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Model Training
Deep learning model training

For a training dataset containing + samples (",, %,), 1 ≤ - ≤ +, the training 
objective is:

min
C∈ℝE

=(!) where = ! ≝ 6
7∑,56

7 =,(!)

=, ! = <(",, %,, !) is the loss of the prediction on example ",, %,

No closed-form solution: in a typical deep learning model, ! may contain millions of parameters.
Non-convex: multiple local minima exist.
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Solution: Gradient Descent

!

Loss =(!)

Randomly initialized weight !

Compute gradient ∇=(!)
!IJ6 = !I − K∇=(!)

(Gradient Descent)

At the local minimum, ∇=(!) is close to 0.

Learning rate K controls the step size

How to stop? – when the update 
is small enough – converge.

∥ !IJ6 − !I ∥≤ M
or      ∥ ∇=(!I) ∥≤ M

Problem:  Usually the number of training 
samples n is large – slow convergence
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• At each step of gradient 
descent, instead of compute 
for all training samples, 
randomly pick a small 
subset (mini-batch) of 
training samples 
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Stochastic Gradient Descent

Solution: Stochastic Gradient Descent (SGD)

● At each step of gradient descent, instead of compute for all training 
samples, randomly pick a small subset (mini-batch) of training samples 
"N, %N .

● Compared to gradient descent, SGD takes more steps to converge, but 
each step is much faster.

!IJ6 ← !I − K∇= !I; "N, %N

https://medium.com/analytics-vidhya/gradient-descent-vs-stochastic-gd-vs-mini-
batch-sgd-fbd3a2cb4ba4
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At last, we discuss the main opportunities and open questions for future applications
in healthcare.

Difference with Existing Reviews There has been a few review articles on federated
learning recently. For example, Yang et al. [109] wrote the early federated learning
survey summarizing the general privacy-preserving techniques that can be applied
to federated learning. Some researchers surveyed sub-problems of federated learn-
ing, e.g., personalization techniques [59], semi-supervised learning algorithms [49],
threat models [68], and mobile edge networks [66]. Kairouz et al. [51] discussed
recent advances and presented an extensive collection of open problems and chal-
lenges. Li et al. [63] conducted the review on federated learning from a system
viewpoint. Different from those reviews, this paper provided the potential of feder-
ated learning to be applied in healthcare. We summarized the general solution to the
challenges in federated learning scenario and surveyed a set of representative feder-
ated learning methods for healthcare. In the last part of this review, we outlined some
directions or open questions in federated learning for healthcare. An early version of
this paper is available on arXiv [107].

2 Federated Learning

Federated learning is a problem of training a high-quality shared global model with
a central server from decentralized data scattered among large number of different
clients (Fig. 1). Mathematically, assume there are K activated clients where the data
reside in (a client could be a mobile phone, a wearable device, or a clinical institution
data warehouse, etc.). LetDk denote the data distribution associated with client k and

Fig. 1 Schematic of the federated learning framework. The model is trained in a distributed manner: the
institutions periodically communicate the local updates with a central server to learn a global model; the
central server aggregates the updates and sends back the parameters of the updated global model

Xu, Jie, Benjamin S. Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei Wang. "Federated learning for healthcare informatics." Journal of Healthcare Informatics 
Research (2020): 1-19.
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Federated SGD
A baseline – FederatedSGD (FedSGD)

Learning rate: K; total #samples: +; total #clients: Q; #samples on a client k: +N; 
clients fraction Y = 1
● In a round t:

○ The central server broadcasts current model !I to each client; each client k computes 
gradient: ZN = ∇VN(!I), on its local data.

■ Approach 1: Each client k submits ZN; the central server aggregates the gradients to generate a 
new model: 

● !IJ6 ← !I − K∇= !I = !I − K ∑N56T 7U
7 ZN .

■ Approach 2: Each client k computes: !IJ6N ← !I − KZN; the central server performs 
aggregation:

● !IJ6 ← ∑N56T 7U
7 !IJ6

N For multiple times ⟹ FederatedAveraging (FedAvg)

Recall f w = ∑^56_ `a
` F^(w)

https://inst.eecs.berkeley.edu/~cs294-163/fa19/slides/federated-learning.pdf
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Federated AveragingH. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agüera y Arcas

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and ⌘ is the learning rate.
Server executes:

initialize w0

for each round t = 1, 2, . . . do
m max(C ·K, 1)
St  (random set of m clients)
for each client k 2 St in parallel do
wk

t+1  ClientUpdate(k,wt)

wt+1  
PK

k=1
nk
n wk

t+1

ClientUpdate(k, w): // Run on client k
B  (split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b 2 B do
w  w � ⌘O`(w; b)

return w to server

3 Experimental Results

We are motivated by both image classification and language
modeling tasks where good models can greatly enhance the
usability of mobile devices. For each of these tasks we first
picked a proxy dataset of modest enough size that we could
thoroughly investigate the hyperparameters of the FedAvg
algorithm. While each individual training run is relatively
small, we trained over 2000 individual models for these
experiments. We then present results on the benchmark
CIFAR-10 image classification task. Finally, to demonstrate
the effectiveness of FedAvg on a real-world problem with
a natural partitioning of the data over clients, we evaluate
on a large language modeling task.

Our initial study includes three model families on two
datasets. The first two are for the MNIST digit recognition
task [26]: 1) A simple multilayer-perceptron with 2-hidden
layers with 200 units each using ReLu activations (199,210
total parameters), which we refer to as the MNIST 2NN.
2) A CNN with two 5x5 convolution layers (the first with
32 channels, the second with 64, each followed with 2x2
max pooling), a fully connected layer with 512 units and
ReLu activation, and a final softmax output layer (1,663,370
total parameters). To study federated optimization, we also
need to specify how the data is distributed over the clients.
We study two ways of partitioning the MNIST data over
clients: IID, where the data is shuffled, and then partitioned
into 100 clients each receiving 600 examples, and Non-IID,
where we first sort the data by digit label, divide it into 200
shards of size 300, and assign each of 100 clients 2 shards.
This is a pathological non-IID partition of the data, as most
clients will only have examples of two digits. Thus, this lets
us explore the degree to which our algorithms will break on
highly non-IID data. Both of these partitions are balanced,

Table 1: Effect of the client fraction C on the MNIST 2NN
with E = 1 and CNN with E = 5. Note C = 0.0 corre-
sponds to one client per round; since we use 100 clients for
the MNIST data, the rows correspond to 1, 10 20, 50, and
100 clients. Each table entry gives the number of rounds
of communication necessary to achieve a test-set accuracy
of 97% for the 2NN and 99% for the CNN, along with the
speedup relative to the C = 0 baseline. Five runs with
the large batch size did not reach the target accuracy in the
allowed time.

2NN IID NON-IID
C B = 1 B = 10 B = 1 B = 10

0.0 1455 316 4278 3275
0.1 1474 (1.0⇥) 87 (3.6⇥) 1796 (2.4⇥) 664 (4.9⇥)
0.2 1658 (0.9⇥) 77 (4.1⇥) 1528 (2.8⇥) 619 (5.3⇥)
0.5 — (—) 75 (4.2⇥) — (—) 443 (7.4⇥)
1.0 — (—) 70 (4.5⇥) — (—) 380 (8.6⇥)

CNN, E = 5

0.0 387 50 1181 956
0.1 339 (1.1⇥) 18 (2.8⇥) 1100 (1.1⇥) 206 (4.6⇥)
0.2 337 (1.1⇥) 18 (2.8⇥) 978 (1.2⇥) 200 (4.8⇥)
0.5 164 (2.4⇥) 18 (2.8⇥) 1067 (1.1⇥) 261 (3.7⇥)
1.0 246 (1.6⇥) 16 (3.1⇥) — (—) 97 (9.9⇥)

however.4

For language modeling, we built a dataset from The Com-

plete Works of William Shakespeare [32]. We construct a
client dataset for each speaking role in each play with at
least two lines. This produced a dataset with 1146 clients.
For each client, we split the data into a set of training lines
(the first 80% of lines for the role), and test lines (the last
20%, rounded up to at least one line). The resulting dataset
has 3,564,579 characters in the training set, and 870,014
characters5 in the test set. This data is substantially unbal-
anced, with many roles having only a few lines, and a few
with a large number of lines. Further, observe the test set is
not a random sample of lines, but is temporally separated
by the chronology of each play. Using an identical train/test
split, we also form a balanced and IID version of the dataset,
also with 1146 clients.

On this data we train a stacked character-level LSTM lan-
guage model, which after reading each character in a line,
predicts the next character [22]. The model takes a series of
characters as input and embeds each of these into a learned
8 dimensional space. The embedded characters are then
processed through 2 LSTM layers, each with 256 nodes.
Finally the output of the second LSTM layer is sent to a
softmax output layer with one node per character. The full
model has 866,578 parameters, and we trained using an
unroll length of 80 characters.

4We performed additional experiments on unbalanced versions
of these datasets, and found them to in fact be slightly easier for
FedAvg.

5We always use character to refer to a one byte string, and use
role to refer to a part in the play.

Federated learning – FederatedAveraging (FedAvg)

1. At first, a model is randomly 
initialized on the central server.

2. For each round t:
i. A random set of clients are 

chosen;
ii. Each client performs local 

gradient descent steps;
iii. The server aggregates 

model parameters 
submitted by the clients.

McMahan, Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. "Communication-efficient learning 
of deep networks from decentralized data." In Artificial intelligence and statistics, pp. 1273-1282. PMLR, 2017.
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Table 1. Demographic characteristics of all hospitalized patients with COVID-19 included in this study (N=4029)a.

P valueMount Sinai
West

Mount Sinai
Queens

Mount Sinai MorningsideMount Sinai HospitalMount Sinai
Brooklyn

Characteristic

 —b4855407491644611Number of patients,
n

Gender, n (%)

.004257 (53.0)344 (63.7)411 (54.9)951 (57.8)338 (55.3)Male

.004228 (47.0)196 (36.3)338 (45.1)693 (42.2)273 (44.7)Female

<.00166.3 (52.5-77.6)68.1 (57.1-
78.8)

69.8 (57.4-80.3)63.3 (51.3-73.2)72.5 (63.6-82.7)Age (years), median
(IQR)

Ethnicity, n (%)

<.001111 (22.9)198 (36.7)259 (34.6)460 (28.0)21 (3.4)Hispanic

<.001349 (72.0)287 (53.1)452 (60.3)892 (54.3)416 (68.1)Non-Hispanic

<.00125 (5.2)55 (10.2)38 (5.1)292 (17.8)174 (28.5)Unknown

Race, n (%) 

<.00127 (5.6)56 (10.4)16 (2.1)83 (5.0)13 (2.1)Asian

<.001109 (22.5)64 (11.9)266 (35.5)388 (23.6)323 (52.9)Black/African
American

<.001164 (33.8)288 (53.3)343 (45.8)705 (42.9)54 (8.8)Other

<.00114 (2.9)14 (2.6)25 (3.3)87 (5.3)27 (4.4)Unknown

<.001171 (35.3)118 (21.9)99 (13.2)381 (23.2)194 (31.8)White

Past medical history, n (%)

.0067 (1.4)15 (2.8)—16 (1.0)14 (2.3)Acute myocar-
dial infarction

<.001———28 (1.7)—Acute respirato-
ry distress syn-
drome

.74———11 (0.7)—Acute venous
thromboem-
bolism

<.00127 (5.6)19 (3.5)39 (5.2)100 (6.1)—Asthma

.00528 (5.8)49 (9.1)44 (5.9)113 (6.9)23 (3.8)Atrial fibrilla-
tion

<.00141 (8.5)21 (3.9)47 (6.3)190 (11.6)22 (3.6)Cancer

<.00133 (6.8)81 (15.0)75 (10.0)208 (12.7)46 (7.5)Chronic kidney
disease

.0419 (3.9)28 (5.2)31 (4.1)64 (3.9)11 (1.8)Chronic obstruc-
tive pulmonary
disease

.02——14 (1.9)17 (1.0)—Chronic viral
hepatitis

.00851 (10.5)82 (15.2)92 (12.3)168 (10.2)56 (9.2)Coronary artery
disease

<.00176 (15.7)154 (28.5)165 (22.0)351 (21.4)93 (15.2)Diabetes melli-
tus

.3830 (6.2)43 (8.0)61 (8.1)110 (6.7)36 (5.9)Heart failure

.00114 (2.9)—11 (1.5)32 (1.9)—Human immun-
odeficiency
virus

<.001139 (28.7)225 (41.7)249 (33.2)549 (33.4)112 (18.3)Hypertension

JMIR Med Inform 2021 | vol. 9 | iss. 1 | e24207 | p. 4http://medinform.jmir.org/2021/1/e24207/
(page number not for citation purposes)
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Table 2. Performance of the local, pooled, and federated LASSOa and MLPb models at each site, based on AUROCsc with 95% confidence intervals.

