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How do we define disease & disease 
subtypes?

• What is “dropsy”?
– “water sickness”, “swelling”, “edema”
– disease that got Grandma to take to her bed permanently in Victorian 

dramas
– causes: COPD, CHF, CKD, …
– Last recorded on a death certificate ~1949

• Is “asthma” equally non-specific?



The top ten causes of death recorded in the 
Leeds General Cemetery burial records (19th c.)

• Unknown
• Stillborn
• Bronchitis
• Consumption
• Convulsions
• Pneumonia
• Inflammation
• Diarrhoea
• Dropsy
• Natural Decay

https://livingwithdying.leeds.ac.uk/2017/08/09/top-ten-ways-to-die-in-victorian-britain/



Today’s lecture

• Disease subtyping
– Of breast cancer, using gene expression
– Of asthma, using clinical data

• Disease progression modeling



Early Efforts to Characterize Disease Subtypes
using Gene Expression Microarrays

Schematic representation of a DNA 
microarray hybridization comparing 
gene expression of a malignant 
epithelial cancer with its normal tissue 
counterpart 

Cluster samples by nearness in gene 
expression space, genes by expression 
similarity across samples (bi-clustering)

(This small sample of array data was 
copied from a much larger data set)

Notice how all five different cDNA clones 
specific for ERBB2 cluster tightly together

These days, we would use RNA-seq 

Alizadeh et al., Towards a novel classification of human malignancies based on gene expression patterns, J Pathol 2001.



The branching pattern of the dendrogram identifies four groups of breast tumors
• luminal-epithelial/ER+ 
• ERBB2 and other associated genes 
• normal breast
• high-level expression of two clusters of genes that are characteristic of normal 

breast basal epithelial cells

… found to be statistically significantly associated with differences in overall 
patient survival and relapse-free survival 

Cluster analysis on 65 breast carcinoma samples

Sørlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor 
subclasses with clinical implications. PNAS, 98(19), 10869–10874. http://doi.org/10.1073/pnas.191367098



Survival of Different Subgroups of Breast 
Cancer Patients

With a different breast cancer cohort of 49 patients treated 
uniformly in a prospective study, observe differences in survival 
across the 5 newly-characterized tumor subtypes:

Sørlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor 
subclasses with clinical implications. PNAS, 98(19), 10869–10874. http://doi.org/10.1073/pnas.191367098

Relapse-free survivalOverall survival



Today’s lecture

• Disease subtyping
– Of breast cancer, using gene expression
– Of asthma, using clinical data

• Disease progression modeling



Asthma: the problem

• 5 to 10% of people with severe asthma remain 
poorly controlled despite maximal inhaled 
therapy 

[Holgate ST, Polosa R. The mechanisms, diagnosis, 
and management of severe asthma in adults. Lancet. 
2006; 368:780–793]

[whatasthmais.com]



• What are the processes (genetic or environmental) that underlie different 
subtypes of asthma?

• Which aspects of airway remodelling are important in disease subtypes?
• What are the best biomarkers of disease progression or treatment 

response?
• Why are some patients less responsive to conventional therapies than 

others?

[Adcock et al., “New targets for drug development in asthma”. The Lancet, 2008]

“It is now recognised that there are distinct asthma phenotypes and that 
distinct therapeutic approaches may only impinge on some aspects of the 
disease process within each subgroup”

Asthma: the question





Might there be heterogeneous treatment 
effects?

• 74 patients, 2 treatments (A vs B), outcome Y (corticosteroid therapy)
• Using what we learned about causal inference – how can we characterize 

which patients to use treatment A vs B with?



