the function of AI-SaMDs may need to 
be adaptive to data streams that evolve 
over time, as is the case for health data 
from smartphone sensors36,37. Researchers 
may be tempted to use synthetic data 
as a stopgap for the fine-tuning of 
algorithms; however, policymakers may 
find it troubling that there are not always 
clinical-quality measures and evaluation 
metrics for synthetic data. In a proposed 
FDA regulatory framework for software 
modifications in adaptive AI-SaMDs, 
guidance for updating algorithms would 
mandate reference standards and quality 
assurance of any new data sources6. 
However, when generating synthetic data for 
rare or new disease conditions, there may 
not even be sufficient samples to establish 
clinical reference standards. As with other 
data-driven deep-learning algorithms, 
generative models are constrained by the 
size and quality of the training dataset used 
to model the data distribution, and models 
trained with biased datasets would still be 
biased toward overrepresented conditions. 
How can we assess whether synthetic data 
are emulating the correct phenotype and 
are free from artefacts that would bias the 
deployed AI-SaMDs? Current quantitative 
metrics for the evaluation of generative 
models use probability likelihood and 
divergence scores that are not easy to 
interpret by clinicians and that do not reflect 
specific failure modes in the generation 
of synthetic data38. This complicates the 
adoption of synthetic data for AI-SaMDs.

Synthetic data could be evaluated using 
visual Turing tests; in fact, human-eye 
perceptual evaluation metrics have 
been proposed for evaluating generative 
models on real and synthetic images39. 
These metrics can be adapted to assessing 
synthesized radiology and pathology images 
by expert radiologists and pathologists, yet 
they may be prone to large inter-observer 
and intra-observer variabilities. Another 
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Fig. 1 | Synthetic medical data in action. Top: synthetic and real images of skin lesions and of frontal 
chest X-rays. Middle: synthetic and real histology images of three subtypes of renal cell carcinoma. 
Bottom: areas under the receiver operating characteristic curve (AUC) for the classification performance 
of an independent dataset of the histology images by a deep-learning model trained with 10,000 real 
images of each subtype and by the same model trained with the real-image dataset augmented by 
10,000 synthetic images of each subtype. Methodology and videos are available as Supplementary 
Information.
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Synthetic data generation
• Key questions to ask are:

– Can you do more with the synthetic data than you could have with just 
basic statistics derived from the data?

– What does the synthetic data leak about the original training data?

• Many recent works applying differential privacy methods to

training of generative adversarial networks

– What are the privacy-utility trade-offs?