Mount Sinai West
(n=485), AUROC
(95% CI)

Mount Sinai
Queens
(n=540), AU-
ROC (95% CI)

Mount Sinai Morningside
(n=749), AUROC (95% CI)

Mount Sinai Hospital
(n=1644), AUROC (95% CI)

Mount Sinai
Brooklyn (n=611),
AUROC (95% CI)

Model 
 

LASSO model

0.482 (0.473-
0.491)

0.706 (0.702-
0.710)

0.66 (0.656-0.664)0.693 (0.689-0.696)0.791 (0.788-
0.795)

Local

0.829 (0.824-
0.834)

0.734 (0.730-
0.737)

0.789 (0.785-0.792)0.791 (0.788-0.794)0.816 (0.814-
0.819)

Pooled

0.801 (0.796-
0.807)

0.694 (0.690-
0.698)

0.767 (0.764-0.771)0.772 (0.769-0.774)0.793 (0.790-
0.796)

Federated

MLP model

0.719 (0.711-
0.727)

0.791 (0.788 -
0.795)

0.747 (0.743-0.751)0.750 (0.747-0.754)0.822 (0.820-
0.825)

Local

0.842 (0.837-
0.847)

0.783 (0.779-
0.786)

0.751 (0.747-0.755)0.792 (0.789-0.795)0.823 (0.820-
0.826)

Pooled

0.836 (0.83-0.841)0.809 (0.806-
0.812)

0.791 (0.788-0.795)0.786 (0.782-0.789)0.829 (0.826-
0.832)

Federated (no
noise

aLASSO: least absolute shrinkage and selection operator.
bMLP: multilayer perceptron.
cAUROC: area under the receiver operating characteristic curve.

Figure 3. Model performance by site. The performance of all models (ie, local LASSO, pooled LASSO, federated LASSO, local MLP, pooled MLP,
and federated [no noise] MLP models) based on areas under the ROC curve at (A) MSB (n=611), (B) MSW (n=485), (C) MSM (n=749), (D) MSH
(n=1644), and (E) MSQ (n=540). Average areas under the ROC curve with 95% confidence intervals (ie, after the 70%-30% training-testing data split
over 490 experiments) are shown. (F) The average performance of each model across all 5 sites. LASSO: least absolute shrinkage and selection operator;
MLP: multilayer perceptron; MSB: Mount Sinai Brooklyn; MSH: Mount Sinai Hospital; MSM: Mount Sinai Morningside; MSQ: Mount Sinai Queens;
MSW: Mount Sinai West; ROC: receiver operating characteristic.

Discussion
This is the first study to evaluate the efficacy of applying
federated learning to the prediction mortality in patients with

COVID-19. EHR data from 5 hospitals were used to represent
demonstrative use cases. By using disparate patient
characteristics from each hospital after performing
multiple-hypothesis correction in terms of demographics,
outcomes, sample size, and lab values, this study was able to

JMIR Med Inform 2021 | vol. 9 | iss. 1 | e24207 | p. 7http://medinform.jmir.org/2021/1/e24207/
(page number not for citation purposes)

Vaid et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX



16

Jaladanki, Suraj K., Akhil Vaid, Ashwin S. Sawant, Jie Xu, Kush Shah, 
Sergio Dellepiane, Ishan Paranjpe, Lili Chan, Alexander W Charney, 
Fei Wang, Benjamin S Glicksberg, Karandeep Singh, Girish N 
Nadkarn "Development of a federated learning approach to predict 
acute kidney injury in adult hospitalized patients with COVID-19 in New 
York City." medRxiv (2021).



17



18

ARTICLES
https://doi.org/10.1038/s41591-021-01506-3

A full list of affiliations appears at the end of the paper.

The scientific, academic, medical and data science com-
munities have come together in the face of the COVID-19 
pandemic crisis to rapidly assess novel paradigms in arti-

ficial intelligence (AI) that are rapid and secure, and potentially 
incentivize data sharing and model training and testing without  
the usual privacy and data ownership hurdles of conventional  

collaborations1,2. Healthcare providers, researchers and industry 
have pivoted their focus to address unmet and critical clinical 
needs created by the crisis, with remarkable results3–9. Clinical 
trial recruitment has been expedited and facilitated by national 
regulatory bodies and an international cooperative spirit10–12. 
The data analytics and AI disciplines have always fostered open 

Federated learning for predicting clinical 
outcomes in patients with COVID-19
Ittai Dayan1,56, Holger R. Roth! !2,56, Aoxiao Zhong! !3,4,56, Ahmed Harouni2, Amilcare Gentili5, 
Anas Z. Abidin2, Andrew Liu2, Anthony Beardsworth Costa! !6, Bradford J. Wood! !7,8, Chien-Sung Tsai9, 
Chih-Hung Wang! !10,11, Chun-Nan Hsu! !12, C. K. Lee2, Peiying Ruan2, Daguang Xu2, Dufan Wu3, 
Eddie Huang2, Felipe Campos Kitamura! !13, Griffin Lacey2, Gustavo César de Antônio Corradi13, 
Gustavo Nino14, Hao-Hsin Shin! !15, Hirofumi Obinata16, Hui Ren3, Jason C. Crane17, Jesse Tetreault2, 
Jiahui Guan2, John W. Garrett! !18, Joshua D. Kaggie19, Jung Gil Park! !20, Keith Dreyer1,21, Krishna Juluru15,  
Kristopher Kersten2, Marcio Aloisio Bezerra Cavalcanti Rockenbach! !21, Marius George Linguraru22,23,  
Masoom A. Haider24,25, Meena AbdelMaseeh25, Nicola Rieke! !2, Pablo F. Damasceno! !17,  
Pedro Mario Cruz e Silva2, Pochuan Wang! !26,27, Sheng Xu7,8, Shuichi Kawano16, Sira Sriswasdi! !28,29,  
Soo Young Park30, Thomas M. Grist31, Varun Buch21, Watsamon Jantarabenjakul32,33, Weichung Wang26,27,  
Won Young Tak30, Xiang Li! !3, Xihong Lin! !34, Young Joon Kwon6, Abood Quraini2, Andrew Feng2,  
Andrew N. Priest! !35, Baris Turkbey! !8,36, Benjamin Glicksberg! !37, Bernardo Bizzo! !21, Byung Seok Kim38,  
Carlos Tor-Díez22, Chia-Cheng Lee39, Chia-Jung Hsu39, Chin Lin40,41,42, Chiu-Ling Lai43, 
Christopher P. Hess17, Colin Compas2, Deepeksha Bhatia2, Eric K. Oermann44, Evan Leibovitz21, 
Hisashi Sasaki16, Hitoshi Mori16, Isaac Yang2, Jae Ho Sohn17, Krishna Nand Keshava Murthy! !15, 
Li-Chen Fu45, Matheus Ribeiro Furtado de Mendonça! !13, Mike Fralick46, Min Kyu Kang! !20, 
Mohammad Adil2, Natalie Gangai15, Peerapon Vateekul! !47, Pierre Elnajjar15, Sarah Hickman19, 
Sharmila Majumdar17, Shelley L. McLeod48,49, Sheridan Reed7,8, Stefan Gräf! !50, Stephanie Harmon! !8,51, 
Tatsuya Kodama16, Thanyawee Puthanakit32,33, Tony Mazzulli52,53,54, Vitor Lima de Lavor13, 
Yothin Rakvongthai55, Yu Rim Lee30, Yuhong Wen2, Fiona J. Gilbert! !19,56, Mona G. Flores! !2,56�ᅒ and 
Quanzheng Li3,56

Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while main-
taining data anonymity, thus removing many barriers to data sharing. Here we used data from 20!institutes across the globe to 
train a FL model, called EXAM (electronic medical record (EMR) chest X-ray AI model), that predicts the future oxygen require-
ments of symptomatic patients with COVID-19 using inputs of vital signs, laboratory data and chest X-rays. EXAM achieved 
an average area under the curve (AUC) >0.92 for predicting outcomes at 24 and 72!h from the time of initial presentation to 
the emergency room, and it provided 16% improvement in average AUC measured across all participating sites and an average 
increase in generalizability of 38% when compared with models trained at a single site using that site’s data. For prediction of 
mechanical ventilation treatment or death at 24!h at the largest independent test site, EXAM achieved a sensitivity of 0.950 
and specificity of 0.882. In this study, FL facilitated rapid data science collaboration without data exchange and generated 
a model that generalized across heterogeneous, unharmonized datasets for prediction of clinical outcomes in patients with 
COVID-19, setting the stage for the broader use of FL in healthcare.
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mortality prediction model in patients infected with SARS-COV-2 
that uses clinical features, albeit limited in terms of number of 
modalities and scale46.

Our objective was to develop a robust, generalizable model that 
could assist in triaging patients. We theorized that the CDS model 
can be federated successfully, given its use of data inputs that are 
relatively common in clinical practice and that do not rely heav-
ily on operator-dependent assessments of patient condition (such 
as clinical impressions or reported symptoms). Rather, laboratory 
results, vital signs, an imaging study and a commonly captured 
demographic (that is, age), were used. We therefore retrained the 
CDS model with diverse data using a client-server FL approach to 
develop a new global FL model, which was named EXAM, using 
CXR and EMR features as input. By leveraging FL, the participating 
institutions would not have to transfer data to a central repository, 
but rather leverage a distributed data framework.

Our hypothesis was that EXAM would perform better than local 
models and would generalize better across healthcare systems.

Results
The EXAM model architecture. The EXAM model is based on the 
CDS model mentioned above27. In total, 20 features (19 from the 
EMR and one CXR) were used as input to the model. The outcome 
(that is, ‘ground truth’) labels were assigned based on patient oxygen 
therapy after 24- and 72-hour periods from initial admission to the 
emergency department (ED). A detailed list of the requested fea-
tures and outcomes can be seen in Table 1.

The outcome labels of patients were set to 0, 0.25, 0.50 and 
0.75 depending on the most intensive oxygen therapy the patient 
received in the prediction window. The oxygen therapy categories 
were, respectively, room air (RA), low-flow oxygen (LFO), high-flow 
oxygen (HFO)/noninvasive ventilation (NIV) or mechanical venti-
lation (MV). If the patient died within the prediction window, the 
outcome label was set to 1. This resulted in each case being assigned 
two labels in the range 0–1, corresponding to each of the prediction 
windows (that is, 24 and 72 h).

For EMR features, only the first values captured in the ED were 
used and data preprocessing included deidentification, missing 
value imputation and normalization to zero-mean and unit vari-
ance. For CXR images, only the first obtained in the ED was used.

The model therefore fuses information from both EMR and CXR 
features, using a 34-layer convolutional neural network (ResNet34) 
to extract features from a CXR and a Deep & Cross network to 
concatenate the features together with the EMR features (for more 
expanded details, see Methods). The model output is a risk score, 
termed the EXAM score, which is a continuous value in the range 
0–1 for each of the 24- and 72-hour predictions corresponding to 
the labels described above.

Federating the model. The EXAM model was trained using a 
cohort of 16,148 cases, making it not only among the first FL mod-
els for COVID-19 but also a very large and multicontinent devel-
opment project in clinically relevant AI (Fig. 1a,b). Data between 
sites were not harmonized before extraction and, in light of real-life 
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Fig. 1 | Data used in the EXAM FL study. a, World map indicating the 20!different client sites contributing to the EXAM study. b, Number of cases 
contributed by each institution or site (client 1 represents the site contributing the largest number of cases). c, Chest X-ray intensity distribution at each 
client site. d, Age of patients at each client site, showing minimum and maximum ages (asterisks), mean age (triangles) and standard deviation (horizontal 
bars). The number of samples of each client site is shown in Supplementary Table 1.
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and collaborative approaches, embracing concepts such as 
open-source software, reproducible research, data repositories 
and making available anonymized datasets publicly13,14. The pan-
demic has emphasized the need to expeditiously conduct data col-
laborations that empower the clinical and scientific communities 
when responding to rapidly evolving and widespread global chal-
lenges. Data sharing has ethical, regulatory and legal complexities 
that are underscored, and perhaps somewhat complicated, by the 
recent entrance of large technology companies into the healthcare  
data world15–17.