K-Means
• An iterative clustering 

algorithm

– Initialize: Pick K random 
points as cluster centers

– Alternate:
1. Assign data points to 

closest cluster center
2. Change the cluster 

center to the average 
of its assigned points

– Stop when no points’
assignments change



K-means clustering: Example

• Pick K random 
points as cluster 
centers (means)

Shown here for K=2



K-means clustering: Example

Iterative Step 1
• Assign data points to 

closest cluster center



K-means clustering: Example
Iterative Step 2
• Change the cluster 

center to the average of 
the assigned points



K-means clustering: Example

• Repeat until 
convergence



[Haldar et al., Am J Respir Crit Care Med, 2008]

Discovering subtypes from data



The data

• All patients had physician diagnosis of asthma and at least one 
recent prescription for asthma therapy

• All were current nonsmokers
• Data set #1: 184 patients recruited from primary-care 

practices in the UK
• Data set #2: 187 patients from refractory asthma clinic in the 

UK
• Data set #3: 68 patients from 12 month clinical study (RCT)
• Features: z scores for continuous variables, 0/1 for categorical

– Some of the continuous variables log-transformed to approximate a 
normal distribution

[Haldar et al., Am J Respir Crit Care Med, 2008]



[Haldar et al., Am J Respir Crit Care Med, 2008]
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TABLE 1
Comparison of Baseline Characteristics in the three Asthma Populations

Variable
Primary Care

(n = 184)
Secondary Care

(n = 187)
Longitudinal Cohort

(n = 68) P Value*

Sex, % female 54.4 65.8 47.1 0.082

Age, yr (SD) 49.2 (13.9) 43.4 (15.9) 52.4 (14.6) <0.001

Age of onset, yr (SD) 24.7 (19) 20.3 (18.4) 31.1 (23.7) <0.001

Atopic status, % positive 72.8 73.8 57.4 0.365

Body mass index, kg/m2 (SD) 27.5 (5.4) 28.5 (6.5) 28.0 (5.9) 0.55

PC20 methacholine†, mg/ml 1.04 (1.13) † 0.67 (0.68) 0.19

Peak flow variability, amp % mean 17 (0.38) 32.2 (0.48) 13.8 (0.29) <0.001

FEV1 change with bronchodilator, % 1.63 (1.16) 12.8 (0.41) 3.2 (1.04) <0.001

Post-bronchodilator FEV1, % predicted 91.4 (21) 82.1 (21.1) 80.2 (20.6) 0.013

Sputum eosinophil count, % 1.32 (0.62) 2.9 (0.99) 2.4 (0.81) 0.08

FENO
‡, ppb 31.6 (0.33) 43 (0.32) 4.32 (0.64)‡ <0.001

Sputum neutrophil count, % 55.09 (0.31) 46.7 (0.32) 41.1 (0.35) 0.04

Modified JACS§ (SD) 1.36 (0.74) 2.02 (1.16) 1.42 (1.26) <0.001

Dose of inhaled corticosteroid, BDP equivalent/µg (SD) 632 (579) 1,018 (539) 1,821 (1,239) <0.001

Long-acting bronchodilator use, % 40.2 93 86.7 <0.001

Definition of abbreviations: amp = amplitude; BDP = beclomethasone dipropionate; JACS = Juniper Asthma Control Score; SD = standard
deviation.

*Significance figures are derived using one-way analysis of variance between the three populations for continuous variables or ͹2 test for
proportions.

†Bronchial challenge testing is not routinely performed in secondary care for refractory asthma. The comparison given is between the primary-care
asthma population and the longitudinal study cohort.

‡FENO was measured using the NIOX (Aerocrine, Solna, Sweden) analyzer at 50 ml/second in the primary-care population and secondary-care
population. The Logan (Logan Research, Ltd., Rochester, Kent, UK) analyzer was used at a flow rate of 250 ml/second in the longitudinal study
cohort. A strong linear correlation of 0.97 exists between the two measurement protocols. The statistical comparison is between Feno levels in
primary and secondary care using NIOX.

§The Juniper Asthma Control Score, modified to include the symptom domains only (see the online supplement).

Am J Respir Crit Care Med. Author manuscript; available in PMC 2014 April 21.
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TABLE 2
Clusters in Primary Care

Cluster 1 Cluster 2 Cluster 3

Variable
Primary Care

(n = 184)

Early-Onset
Atopic Asthma

(n = 61)

