Federated Learning in Large Clinical Research Networks

Fei Wang
Associate Professor
Department of Population Health Sciences
Weill Cornell Medicine
feiwang.cornell@gmail.com
- @feiwang03
https://wcm-wanglab.github.io/index.html

Machine Learning

Machine Learning

https://qbi.uq.edu.au/blog/2017/10/google-alphago-zero-masters-game-three-days

https://electrek.co/2017/04/29/elon-musk-tesla-plan-level-5-full-autonomous-driving/

https://siliconangle.com/2020/07/19/openais-latest-ai-text-generator-gpt-3-amazes-

Medicine

Perspective

A New Initiative on Precision Medicine
Francis S. Collins, M.D., Ph.D., and Harold Varmus, M.D.
N Engl J Med 2015; 372:793-795| February 26, 2015| DOI: 10.1056/NEJMp1500523
© Comments open through March 4, 2015

Article	References	Citing Articles (784)	Comments (7)	Metrics

"Tonight, I'm launching a new Precision Medicine Initiative to bring us closer to curing diseases like cancer and diabetes - and to give all of us access to the personalized information we need to keep ourselves and our families healthier."

- President Barack Obama, State of the Union Address, January 20, 2015

President Obama has long expressed a strong conviction that science offers great potential for improving health. Now, the President has announced a research initiative that aims to accelerate progress toward a new era of precision medicine (www.whitehouse.gov/precisionmedicine). We believe that the time is right for this visionary initiative, and the National Institutes of Health (NIH) and other partners will work to achieve this vision.

The NEW ENGLAND
 JOURNAL of MEDICINE

"The initiative will
encourage and support the
next generation of
scientists to develop
creative new approaches
for detecting, measuring,
and analyzing a wide range
of biomedical information

- including molecular,
genomic, cellular, clinical,
behavioral, physiological,
and environmental
parameters"

Machine Learning in Clinical Medicine

JAMA Internal Medicine		Search All $\quad \checkmark$ En		Enter Search Term		
This sssue Views 138,716\| Citations 41	Altmetric 566	Comments 2				
2 Download PDF	(4) (7) More $\nabla^{\text {b }}$	國CME\& moc	(6) Cite This	(c) Permissions		
Original Investigat May 12, 2020	Original Investigation					
Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID-19						
Table 3. Multivariable Logistic Regression Model for Predicting Development of Critical Illness in 1590 Patients Hospitalized With COVID-19 in Wuhan						
Variables		Odds ra	(95\% CI)	P value		
X-ray abnormality (yes vs no)		3.39 (2	4-5.38)	<. 001		
Age, per y		1.03 (1	1-1.05)	. 002		
Hemoptysis (yes vs no)		4.53 (1	6-15.15)	. 01		
Dyspnea (yes vs no)		1.88 (1	8-3.01)	. 01		
Unconsciousness (yes vs no)		4.71 (1	-9-15.98)	. 01		
No. of comorbidities		1.60 (1	7-2.00)	<. 001		
Cancer history (yes vs no)		4.07 (1	3-13.43)	. 02		
Neutrophil to lymphocyte ratio		1.06 (1	2-1.10)	. 003		
Lactate dehydrogenase, U/L		1.002	001-1.004)) <. 001		
Direct bilirubin, $\mu \mathrm{mol} / \mathrm{L}$		1.15 (1	6-1.24)	. 001		
Constant		0.001				

OXFORD

Clinical Chemistry

Routine Laboratory Blood Tests Predict SARS-CoV2 Infection Using Machine Learning
He S Yang M, Yu Hou, Ljiljana V Vasovic, Peter A D Steel, Amy Chadburn,
Sabrina E Racine-Brzostek, Priya Velu, Melissa M Cushing, Massimo Loda, Rainu Kaushal
... Show more
Author Notes
Clinical Chemistry, Volume 66, Issue 11, November 2020, Pages 1396-1404, https://doi.org/10.1093/clinchem/hvaa200 Published: 30 October 2020 Article history

naturemedicine

Explore our content $\sim \quad$ Journal information \sim
nature > nature medicine > letters > article