A concrete example of these types of collaboration is our previous 
work on an AI-based SARS-COV-2 clinical decision support (CDS) 
model. This CDS model was developed at Mass General Brigham 
(MGB) and was validated across multiple health systems’ data. 
The inputs to the CDS model were chest X-ray (CXR) images, vital 
signs, demographic data and laboratory values that were shown in 
previous publications to be predictive of outcomes of patients with 
COVID-1918–21. CXR was selected as the imaging input because 
it is widely available and commonly indicated by guidelines such 
as those provided by ACR22, the Fleischner Society23, the WHO24, 
national thoracic societies25, national health ministry COVID 
handbooks and radiology societies across the world26. The output of 
the CDS model was a score, termed CORISK27, that corresponds to 
oxygen support requirements and that could aid in triaging patients 

by frontline clinicians28–30. Healthcare providers have been known 
to prefer models that were validated on their own data27. To date 
most AI models, including the aforementioned CDS model, have 
been trained and validated on ‘narrow’ data that often lack diver-
sity31,32, potentially resulting in overfitting and lower generaliz-
ability. This can be mitigated by training with diverse data from 
multiple sites without centralization of data33 using methods such 
as transfer learning34,35 or FL. FL is a method used to train AI mod-
els on disparate data sources, without the data being transported or 
exposed outside their original location. While applicable to many 
industries, FL has recently been proposed for cross-institutional 
healthcare research36.

Federated learning supports the rapid launch of centrally orches-
trated experiments with improved traceability of data and assess-
ment of algorithmic changes and impact37. One approach to FL, 
called client-server, sends an ‘untrained’ model to other servers 
(‘nodes’) that conduct partial training tasks, in turn sending the 
results back to be merged in the central (‘federated’) server. This is 
conducted as an iterative process until training is complete36.

Governance of data for FL is maintained locally, alleviating 
privacy concerns, with only model weights or gradients commu-
nicated between client sites and the federated server38,39. FL has 
already shown promise in recent medical imaging applications40–43, 
including in COVID-19 analysis8,44,45. A notable example is a  

Table 1 | EMR data used in the EXAM study

Category Subcategory Component name Definition Units LOINC code

Demographic – Patient age – Years 30525-0
Imaging Portable CXR – AP or PA portable CXR – 36554-4
Lab value C-reactive protein C-reactive protein Blood c-reactive protein 

concentration
mg l–1 1988-5

Lab value Complete blood count (CBC) Neutrophils Blood absolute neutrophils 109 l–1 751-8
Lab value CBC White blood cells Blood white blood cell count 109 l–1 33256-9
Lab value D-dimer D-dimer Blood D-dimer concentration ng ml–1 7799-0
Lab value Lactate Lactate Blood lactate concentration mmol l–1 2524-7
Lab value Lactate dehydrogenase LDH Blood LDH concentration U l–1 2532-0
Lab value Metabolic panel Creatinine Blood creatinine concentration mg dl–1 2160-0
Lab value Procalcitonin Procalcitonin Blood procalcitonin concentration ng ml–1 33959-8
Lab value Metabolic panel eGFR Estimated glomerular filtration 

rate
ml min–1 1.73 m–2 69405-9

Lab value Troponin Troponin-T Blood troponin concentration ng ml–1 67151-1
Lab value Hepatic panel AST Blood aspartate aminotransferase 

concentration
IU l–1 1920-8

Lab value Metabolic panel Glucose Blood glucose concentration mg dl–1 2345-7
Vital sign – Oxygen saturation Oxygen saturation % 59408-5
Vital sign – Systolic blood pressure Systolic BP mmHg 8480-6
Vital sign – Diastolic blood pressure Diastolic BP mmHg 8462-4
Vital sign – Respiratory rate Respiratory rate Breaths min–1 9279-1
Vital sign COVID PCR test PCR for RNA (not used as input 

to model)
95425-5

Vital sign Oxygen device used in ED Oxygen device Ventilation, high-flow/NIV, 
low-flow, room air

– 41925-9

Outcome 24-h oxygen device Oxygen device Ventilation, high-flow/NIV, 
low-flow, room air

– 41925-9

Outcome 72-h oxygen device Oxygen device Ventilation, high-flow/NIV, 
low-flow, room air

– 41925-9

Outcome Death – – – –

Outcome Time of death – – Hours –
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Yet one remaining question is whether DNNs are indeed the
most e!cient ones in representing such functions of practical in-
terest. In the Kaggle1 competition, the manually cra"ed features
in many winning solutions are low-degree, in an explicit format
and e#ective. $e features learned by DNNs, on the other hand,
are implicit and highly nonlinear. $is has shed light on designing
a model that is able to learn bounded-degree feature interactions
more e!ciently and explicitly than a universal DNN.

$e wide-and-deep [4] is a model in this spirit. It takes cross
features as inputs to a linear model, and jointly trains the linear
model with a DNN model. However, the success of wide-and-deep
hinges on a proper choice of cross features, an exponential problem
for which there is yet no clear e!cient method.

1.2 Main Contributions
In this paper, we propose the Deep & Cross Network (DCN) model
that enablesWeb-scale automatic feature learningwith both sparse
and dense inputs. DCN e!ciently captures e#ective feature inter-
actions of bounded degrees, learns highly nonlinear interactions,
requires no manual feature engineering or exhaustive searching,
and has low computational cost.

$e main contributions of the paper include:

• We propose a novel cross network that explicitly applies feature
crossing at each layer, e!ciently learns predictive cross features
of boundeddegrees, and requires nomanual feature engineering
or exhaustive searching.

• $e cross network is simple yet e#ective. By design, the highest
polynomial degree increases at each layer and is determined by
layer depth. $e network consists of all the cross terms of degree
up to the highest, with their coe!cients all di#erent.

• $e cross network is memory e!cient, and easy to implement.
• Our experimental results have demonstrated that with a cross

network, DCN has lower logloss than a DNN with nearly an
order of magnitude fewer number of parameters.

$e paper is organized as follows: Section 2 describes the archi-
tecture of the Deep & Cross Network. Section 3 analyzes the cross
network in detail. Section 4 shows the experimental results.

2 DEEP & CROSS NETWORK (DCN)
In this section we describe the architecture of Deep & Cross Net-
work (DCN) models. A DCN model starts with an embedding and
stacking layer, followed by a cross network and a deep network in
parallel. $ese in turn are followed by a %nal combination layer
which combines the outputs from the two networks. $e complete
DCN model is depicted in Figure 1.

2.1 Embedding and Stacking Layer
We consider input data with sparse and dense features. In Web-
scale recommender systems such as CTR prediction, the inputs are
mostly categorical features, e.g. "country=usa". Such features are
o"en encoded as one-hot vectors e.g. "[0,1,0]"; however, this
o"en leads to excessively high-dimensional feature spaces for large
vocabularies.

1h&ps://www.kaggle.com/
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Figure 1: !e Deep & Cross Network

To reduce the dimensionality, we employ an embedding proce-
dure to transform these binary features into dense vectors of real
values (commonly called embedding vectors):

xembed,i =Wembed,ixi , (1)

where xembed,i is the embedding vector, xi is the binary input in
the i-th category, and Wembed,i ∈ Rne×nv is the corresponding
embedding matrix that will be optimized together with other pa-
rameters in the network, and ne ,nv are the embedding size and
vocabulary size, respectively.

In the end, we stack the embedding vectors, along with the nor-
malized dense features xdense, into one vector:

x0 =
[
xTembed,1, . . . , x

T
embed,k , x

T
dense

]
, (2)

and feed x0 to the network.

2.2 Cross Network
$e key idea of our novel cross network is to apply explicit feature
crossing in an e!cient way. $e cross network is composed of
cross layers, with each layer having the following formula:

xl+1 = x0x
T
l wl + bl + xl = f (xl ,wl , bl ) + xl , (3)

where xl , xl+1 ∈ Rd are column vectors denoting the outputs

from the l-th and (l + 1)-th cross layers, respectively; wl , bl ∈ R
d

are the weight and bias parameters of the l-th layer. Each cross
layer adds back its input a"er a feature crossing f , and the map-

ping function f : Rd #→ Rd %ts the residual of xl+1 − xl . A visual-
ization of one cross layer is shown in Figure 2.

High-degree Interaction Across Features. $e special struc-
ture of the cross network causes the degree of cross features to
grow with layer depth. $e highest polynomial degree (in terms of

2

Wang, Ruoxi, Bin Fu, Gang Fu, and Mingliang Wang. "Deep & 
cross network for ad click predictions." In Proceedings of the 
ADKDD'17, pp. 1-7. 2017.

Data Types and Model Architecture
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clinical informatics circumstances, a meticulous harmonization of 
the data input was not conducted by the authors (Fig. 1c,d).

We compared locally trained models with the global FL model 
on each client’s test data. Training the model through FL resulted 
in a significant performance improvement (P « 1 × 10–3, Wilcoxon 
signed-rank test) of 16% (as defined by average AUC when run-
ning the model on respective local test sets: from 0.795 to 0.920, or 
12.5 percentage points) (Fig. 2a). It also resulted in 38% generaliz-
ability improvement (as defined by average AUC when running 
the model on all test sets: from 0.667 to 0.920, or 25.3 percent-
age points) of the best global model for prediction of 24-h oxy-
gen treatment compared with models trained only on a site’s own 
data (Fig. 2b). For the prediction results of 72-h oxygen treatment, 
the best global model training resulted in an average performance 
improvement of 18% compared to locally trained models, while 
generalizability of the global model improved on average by 34% 
(Extended Data Fig. 1). The stability of our results was validated  
by repeating three runs of local and FL training on different  
randomized data splits.

Local models that were trained using unbalanced cohorts (for 
example, mostly mild cases of COVID-19) markedly benefited from 
the FL approach, with a substantial improvement in prediction aver-
age AUC performance for categories with only a few cases. This was 
evident at client site 16 (an unbalanced dataset), with most patients 
experiencing mild disease severity and with only a few severe cases. 
The FL model achieved a higher true-positive rate for the two posi-
tive (severe) cases and a markedly lower false-positive rate compared 
to the local model, both shown in the receiver operating characteris-
tic (ROC) plots and confusion matrices (Fig. 3a and Extended Data 
Fig. 2). More important, the generalizability of the FL model was 
considerably increased over the locally trained model.

In the case of client sites with relatively small datasets, the best 
FL model markedly outperformed not only the local model but also 
those trained on larger datasets from five client sites in the Boston 
area of the USA (Fig. 3b).

The global model performed well in predicting oxygen needs at 
24/72 h in patients both COVID positive and negative (Extended 
Data Fig. 3).
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Fig. 2 | Performance of FL versus local models. a, Performance on each client’s test set in prediction of 24-h oxygen treatment for models trained on  
local data only (Local) versus that of the best global model available on the server (FL (gl. best)). Av., average test performance across all sites.  
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applicable in either of these cases (Methods). Data for client!14 were also excluded from computation of average generalizability in local models.
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mortality prediction model in patients infected with SARS-COV-2 
that uses clinical features, albeit limited in terms of number of 
modalities and scale46.

Our objective was to develop a robust, generalizable model that 
could assist in triaging patients. We theorized that the CDS model 
can be federated successfully, given its use of data inputs that are 
relatively common in clinical practice and that do not rely heav-
ily on operator-dependent assessments of patient condition (such 
as clinical impressions or reported symptoms). Rather, laboratory 
results, vital signs, an imaging study and a commonly captured 
demographic (that is, age), were used. We therefore retrained the 
CDS model with diverse data using a client-server FL approach to 
develop a new global FL model, which was named EXAM, using 
CXR and EMR features as input. By leveraging FL, the participating 
institutions would not have to transfer data to a central repository, 
but rather leverage a distributed data framework.

Our hypothesis was that EXAM would perform better than local 
models and would generalize better across healthcare systems.

Results
The EXAM model architecture. The EXAM model is based on the 
CDS model mentioned above27. In total, 20 features (19 from the 
EMR and one CXR) were used as input to the model. The outcome 
(that is, ‘ground truth’) labels were assigned based on patient oxygen 
therapy after 24- and 72-hour periods from initial admission to the 
emergency department (ED). A detailed list of the requested fea-
tures and outcomes can be seen in Table 1.

