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How do we define disease & disease
subtypes?

My diseases are an asthma and
a dropsy and, what is less
curable, seventy-five.

~ Samuel Johnson

 What is “dropsy”?

— “water sickness”, “swelling”, “edema”

— disease that got Grandma to take to her bed permanently in Victorian
dramas

— causes: COPD, CHF, CKD, ...
— Last recorded on a death certificate ~1949

* |Is “asthma” equally non-specific?



The top ten causes of death recorded in the
Leeds General Cemetery burial records (19th c.)

Unknown
Stillborn
Bronchitis
Consumption
Convulsions
Pneumonia
Inflammation
Diarrhoea
Dropsy
Natural Decay

https://livingwithdying.leeds.ac.uk/2017/08/09/top-ten-ways-to-die-in-victorian-britain/



Today’s lecture

- Disease subtyping
- Of breast cancer, using gene expression
- Of asthma, using clinical data

- Disease progression modeling



Early Efforts to Characterize Disease Subtypes
using Gene Expression Microarrays

e’ & & Clustered Breast Carcinoma
Biopsy Specimens

mRNAﬁLg‘é %,*@%3/ Hilll“l””
L\‘ ErbB2
cDNA = éj’}/
L=

\'/ b Y Clustered Genes

>

Cluster samples by nearness in gene

Schematic representation of a DNA expression space, genes by expression
microarray hybridization comparing similarity across samples (bi-clustering)
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DNA microarray

(This small sample of array data was
copied from a much larger data set)

These days, we would use RNA-seq Notice how all five different cDNA clones
specific for ERBB2 cluster tightly together

Alizadeh et al., Towards a novel classification of human malignancies based on gene expression patterns, J Pathol 2001.



Cluster analysis on 65 breast carcinoma samples
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The branching pattern of the dendrogram identifies four groups of breast tumors
e luminal-epithelial/ ER+ § stlit i +vo

e ERBB2 and other associated genes

e normal breast

* high-level expression of two clusters of genes that are characteristic of normal
breast basal epithelial cells

... found to be statistically significantly associated with differences in overall
patient survival and relapse-free survival

Serlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor
subclasses with clinical implications. PNAS, 98(19), 10869-10874. http://doi.org/10.1073/pnas.191367098



Survival of Different Subgroups of Breast
Cancer Patients

With a different breast cancer cohort of 49 patients treated
uniformly in a prospective study, observe differences in survival
across the 5 newly-characterized tumor subtypes:

Overall survival Relapse-free survival
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Serlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor
subclasses with clinical implications. PNAS, 98(19), 10869—-10874. http://doi.org/10.1073/pnas.191367098



Today’s lecture

- Disease subtyping
- Of breast cancer, using gene expression
- Of asthma, using clinical data

- Disease progression modeling



Asthma: the problem

* 5to 10% of people with severe asthma remain
poorly controlled despite maximal inhaled
therapy

[Holgate ST, Polosa R. The mechanisms, diagnosis,

and management of severe asthma in adults. Lancet.
2006; 368:780-793]

[whatasthmais.com]



Asthma: the question

“It is now recognised that there are distinct asthma phenotypes and that
distinct therapeutic approaches may only impinge on some aspects of the
disease process within each subgroup”

 What are the processes (genetic or environmental) that underlie different
subtypes of asthma?

 Which aspects of airway remodelling are important in disease subtypes?

 What are the best biomarkers of disease progression or treatment
response?

 Why are some patients less responsive to conventional therapies than
others?

[Adcock et al., “New targets for drug development in asthma”. The Lancet, 2008]
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Treatment decisions in asthma are based on assessments of symptoms and simple measures of lung function, which do not relate
closely to underlying eosinophilic airway inflammation. We aimed to assess whether a management strategy that minimises
eosinophilic inflammation reduces asthma exacerbations compared with a standard management strategy.

Methods

We recruited 74 patients with moderate to severe asthma from hospital clinics and randomly allocated them to management either
by standard British Thoracic Society asthma guidelines (BTS management group) or by normalisation of the induced sputum
eosinophil count and reduction of symptoms (sputum management group). We assessed patients nine times over 12 months. The
results were used to manage those in the sputum management group, but were not disclosed in the BTS group. The primary
outcomes were the number of severe exacerbations and control of eosinophilic inflammation, measured by induced sputum
eosinophil count. Analyses were by intention to treat.