Letter | Published: 19 May 2020
Artificial intelligence-enabled rapid diagnosis of patients with COVID-19

Xueyan Mei, Hao-Chih Lee, [...] Yang Yang \boxminus
b
Radiologists+
COVID-19 (+) probability

d
Radiologists-

- 1.0

[^0]
Considerations

Model Training

How to stop? - when the update is small enough - converge.

$$
\left\|w_{t+1}-w_{t}\right\| \leq \epsilon
$$

Stochastic Gradient Descent

- At each step of gradient descent, instead of compute for all training samples, randomly pick a small subset (mini-batch) of training samples

$$
w_{t+1} \leftarrow w_{t}-\eta \nabla f\left(w_{t} ; x_{k}, y_{k}\right)
$$

Federated Learning

Clinical Research Networks

https://ohdsi.github.io/TheBookOfOhdsi/OhdsiCommunity.html

[^1]
Federated SGD

- In a round t :
- The central server broadcasts current model w_{t} to each client; each client k computes gradient: $g_{k}=\nabla F_{k}\left(w_{t}\right)$, on its local data.
- Approach 1: Each client k submits g_{k}; the central server aggregates the gradients to generate a new model:
- $w_{t+1} \leftarrow w_{t}-\eta \nabla f\left(w_{t}\right)=w_{t}-\eta \sum_{k=1}^{K} \frac{n_{k}}{n} g_{k}$.
- Approach 2: Each client k computes: $w_{t+1}^{k} \leftarrow w_{t}-\eta g_{k}$; the central server performs aggregation:
- $w_{t+1} \leftarrow \sum_{k=1}^{K} \frac{n_{k}}{n} w_{t+1}^{k}$

Federated Averaging

Algorithm 1 FederatedAveraging. The K clients are indexed by $k ; B$ is the local minibatch size, E is the number of local epochs, and η is the learning rate.

```
Server executes:
```

Server executes:
initialize wo
initialize wo
for each round t=1,2,··· do
for each round t=1,2,··· do
m\leftarrow\operatorname{max}(C\cdotK,1)
m\leftarrow\operatorname{max}(C\cdotK,1)
St}\leftarrow\mathrm{ (random set of m clients)
St}\leftarrow\mathrm{ (random set of m clients)
for each client }k\in\mp@subsup{S}{t}{}\mathrm{ in parallel do
for each client }k\in\mp@subsup{S}{t}{}\mathrm{ in parallel do
w
w
w
w
ClientUpdate(k,w): // Run on client k
ClientUpdate(k,w): // Run on client k
\mathcal{B}}\leftarrow(\mathrm{ split }\mp@subsup{\mathcal{P}}{k}{}\mathrm{ into batches of size B)
\mathcal{B}}\leftarrow(\mathrm{ split }\mp@subsup{\mathcal{P}}{k}{}\mathrm{ into batches of size B)
for each local epoch }i\mathrm{ from 1 to }E\mathrm{ do
for each local epoch }i\mathrm{ from 1 to }E\mathrm{ do
for batch }b\in\mathcal{B}\mathrm{ do
for batch }b\in\mathcal{B}\mathrm{ do
w\leftarroww-\eta\nabla\ell(w;b)
w\leftarroww-\eta\nabla\ell(w;b)
return w to server

```
    return w to server
```

1. At first, a model is randomly initialized on the central server.
2. For each round t :
i. A random set of clients are chosen;
ii. Each client performs local gradient descent steps;
iii. The server aggregates model parameters submitted by the clients.