The outcome labels of patients were set to 0, 0.25, 0.50 and 
0.75 depending on the most intensive oxygen therapy the patient 
received in the prediction window. The oxygen therapy categories 
were, respectively, room air (RA), low-flow oxygen (LFO), high-flow 
oxygen (HFO)/noninvasive ventilation (NIV) or mechanical venti-
lation (MV). If the patient died within the prediction window, the 
outcome label was set to 1. This resulted in each case being assigned 
two labels in the range 0–1, corresponding to each of the prediction 
windows (that is, 24 and 72 h).

For EMR features, only the first values captured in the ED were 
used and data preprocessing included deidentification, missing 
value imputation and normalization to zero-mean and unit vari-
ance. For CXR images, only the first obtained in the ED was used.

The model therefore fuses information from both EMR and CXR 
features, using a 34-layer convolutional neural network (ResNet34) 
to extract features from a CXR and a Deep & Cross network to 
concatenate the features together with the EMR features (for more 
expanded details, see Methods). The model output is a risk score, 
termed the EXAM score, which is a continuous value in the range 
0–1 for each of the 24- and 72-hour predictions corresponding to 
the labels described above.

Federating the model. The EXAM model was trained using a 
cohort of 16,148 cases, making it not only among the first FL mod-
els for COVID-19 but also a very large and multicontinent devel-
opment project in clinically relevant AI (Fig. 1a,b). Data between 
sites were not harmonized before extraction and, in light of real-life 
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Fig. 1 | Data used in the EXAM FL study. a, World map indicating the 20!different client sites contributing to the EXAM study. b, Number of cases 
contributed by each institution or site (client 1 represents the site contributing the largest number of cases). c, Chest X-ray intensity distribution at each 
client site. d, Age of patients at each client site, showing minimum and maximum ages (asterisks), mean age (triangles) and standard deviation (horizontal 
bars). The number of samples of each client site is shown in Supplementary Table 1.
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Decentralized Optimization

(a) Centralized Topology (b) Decentralized Topology

Parameter
Server

Figure 1: An illustration of different network topologies.

to resort to decentralized communication, while, understandably, pay for the “cost of being decentralized”.
In fact, most distributed machine learning systems nowadays, including TensorFlow and CNTK, are built
in a centralized fashion. But can decentralized algorithms be faster than its centralized counterpart? In this paper,
we provide the first theoretical analysis, verified by empirical experiments, for a positive answer to this
question.

We consider solving the following stochastic optimization problem

min
x2RN

f (x) := Ex⇠DF(x; x), (1)

where D is a predefined distribution and x is a random variable usually referring to a data sample in
machine learning. This formulation summarizes many popular machine learning models including deep
learning [LeCun et al., 2015], linear regression, and logistic regression.

Parallel stochastic gradient descent (PSGD) methods are leading algorithms in solving large-scale machine
learning problems such as deep learning [Dean et al., 2012, Li et al., 2014], matrix completion [Recht et al.,
2011, Zhuang et al., 2013] and SVM. Existing PSGD algorithms are mostly designed for centralized network
topology, for example, parameter server [Li et al., 2014], where there is a central node connected with
multiple nodes as shown in Figure 1(a). The central node aggregates the stochastic gradients computed
from all other nodes and updates the model parameter, for example, the weights of a neural network.
The potential bottleneck of the centralized network topology lies on the communication traffic jam on the
central node, because all nodes need to communicate with it concurrently iteratively. The performance will
be significantly degraded when the network bandwidth is low.1 These motivate us to study algorithms for
decentralized topologies, where all nodes can only communicate with its neighbors and there is no such a
central node, shown in Figure 1(b).

Although decentralized algorithms have been studied as consensus optimization in the control community
and used for preserving data privacy [Ram et al., 2009a, Yan et al., 2013, Yuan et al., 2016], for the application
scenario where only the decentralized network is available, it is still an open question if decentralized

methods could have advantages over centralized algorithms in some scenarios in case both types of
communication patterns are feasible — for example, on a supercomputer with thousands of nodes, should

we use decentralized or centralized communication? Existing theory and analysis either do not make such
1There has been research in how to accommodate this problem by having multiple parameter servers communicating with efficient

MPI AllReduce primitives. As we will see in the experiments, these methods, on the other hand, might suffer when the network
latency is high.

2

Algorithm 1 Decentralized Parallel Stochastic Gradient Descent (D-PSGD) on the ith node
Require: initial point x0,i = x0, step length g, weight matrix W, and number of iterations K

1: for k = 0, 1, 2, . . . , K� 1 do

2: Randomly sample xk,i from local data of the i-th node
3: Compute a local stochastic gradient based on xk,i and current optimization variable xk,i: rFi(xk,i; xk,i)

a

4: Compute the neighborhood weighted average by fetching optimization variables from neighbors: x
k+ 1

2 ,i =

Ân

j=1 Wijxk,j
b

5: Update the local optimization variable xk+1,i  x
k+ 1

2 ,i � grFi(xk,i; xk,i)
c

6: end for

7: Output:
1
n Ân

i=1 xK,i
d

aNote that the stochastic gradient computed in can be replaced with a mini-batch of stochastic gradients, which will not hurt our
theoretical results.

bNote that the Line 3 and Line 4 can be run in parallel.
cNote that the Line 4 and step Line 5 can be exchanged. That is, we first update the local stochastic gradient into the local

optimization variable, and then average the local optimization variable with neighbors. This does not hurt our theoretical analysis.
When Line 4 is logically before Line 5, then Line 3 and Line 4 can be run in parallel. That is to say, if the communication time used by
Line 4 is smaller than the computation time used by Line 3, the communication time can be completely hidden (it is overlapped by
the computation time).

dWe will prove that the local optimization variables in the nodes will converge together, so it is also safe to use the local optimization
variable of a single node as an estimation of the solution.

shown. Mokhtari and Ribeiro [2016] analyzed decentralized SAG and SAGA algorithms. They are not
shown to have speedup, and a table of all stochastic gradients need to be saved in the storage or memory.
Decentralized gradient descent on convex and strongly convex problems was analyzed in Yuan et al. [2016].
Nedic and Ozdaglar [2009], Ram et al. [2009b] are similar to Yuan et al. [2016] but they use subgradients.
The algorithm in Nedic and Ozdaglar [2009], Ram et al. [2009b], Yuan et al. [2016] does not converge to the
exact solution due to the inconsistent nature of decentralized gradient descent. This was fixed by Shi et al.
[2015] using a modified algorithm. Wu et al. [2016] analyzed an asynchronous version of decentralized
gradient descent with some modification like in Shi et al. [2015] and showed the algorithm converges to
a solution when K ! •. Aybat et al. [2015], Shi et al., Zhang and Kwok [2014] analyzed decentralized
ADMM algorithms and they are not shown to have speedup. From all of these reviewed papers, it is still
unclear if decentralized algorithms can outperform centralized algorithms.

3 Decentralized parallel stochastic gradient descent (D-PSGD)

This section introduces the D-PSGD algorithm. We represent the decentralized communication topology
with an undirected graph with weights: (V, W). V denotes the set of n computational nodes: V :=
{1, 2, · · · , n}. W 2 Rn⇥n is a symmetric doubly stochastic matrix, which means (i) Wij 2 [0, 1], 8i, j, (ii)
Wij = Wji for all i, j, and (ii) Âj Wij = 1 for all i. We use Wij to encode how much node j can affect node i,
while Wij = 0 means node i and j are disconnected.

To design distributed algorithms on a decentralized network, we first distribute the data onto all nodes
such that the original objective defined in (1) can be rewritten into

min
x2RN

f (x) =
1
n

n

Â
i=1

Ex⇠Di
Fi(x; x)

| {z }
=: fi(x)

. (2)

There are two simple ways to achieve (2), both of which can be captured by our theoretical analysis and

5

0

50

100

150

200

250

300

0 0.5 1

Se
co

nd
s/

Ep
oc

h

1/Bandwidth (1 / 1Mbps)

0
20
40
60
80
100
120
140

0 5 10

Se
co

nd
s/

Ep
oc

h

Network Latency (ms)
(c) Impact of Network Bandwidth (d) Impact of Network Latency

Decentralized

CNTK

CNTK

Decentralized

Slower Network Slower Network

Centralized
Centralized

0

0.5

1

1.5

2

2.5

0 500 1000

Tr
ai

ni
ng

 L
os

s

Time (Seconds)

Decentralized

Centralized

CNTK
0

0.5

1

1.5

2

2.5

0 500 1000

Tr
ai

ni
ng

 L
os

s

Time (Seconds)

Decentralized
CNTK

Centralized

(a) ResNet-20, 7GPU, 10Mbps (b) ResNet-20, 7GPU, 5ms

Figure 2: Comparison between D-PSGD and two centralized implementations (7 and 10 GPUs).

different scenarios. These two upper bound can be improved potentially. This is the first work to show the
speedup for decentralized algorithms, to the best of our knowledge.

In this section, we mainly investigate the convergence rate for the average of all local variables {xk,i}n

i=1.
Actually one can also obtain a similar rate for each individual xk,i, since all nodes achieve the consensus

quickly, in particular, the running average of E

����
Ân

i0=1 x
k,i0

n
� xk,i

����
2

converges to 0 with a O(1/K) rate, where

the “O” swallows n, r, s, V, L and f (0)� f
⇤. This result can be formally summarized into the following

theorem:

Theorem 4. With g = 1
2L+s

p
K/n

under the same assumptions as in Corollary 2 we have

(Kn)�1E
K�1

Â
k=0

n

Â
i=1

����
Ân

i0=1 xk,i0

n
� xk,i

����
2
6ng2 A

D2
,

where

A :=
2s2

1 � r
+

18V2

(1 �p
r)2 +

L
2

D1

✓
s2

1 � r
+

9V2

(1 �p
r)2

◆

+
18

(1 �p
r)2

✓
f (0)� f

⇤

gK
+

gLs2

2nD1

◆
.

Choosing g in the way in Corollary 4, we can see that the consensus will be achieved in the rate O(1/K).

5 Experiments

We validate our theory with experiments that compared D-PSGD with other centralized implementations.
We run experiments on clusters up to 112 GPUs and show that, on some network configurations, D-PSGD
can outperform well-optimized centralized implementations by an order of magnitude.

5.1 Experiment setting

Datasets and models We evaluate D-PSGD on two machine learning tasks, namely (1) image classification,
and (2) Natural Language Processing (NLP). For image classification we train ResNet [He et al., 2015]

9
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and (using worker i as an example) repeats the following
steps:

• Sample data: Sample a mini-batch of training data de-
noted by {ξim}Mm=1, where M is the batch size.
• Compute gradients: Use the sampled data to com-

pute the stochastic gradient
∑M

m=1∇F (x̂i; ξim), where x̂i

is read from the model in the local memory.
• Gradient update: Update the model in the local mem-

ory by xi ← xi − γ
∑M

m=1∇F (x̂i; ξim). Note that x̂i may
not be the same as xi as it may be modified by other work-
ers in the averaging step.
• Averaging: Randomly select a neighbor (e.g. worker
i′) and average the local model with the worker i′’s model
xi′ (both models on both workers are updated to the aver-
aged model). More specifically, xi, xi′ ← xi

2 + xi′

2 .

Note that each worker runs the procedure above on its own
without any global synchronization. This reduces the idle
time of each worker and the training process will still be
fast even if part of the network or workers slow down.

The averaging step can be generalized into the following
update for all workers:

[x1, x2, . . . , xn]← [x1, x2, . . . , xn]W
where W can be an arbitrary doubly stochastic matrix. This
generalization gives plenty flexibility to us in implementa-
tion without hurting our analysis.

All workers run the procedure above simultaneously, as
shown in Algorithm 1. We use a virtual counter k to de-
note the iteration counter – every single gradient update
happens no matter on which worker will increase k by 1. ik
denotes the worker performing the kth update.

3.3 Implementation details

We briefly describe two interesting aspects of system de-
signs and leave more discussions to Appendix A.

3.3.1 DEADLOCK AVOIDANCE

A naive implementation of the above algorithm may cause
deadlock — the averaging step needs to be atomic and in-
volves updating two workers (the selected worker and one
of its neighbors). As an example, given three fully con-
nected workers A, B, and C, A sends its local model xA to
B and waits for xB from B; B has already sent out xB to
C and waits for C’s response; and C has sent out xC to A
and waits for xA from A.