Findings

The sputum eosinophil count was 63% (95% CI 24-100) lower over 12 months in the sputum management group than in the BTS
management group (p=0-002). Patients in the sputum management group had significantly fewer severe asthma exacerbations than
did patients in the BTS management group (35 vs 109; p=0-01) and significantly fewer patients were admitted to hospital with
asthma (one vs six, p=0-047). The average daily dose of inhaled or oral corticosteroids did ngt differ between the two groups.

Interpretation

Atreatment strategy directed at normalisation of the induced sputum eosinophil count reduces asthma exacerbations and
admissions without the need for additional anti-inflammatory treatment.



Might there be heterogeneous treatment
effects?

74 patients, 2 treatments (A vs B), outcome Y (corticosteroid therapy)

Using what we learned about causal inference — how can we characterize
which patients to use treatment A vs B with?



K-Means

* An iterative clustering
algorithm

— Initialize: Pick K random
points as cluster centers

— Alternate:

1. Assign data points to
closest cluster center

2. Change the cluster
center to the average
of its assigned points

— Stop when no points’
assignments change



K-means clustering: Example

* Pick K random
points as cluster
centers (means)

Shown here for K=2



K-means clustering: Example

lterative Step 1

* Assign data points to
closest cluster center




K-means clustering: Example

lterative Step 2

| « Change the cluster

center to the average of
the assigned points



K-means clustering: Example

* Repeat until
convergence




Discovering subtypes from data

Monitoring inflammation
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Monitoring inflammation allows
targeted corticosteroids to lower
exacerbation frequency.

Discordant
Inflammation

INFLAMMATION PREDOMINANT
Late onset, greater proportion of males.
Few daily symptoms but active eosinophilic
inflammation.

>
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= Eosinophilic Inflammation =™

[Haldar et al., Am J Respir Crit Care Med, 2008]



The data

All patients had physician diagnosis of asthma and at least one
recent prescription for asthma therapy

All were current nonsmokers

Data set #1: 184 patients recruited from primary-care
practices in the UK

Data set #2: 187 patients from refractory asthma clinic in the
UK

Data set #3: 68 patients from 12 month clinical study (RCT)
Features: z scores for continuous variables, 0/1 for categorical

— Some of the continuous variables log-transformed to approximate a
normal distribution

[Haldar et al., Am J Respir Crit Care Med, 2008]



Comparison of Baseline Characteristics in the three Asthma Populations

Primary Care Secondary Care Longitudinal Cohort
Variable (n=184) (n=187) (n=68)
Sex, % female 544 65.8 47.1
Age, yr (SD) 492 (13.9) 434 (15.9) 52.4(14.6)
Age of onset, yr (SD) 24.7 (19) 203 (18.4) 31.1 (23.7)
Atopic status, % positive 72.8 73.8 574
Body mass index, kg/m? (SD) 275(54) 28.5(6.5) 28.0(5.9)
PCy methacholinef, mg/ml 1.04 (1.13) f 0.67 (0.68)
Peak flow variability, amp % mean 17 (0.38) 32.2(0.48) 13.8 (0.29)
FEV, change with bronchodilator, % 1.63 (1.16) 12.8 (0.41) 3.2 (1.04)
Post-bronchodilator FEV, % predicted 914 (21) 82.1 (21.1) 80.2 (20.6)
Sputum eosinophil count, % 1.32 (0.62) 2.9(0.99) 2.4 (0.81)
FENOi’ ppb 31.6 (0.33) 43 (0.32) 432 (0.64)$
Sputum neutrophil count, % 55.09 (0.31) 46.7 (0.32) 41.1 (0.35)
Modified JACS§ (SD) 1.36 (0.74) 202 (1.16) 1.42 (1.26)
Dose of inhaled corticosteroid, BDP equivalent/ug (SD) 632 (579) 1,018 (539) 1,821 (1,239)
Long-acting bronchodilator use, % 40.2 93 86.7