Study Population

Adults
hospitalized with laboratory-confirmed COVID-19

Study Locations

5 hospitals in New York City

Primary Outcome
Mortality within 7 days of admission

Models

Local
 Local data from each hospital individually trained

Pooled

All individual hospital data aggregated for training

Federated
Central aggregator with only model parameters shared between hospitals

Classifiers

LASSO
(Least absolute shrinkage and selection operator)

MLP (Multilayer perceptron)

Learning Framework Comparisons

Model performance across 5 hospitals: AUC-ROC* ($95 \% \mathrm{Cl}$) values

	LASSO	MLP
Local	0.666	0.766
$(0.662-0.671)$	$(0.763-0.769)$	
Pooled	0.792	0.798
	$(0.790-0.794)$	$(0.796-0.800)$
Federated	0.766	0.810
	$(0.763-0.768)$	$(0.808-0.812)$

*Area under the receiver operating characteristic curve

Summary: Federated model classifiers outperform locally trained classifiers in predicting mortality among hospitalized patients with COVID-19.

 Bicak, Eyal Klang, Young Joon Kwon, Anthony Costa, Shan Zhao, Riccardo Miotto, Alexander W Charney, Erwin Böttinger, Zahi A Fayad, Girish N Nadkarni, Fei Wang, Benjamin S Glicksberg. "Federated learning of electronic health records to improve mortality prediction in hospitalized patients with COVID-19: Machine learning approach." JMIR medical informatics 9, no. 1 (2021): e24207.| Characteristic | Mount Sinai
 Brooklyn | Mount Sinai Hospital | Mount Sinai Morningside | Mount Sinai Queens | Mount Sinai West | P value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of patients, n | 611 | 1644 | 749 | 540 | 485 | b |
| Gender, n (\%) | | | | | | |
| Male | 338 (55.3) | 951 (57.8) | 411 (54.9) | 344 (63.7) | 257 (53.0) | . 004 |
| Female | 273 (44.7) | 693 (42.2) | 338 (45.1) | 196 (36.3) | 228 (47.0) | . 004 |
| Age (years), median (IQR) | 72.5 (63.6-82.7) | 63.3 (51.3-73.2) | 69.8 (57.4-80.3) | $\begin{aligned} & 68.1 \text { (57.1- } \\ & 78.8) \end{aligned}$ | 66.3 (52.5-77.6) | <. 001 |
| Ethnicity, n (\%) | | | | | | |
| Hispanic | 21 (3.4) | 460 (28.0) | 259 (34.6) | 198 (36.7) | 111 (22.9) | <. 001 |
| Non-Hispanic | 416 (68.1) | 892 (54.3) | 452 (60.3) | 287 (53.1) | 349 (72.0) | <. 001 |
| Unknown | 174 (28.5) | 292 (17.8) | 38 (5.1) | 55 (10.2) | 25 (5.2) | <. 001 |
| Race, n (\%) | | | | | | |
| Asian | 13 (2.1) | 83 (5.0) | 16 (2.1) | 56 (10.4) | 27 (5.6) | <. 001 |
| Black/African American | 323 (52.9) | 388 (23.6) | 266 (35.5) | 64 (11.9) | 109 (22.5) | <. 001 |
| Other | 54 (8.8) | 705 (42.9) | 343 (45.8) | 288 (53.3) | 164 (33.8) | <. 001 |
| Unknown | 27 (4.4) | 87 (5.3) | 25 (3.3) | 14 (2.6) | 14 (2.9) | <. 001 |
| White | 194 (31.8) | 381 (23.2) | 99 (13.2) | 118 (21.9) | 171 (35.3) | <. 001 |