We prevent the deadlock in the following way: The commu-
nication network is designed to be a bipartite graph, that is,
the worker set V can be split into two disjoint sets A (ac-
tive set) and P (passive set) such that any edge in the graph
connects one worker in A and one worker in P . Due to the
property of the bipartite graph, the neighbors of any active
worker can only be passive workers and the neighbors of

any passive worker can only be active workers. This imple-
mentation avoids deadlock but still fits in the general algo-
rithm Algorithm 1 we are analyzing. We leave more discus-
sions and a detailed implementation for wait-free training
to Appendix A.

3.3.2 COMMUNICATION TOPOLOGY

The simplest realization of AD-PSGD algroithm is a ring-
based topology. To accelerate information exchanging, we
also implement a communication topology in which each
sender communicates with a reciever that is 2i + 1 hops
away in the ring, where i is an integer from 0 to log(n− 1)
(n is the number of learners). It is easy to see it takes
at most O(log(n)) steps for any pair of workers to ex-
change information instead of O(n) in the simple ring-
based topology. In this way, ρ (as defined in Section 4) be-
comes smaller and the scalability of AD-PSGD improves.
This implementation also enables robustness against slow
or failed network links because there are multiple routes
for a worker to disseminate its information.
Algorithm 1 AD-PSGD (logical view)
Require: Initialize local models {xi

0}ni=1 with the same initial-
ization, learning rate γ, batch size M , and total number of
iterations K.

1: for k = 0, 1, . . . ,K − 1 do
2: Randomly sample a worker ik of the graph G and ran-

domly sample an averaging matrix Wk which can be depen-
dent on ik.

3: Randomly sample a batch
ξikk := (ξikk,1, ξ

ik
k,2, . . . , ξ

ik
k,M )

from local data of the ik-th worker.
4: Compute the stochastic gradient locally

gk(x̂
ik
k ; ξikk ) :=

M∑

j=1

∇F (x̂ik
k ; ξikk,j)

.
5: Average local models by a

[x1
k+1/2, x

2
k+1/2, . . . , x

n
k+1/2]← [x1

k, x
2
k, . . . , x

n
k ]Wk

6: Update the local model
xik
k+1 ← xik

k+1/2 − γgk(x̂
ik
k ; ξikk ),

xj
k+1 ← xj

k+1/2, ∀j %= ik.
7: end for
8: Output the average of the models on all workers for inference.

aNote that Line 4 and Line 5 can run in parallel.

4 Theoretical analysis
In this section we provide theoretical analysis for the AD-
PSGD algorithm. We will show that the convergence rate
of AD-PSGD is consistent with SGD and D-PSGD.

Note that by counting each update of stochastic gradients
as one iteration, the update of each iteration in Algorithm 1
can be viewed as

Xk+1 = XkWk − γ∂g(X̂k; ξ
ik
k , ik),

where k is the iteration number, xi
k is the local model of the
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(b) ResNet-20 loss

Figure 2. Training loss comparison for VGG and ResNet-20
model on CIFAR10. AllReduce-SGD, D-PSGD and AD-PSGD
converge alike, EAMSGD converges the worst. 16 workers in
total.

Table 3. Testing accuracy comparison for ResNet-50 model on
ImageNet dataset for AllReduce, D-PSGD, and AD-PSGD. The
ResNet-50 model is trained for 90 epochs. AD-PSGD and
AllReduce-SGD achieve similar model accuracy.

AllReduce D-PSGD AD-PSGD
16 Workers 74.86% 74.74% 75.28%
32 Workers 74.78% 73.66% 74.66%
64 Workers 74.90% 71.18% 74.20%
128 Workers 74.78% 70.90% 74.23%

ImageNet We further evaluate the AD-PSGD’s conver-
gence rate w.r.t. epochs using ImageNet-1K and ResNet-50
model. We compare AD-PSGD with AllReduce-SGD and
D-PSGD as they tend to converge better than A-PSGD.

Figure 4 and Table 3 demonstrate that w.r.t. epochs AD-
PSGD converges similarly to AllReduce and converges bet-
ter than D-PSGD when running with 16,32,64,128 workers.
How to maintain convergence while increasing M × n5 is
an active ongoing research area (Zhang et al., 2016; Goyal
et al., 2017) and it is orthogonal to the topic of this pa-
per. For 64 and 128 workers, we adopted similar learning
rate tuning scheme as proposed in Goyal et al. (2017) (i.e.,
learning rate warm-up and linear scaling)6 It worths noting
that we could further increase the scalability of AD-PSGD
by combining learners on the same computing node as a
super-learner (via Nvidia NCCL AllReduce collectives). In
this way, a 128-worker system can easily scale up to 512
GPUs or more, depending on the GPU count on a node.

Above results show AD-PSGD converges similarly to
AllReduce-SGD w.r.t epochs and better than D-PSGD.
Techniques used for tuning learning rate for AllReduce-
SGD can be applied to AD-PSGD when batch size is large.

5.3 Speedup and convergence w.r.t runtime

On CIFAR10, Figure 3 shows the runtime convergence re-
sults on both IBM HPC and x86 system. The EAMSGD im-
plementation deploys parameter server sharding to mitigate

5M is mini-batch size per worker and n is the number of work-
ers

6In AD-PSGD, we decay the learning rate every 25 epochs
instead of 30 epochs as in AllReduce.
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Figure 3. Runtime comparison for VGG (communication inten-
sive) and ResNet-20 (computation intensive) models on CIFAR10.
Experiments run on IBM HPC w/ 100Gbit/s network links and on
x86 system w/ 10Gbit/s network links. AD-PSGD consistently
converges the fastest. 16 workers in total.

the network bottleneck at the parameter servers. However,
the central parameter server quickly becomes a bottleneck
on a slow network with a large model as shown in Figure 3-
(b).

Figure 5 shows the speedup for different algorithms w.r.t.
number of workers. The speedup for ResNet-20 is better
than VGG because ResNet-20 is a computation intensive
workload.

Above results show that regardless of workload type (com-
putation intensive or communication intensive) and com-
munication networks (fast or slow), AD-PSGD consistently
converges the fastest w.r.t. runtime and achieves the best
speedup.

5.4 Robustness in a heterogeneous environment

In a heterogeneous environment, the speed of computa-
tion device and communication device may often vary,
subject to architectural features (e.g., over/under-clocking,
caching, paging), resource-sharing (e.g., cloud computing)
and hardware malfunctions. Synchronous algorithms like
AllReduce-SGD and D-PSGD perform poorly when work-
ers’ computation and/or communication speeds vary. Cen-
tralized asynchronous algorithms, such as A-PSGD, do
poorly when the parameter server’s network links slow
down. In contrast, AD-PSGD localizes the impact of
slower workers or network links.

On ImageNet, Figure 4e shows the epoch-wise training
time of the AD-PSGD, D-PSGD and AllReduce run over
64 GPUs (16 nodes) over a reserved window of 10 hours
when the job shares network links with other jobs on
IBM HPC. AD-PSGD finishes each epoch in 264 seconds,
whereas AllReduce-SGD and D-PSGD can take over 1000

Lian, Xiangru, Wei Zhang, Ce Zhang, and Ji Liu. "Asynchronous 
decentralized parallel stochastic gradient descent." In International 
Conference on Machine Learning, pp. 3043-3052. PMLR, 2018.
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• Compute gradients: Worker k locally com-
putes the stochastic gradient: g

t(ŵt
k; ⇠

t
k) :=PB

i=1 OFk(ŵt
k; ⇠

t,i
k ), where ŵt

k is read from the
local memory.

• Averaging: Randomly sample a doubly stochastic
matrix A and average local models by:

[w0
1,w

0
2, ...,w

0
K ] [w1,w2, ...,wK ]A; (9)

Note that each worker runs the above process sepa-
rately without any global synchronization.

• Update model: Worker k locally update the model:

wk  w0
k � ⌘g

t(ŵk; ⇠k), (10)

Noth that averaging step and update model step
can run in parallel. ŵk may not be the same as w0

k
since it may be modified by other workers in the last
averaging step.

All workers simultaneously run the procedure above.

3.3 Privacy-Preserving Scheme
As we stated above, the model is trained locally without re-
vealing the input data or the model’s output to any workers,
thus it prevents the direct leakage while training or using
the model. However, recall the averaging step described
in last section, the model variables exchange frequently
during training. In this case, the workers still can infer some
information about another worker’s private dataset given
the execution over the shared model variables [12]. To solve
this issue, we use differential privacy mechanism to protect
the privacy of exchanged model variables.

The general idea to achieve differential privacy is to
add a stochastic component to the variables that need to be
protected. In our case, the exchanged information is model
variables wk. Note that the computation of wk depends on
the gradients. Thus, instead of adding noise directly on the
exchanged model variable wk, we inject the noise on the
gradients:

g̃(ŵk; ⇠k) = g(ŵk; ⇠k) + n,

where n ⇠ N (0,�2
4

2
2(g)) is the Gaussian distribution. The

global sensitivity estimate 42(g) is expected significantly
reduced, resulting in higher accuracy by ensuring the norm
of all gradients is bounded for each update - either globally,
or locally [19].

Then the update model step (9) turns into:

wk  w0
k � ⌘g̃

t(ŵk; ⇠k). (11)

The specific procedures are summarized in Algorithm 1.
Differential privacy ensures that the addition or removal

of a data sample does not substantially affect the outcome
of any analysis. The main concern with differential privacy
is the tradeoff between data utility and individual privacy.
We will discuss the tradeoff in the following section.

4 THEORETICAL ANALYSIS

In this section, we present the privacy and utility guarantees
for A(DP)2SGD. Rényi differential privacy is introduced to
provide tighter privacy analysis of composite heterogeneous
mechanisms [18] while the convergence rate is consistent
with ADPSGD.

Algorithm 1 Differential Private AD-PSGD

1: Initialization: Initialize all local models {w0
k}

K
k=1 2 Rd

with w0, learning rate ⌘, batch size B, privacy budget
(✏, �), and total number of iterations T .

2: Output: (✏, �)-differentially private local models.
3: for <t = 0, 1, ..., T � 1> do

4: Randomly sample a worker k
t of the graph G and

randomly sample an doubly stochastic averaging matrix
At 2 RK⇥K dependent on k

t;
5: Randomly sample a batch ⇠

t
kt :=

(⇠t,1kt , ⇠
t,2
kt , ..., ⇠

t,B
kt ) 2 Rd⇥B from local data of the

k
t-th worker with the sampling probability B

nkt
;

6: Compute stochastic gradient gt(ŵt
kt ; ⇠tkt) locally

g
t(ŵt

kt ; ⇠tkt) :=
BX

i=1

OFkt(ŵt
kt ; ⇠t,ikt ) (12)

7: Add noise

g̃
t(ŵt

kt ; ⇠tkt) = g
t(ŵt

kt ; ⇠tkt) + n,

where n 2 Rd
⇠ N (0,�2I) and � is defined in Theo-

rem 1.
8: Average local models by

[wt+1/2
1 ,wt+1/2

2 , ...,wt+1/2
K ] [wt

1,w
t
2, ...,w

t
K ]At;

(13)
9: Update the local model:

wt+1
kt  wt+1/2

kt � ⌘g̃
t(ŵt

kt ; ⇠tkt),

wt+1
j  wt+1/2

j , 8j 6= k
t
.

10: end for

4.1 Privacy Guarantee

Theorem 1 (Privacy Guarantee). Suppose all functions fi(·)’s
are G-Lipschitz and each of K workers has dataset D(k) of size
nk. Given the total number of iterations T , for any � > 0 and
privacy budget ✏  10B2

T↵/(3K2
n
2
(1)µ), A(DP)2SGD with

injected Gaussian noise N (0,�2I) is (✏, �)-differentially private
with �

2 = 20G2
T↵/(K2

n
2
(1)µ✏), where ↵ = log(1/�)/((1 �

µ)✏) + 1, if there exits µ 2 (0, 1) such that

↵  log

 
K

3
n
3
(1)µ✏

K2n2
(1)µ✏B + 5T↵B3

!

, (14)

where n(1) is the size of the smallest dataset among the K workers.

In order to prove Theorem 1, we need the following
Lemmas.

Lemma 1 (Gaussian Mechanism [18], [26], [27]). Given
a function f : X

n
! R, the Gaussian Mechanism M ,

f(x) + N (0,�2I) satisfies (↵,↵42
2(f)/(2�

2))-RDP. In addi-
tion, if M is applied to a subset of samples using uniform sam-
pling without replacement Swo

� , then M
Swo
� that applies M�Swo

�

obeys (↵, 5�2
↵4

2
2(f)/�

2)-RDP when �
2
/4

2
2(f) � 1.5 and

↵  log(1/(�(1 + �
2
/4

2
2(f)))) with � denoting the subsample

rate.