Definition of abbreviations: amp = amplitude; BDP = beclomethasone dipropionate; JACS = Juniper Asthma Control Score

[Haldar et al., Am J Respir Crit Care Med, 2008]



Clusters in
primary
care

(found by
K-means)

Cluster 1 Cluster 2 Cluster 3
Early-Onset Obese ..
Primary Care  Atopic Asthma Noneosinophilic Benign Asthma Slgnlﬁcanie
Variable (n=184) (n=61) }y_——Q (n=96) (P Value)
SexT, % female 54.4 459 81.5 52.1 0.006
Age, yr (SD) 49.2 (13.9) 44 4 53.9 (14) 50.8 (13) 0.003
Age of onsetf, yr (SD) 24.7 (19) @ 35.3(19.6) 28.2 (18.3) <0.001
Atopic status , % positive 72.8 95.1 519 64.6 <0.001
Body mass indexT, kg/m? (SD) 275(54) 26.1 (3.8) @ 26 (3.6) <0.001
PCy methacholineﬁ, mg/ml 1.04 (1.13) 0.12 (0.86) 1.60 (0.93) 6.39 (0.75) <0.001
PC,y >8 mg/ml, n (%) 64 (34.7) 2(3.3) 6(22.2) 56 (58.3) <0.001
Peak flow Variabilityfi ,amp % mean 17 (0.38) 20 (0.47) 21.9(0.32) 14.8 (0.32) 0.039
FEV, change with bronchodilatori, % 1.63 (1.16) 4.5(091) 1.82 (1.16) 0.83 (1.22) <0.001
Post-bronchodilator FEV |, % predicted 91.4 (21) 86.9 (20.7) 91.5(214) 94.2 (20.7) 0.107
Sputum eosinophil countﬁ % 1.32 (0.62) 3.75(0.64) 1.55(0.51) 0.65 (0.44) <0.001
FENOi§ ,ppb 31.6 (0.33) 57.5(0.27) 25.8 (0.29) 22.8 (0.27) <0.001
Sputum neutrophil Coumi % 55.09 (0.31) 45.87 (0.24) 72.71(0.13) 57.56 (0.36) 0.038
Modified JACS7L (SD) 1.36 (0.74) 1.54 (0.58) 2.06 (0.73) 1.04 (0.66) <0.001
Dose of inhaled corticosteroid, BDP
equivalent/ug (SD) 632 (579) 548 (559) 746 (611) 653 (581) 0.202
Long-acting bronchodilator use, % 40.2 344 48.2 41.7 0.442
Previous hospital admi.ssion or emergency 0.60 (1.57) @ 026 020 0037
attendance, no. per patient
Previous outpatient attendance, % attended 15% 2 19% 6% 0.121
Severe asthma exacerbations (requiring oral 4 55 (4 g4) .86 (0.32) 107 (0.32) 39(0.18 0.002

corticosteroids) in past 12 mo, no. per patient




Clusters in

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Secondary Obese, Early Symptom Inflammation A
Secon d d ry care Care Early Onset, Atopic Noneosinophilic Predominant Predominant Slgmfican;e

Variable (n=187) (n=74) (n=23) (n=22) (n=68) (P Value)
Sex . % female 65.8 Resembled clusters from 682 47.1 <0.001
Age, yr (SD) 434 (159) primary care —i.e., these 355 (15.5) 50.6 (15.1) <0.001

1 20.3 (18.4) dre common across 12.6 (15) 32.6 (19.1) 0.001
A f t', SD - o . . . . <0U.

ge ofonset ., yr (5D) spectrum of severity
Atopic statusf, % positive 738 81.8 63.2 0.024
Objective measures of
Body mass index . kg/m? (SD) 28.5 (6.5) ) J _ 23.6 (3.1) 27 (39) <0.001
disease severity show
Peak flow variabilityi, amp % 322 (0.48) more advanced disease 24.2 (0.65) 27.6 (0.36) 0.002
mean
FEV; change with
7+ 12.8 (0.41) 24.5(0.31) 9.3(0.35) 4.5(0.33) 9.8 (0.34) <0.001