Model	Mount Sinai Brooklyn (n=611), AUROC (95\% CI)	Mount Sinai Hospital ($\mathrm{n}=1644$), AUROC (95% CI)	Mount Sinai Morningside ($\mathrm{n}=749$), AUROC ($95 \% \mathrm{CI}$)	Mount Sinai Queens $\begin{aligned} & (\mathrm{n}=540), \mathrm{AU}- \\ & \text { ROC }(95 \% \mathrm{CI}) \end{aligned}$	Mount Sinai West ($\mathrm{n}=485$), AUROC (95\% CI)
LASSO model					
Local	$\begin{aligned} & 0.791(0.788- \\ & 0.795) \end{aligned}$	0.693 (0.689-0.696)	0.66 (0.656-0.664)	$\begin{aligned} & 0.706 \text { (} 0.702- \\ & 0.710) \end{aligned}$	$\begin{aligned} & 0.482(0.473- \\ & 0.491) \end{aligned}$
Pooled	$\begin{aligned} & 0.816(0.814- \\ & 0.819) \end{aligned}$	0.791 (0.788-0.794)	0.789 (0.785-0.792)	$\begin{aligned} & 0.734 \text { (} 0.730- \\ & 0.737) \end{aligned}$	$\begin{aligned} & 0.829(0.824- \\ & 0.834) \end{aligned}$
Federated	$\begin{aligned} & 0.793(0.790- \\ & 0.796) \end{aligned}$	0.772 (0.769-0.774)	0.767 (0.764-0.771)	$\begin{aligned} & 0.694 \text { (} 0.690- \\ & 0.698) \end{aligned}$	$\begin{aligned} & 0.801(0.796- \\ & 0.807) \end{aligned}$
MLP model					
Local	$\begin{aligned} & 0.822(0.820- \\ & 0.825) \end{aligned}$	0.750 (0.747-0.754)	0.747 (0.743-0.751)	$\begin{aligned} & 0.791 \text { (} 0.788 \text { - } \\ & 0.795) \end{aligned}$	$\begin{aligned} & 0.719(0.711- \\ & 0.727) \end{aligned}$
Pooled	$\begin{aligned} & 0.823(0.820- \\ & 0.826) \end{aligned}$	0.792 (0.789-0.795)	0.751 (0.747-0.755)	$\begin{aligned} & 0.783 \text { (} 0.779 \text { - } \\ & 0.786) \end{aligned}$	$\begin{aligned} & 0.842(0.837- \\ & 0.847) \end{aligned}$
Federated (no noise	$\begin{aligned} & 0.829(0.826- \\ & 0.832) \end{aligned}$	0.786 (0.782-0.789)	0.791 (0.788-0.795)	$\begin{aligned} & 0.809 \text { (} 0.806- \\ & 0.812) \end{aligned}$	0.836 (0.83-0.841)

$\cdots \cdots$ LASSO $_{\text {local }}$
ーーー LASSO $_{\text {pooled }}$

- LASSO $_{\text {federated }}$
\cdots MLP $_{\text {local }}$
--- MLP $_{\text {pooled }}$
- MLP $_{\text {federated }}$

Jaladanki，Suraj K．，Akhil Vaid，Ashwin S．Sawant，Jie Xu，Kush Shah， Sergio Dellepiane，Ishan Paranjpe，Lili Chan，Alexander W Charney， Fei Wang，Benjamin S Glicksberg，Karandeep Singh，Girish N Nadkarn＂Development of a federated learning approach to predict acute kidney injury in adult hospitalized patients with COVID－19 in New York City．＂medRxiv（2021）．
AKI_{3} Cross Site ROC Curves

AKI_{3} MSW ROC Curves

AKI ${ }_{7}$ MSW ROC Curves

naturemedicine

Explore content \checkmark About the journal \checkmark
Publish with us \checkmark

$\underline{\text { nature }}>$ nature medicine $>$ articles $>$ article

Article Published: 15 September 2021

Federated learning for predicting clinical outcomes in patients with COVID-19

Ittai Dayan, Holger R. Roth, ... Quanzheng Li + Show authors

Nature Medicine 27, 1735-1743 (2021) | Cite this article
34k Accesses $\mid \mathbf{9}$ Citations $\mid \mathbf{4 6 8}$ Altmetric \mid Metrics

Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while maintaining data anonymity, thus removing many barriers to data sharing. Here we used data from 20 institutes across the globe to train a FL model, called EXAM (electronic medical record (EMR) chest X-ray AI model), that predicts the future oxygen requirements of symptomatic patients with COVID-19 using inputs of vital signs, laboratory data and chest X-rays. EXAM achieved an average area under the curve (AUC) >0.92 for predicting outcomes at 24 and 72 h from the time of initial presentation to the emergency room, and it provided 16% improvement in average AUC measured across all participating sites and an average increase in generalizability of 38% when compared with models trained at a single site using that site's data. For prediction of mechanical ventilation treatment or death at 24 h at the largest independent test site, EXAM achieved a sensitivity of 0.950 and specificity of 0.882 . In this study, FL facilitated rapid data science collaboration without data exchange and generated a model that generalized across heterogeneous, unharmonized datasets for prediction of clinical outcomes in patients with COVID-19, setting the stage for the broader use of FL in healthcare.