Lemma 2 (Composition [18], [27]). Let Mi : Xn
! Ri be an

(↵, ✏i)-RDP mechanism for i 2 [k]. If M[k] : X
n
!
Qk

i=1 Ri

Xu, Jie, Wei Zhang, and Fei Wang. “A (DP) $^ 2$ SGD: Asynchronous Decentralized Parallel 
Stochastic Gradient Descent with Differential Privacy.” IEEE TPAMI To Appear (2021).
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Fig. 2: CIFAR-10 convergence comparison between SYNC and ADPSGD under various levels of noise injection (i.e.,
differential privacy budget). SYNC and ADPSGD achieve similar level of utilities (i.e. test accuracy).

Fig. 3: CIFAR-10 convergence when a random learner is slowed down by 2X in each iteration with medium level of noise
injection (we omit displaying other levels of noise for the sake of brevity). ADPSGD runs significantly faster than SYNC
due to its asynchronous nature.
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Figure 1: (1) The benefit graph on all clients; each node denotes a client and the edge from I
j to I

i

represents I
j is one of the necessary collaborators for I

i; (2) Finding all stable coalitions and remove
them; (3) reconstruct the benefit graph on the remaining clients; after I

3 is removed, I
4 re-identifies

its necessary collaborators in
�
I
4
, I

5
, I

6
 

which is {I
5
} as the added the red arrow from I

5 to I
4 in

the figure; (4) iteratite (2) and (3) until achieving collaboration equilibrium.

can lead to a collaboration equilibrium, i.e., there are no other coalition settings that any of the39

individual clients can benefit more (i.e., achieve better model performance).40

In order to obtain the coalitions that can lead to a collaboration equilibrium, we propose a Pareto41

optimization framework to identify the necessary collaborators for each client in the network to42

achieve its maximum utility. In particular, we optimize a local model associated with a specific client43

on the Pareto front of the learning objectives of all clients. Through the analysis of the geometric44

location of such optimal model on the Pareto front, we can identify the necessary collaborators of45

each client. The relationships between each client and its necessary collaborators can be encoded in a46

benefit graph as exemplified in Figure 1 (a), where we have a collaborative network with 6 clients47

{I
k
}
6
k=1. Then we can derive the coalitions corresponding to the collaboration equilibrium through48

an iterative process introduced as follows. Specifically, we define a stable coalition as the minimum49

set such that its all involved clients can achieve its maximal utility. From the perspective of graph50

theory, these stable coalitions are actually the strongly connected components of the benefit graph.51

For example, C =
�
I
1
, I

2
, I

3
 

in Figure 1 (b) is a stable coalition as all clients can achieve their best52

performance by collaborating with the clients in C (compared with collaborating with other clients in53

the network). By removing the stable coalitions and re-building the benefit graph of the remaining54

client iteratively as shown in Figure 1 (b) and (c), we can identify all coalitions as in Figure 1 (d) and55

prove that the obtained coalitions can lead to a collaboration equilibrium.56

We empirically evaluate our method on synthetic data, UCI adult [6], a classical FL benchmark data57

set CIFAR10 [7], and a real-world electronic health record (EHR) data repository eICU [8], which58

includes patient EHR data in ICU from multiple hospitals. The results show our method significantly59

outperforms existing relevant methods. The experiments on eICU data demonstrate that our algorithm60

is able to derive a good collaboration strategy for the hospitals to collaborate. The source code of61

our method is made publicly available at https://github.com/collaboration-equilibrium/62

learning-to-collaborate.63

2 Related Work64

2.1 Federated Learning65

Federated learning (FL) [2] refers to the paradigm of learning from fragmented data without sacrificing66

privacy. In a typical FL setting, a global model is learned from the data residing in multiple distinct67

local clients. However, a single global model may lead to performance degradation on certain clients68

due to data heterogeneity. Personalized federated learning (PFL) [9], which aims at learning a69

customized model for each client in the federation, has been proposed to tackle this challenge. For70

example, Zhang et al. [10] proposes to adjust the weights of the objectives corresponding to all clients71

dynamically; Fallah et al. [11] proposes a meta-learning based method for achieving an effective72

shared initialization of all local models followed by a fine-tuning procedure; Shamsian et al. [12]73

proposes to learn a central hypernetwork which can generate a set of customized models for each74

client. FL assumes all clients are willing to participate in the collaboration and existing methods75

have not considered whether the collaboration can really benefit each client or not. Without benefit,76

a local client could be reluctant to participate in the collaboration, which is a realistic scenario we77

investigate in this paper. One specific FL setup that is relevant to our work is clustered federated78

learning [13, 14], which groups the clients with similar data distributions and trains a model for79

each client group. The scenario we are considering in this paper is to form collaboration coalitions80

2

A Algorithm

Algorithm 1: Achieving collaboration equilibrium
Input: N institutions I = {I

i
}
N
i=1 seeking collaborating with others

Set original client set C  I;
Set collaboration strategy S  ;;
while C 6= ; do

forall client I
i
2 C do

Determine the OCS of Ii by SPO;
Construct the benefit graph BG(C);
Search for all strongly connected components

�
C

1
, C

2
, ...C

k
 

of BG(C) using Tarjan

algorithm;
forall i = 1, 2, 3,... k do

if C
i

is stable coalition then

C  C\C
i ;

S  S [ {C
i
};

Output: collaboration strategy S

When Assumption 1 holds, from Corrollary 1 proposed in the main text, the framework for obtaining
a collaboration strategy which leads to a CE is simplified as in Algorithm 2.

Algorithm 2: Achieving collaboration equilibrium under Assmuption 1
Input: N institutions I = {I

i
}
N
i=1 seeking collaborating with others

Set original client set C  I;
Set collaboration strategy S  ;;
forall client I

i
2 C do

Determine the OCS of Ii by SPO;
Construct the benefit graph BG(C);
Search for all strongly connected components S =

�
C

1
, C

2
, ...C

k
 

of BG(C) using Tarjan

algorithm;
Output: collaboration strategy S

B Proofs of all Theoretical Results

B.1 Proof of Theorem 1

Theorem 1. Given a client set I and its BG(I), the stable coalitions are strongly connected

components of BG(I).

Definition 1 (Strongly Connected Component [1]). A subgraph G
0
is a strongly connected component

of a given directed graph G if it satisfies: 1) It is strongly connected, which means that there is a path

in each direction between each pair of vertices in G
0
; 2) It is maximal, which means no additional

vertices from G can be included in G
0

without breaking the property of being strongly connected.

To prove Theorem 1, we firstly prove that the benefit graph of a stable coalition is strongly connected
shown in Lemma 1.
Lemma 1. For a given client set I , the benefit graph BG(Cs) of each stable coalition C

s
is strongly

connected, which means that there is a path in each direction between each pair of vertices in

BG(Cs).

Proof. We will prove the Lemma 1 by contradiction. Suppose there exsits a pair of vertices I1, I2 2
BG(Cs) such that there is no path from I

1 to I
2, which is denoted as @p, s.t., I1 ! I

2 for expressive

1

select 5 hospitals with more patient samples (about 1000)
�
I
i
 4

i=0
and 5 hospitals with less patient336

samples
�
I
i
 9

i=5
. Due to label imbalance (more than 90% samples have negative labels), we use337

AUC to measure the utility for each client as in [30]. For all methods, we use the ANN as the network338

structure as in [30].339

Table 4: eICU

methods AUC

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9

Local 66.89 85.03 61.83 68.83 82.31 59.65 67.78 40.00 61.90 70.00
FedAve 71.92 89.36 81.00 73.89 80.23 70.18 52.22 40.00 61.90 75.00

SPO(ours) 76.35 91.80 80.28 70.52 86.93 82.46 71.11 40.00 76.19 83.33
CE 77.93 87.28 70.47 70.64 83.48 64.92 68.89 45.00 61.90 70.00

The model AUC of each hospital is reported in Table 4. Because of the lack of patient data for340

each hospital, Local achieves a relatively lower AUC compared to FedAve and SPO. While patient341

populations vary substantially from hospital to hospital, SPO learns a personalized model for each342

hospital and outperforms FedAve from Table 4.343
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components

I
0

<latexit sha1_base64="xkZinkB3fXx+z+jqDlELdUOZnwY="></latexit>

I
1

<latexit sha1_base64="ZroCL0JJbplYYxKF0TuIbB7Z7xk="></latexit>

I
2

<latexit sha1_base64="2++cL5TEXumvU+oahUsTVndZR8E="></latexit>

I
3

<latexit sha1_base64="G06mXSCW+K11xSPKJ+cv3bGQhME="></latexit>

I
4

<latexit sha1_base64="078TlPinZnbp3G8YDOaCG04E8G4="></latexit>

I
5

<latexit sha1_base64="rxH3eGL3jlLzhYJGRaokrVTVvjc="></latexit>

I
7

<latexit sha1_base64="TPeHe+EdHuk9nU8nbYxS2EGTCv0="></latexit>

I
8

<latexit sha1_base64="yLKmKiLjSNF7gQFV1rqUemEXJus=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IsVgZEl0o64wsUCCaNphwAl9pZ1qCGHjD7jVLzP+gf6Fd8aSqMToNG3PnHvPmbn3upEnEmlZrzljbn5hcSm/XFhZXVvfKG5uNZMwjRm3WeiFcdt1Eu6JgNtSSI+3o5g7vuvxljs8UfHWHY8TEQaXchTxru8MAtEXzJFE2WfX49rkpliyypZe5iyoZKCEbDXC4guu0EMIhhQ+OAJIwh4cJPR0UIGFiLguxsTFhISOc0xQIG1KWZwyHGKH9B3QrpOxAe2VZ6LVjE7x6I1JaWKPNCHlxYTVaaaOp9pZsb95j7WnutuI/m7m5RMrcUvsX7pp5n91qhaJPmq6BkE1RZpR1bHMJdVdUTc3v1QlySEiTuEexWPCTCunfTa1JtG1q946Ov6mMxWr9izLTfGubkkDrvwc5yxoHpQr1fLhRbVUP85GnccOdrFP8zxCHadowCZvgUc84dk4NyLj3hh9phq5TLONb8t4+ABKCJEM</latexit>

I
9

<latexit sha1_base64="4cXIA0l05KwFp/J1B3eamNy7Rh4="></latexit>

I
6

<latexit sha1_base64="rX31m9pL4TDFitzg9FObuhvEhn0="></latexit>

(c) collaboration equi-
librium

Figure 5: Collaboration Equilibrium of 10 real hospitals

Collaboration Equilibrium The optimal collaborator sets of all hospitals determined by SPO344

are shown in the benefit graph in Figure 5(a). From Figure 5(a), I
3 is the necessary collaborator345

for all other hospitals while I
9 cannot contribute to any other hospitals. Since I

0 and I
3 are the346

unique necessary collaborator for each other,
�
I
0
, I

3
 

is a stable coalition as shown in Figure 5(b).347

We show all strongly connected components in Figure 5(b) and the final collaboration equilibrium348

is in Figure 5(c). For the stable coalition C
1 =

�
I
0
, I

3
 

, as I
0 and I

3 are major hospitals with349

more patient data, they can contribute to the vast majority of hospitals and only major hospitals can350

benefit them. I
9 is a tiny clinic that cannot contribute to any hospitals, so no hospital is willing to351

collaborate with it and I
9 has to learn a local model with its own data by forming a simple coalition352

C
2 =

�
I
9
 

. For the remaining hospitals, on the one hand they cannot benefit I
3 or I

0 so they cannot353

form coalitions with them, on the other hand they refuse to contribute I
9 without any charge. They354

choose form the coalition C
3 =

�
I
1
, I

2
, I

4
, I

5
, I

6
, I

7
, I

8
 

to maximize their AUC. Therefore, the355

CE in this hospital collaboration network is achieved by the collaboration strategy S = {C
1
, C

2
, C

3
}356

and the model AUC of each client in the CE is in Table 4. CE guarantees that every client in its357

coalition will not collaborate with harmful clients, so the client may achieve a higher utility in a CE358

compared to collaborating with everyone such as the AUC of I
0 in CE (77.93) is higher than in SPO359