bronchodilator® , %
Post-bronchodilator FEV1{, %
predicted (SD) 82.1 (21.1) 79.0 (21.9) 79.0 (18.5) 79.5 (26.1) 87.2 (18.5) 0.093
Sputum eosinophil count’ ., % 29(0.99) 42(0.76) 1.3 (1.01) 0.1(0.9) 8.4 (0.64) <0.001
FENO;L § , ppb 43 (0.32) 51.2 (0.36) 24.2 (0.27) 22.6 (0.30) 53.1(0.32) <0.001
Sputum neutrophil count, % 46.7 (0.32) 45.4 (0.39) 49.3 (0.22) 51.3(0.23) 45.9 (0.29) 0.892
Modified JACS | (SD) 2.02 (1.16) 2.63 (0.93) 2.37 (1.09) 2.11 (1.11) 121 (0.95) <0.001
ggsff gg&fvﬁlﬁ /;‘gt(iggs)ter‘)id’ 1,018 (539) 1,168 (578) 1,045 (590) 809 (396) 914 (479) 0.008
Long-acting bronchodilator use, 93.0 91.9 95.4 90.9 94.1 0.999

%



ldentifying heterogeneous treatment effects
from the RCT

 Now we use the 3" dataset — 68 patients over 12
months

e Randomized control trial with two arms:
— Standard clinical care (“clinical”)

— Regular monitoring of airway inflammation using induced
sputum, to titrate steroid therapy to maintain normal
eosinophil counts (“sputum”)

e Original study found no difference in corticosteroid
usage

— But, this could have been explained by heterogeneity in
treatment response!

[Haldar et al., Am J Respir Crit Care Med, 2008]



Patients in different clusters respond differently to treatment!
(analysis using 37 dataset from 12 month study)

Treatment strategy

Cluster .
Clinical Sputum -
(found using baseline data) Outcomes (n = 10) (n=8) Significance
1: Obese female A Inhaled corticosteroid dose /pg per day (SEM) —400 (328) —462 (271) 0.89
Severe exacerbation frequency over 12 mo (SEM) 1.40 (0.78) 1.50 (0.80) 0.93
Number commenced on oral corticosteroids 2 1 0.59
Clinical (n=15) Sputum (n = 24)
2: Inflammation predominant A Inhaled corticosteroid dose >I‘/Mg per day (SEM) +753 (334) +241 (233) 0.22
Severe exacerbation frequency over 12 mo (SEM) 3.53 (1.18) 0.38 (0.13) 0.002
Number commenced on oral corticosteroids 2 9 0.17
Clinical (n =7) Sputum (n = 4)
3: Early symptom predominant A Inhaled corticosteroid dose /g per day (SEM) +1,429 (429) —400 (469) 0.022
Severe exacerbation frequency over 12 mo (SEM) 5.43 (1.90) 2.50 (0.87) 0.198
Number commenced on oral corticosteroids 6 0 Undefined

[Haldar et al., Am J Respir Crit Care Med, 2008]



Today’s lecture

- Disease subtyping
- Of breast cancer, using gene expression
- Of asthma, using clinical data

- Disease progression modeling Disease burden

Undiagnosed - --_
condition _ -~

-~

_ Time

\h_

-———_’

Where is a patient in their disease trajectory?
When will the disease progress?
How will treatment affect disease progression?



Goals of disease progression
modeling

* Descriptive:

— Find markers of disease stage and progression,
statistics of what to expect when

* Predictive:
— What will this patient’s future trajectory look like?
— How will treatment affect it?

* Key challenges:

— Seldom directly observe disease stage, but rather only
indirect observations (e.g. symptoms, lab results)

— Data can be censored — don’t observe beginning to end



Example: learning 10-year
progression of COPD

e 2-4 years of data for each patient
* High-dimensional, with lots of missing data
* No ground truth — not even spirometry

[Xiang, Sontag, Wang, “Unsupervised learning of Disease Progression
Models”, KDD 2014]



Probabilistic model of disease progression

Markov Jump . » . S(t) ) ) >
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Inferred prevalence of comorbidities across
stages (Cardiovascular disease)
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It is now well established that COPD is a chronic inflammatory condition with

rt failure)

significant extrapulmonary manifestations.’ In patients with mild-to-moderate
COPD, the leading cause of morbidity and mortality is cardiovascular disease.jin
the Lung Health Study,“ which examined nearly 6,000 smokers whose FEV was

between 55% and 90% predicted, cardiovascular diseases were the leading cause
of hospitalization, accounting for nearly 50% of all hospital admissions, and the
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second leading cause of mortality, accounting for a quarter of all deaths.