Data Types and Model Architecture

Category	Subcategory	Component name	Definition	Units	LOINC code
Demographic	-	Patient age	-	Years	30525-0
Imaging	Portable CXR	-	AP or PA portable CXR	-	36554-4
Lab value	C-reactive protein	C-reactive protein	Blood c-reactive protein concentration	mg^{-1}	1988-5
Lab value	Complete blood count (CBC)	Neutrophils	Blood absolute neutrophils	$10^{9} \mathrm{l}^{-1}$	751-8
Lab value	CBC	White blood cells	Blood white blood cell count	$10^{9} \mathrm{l}^{-1}$	33256-9
Lab value	D-dimer	D-dimer	Blood D-dimer concentration	ng mil	7799-0
Lab value	Lactate	Lactate	Blood lactate concentration	mmol ${ }^{-1}$	2524-7
Lab value	Lactate dehydrogenase	LDH	Blood LDH concentration	Ul^{-1}	2532-0
Lab value	Metabolic panel	Creatinine	Blood creatinine concentration	$\mathrm{mg} \mathrm{di}^{-1}$	2160-0
Lab value	Procalcitonin	Procalcitonin	Blood procalcitonin concentration	ng mil	33959-8
Lab value	Metabolic panel	eGFR	Estimated glomerular filtration rate	$\mathrm{ml} \mathrm{min}^{-1} 1.73 \mathrm{~m}^{-2}$	69405-9
Lab value	Troponin	Troponin-T	Blood troponin concentration	$\mathrm{ng} \mathrm{mi}{ }^{-1}$	67151-1
Lab value	Hepatic panel	AST	Blood aspartate aminotransferase concentration	\| l^{-1}	1920-8
Lab value	Metabolic panel	Glucose	Blood glucose concentration	$\mathrm{mg} \mathrm{di}{ }^{-1}$	2345-7
Vital sign	-	Oxygen saturation	Oxygen saturation	\%	59408-5
Vital sign	-	Systolic blood pressure	Systolic BP	mmHg	8480-6
Vital sign	-	Diastolic blood pressure	Diastolic BP	mmHg	8462-4
Vital sign	-	Respiratory rate	Respiratory rate	Breaths min ${ }^{-1}$	9279-1
Vital sign		COVID PCR test	PCR for RNA (not used as input to model)		95425-5
Vital sign	Oxygen device used in ED	Oxygen device	Ventilation, high-flow/NIV, low-flow, room air	-	41925-9
Outcome	24-h oxygen device	Oxygen device	Ventilation, high-flow/NIV, low-flow, room air	-	41925-9
Outcome	72-h oxygen device	Oxygen device	Ventilation, high-flow/NIV, low-flow, room air	-	41925-9
Outcome	Death	-	-	-	-
Outcome	Time of death	-	-	Hours	-

Model Performance

Client	1	2	3	4	5	6	7	8	9	10	11	13	15	16	17	18	19	20	Av.
Local	0.910	0.892	0.731	0.869	0.848	0.716	0.916	0.887	0.816	0.803	0.702	0.805	0.722	0.812	0.755	0.698	0.889	0.542	0.795
FL (gl. best)	0.938	0.902	0.912	0.929	0.950	0.857	1.000	0.961	0.849	0.935	0.950	0.925	0.979	0.839	0.806	0.958	1.000	0.875	0.920