(76.35).360

6 Conclusion361

In this paper, we investigate collaboration learning in a meaningful and practical scenario. We362

propose a learning to collaborate framework to achieve collaboration equilibrium such that any of363

the individual clients cannot improve their performance further. We develop a Pareto optimization364

method for identifying which clients are worthy of collaboration and propose a graph-based method365

for reaching collaboration equilibrium. Comprehensive experiments on benchmark and real-world366

data sets demonstrated the validity of our proposed framework. In our study, some small clients could367

be isolated as they cannot benefit others. Our framework can quantify both the benefit to and the368

contribution from each client in a network. In practice, such information can be utilized to either369

provide incentives or to impose charges on each client, to facilitate and enhance the foundation of the370

network or coalition.371
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. Due to label imbalance (more than 90% samples have negative labels), we use337

AUC to measure the utility for each client as in [30]. For all methods, we use the ANN as the network338

structure as in [30].339

Table 4: eICU

methods AUC

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9

Local 66.89 85.03 61.83 68.83 82.31 59.65 67.78 40.00 61.90 70.00
FedAve 71.92 89.36 81.00 73.89 80.23 70.18 52.22 40.00 61.90 75.00

SPO(ours) 76.35 91.80 80.28 70.52 86.93 82.46 71.11 40.00 76.19 83.33
CE 77.93 87.28 70.47 70.64 83.48 64.92 68.89 45.00 61.90 70.00

The model AUC of each hospital is reported in Table 4. Because of the lack of patient data for340

each hospital, Local achieves a relatively lower AUC compared to FedAve and SPO. While patient341

populations vary substantially from hospital to hospital, SPO learns a personalized model for each342

hospital and outperforms FedAve from Table 4.343
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(a) benefit graph
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(c) collaboration equi-
librium

Figure 5: Collaboration Equilibrium of 10 real hospitals

Collaboration Equilibrium The optimal collaborator sets of all hospitals determined by SPO344

are shown in the benefit graph in Figure 5(a). From Figure 5(a), I
3 is the necessary collaborator345

for all other hospitals while I
9 cannot contribute to any other hospitals. Since I

0 and I
3 are the346

unique necessary collaborator for each other,
�
I
0
, I

3
 

is a stable coalition as shown in Figure 5(b).347

We show all strongly connected components in Figure 5(b) and the final collaboration equilibrium348

is in Figure 5(c). For the stable coalition C
1 =

�
I
0
, I

3
 

, as I
0 and I

3 are major hospitals with349

more patient data, they can contribute to the vast majority of hospitals and only major hospitals can350

benefit them. I
9 is a tiny clinic that cannot contribute to any hospitals, so no hospital is willing to351

collaborate with it and I
9 has to learn a local model with its own data by forming a simple coalition352

C
2 =

�
I
9
 

. For the remaining hospitals, on the one hand they cannot benefit I
3 or I

0 so they cannot353

form coalitions with them, on the other hand they refuse to contribute I
9 without any charge. They354

choose form the coalition C
3 =

�
I
1
, I

2
, I

4
, I

5
, I

6
, I

7
, I

8
 

to maximize their AUC. Therefore, the355

CE in this hospital collaboration network is achieved by the collaboration strategy S = {C
1
, C

2
, C

3
}356

and the model AUC of each client in the CE is in Table 4. CE guarantees that every client in its357

coalition will not collaborate with harmful clients, so the client may achieve a higher utility in a CE358

compared to collaborating with everyone such as the AUC of I
0 in CE (77.93) is higher than in SPO359

(76.35).360

6 Conclusion361

In this paper, we investigate collaboration learning in a meaningful and practical scenario. We362

propose a learning to collaborate framework to achieve collaboration equilibrium such that any of363

the individual clients cannot improve their performance further. We develop a Pareto optimization364

method for identifying which clients are worthy of collaboration and propose a graph-based method365

for reaching collaboration equilibrium. Comprehensive experiments on benchmark and real-world366

data sets demonstrated the validity of our proposed framework. In our study, some small clients could367

be isolated as they cannot benefit others. Our framework can quantify both the benefit to and the368

contribution from each client in a network. In practice, such information can be utilized to either369

provide incentives or to impose charges on each client, to facilitate and enhance the foundation of the370

network or coalition.371
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of substantial disparities in program screening.
We quantify this by simulating a counterfactual
world with no gap in health conditional on
risk. Specifically, at some risk threshold a, we
identify the supramarginal White patient (i)
with Ri > a and compare this patient’s health
to that of the inframarginal Black patient ( j )
with Rj < a. IfHi >Hj , as measured by number
of chronic medical conditions, we replace the
(healthier, but supramarginal) White patient
with the (sicker, but inframarginal) Black patient.
We repeat this procedure until Hi = Hj, to
simulate an algorithm with no predictive gap
between Blacks and Whites. Fig. 1B shows the
results: At all risk thresholds a above the 50th
percentile, this procedure would increase the
fraction of Black patients. For example, at a =
97th percentile, among those auto-identified
for the program, the fraction of Black patients
would rise from 17.7 to 46.5%.
We then turn to amoremultidimensional pic-

ture of the complexity and severity of patients’
health status, as measured by biomarkers that
index the severity of the most common chro-
nic illnesses in our sample (as shown inTable 1).
This allows us to identify patients who might
derive a great deal of benefit from care man-
agement programs—e.g., patients with severe

diabetes who are at risk of catastrophic com-
plications if they do not lower their blood sugar
(18, 26). (The materials and methods section
describes several experiments to rule out a large
effect of the program on these health measures
in year t; had there been such an effect, we
could not easily use the measures to assess the
accuracy of the algorithm’s predictions onhealth,
because the program is allocated as a function
of algorithm score.) Across all of these impor-
tant markers of health needs—severity of diabe-
tes, highbloodpressure, renal failure, cholesterol,
and anemia—we find that Blacks are substan-
tially less healthy than Whites at any level of
algorithmpredictions, as shown in Fig. 2. Blacks
havemore-severe hypertension, diabetes, renal
failure, and anemia, and higher cholesterol.
Themagnitudes of these differences are large:
For example, differences in severity of hyper-
tension (systolic pressure: 5.7 mmHg) and
diabetes [glycated hemoglobin (HbA1c): 0.6%]
imply differences in all-causemortality of 7.6%
(27) and 30% (28), respectively, calculatedusing
data fromclinical trials and longitudinal studies.

Mechanism of bias

An unusual aspect of our dataset is that we
observe the algorithm’s inputs and outputs

as well as its objective function, providing us
a unique window into the mechanisms by
which bias arises. In our setting, the algorithm
takes in a large set of raw insurance claims
data Xi,t−1 (features) over the year t − 1: demo-
graphics (e.g., age, sex), insurance type, diag-
nosis and procedure codes, medications, and
detailed costs. Notably, the algorithm specifi-
cally excludes race.
The algorithm uses these data to predict Yi,t

(i.e., the label). In this instance, the algorithm
takes total medical expenditures (for simplic-
ity, we denote “costs” Ct) in year t as the label.
Thus, the algorithm’s prediction on health
needs is, in fact, a prediction on health costs.
As a first check on this potential mechanism

of bias, we calculate the distribution of real-
ized costs C versus predicted costs R. By this
metric, one could call the algorithm unbiased.
Fig. 3A shows that, at every level of algorithm-
predicted risk, Blacks andWhites have (rough-
ly) the same costs the following year. In other
words, the algorithm’s predictions are well cal-
ibrated across races. For example, at the med-
ian risk score, Black patients had costs of $5147
versus $4995 for Whites (U.S. dollars); in the
top 5% of algorithm-predicted risk, costs were
$35,541 for Blacks versus $34,059 for Whites.

Obermeyer et al., Science 366, 447–453 (2019) 25 October 2019 3 of 7

Defaulted into program

Defaulted into program

Referred for screen

Referred for screen

Percentile of Algorithm Risk Score Percentile of Algorithm Risk Score

F
ra

ct
io

n 
B

la
ck

N
um

be
r 

of
 a

ct
iv

e 
ch

ro
ni

c 
co

nd
iti

on
s

Race
Black
White

Original
Simulated

A B

Fig. 1. Number of chronic illnesses versus algorithm-predicted risk,
by race. (A) Mean number of chronic conditions by race, plotted against
algorithm risk score. (B) Fraction of Black patients at or above a given risk
score for the original algorithm (“original”) and for a simulated scenario
that removes algorithmic bias (“simulated”: at each threshold of risk, defined
at a given percentile on the x axis, healthier Whites above the threshold are

replaced with less healthy Blacks below the threshold, until the marginal patient
is equally healthy). The × symbols show risk percentiles by race; circles
show risk deciles with 95% confidence intervals clustered by patient. The
dashed vertical lines show the auto-identification threshold (the black
line, which denotes the 97th percentile) and the screening threshold (the gray
line, which denotes the 55th percentile).
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Dissecting racial bias in an algorithm used to manage
the health of populations
Ziad Obermeyer1,2*, Brian Powers3, Christine Vogeli4, Sendhil Mullainathan5*†

Health systems rely on commercial prediction algorithms to identify and help patients with complex
health needs. We show that a widely used algorithm, typical of this industry-wide approach and
affecting millions of patients, exhibits significant racial bias: At a given risk score, Black patients
are considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses.
Remedying this disparity would increase the percentage of Black patients receiving additional
help from 17.7 to 46.5%. The bias arises because the algorithm predicts health care costs rather than
illness, but unequal access to care means that we spend less money caring for Black patients than
for White patients. Thus, despite health care cost appearing to be an effective proxy for health
by some measures of predictive accuracy, large racial biases arise. We suggest that the choice of
convenient, seemingly effective proxies for ground truth can be an important source of algorithmic
bias in many contexts.

T
here is growing concern that algorithms
may reproduce racial and gender dis-
parities via the people building them or
through the data used to train them (1–3).
Empirical work is increasingly lending

support to these concerns. For example, job
search ads for highly paid positions are less
likely to be presented to women (4), searches
for distinctively Black-sounding names are
more likely to trigger ads for arrest records
(5), and image searches for professions such
as CEO produce fewer images of women (6).
Facial recognition systems increasingly used
in law enforcement perform worse on recog-
nizing faces of women and Black individuals
(7, 8), and natural language processing algo-
rithms encode language in gendered ways (9).
Empirical investigations of algorithmic bias,

though, have been hindered by a key constraint:
Algorithms deployed on large scales are typically
proprietary, making it difficult for indepen-
dent researchers to dissect them. Instead, re-
searchers must work “from the outside,” often
with great ingenuity, and resort to clever work-
arounds such as audit studies. Such efforts can
document disparities, but understanding how
and why they arise—much less figuring out
what to do about them—is difficult without
greater access to the algorithms themselves.
Our understanding of a mechanism therefore
typically relies on theory or exercises with

researcher-created algorithms (10–13). With-
out an algorithm’s training data, objective func-
tion, and predictionmethodology, we can only
guess as to the actual mechanisms for the
important algorithmic disparities that arise.
In this study, we exploit a rich dataset that

provides insight into a live, scaled algorithm
deployed nationwide today. It is one of the
largest and most typical examples of a class
of commercial risk-prediction tools that, by
industry estimates, are applied to roughly
200 million people in the United States each
year. Large health systems and payers rely on
this algorithm to target patients for “high-risk
care management” programs. These programs
seek to improve the care of patients with
complex health needs by providing additional
resources, including greater attention from
trained providers, to help ensure that care is
well coordinated. Most health systems use
these programs as the cornerstone of pop-
ulation health management efforts, and they
are widely considered effective at improving
outcomes and satisfaction while reducing costs
(14–17). Because the programs are themselves
expensive—with costs going toward teams of
dedicated nurses, extra primary care appoint-
ment slots, and other scarce resources—health
systems rely extensively on algorithms to iden-
tify patients who will benefit the most (18, 19).
Identifying patients who will derive the

greatest benefit from these programs is a
challenging causal inference problem that
requires estimation of individual treatment ef-
fects. To solve this problem, health systems
make a key assumption: Those with the great-
est care needs will benefit the most from the
program. Under this assumption, the targeting
problem becomes a pure prediction policy prob-
lem (20). Developers then build algorithms

that rely on past data to build a predictor of
future health care needs.
Our dataset describes one such typical algo-

rithm. It contains both the algorithm’s predic-
tions as well as the data needed to understand
its inner workings: that is, the underlying in-
gredients used to form the algorithm (data,
objective function, etc.) and links to a rich
set of outcome data. Because we have the
inputs, outputs, and eventual outcomes, our
data allow us a rare opportunity to quantify
racial disparities in algorithms and isolate the
mechanisms by which they arise. It should be
emphasized that this algorithm is not unique.
Rather, it is emblematic of a generalized ap-
proach to risk prediction in the health sec-
tor, widely adopted by a range of for- and
non-profit medical centers and governmental
agencies (21).
Our analysis has implications beyond what

we learn about this particular algorithm. First,
the specific problem solved by this algorithm
has analogies in many other sectors: The pre-
dicted risk of some future outcome (in our
case, health care needs) is widely used to tar-
get policy interventions under the assumption
that the treatment effect is monotonic in that
risk, and the methods used to build the algo-
rithm are standard. Mechanisms of bias un-
covered in this study likely operate elsewhere.
Second, even beyond our particular finding,
we hope that this exercise illustrates the im-
portance, and the large opportunity, of study-
ing algorithmic bias in health care, not just
as a model system but also in its own right. By
any standard—e.g., number of lives affected,
life-and-death consequences of the decision—
health is one of the most important and wide-
spread social sectors in which algorithms are
already used at scale today, unbeknownst
to many.