Obese
Noneosinophilic

(n = 27)
Benign Asthma

(n = 96)
Significance
(P Value)*

Sex†, % female 54.4 45.9 81.5 52.1 0.006

Age, yr (SD) 49.2 (13.9) 44.5 (14.3) 53.9 (14) 50.8 (13) 0.003

Age of onset†, yr (SD) 24.7 (19) 14.6 (15.4) 35.3 (19.6) 28.2 (18.3) <0.001

Atopic status†, % positive 72.8 95.1 51.9 64.6 <0.001

Body mass index†, kg/m2 (SD) 27.5 (5.4) 26.1 (3.8) 36.2 (5.5) 26 (3.6) <0.001

PC20 methacholine†‡, mg/ml 1.04 (1.13) 0.12 (0.86) 1.60 (0.93) 6.39 (0.75) <0.001

PC20 >8 mg/ml, n (%) 64 (34.7) 2 (3.3) 6 (22.2) 56 (58.3) <0.001

Peak flow variability†‡, amp % mean 17 (0.38) 20 (0.47) 21.9 (0.32) 14.8 (0.32) 0.039

FEV1 change with bronchodilator‡, % 1.63 (1.16) 4.5 (0.91) 1.82 (1.16) 0.83 (1.22) <0.001

Post-bronchodilator FEV1, % predicted 91.4 (21) 86.9 (20.7) 91.5 (21.4) 94.2 (20.7) 0.107

Sputum eosinophil count†‡, % 1.32 (0.62) 3.75 (0.64) 1.55 (0.51) 0.65 (0.44) <0.001

FENO
‡§, ppb 31.6 (0.33) 57.5 (0.27) 25.8 (0.29) 22.8 (0.27) <0.001

Sputum neutrophil count‡, % 55.09 (0.31) 45.87 (0.24) 72.71 (0.13) 57.56 (0.36) 0.038

Modified JACS† (SD) 1.36 (0.74) 1.54 (0.58) 2.06 (0.73) 1.04 (0.66) <0.001

Dose of inhaled corticosteroid, BDP
equivalent/µg (SD) 632 (579) 548 (559) 746 (611) 653 (581) 0.202

Long-acting bronchodilator use, % 40.2 34.4 48.2 41.7 0.442

Previous hospital admission or emergency
attendance, no. per patient 0.60 (1.57) 1.04 0.26 0.20 0.037

Previous outpatient attendance, % attended 15% 22% 19% 6% 0.121

Severe asthma exacerbations (requiring oral
corticosteroids) in past 12 mo, no. per patient 1.25 (1.94) 1.86 (0.32) 1.07 (0.32) 0.39 (0.18) 0.002

For definition of abbreviations, see Table 1.

Boldface type denotes population statistics. The column headed “Cluster 3” represents a cluster not observed in the secondary-care asthma
population.

*Comparison between clusters using analysis of variance for continuous variables and ͹2 test for proportions. Significance values for variables
included in the cluster analysis are a product of the cluster algorithm and are provided for illustrative purposes only.

†Variables included in the cluster analysis.

‡Geometric mean (log10 SD)

§Measured with NIOX at a flow rate of 50 ml/second.

Am J Respir Crit Care Med. Author manuscript; available in PMC 2014 April 21.

Clusters in 
primary 

care

(found by 
K-means)
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TABLE 3
Clusters in Secondary Care

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Variable

Secondary
Care

(n = 187)
Early Onset, Atopic

(n = 74)

Obese,
Noneosinophilic

(n = 23)

Early Symptom
Predominant

(n = 22)

Inflammation
Predominant

(n = 68)
Significance
(P Value)*

Sex†, % female 65.8 75.7 87 68.2 47.1 <0.001

Age, yr (SD) 43.4 (15.9) 39.4 (15.7) 42.7 (11.1) 35.5 (15.5) 50.6 (15.1) <0.001

Age of onset†, yr (SD) 20.3 (18.4) 12.7 (12.9) 15.4 (15.2) 12.6 (15) 32.6 (19.1) <0.001

Atopic status†, % positive 73.8 83.8 65.2 81.8 63.2 0.024

Body mass index†, kg/m2 (SD) 28.5 (6.5) 27.6 (4.5) 40.9 (6.5) 23.6 (3.1) 27 (3.9) <0.001

Peak flow variability‡, amp %
mean

32.2 (0.48) 46.1 (0.35) 21.2 (0.76) 24.2 (0.65) 27.6 (0.36) 0.002

FEV1 change with

bronchodilator‡, %
12.8 (0.41) 24.5 (0.31) 9.3 (0.35) 4.5 (0.33) 9.8 (0.34) <0.001