Decentralized Optimization

(b) Decentralized Topology

(a) ResNet-20, 7GPU, 10Mbps

(b) ResNet-20, 7GPU, 5ms

```
Algorithm 1 Decentralized Parallel Stochastic Gradient Descent (D-PSGD) on the \(i\) th node
Require: initial point \(x_{0, i}=x_{0}\), step length \(\gamma\), weight matrix \(W\), and number of iterations \(K\)
    : for \(k=0,1,2, \ldots, K-1\) do
            Randomly sample \(\xi_{k, i}\) from local data of the \(i\)-th node
            Compute a local stochastic gradient based on \(\xi_{k, i}\) and current optimization variable \(x_{k, i}: \nabla F_{i}\left(x_{k, i} ; \xi_{k, i}\right)^{a}\)
            Compute the neighborhood weighted average by fetching optimization variables from neighbors: \(x_{k+\frac{1}{2}, i}=\)
    \(\sum_{j=1}^{n} W_{i j} x_{k, j}{ }^{b}\)
            Update the local optimization variable \(x_{k+1, i} \leftarrow x_{k+\frac{1}{2}, i}-\gamma \nabla F_{i}\left(x_{k, i} ; \xi_{k, i}\right)^{c}\)
6: end for
7: Output: \(\frac{1}{n} \sum_{i=1}^{n} x_{K, i}{ }^{d}\)
```

[^2]
Algorithm 1 AD-PSGD (logical view)

Require: Initialize local models $\left\{x_{0}^{i}\right\}_{i=1}^{n}$ with the same initialization, learning rate γ, batch size M, and total number of iterations K.
for $k=0,1, \ldots, K-1$ do
Randomly sample a worker i_{k} of the graph G and randomly sample an averaging matrix W_{k} which can be dependent on i_{k}.
3: Randomly sample a batch

$$
\xi_{k}^{i_{k}}:=\left(\xi_{k, 1}^{i_{k}}, \xi_{k, 2}^{i_{k}}, \ldots, \xi_{k, M}^{i_{k}}\right)
$$

from local data of the i_{k}-th worker.
Compute the stochastic gradient locally

$$
g_{k}\left(\hat{x}_{k}^{i_{k}} ; \xi_{k}^{i_{k}}\right):=\sum_{j=1}^{M} \nabla F\left(\hat{x}_{k}^{i_{k}} ; \xi_{k, j}^{i_{k}}\right)
$$

5: \quad Average local models by ${ }^{a}$

$$
\left[x_{k+1 / 2}^{1}, x_{k+1 / 2}^{2}, \ldots, x_{k+1 / 2}^{n}\right] \leftarrow\left[x_{k}^{1}, x_{k}^{2}, \ldots, x_{k}^{n}\right] W_{k}
$$

6: Update the local model

$$
\begin{gathered}
x_{k+1}^{i_{k}} \leftarrow x_{k+1 / 2}^{i_{k}}-\gamma g_{k}\left(\hat{x}_{k}^{i_{k}} ; \xi_{k}^{i_{k}}\right) \\
x_{k+1}^{j} \leftarrow x_{k+1 / 2}^{j}, \forall j \neq i_{k}
\end{gathered}
$$

end for
: Output the average of the models on all workers for inference.
${ }^{a}$ Note that Line 4 and Line 5 can run in parallel.
(a) VGG loss 100Gbit/s

(c) ResNet loss 100Gbit/s

(b) VGG loss 10Gbit/s

(d) ResNet loss 10Gbit/s

Lian, Xiangru, Wei Zhang, Ce Zhang, and Ji Liu. "Asynchronous decentralized parallel stochastic gradient descent." In International Conference on Machine Learning, pp. 3043-3052. PMLR, 2018.