Goals of disease progression
modeling

* Descriptive:

— Find markers of disease stage and progression,
statistics of what to expect when

* Predictive:
— What will this patient’s future trajectory look like?
— How will treatment affect it?

* Key challenges:

— Seldom directly observe disease stage, but rather only
indirect observations (e.g. symptoms, lab results)

— Data can be censored — don’t observe beginning to end



Challenges for modeling

Irregular time intervals between observations

Missing data

Treatment effects
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Counterfactual Gaussian Processes
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Schulam & Saria, Reliable Decision Support using Counterfactual Models, NeurIPS 2017



Counterfactual Gaussian Processes
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- Causal assumptions:

- Policy used to choose actions in observational data did not

depend on unobserved information that is predictive of
future potential outcomes

- Measurement times independent of measurement values,
conditioned on history

Schulam & Saria, Reliable Decision Support using Counterfactual Models, NeurIPS 2017



Counterfactual Gaussian Processes
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Limitations of CGPs

* Models a single biomarker across time

* Limited ability to condition on baseline
information

* Treatment response functions are additive



Neural pharmacodynamic state space
models

Learn using: maximize Y ;' log p(X*[U",BY)
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Hussain, Krishnan, Sontag, Neural Pharmacodynamic State Space Models, ICML 2021



Neural pharmacodynamic state space
models

Learn using: maximize Y ;' log p(X*[U",BY)

Treatment(s)
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Krishnan, Shalit & Sontag, Structured inference networks for nonlinear state space models, AAAI 2017



Neural pharmacodynamic state space
models

Learn using: maximize Y ;' log p(X*[U",BY)

Treatment(s

/ Can we use domain knowledge to \

parameterize the transition
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Krishnan, Shalit & Sontag, Structured inference networks for nonlinear state space models, AAAI 2017
Hussain, Krishnan, Sontag, Neural Pharmacodynamic State Space Models, ICML 2021



Neural pharmacodynamic state space
models

Learn using: maximize Y ;' log p(X*[U",BY)

Treatment(s)

PK — PD eura \
/  pkPD | [ PKPD ) [ Attention ) N \

Mechanisms Effects Weights
Ut—l N 191 0.4
(Hidden) @ 0 / \
patient @ » X / - - InteErvffzztion &
state @ 03 )
KL/ ), \ — J
[_Key, Value %
Query
\Zt—l /
Observations
SSM PK-PD

Krishnan, Shalit & Sontag, Structured inference networks for nonlinear state space models, AAAI 2017
Hussain, Krishnan, Sontag, Neural Pharmacodynamic State Space Models, ICML 2021



From lines of therapy to local and
global clocks

Treatments ;.. 3, ( ]
Line 2 ( ]

Linel | J
E
o lenalidomide () (] (] ) O
Bortezomib (] (] () ] ] O O O

Global clock

Local clock

Hussain, Krishnan, Sontag, Neural Pharmacodynamic State Space Models, ICML 2021



Neural intervention effect functions

* Modeling baseline conditional variation

91(Zi—1,Us—1,B) = Z;_1 - tanh(byin + Wi [Ui—1,B])

* Modeling slow gradual relapse after treatment

— Log-cell kill

92(Zy_1,Us_1,B) = Zy_1 - (1 — plog(Z?% {)