Post-bronchodilator FEV1, %
predicted (SD) 82.1 (21.1) 79.0 (21.9) 79.0 (18.5) 79.5 (26.1) 87.2 (18.5) 0.093

Sputum eosinophil count†‡, % 2.9 (0.99) 4.2 (0.76) 1.3 (1.01) 0.1 (0.9) 8.4 (0.64) <0.001

FENO
‡§, ppb 43 (0.32) 51.2 (0.36) 24.2 (0.27) 22.6 (0.30) 53.1 (0.32) <0.001

Sputum neutrophil count, %‡ 46.7 (0.32) 45.4 (0.39) 49.3 (0.22) 51.3 (0.23) 45.9 (0.29) 0.892

Modified JACS† (SD) 2.02 (1.16) 2.63 (0.93) 2.37 (1.09) 2.11 (1.11) 1.21 (0.95) <0.001

Dose of inhaled corticosteroid,
BDP equivalent/µg (SD) 1,018 (539) 1,168 (578) 1,045 (590) 809 (396) 914 (479) 0.008

Long-acting bronchodilator use,
% 93.0 91.9 95.4 90.9 94.1 0.999

Maintenance oral corticosteroid
use, % 31.7 32.4 22.7 22.7 36.8 0.604

Median Nijmegen score (IQR)

(% with score >23)ᙣ
16 (7–26.5) 20.5 (12–30.25) (44.6) 23 (12–33) (52.2) 16.5 (4.5–27.5) (31.8) 9 (1–17) (19.1) 0.004

Median anxiety score (IQR) (%

with score ≥11)ᙣ
7 (4–10) 7.5 (4.75–10.25) (24.3) 8 (3–14) (34.8) 6 (3.75–8.25) (13.6) 6 (3–9) (19.1) 0.34

Median depression score (IQR)

(% with score ≥11)ᙣ
4 (2–7) 4.5 (2–8) (13.5) 5 (2–7) (4.3) 4 (2–7) (4.5) 3 (1–6) (7.4) 0.104

Courses of oral corticosteroids
for asthma exacerbations, n/
case/yr

4.05 (2.33) 4.62 (0.27) 3.90 (0.38) 3.57 (0.49) 3.43 (0.27) 0.02

Hospital admissions for asthma,
n/case/yr 1.54 1.64 1.61 1.54 1.23 0.703

Failed clinic appointments, %
total appointments to DAC/yr 20.0 26.2 15.7 19.0 14.8 0.027

Definition of abbreviations: amp = amplitude; BDP = beclomethasone diproprionate; DAC = difficult asthma clinic; IQR = interquartile range;
JACS = Juniper Asthma Control Score; SD = standard deviation.

Anxiety and depression scores are obtained from the Hospital Anxiety and Depression Scale, a validated 14-point screening questionnaire. Scores
of greater than 11 for either domain are suggestive of clinically important symptoms (25). Boldface type denotes population statistics. Columns
headed “Cluster 3” and “Cluster 4” represent clusters not identified in the primary care asthma population.

*Comparison between clusters using analysis of variance for continuous variables and ͹2 test for proportions. As for the other tables, significance
values for variables included in the cluster analysis are a product of the cluster algorithm and should not be further interpreted.

†Variables included in the cluster analysis.

Am J Respir Crit Care Med. Author manuscript; available in PMC 2014 April 21.

Clusters in 
secondary care

Resembled clusters from 
primary care – i.e., these 

are common across 
spectrum of severity

Objective measures of 
disease severity show 

more advanced disease



Identifying heterogeneous treatment effects 
from the RCT

[Haldar et al., Am J Respir Crit Care Med, 2008]

• Now we use the 3rd dataset – 68 patients over 12 
months

• Randomized control trial with two arms:
– Standard clinical care (“clinical”)
– Regular monitoring of airway inflammation using induced 

sputum, to titrate steroid therapy to maintain normal 
eosinophil counts (“sputum”)

• Original study found no difference in corticosteroid 
usage
– But, this could have been explained by heterogeneity in 

treatment response!