Data and analytic strategy

Working with a large academic hospital, we
identified all primary care patients enrolled
in risk-based contracts from2013 to 2015. Our
primary interest was in studying differences
betweenWhite and Black patients.We formed
race categories by using hospital records,which
are based onpatient self-reporting. Any patient
who identified as Black was considered to be
Black for the purpose of this analysis. Of the
remaining patients, those who self-identified
as races other thanWhite (e.g., Hispanic) were
so considered (data on these patients are pre-
sented in table S1 and fig. S1 in the supplemen-
tary materials). We considered all remaining
patients to beWhite. This approach allowed
us to study one particular racial difference of
social and historical interest between patients
who self-identified as Black and patients who
self-identified as White without another race
or ethnicity; it has the disadvantage of not
allowing for the study of intersectional racial
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Federated
Fairness

al. [4] propose q-FFL to obtain a min-max performance of all clients by empirically adjusting the89

power of the objectives, which cannot always guarantee a more consistent model utility distribution90

without sufficient searching for appropriate power values. Mohri et al. [5] propose AFL, a min-max91

optimization scheme which focuses on the single worst client. However, focusing on the single92

worst objective can cause another client to perform worse, thus we propose to take all objectives into93

account and optimize a surrogate maximum function to achieve a min-max performance distribution94

in this paper.95

Multi-objective optimization aims to learn a model that gives consideration to all objectives involved.96

The optimization methods for multi-objective typically involve linear scalarization or its variants,97

such as those with adaptive weights [19], but it is challenging for these approaches to handling98

the competing performance among different clients [20]. Martinez et al. [21] proposed a multi-99

objective optimization framework called Min-Max Pareto Fairness (MMPF) to achieve consistency100

by inducing a min-max performance of all groups based on convex assumption, which is fairly strong101

as non-convex objectives are ubiquitous. In this paper, we formulate the problem of achieving both102

fairness and consistency in federated networks through constrained multi-objective optimization.103

Previous research on solving this problem has been mostly focusing on gradient-free algorithms such104

as evolutionary algorithms [22], physics-based and deterministic approaches [23]. Gradient-based105

methods are still under-explored [24]. We propose a novel gradient-based method FCFL , which106

searches for the desired gradient direction iteratively by solving constrained Linear Programming107

(LP) problems to achieve fairness and consistency simultaneously in federated networks.108

3 Problem Setup109

The problem to be solved in this paper is formally defined in this section. Specifically, we will110

introduce the algorithmic fairness problem, how to extend existing fairness criteria to federated111

setting, and the consistency issues of model utility in federated learning.112

3.1 Preliminaries113

Federated Learning. Suppose there are N local clients c1, c2, ...cN and each client is associated with114

a specific dataset D
k =

�
X

k
, Y

k
 

, k 2 {1, 2, ..., N}, where the input space X
k and output space Y

k115

are shared across all N clients. There are n
k samples in the k-th client and each sample is denoted as116 �

x
k
i , y

k
i

 
. The goal of the federated learning is to collaboratively learn a global model h with the pa-117

rameters ✓ to predict the label Ŷ
k as on each client. The classical federated learning aims to minimize118

the empirical risk over the samples from all clients i.e., min✓
1PN

k=1 nk

PN
k=1

Pnk

i=1 lk(h✓(xk
i ), yk

i )119

where lk is the loss objective of the k-th client.120

Fairness. Fairness refers to the disparities in the algorithm decisions made across different groups121

formed by the sensitive attribute, such as gender and race. If we denote the dataset on the k-th client122

as D
k =

�
X

k
, A

k
, Y

k
 

, where A
k

2 A is the binary sensitive attribute, then we can define the123

multi-client fairness as follows:124

Definition 1 (Multi-client fairness (MCF)). A learned model h achieves multi-client fairness if h125

meets the following condition:126

�Disk(h) � ✏k  0 8k 2 {1, ., N} (1)
where �Disk(h) denotes the disparity induced by the model h and ✏k is the given fairness budget127

of the k-th client. The disparity on the k-th client �Disk can be measured by demographic parity128

(DP) [8] and Equal Opportunity (EO) [9] as follows:129

�DPk = |P (Ŷ k = 1|A
k = 0) � P (Ŷ k = 1|A

k = 1)|

�EOk = |P (Ŷ k = 1|A
k = 0, Y

k = 1) � P (Ŷ k = 1|A
k = 1, Y

k = 1)|
(2)

As data heterogeneity may cause different disparities across all clients, the fairness budgets ✏k in130

Definition 3.1 specifies the tolerance of model disparity at the k-th client.131

Consistency. Due to the discrepancies among data distributions across different clients, the model
performance on different clients could be different. Moreover, the inconsistency will be magnified

3

when we adjust the model to be fair on local clients. There are existing research trying to improve the
model consistency by maximizing the utility of the worst performing client [4, 5]:

min
✓

max
k2{1,.,N}

1

nk

Xnk

i=1
lk(h✓(x

k
i ), yk

i )

where the max is over the losses across all clients.132

3.2 Fair and Consistent Federated Learning (FCFL)133

Our goal is to learn a model h which 1) satisfies MCF as we defined in Definition 3.1; 2) maintains134

consistent performances across all clients. We will use �DPk defined in Eq.(2) as measurement of135

disparity in our main text while the same derivations can be developed when adapting other metrics, so136

we have gk(h(Xk), Ak) = �DPk, and gk is the function of calculating model disparity on the k-th137

client. Similarly, the model utility loss lk(h(Xk), Y k) can be evaluated by different metrics (such as138

cross-entropy, hinge loss and squared loss, etc). In the rest of this paper we will use lk(h) (gk(h))139

for lk(h(Xk), Y k) (gk(h(Xk), Ak)) without causing further confusions. We formulate FCFLas the140

problem of optimizing the N utility-related objectives {l1(h), l2(h), ..., lN (h)} to achieve Pareto141

Min-Max performance with N fairness constraints:142

min
h2H

[l1(h), l2(h), ...lN (h)] s.t. gk(h) � ✏k  0 8k 2 {1, ., N} . (3)

The definitions of Pareto Solution and Pareto Front, which are fundamental concepts in multi-objective143

optimization, are as follows:144

Definition 2 (Pareto Solution and Pareto Front). Suppose l(h) = [l1(h), l2(h), ...lN (h)] represents
the utility loss vector on N learning tasks with hypothesis h 2 H, we say h is a Pareto Solution if
there is no hypothesis h

0 that dominates h: h
0
� h, i.e.,

@h
0
2 H, s.t. 8i : li(h

0)  li(h) and 9j : lj(h
0) < lj(h).

All Pareto solutions form Pareto Front P .145

From Definition 2, for a given hypothesis set H and the objective vector l(h), the Pareto solution146

avoids unnecessary harm to client utilities and may not be unique. We prefer a Pareto solution that147

achieves a higher consistency. Following the work in [4, 5], we want to obtain a Pareto solution h
⇤148

with min-max performance. Figure 1(b) shows the relationships among different model hypothesis149

sets, and we explain the meanings of different notations therein as follows:150

(1) H
F is the set of model hypotheses satisfying MCF, i.e.,

gk(h) � ✏k  0 8k 2 {1, ., N} , 8h 2 H
F
.

(2) H
FU is the set of model hypotheses achieving min-max performance (consistency) with MCF:151

H
FU

⇢ H
F and lmax(h0)  lmax(h), 8h 2 H

F
, 8h

0
2 H

FU
. (4)

(3) H
FP is the set of model hypotheses achieving Pareto optimality with MCF:152

H
FP

⇢ H
F (5a)

h
0 ⌃ h, 8h

0
2 H

F
, 8h 2 H

FP (5b)

where Eq.(5a) satisfies 8h 2 H
FP meets MCF, and Eq.(5b) ensures that 8h 2 H

FP is a Pareto153

model with MCF.154

(4) H
⇤ is our desired set of model hypotheses achieving Pareto optimality and min-max performance155

with MCF: H
⇤ = H

FP
\ H

FU .156

In summary, our goal is to obtain a fair and consistent model h
⇤

2 H
⇤ to achieve Pareto optimality157

and min-max performance with MCF.158
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is a specific ICU stay. We follow the data preprocessing procedure in [32] and naturally treat 11
hospitals as 11 local clients in federated networks. We conduct the task of predicting the prolonged
length of stay (whether the ICU stay is longer than 1 week, ) and select race as the sensitive attribute.

Evaluation Metrics (1) Utility metric: we use accuracy to measure the model utility in our exper-
iments; (2) Disparity metrics: our method is compatible with various of fairness metrics. In our
experiments, we select two metrics (marginal-based metric Demographic Parity [8] and conditional-
based metric Equal Opportunity [9] (The results of Equal Opportunity are in the Appendix) to
measure the disparities defined in Eq.(2); (3) Consistency: following the work [4, 5], we use the
utility on the worst-performing client to measure consistency.

Baselines As we do not find prior works proposed for achieving fairness in each client, we select FA
[6], MMPF [24] and build FedAve+FairReg as baselines in our experiments. For all baselines, we try
to train the models to achieve the optimal utility with fairness constraints. If the model cannot satisfy
the fairness constraints, we keep the minimum of disparities with reasonable utilities. (1) MMPF
[24], Martinez et al. develop MMPF which optimizes all objectives on convex assumption to induce
a min-max utility of all groups; (2) FA [6], Du et al. propose FA, a kernel-based model-agnostic
method with regularizations for addressing fairness problem on a new unknown client instead of
all involved clients; (3) FedAve+FairReg, we build FedAve+FairReg, which optimizes the linear
scalarized objective with the fairness regularizations of all clients.

5.2 Experiments on Synthetic Dataset

(a) ✓
0 violates the constraints(b) ✓0 satisfies the constraints

Figure 2: Optimization trajectories of FCFL in n = 20
dimensional solution space (✓ 2 R20). The initializa-
tion violates fairness constrains (left) and satisfies fairness
constraints (right).

Following the setting in [30, 23], the syn-
thetic data is from the two non-convex
objectives to be minimized in Eq.(16)
and the Pareto Front of the two objec-
tives is also non-convex.

l1(✓) = 1 � e
�

���✓�
1p
n

���
2

2

l2(✓) = 1 � e
�

���✓+ 1p
n

���
2

2 .

(16)

Non-convex Pareto Front means that lin-
ear scalarization methods (e.g., FedAve)
miss any solution in the concave part of
the Pareto Front. In this experiment, we
optimize l1 under the constraint l2 

✏, ✏ 2 {0.2, 0.4, 0.6, 0.8}. Considering the effect of the initialization in our experiment, we conduct
experiments when the initialization ✓

0 satisfies the constraints and violates the constraints.

From the results in Figure 2, when the initialization ✓0 violates the constraints in Figure 2(a), the
objective l2 decreases in each step until it satisfies the constraint and finally FCFL reaches the
constrained optimal l1(h⇤). As the initialization ✓0 satisfies the constraints in Figure 2(b), our method
focuses on optimizing l1 until it achieves the optimal l1(h⇤) with the constraint l2  ✏.

5.3 Experiments on Real-world Datasets with Equal Fairness Budgets

(a) (b) (c) (d)
Figure 3: The disparities and accuracies on both clients as ✏ = 0.05 (top) and as ✏ = 0.01 of on Adult
dataset when race is the sensitive attribute.
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Conclusions
• Clinical problems are typically complicated with limited sample
size. Clinical data are sensitive. All these make federated
learning important.
• Data standardization/harmonization is important before federated
learning can be applied.
• To further protect the privacy, differential privacy/block chain techniques
could be helpful.
• Incentives/benefits are important to consider for participating in
federated learning.
• In addition to model accuracy, model fairness could be important as
well.
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