— Bexp(—0 - leg—1)),

— Captures rapid variation in representations due to

treatment

p

93(Zi—1,Ui—1,B)

bo + a1,i—1/[1 4+ exp(—azs—1(lci—1 — F))],
if 0 S ICt_l <M

by + Ozo,t_l/[l + 6Xp<043,t—1(1ct—1 - %))]7

| ifle 2>y



Example of using SSM PK-PD to predict
future clinical biomarkers

_ serum igg serum lambda on real world dataset
B Linel itiol |
Bor us{ [ | (multiple myeloma)
< Car 1.0 hd 0;9. 1.0
+»  Cyc % . e o < 5
0.54 - O@ 0.5 W Y .
. Dex \ ! oe ® : (normalized) healthy
5 Len OOWE‘.L,@V”‘S: 77777 o 0.0 F==-------mm = fmm oo maximum value
' ¢ e HPERER. . .Q 0e®
[ 254 o
051 »a S0
Linear 09 | o4 (normalized) healthy
—1.01 1 :" ini
o PK-PD o i minimum value
o Data 0 2 4 6 8 1012 14 16 18 0 2 4 6 8 1012 14 16 18
Time (per 2 months) Time (per 2 months)

forward samples after observing the patient for 15 months
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Conclusion

* Many open questions
— |Is it possible to disentangle subtype and stage?

— What are sample efficient learning algorithms, good
architectures for multi-modal data, ...”?
* Next few years, there will be an explosion of
patient data from genomics, proteomics, and
metabolomics

— Will help differentiate subtypes where otherwise
impossible or very difficult

— Small sample sizes. Infrequent measurements.
Modified by treatment. Confounded by comorbidities.
Outcomes must still be derived from clinical data

— Incredible opportunity



Additional references for disease
subtyping

Cluster Analysis and Clinical Asthma Phenotypes (discussed in class)
Haldar et al., Am J Respir Crit Care Med. 2008.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992366/pdf/emss-29902.pdf

Phenomapping for Novel Classification of Heart Failure with Preserved Ejection Fraction
Shah et al., Circulation 2015
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302027/

Subtyping: What It Is and Its Role in Precision Medicine

Saria & Goldberg, IEEE Intelligent Systems 2015
https://www.dropbox.com/s/krofvs7dabu3rdk/Saria IEEE2015 SubtypingAndPredicionMedicine.p
df

Comorbidity Clusters in Autism Spectrum Disorders: An Electronic Health Record Time-Series
Analysis

Doshi-Velez, Ge, Kohane. Pediatrics, 2014. https://www.ncbi.nlm.nih.gov/pubmed/24323995
Learning Probabilistic Phenotypes from Heterogeneous EHR Data

Pivovaroy, et al. Journal of Biomedical Informatics 2015
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025140/

A Bayesian Nonparametric Model for Disease Subtyping: Application to Emphysema Phenotypes
Ross et al., IEEE Transactions on Medical Imaging, 2017
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267575/

Clustering Interval-Censored Time-Series for Disease Phenotyping. Chen, Krishnan, Sontag. AAAI
2022. https://arxiv.org/pdf/2102.07005.pdf



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992366/pdf/emss-29902.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302027/
https://www.dropbox.com/s/krofvs7da6u3r4k/Saria_IEEE2015_SubtypingAndPredicionMedicine.pdf
https://www.ncbi.nlm.nih.gov/pubmed/24323995
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025140/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267575/
https://arxiv.org/pdf/2102.07005.pdf

Additional references for disease
progression modeling

Unsupervised Learning of Disease Progression Models
Wang, Sontag, Wang., KDD 2014
https://people.csail.mit.edu/dsontag/papers/WanSonWan_kdd14.pdf

Cross-Corpora Unsupervised Learning of Trajectories in Autism Spectrum Disorders
Elibol et al., IMLR 2016
https://www.jmlr.org/papers/volumel17/15-431/15-431.pdf

Modeling Disease Progression via Fused Sparse Group Lasso
Zhou et al., KDD 12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191837/

Attentive State-Space Modeling of Disease Progression
Alaa & van der Schaar, NeurlPS 2019
https://openreview.net/pdf?id=BklIIWHBxUH

Constructing Disease Network and Temporal Progression Model via Context-
Sensitive Hawkes Process

Choi et al., IEEE International Conference on Data Mining, 2015
https://www.cc.gatech.edu/grads/e/echoi48/docs/icdm2015.pdf

Neural pharmacodynamic state space modeling. Hussain, Krishnan, Sontag. ICML
2021. http://proceedings.mlir.press/v139/hussain21a/hussain21a.pdf
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