1: Initialization: Initialize all local models $\left\{\mathbf{w}_{k}^{0}\right\}_{k=1}^{K} \in \mathbb{R}^{d}$ with \mathbf{w}^{0}, learning rate η, batch size B, privacy budget (ϵ, δ), and total number of iterations T.
2: Output: (ϵ, δ)-differentially private local models.
3: $\mathfrak{f o r}\langle t=0,1, \ldots, T-1>$ do
4: \quad Randomly sample a worker k^{t} of the graph G and randomly sample an doubly stochastic averaging matrix $\mathbf{A}_{t} \in \mathbb{R}^{K \times K}$ dependent on k^{t};
5:
Randomly sample a batch $\xi_{k^{t}}^{t} \quad:=$ $\left(\xi_{k^{t}}^{t, 1}, \xi_{k^{t}}^{t, 2}, \ldots, \xi_{k^{t}}^{t, B}\right) \in \mathbb{R}^{d \times B}$ from local data of the k^{t}-th worker with the sampling probability $\frac{B}{n_{k} t}$;
6: \quad Compute stochastic gradient $g^{t}\left(\hat{\mathbf{w}}_{k^{t}}^{t} ; \xi_{k^{t}}^{t}\right)$ locally

$$
\begin{equation*}
g^{t}\left(\hat{\mathbf{w}}_{k^{t}}^{t} ; \xi_{k^{t}}^{t}\right):=\sum_{i=1}^{B} \nabla F_{k^{t}}\left(\hat{\mathbf{w}}_{k^{t}}^{t} ; \xi_{k^{t}}^{t, i}\right) \tag{12}
\end{equation*}
$$

7: Add noise

$$
\tilde{g}^{t}\left(\hat{\mathbf{w}}_{k^{t}}^{t} ; \xi_{k^{t}}^{t}\right)=g^{t}\left(\hat{\mathbf{w}}_{k^{t}}^{t} ; \xi_{k^{t}}^{t}\right)+\mathbf{n},
$$

where $\mathbf{n} \in \mathbb{R}^{d} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}\right)$ and σ is defined in Theorem 1.
8: Average local models by

$$
\begin{equation*}
\left[\mathbf{w}_{1}^{t+1 / 2}, \mathbf{w}_{2}^{t+1 / 2}, \ldots, \mathbf{w}_{K}^{t+1 / 2}\right] \leftarrow\left[\mathbf{w}_{1}^{t}, \mathbf{w}_{2}^{t}, \ldots, \mathbf{w}_{K}^{t}\right] \mathbf{A}_{t} ; \tag{13}
\end{equation*}
$$

9: Update the local model:

$$
\begin{aligned}
& \mathbf{w}_{k^{t}}^{t+1} \leftarrow \mathbf{w}_{k^{t}}^{t+1 / 2}-\eta \tilde{g}^{t}\left(\hat{\mathbf{w}}_{k^{t}}^{t} ; \xi_{k^{t}}^{t}\right), \\
& \mathbf{w}_{j}^{t+1} \leftarrow \mathbf{w}_{j}^{t+1 / 2}, \forall j \neq k^{t} .
\end{aligned}
$$

Xu, Jie, Wei Zhang, and Fei Wang. "A (DP) \$^ $2 \$$ SGD: Asynchronous Decentralized Parallel Stochastic Gradient Descent with Differential Privacy." IEEE TPAMI To Appear (2021).

Warnat-Herresthal, Stefanie, Hartmut Schultze, Krishnaprasad Lingadahalli Shastry, Sathyanarayanan Manamohan, Saikat Mukherjee, Vishesh Garg, Ravi Sarveswara et al. "Swarm Learning for decentralized and confidential clinical machine learning." Nature 594, no. 7862 (2021): 265-270.

Learning to Collaborate

(a) Benefit Graph

(b) Finding stable coalition

(c) Re-build Benefit Graph

(d) Collaboration Equilibrium

```
Algorithm 1: Achieving collaboration equilibrium
Input: \(N\) institutions \(\boldsymbol{I}=\left\{I^{i}\right\}_{i=1}^{N}\) seeking collaborating with others
Set original client set \(C \leftarrow \boldsymbol{I}\);
Set collaboration strategy \(S \leftarrow \emptyset\);
while \(C \neq \emptyset\) do
    forall client \(I^{i} \in C\) do
        Determine the OCS of \(I^{i}\) by SPO;
    Construct the benefit graph \(B G(C)\);
    Search for all strongly connected components \(\left\{C^{1}, C^{2}, \ldots C^{k}\right\}\) of \(B G(C)\) using Tarjan
    algorithm;
    forall \(i=1,2,3, \ldots k\) do
        if \(C^{i}\) is stable coalition then
            \(C \leftarrow C \backslash C^{i}\)
            \(S \leftarrow S \cup\left\{C^{i}\right\} ;\)
```