Patients in different clusters respond differently to treatment!
(analysis using 3rd dataset from 12 month study)
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TABLE 4
Cluster Specific Outcomes for Longitudinal Study

Study Group

Cluster Outcomes Clinical
(n = 10)

Sputum
(n = 8) Significance

1: Obese female Δ Inhaled corticosteroid dose*/µg per day (SEM) −400 (328) −462 (271) 0.89

Severe exacerbation frequency over 12 mo (SEM) 1.40 (0.78) 1.50 (0.80) 0.93

Number commenced on oral corticosteroids 2 1 0.59

Clinical (n = 15) Sputum (n = 24)

2: Inflammation predominant Δ Inhaled corticosteroid dose*/µg per day (SEM) +753 (334) +241 (233) 0.22

Severe exacerbation frequency over 12 mo (SEM) 3.53 (1.18) 0.38 (0.13) 0.002

Number commenced on oral corticosteroids 2 9 0.17

Clinical (n = 7) Sputum (n = 4)

3: Early symptom predominant Δ Inhaled corticosteroid dose*/µg per day (SEM) +1,429 (429) −400 (469) 0.022

Severe exacerbation frequency over 12 mo (SEM) 5.43 (1.90) 2.50 (0.87) 0.198

Number commenced on oral corticosteroids 6 0 Undefined

A comparison of prespecified asthma outcomes between the two management protocols analyzed according to cluster allocation of subjects at
study entry.

*
Expressed as equivalent dose of beclomethasone.

Am J Respir Crit Care Med. Author manuscript; available in PMC 2014 April 21.

[Haldar et al., Am J Respir Crit Care Med, 2008]

Cluster
(found using baseline data)

Treatment strategy



Today’s lecture

• Disease subtyping
– Of breast cancer, using gene expression
– Of asthma, using clinical data

• Disease progression modeling

Time

Disease burden

Undiagnosed
condition

Where is a patient in their disease trajectory?
When will the disease progress?
How will treatment affect disease progression?



Goals of disease progression 
modeling

• Descriptive:
– Find markers of disease stage and progression, 

statistics of what to expect when
• Predictive:
– What will this patient’s future trajectory look like? 
– How will treatment affect it?

• Key challenges:
– Seldom directly observe disease stage, but rather only 

indirect observations (e.g. symptoms, lab results)
– Data can be censored – don’t observe beginning to end



Example: learning 10-year 
progression of COPD

• 2-4 years of data for each patient
• High-dimensional, with lots of missing data
• No ground truth – not even spirometry

[Xiang, Sontag, Wang, “Unsupervised learning of Disease Progression 
Models”, KDD 2014]



Probabilistic model of disease progression

Markov Jump 
Process

Comorbidities, 
each with its own 

Markov chain

Observations

Diabetes
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Lung cancer

COPD stage

Medications,
Diagnosis
codes
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Progression Stages
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Goals of disease progression 
modeling

• Descriptive:
– Find markers of disease stage and progression, 

statistics of what to expect when
• Predictive:
– What will this patient’s future trajectory look like? 
– How will treatment affect it?

• Key challenges:
– Seldom directly observe disease stage, but rather only 

indirect observations (e.g. symptoms, lab results)
– Data can be censored – don’t observe beginning to end



Challenges for modeling

• Irregular time intervals between observations
• Missing data
• Treatment effects
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Inductive Biases for Unsupervised, Sequential Models of Cancer Progression
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Figure 1: Illustration of the type of data our algorithms are designed to model; this example is for multiple myeloma, a blood cancer.
Baseline (static) data typically consists of genomics, demographics, and initial labs. Longitudinal data typically includes laboratory values
(e.g. serum IgG) and treatments. Baseline data is usually complete, but longitudinal measurements are frequently missing at various time
points. The data tells a rich story of a patient’s disease trajectory and the resulting treatment decisions. For example, a deviation of a lab
value from a healthy range (e.g. spike in serum IgG) might prompt a move to the next line of therapy. Data (in red) might be missing, and
in this case are forward filled.

like multiple myeloma, designed with inductive biases in-
spired from pharmacokinetic and pharmacodynamic models
of treatment effect for solid tumors and chronic diseases.