Sen Cui, Jian Liang, Weishen Pan, Kun Chen, Changshui Zhang, Fei Wang. Learning to Collaborate. https://arxiv.org/abs/2108.07926 2021.

Model Bias

SHARE RESEARCH ARTICLE

Dissecting racial bias in an algorithm used to manage the health of populations
 Ziad Obermeyer ${ }^{1,2,{ }^{*}}$, Brian Powers ${ }^{3}$, Christine Vogeli ${ }^{4}$, Sendhil Mullainathan ${ }^{5, *}, \downarrow$ + See all authors and affiliations
 Science 25 Oct 2019:
 Vol. 366, Issue 6464, pp. 447-453
 DOI: 10.1126/science.aax2342

Health systems rely on commercial prediction algorithms to identify and help patients with complex health needs. We show that a widely used algorithm, typical of this industry-wide approach and affecting millions of patients, exhibits significant racial bias: At a given risk score, Black patients are considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses. Remedying this disparity would increase the percentage of Black patients receiving additional help from 17.7 to 46.5%. The bias arises because the algorithm predicts health care costs rather than illness, but unequal access to care means that we spend less money caring for Black patients than for White patients. Thus, despite health care cost appearing to be an effective proxy for health by some measures of predictive accuracy, large racial biases arise. We suggest that the choice of convenient, seemingly effective proxies for ground truth can be an important source of algorithmic bias in many contexts.

Federated Fairness

Definition 1 (Multi-client fairness (MCF)). A learned model h achieves multi-client fairness if h meets the following condition:

$$
\begin{equation*}
\Delta \operatorname{Dis}_{k}(h)-\epsilon_{k} \leq 0 \quad \forall k \in\{1, ., N\} \tag{1}
\end{equation*}
$$

where $\Delta D i s_{k}(h)$ denotes the disparity induced by the model h and ϵ_{k} is the given fairness budget of the k-th client. The disparity on the k-th client $\Delta D i s_{k}$ can be measured by demographic parity (DP) [8] and Equal Opportunity (EO) [9] as follows:

$$
\begin{align*}
& \Delta D P_{k}=\left|P\left(\hat{Y}^{k}=1 \mid A^{k}=0\right)-P\left(\hat{Y}^{k}=1 \mid A^{k}=1\right)\right| \tag{2}\\
& \Delta E O_{k}=\left|P\left(\hat{Y}^{k}=1 \mid A^{k}=0, Y^{k}=1\right)-P\left(\hat{Y}^{k}=1 \mid A^{k}=1, Y^{k}=1\right)\right|
\end{align*}
$$

$$
\min _{h \in \mathcal{H}}\left[l_{1}(h), l_{2}(h), \ldots l_{N}(h)\right] \quad \text { s.t. } g_{k}(h)-\epsilon_{k} \leq 0 \quad \forall k \in\{1, ., N\}
$$

Conclusions

- Clinical problems are typically complicated with limited sample size. Clinical data are sensitive. All these make federated learning important.
- Data standardization/harmonization is important before federated learning can be applied.
- To further protect the privacy, differential privacy/block chain techniques could be helpful.
- Incentives/benefits are important to consider for participating in federated learning.
- In addition to model accuracy, model fairness could be important as well.

Thark Yau!

[^0]: Abbreviation: COVID-19, coronavirus disease 2019.

[^1]: https://ohdsi.github.io/TheBookOfOhdsi/CommonDataModel.html

[^2]: Lian, Xiangru, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. "Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent." Advances in Neural Information Processing Systems 30 (2017).