Our work suggests a way to use known models of treat-
ment response to construct new treatment effect functions
for a disease where we lack good mechanistic knowledge.
Although our work instantiates this idea in the context of
multiple myeloma, the implications of our work are broader
– it suggest ways to transfer knowledge from diseases that
we do understand to build models for diseases that we do
not.

2. Background
Cancer progression models aim to capture the effect of
chemotherapy in the progression of solid tumor growth.
We denote by V (t) and E(t) the tumor volume and drug
effect, respectively, over time. We describe three popular
choices for modeling treatment effect drawn from the rich
pharmacokinetic-pharmacodynamic (PK-PD) literature.

Linear A linear model is one of the simplest disease pro-
gression models that is used for accurately estimating tumor
dynamics (Klein, 2009):

V (t) = V (0) + (↵ + E(t)) · t,

where E(t) is a linear function of treatment dose. Linear
models have also been been used successfully to describe
progression in neurological disorders such as Alzheimer’s
disease (Doyle et al. , 2014), and Huntington’s disease
(Warner & Sampaio, 2016).

Log-Cell Kill The log-cell kill hypothesis (Norton, 2014)
states that a given dose of chemotherapy results in killing
a constant fraction of tumor cells rather than a constant
number of cells. The Log Cell Kill model can be described
by the following ordinary differential equation (ODE),

dV (t)

dt
= ��cC(t)V (t),

where C(t) is the concentration of a chemotherapeutic
drug over time. C(t) is specified as follows: C(t) =

Cmaxe
� log(2)

half-life t, where Cmax is the maximum concentra-
tion of the drug (i.e. the dose at which the drug was given),
half-life is the half-life of the drug, and �c is a parameter
that represents the drug effect on tumor size (Lim, 2018;
West & Newton, 2017).

Variants of the model also incorporate the kinetics of tumor
growth (Evain & Benzekry, 2016; Lim, 2018; Grassberger
& Paganetti, 2016) where the evolution of tumor volume, V ,
is described via an ODE:

dV (t)

dt
= ⇢ log

� K

V (t)

�
,

where, ⇢, the growth rate, and K, the tumor carrying ca-
pacity, determine the growth curve of the tumor. In Figure
2, we show an example of the dynamics of the log-cell kill
model combined with this form of Gompertzian growth.

An analytic expression for the tumor dynamics may be
derived as:

V (t) = V (t�1) · (1+⇢ log(K/V (t�1))��cC(t)), (1)

Treatment Exponential The third treatment effect model
we study is loosely inspired by disease progression models
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Figure 1: Best viewed in color. An illustration of the counterfactual GP applied to health care. The red box in
(a) shows previous lung capacity measurements (black dots) and treatments (the history). Panels (a)-(c) show the
type of predictions we would like to make. We use Y [a] to represent the potential outcome under action a.

outcomes framework [Neyman, 1923, 1990, Rubin, 1978]. Counterfactuals model the outcome Y
after an action a is taken from a set of choices C. Counterfactual predictions are broadly applicable to
a number of decision-support tasks. In medicine, for instance, when evaluating a patient’s risk of
death Y to determine whether they should be treated aggressively, we want an estimate of how they
will fare without treatment. This can be done by predicting the counterfactual Y [?], where ? stands
for “do nothing”. In online marketing, to decide whether we should display ad a1 or a2, we may want
an estimate of click-through Y under each, which amounts to predicting Y [a1] and Y [a2].

To support decision-making in temporal settings, we develop the Counterfactual Gaussian Process
(CGP) to predict the counterfactual future progression of continuous-time trajectories under sequences
of future actions. The CGP can be learned from and applied to time series data where actions are
taken and outcomes are measured at irregular time points; a generalization of discrete time series.
Figure 1 illustrates an application of the CGP. We show an individual with a lung disease, and would
like to predict her future lung capacity (y-axis). Panel (a) shows the history in the red box, which
includes previous lung capacity measurements (black dots) and previous treatments (green and blue
bars). The blue counterfactual trajectory shows what might occur under no action, which can be
used to evaluate this individual’s risk. In panel (b), we show the counterfactual trajectory under a
single future green treatment. Panel (c) illustrates “what if?” reasoning by overlaying counterfactual
trajectories under two different action sequences; in this case it seems that two future doses of the
blue drug may lead to a better outcome than a single dose of green.
Contributions. Our key methodological contribution is the Counterfactual Gaussian process (CGP),
a model that predicts how a continuous-time trajectory will progress under sequences of actions. We
derive an adjusted maximum likelihood objective that learns the CGP from observational traces;
irregularly sampled sequences of actions and outcomes denoted using D = {{(yij , aij , tij)}

ni
j=1}

m
i=1,

where yij 2 R [ {?}, aij 2 C [ {?}, and tij 2 [0, ⌧ ].1 Our objective accounts for and removes
the effects of the policy used to choose actions in the observational traces. We derive the objective
by jointly modeling observed actions and outcomes using a marked point process (MPP; see e.g.,
Daley and Vere-Jones 2007), and show how it correctly learns the CGP under a set of assumptions
analagous to those required to learn counterfactual models in other settings.

We demonstrate the CGP on two decision-support tasks. First, we show how the CGP can make
reliable risk predictions that do not depend on the action policy in the training data. On the other hand,
we show that predictions made by models trained using classical supervised learning objectives are
sensitive to the policies. In our second experiment, we use data from a real intensive care unit (ICU)
to learn the CGP, and qualitatively demonstrate how the CGP can be used to compare counterfactuals
and answer “what if?” questions, which could offer medical decision-makers a powerful new tool for
individualized treatment planning.

1.1 Related Work

Decision support is a rich field; because our main methodological contribution is a counterfactual
model for time series data, we limit the scope of our discussion of related work to this area.
Causal inference. Counterfactual models stem from causal inference. In that literature, the differ-
ence between the counterfactual outcomes if an action had been taken and if it had not been taken

1yij and aij may be the null variable ? to allow for the possibility that an action is taken but no outcome is
observed and vice versa. [0, ⌧ ] denotes a fixed period of time over which the trajectories are observed.
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death Y to determine whether they should be treated aggressively, we want an estimate of how they
will fare without treatment. This can be done by predicting the counterfactual Y [?], where ? stands
for “do nothing”. In online marketing, to decide whether we should display ad a1 or a2, we may want
an estimate of click-through Y under each, which amounts to predicting Y [a1] and Y [a2].
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(CGP) to predict the counterfactual future progression of continuous-time trajectories under sequences
of future actions. The CGP can be learned from and applied to time series data where actions are
taken and outcomes are measured at irregular time points; a generalization of discrete time series.
Figure 1 illustrates an application of the CGP. We show an individual with a lung disease, and would
like to predict her future lung capacity (y-axis). Panel (a) shows the history in the red box, which
includes previous lung capacity measurements (black dots) and previous treatments (green and blue
bars). The blue counterfactual trajectory shows what might occur under no action, which can be
used to evaluate this individual’s risk. In panel (b), we show the counterfactual trajectory under a
single future green treatment. Panel (c) illustrates “what if?” reasoning by overlaying counterfactual
trajectories under two different action sequences; in this case it seems that two future doses of the
blue drug may lead to a better outcome than a single dose of green.
Contributions. Our key methodological contribution is the Counterfactual Gaussian process (CGP),
a model that predicts how a continuous-time trajectory will progress under sequences of actions. We
derive an adjusted maximum likelihood objective that learns the CGP from observational traces;
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where yij 2 R [ {?}, aij 2 C [ {?}, and tij 2 [0, ⌧ ].1 Our objective accounts for and removes
the effects of the policy used to choose actions in the observational traces. We derive the objective
by jointly modeling observed actions and outcomes using a marked point process (MPP; see e.g.,
Daley and Vere-Jones 2007), and show how it correctly learns the CGP under a set of assumptions
analagous to those required to learn counterfactual models in other settings.

We demonstrate the CGP on two decision-support tasks. First, we show how the CGP can make
reliable risk predictions that do not depend on the action policy in the training data. On the other hand,
we show that predictions made by models trained using classical supervised learning objectives are
sensitive to the policies. In our second experiment, we use data from a real intensive care unit (ICU)
to learn the CGP, and qualitatively demonstrate how the CGP can be used to compare counterfactuals
and answer “what if?” questions, which could offer medical decision-makers a powerful new tool for
individualized treatment planning.

1.1 Related Work

Decision support is a rich field; because our main methodological contribution is a counterfactual
model for time series data, we limit the scope of our discussion of related work to this area.
Causal inference. Counterfactual models stem from causal inference. In that literature, the differ-
ence between the counterfactual outcomes if an action had been taken and if it had not been taken
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• Causal assumptions:
– Policy used to choose actions in observational data did not 

depend on unobserved information that is predictive of 
future potential outcomes

– Measurement times independent of measurement values, 
conditioned on history
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Limitations of CGPs
• Models a single biomarker across time
• Limited ability to condition on baseline 

information
• Treatment response functions are additive
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Inductive Biases for Unsupervised, Sequential Models of Cancer Progression
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Figure 1: Illustration of the type of data our algorithms are designed to model; this example is for multiple myeloma, a blood cancer.
Baseline (static) data typically consists of genomics, demographics, and initial labs. Longitudinal data typically includes laboratory values
(e.g. serum IgG) and treatments. Baseline data is usually complete, but longitudinal measurements are frequently missing at various time
points. The data tells a rich story of a patient’s disease trajectory and the resulting treatment decisions. For example, a deviation of a lab
value from a healthy range (e.g. spike in serum IgG) might prompt a move to the next line of therapy. Data (in red) might be missing, and
in this case are forward filled.

like multiple myeloma, designed with inductive biases in-
spired from pharmacokinetic and pharmacodynamic models
of treatment effect for solid tumors and chronic diseases.

Our work suggests a way to use known models of treat-
ment response to construct new treatment effect functions
for a disease where we lack good mechanistic knowledge.
Although our work instantiates this idea in the context of
multiple myeloma, the implications of our work are broader
– it suggest ways to transfer knowledge from diseases that
we do understand to build models for diseases that we do
not.

2. Background
Cancer progression models aim to capture the effect of
chemotherapy in the progression of solid tumor growth.
We denote by V (t) and E(t) the tumor volume and drug
effect, respectively, over time. We describe three popular
choices for modeling treatment effect drawn from the rich
pharmacokinetic-pharmacodynamic (PK-PD) literature.

Linear A linear model is one of the simplest disease pro-
gression models that is used for accurately estimating tumor
dynamics (Klein, 2009):

V (t) = V (0) + (↵ + E(t)) · t,

where E(t) is a linear function of treatment dose. Linear
models have also been been used successfully to describe
progression in neurological disorders such as Alzheimer’s
disease (Doyle et al. , 2014), and Huntington’s disease
(Warner & Sampaio, 2016).

Log-Cell Kill The log-cell kill hypothesis (Norton, 2014)
states that a given dose of chemotherapy results in killing
a constant fraction of tumor cells rather than a constant
number of cells. The Log Cell Kill model can be described
by the following ordinary differential equation (ODE),

dV (t)

dt
= ��cC(t)V (t),

where C(t) is the concentration of a chemotherapeutic
drug over time. C(t) is specified as follows: C(t) =

Cmaxe
� log(2)

half-life t, where Cmax is the maximum concentra-
tion of the drug (i.e. the dose at which the drug was given),
half-life is the half-life of the drug, and �c is a parameter
that represents the drug effect on tumor size (Lim, 2018;
West & Newton, 2017).

Variants of the model also incorporate the kinetics of tumor
growth (Evain & Benzekry, 2016; Lim, 2018; Grassberger
& Paganetti, 2016) where the evolution of tumor volume, V ,
is described via an ODE:

dV (t)

dt
= ⇢ log

� K

V (t)

�
,

where, ⇢, the growth rate, and K, the tumor carrying ca-
pacity, determine the growth curve of the tumor. In Figure
2, we show an example of the dynamics of the log-cell kill
model combined with this form of Gompertzian growth.

An analytic expression for the tumor dynamics may be
derived as:

V (t) = V (t�1) · (1+⇢ log(K/V (t�1))��cC(t)), (1)

Treatment Exponential The third treatment effect model
we study is loosely inspired by disease progression models
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prescription of a drug, or real-valued, to denote dosage. X = {X1, . . . , XT }; Xt 2 RM denotes
the sequence of real-valued, M -dimensional clinical biomarkers. An element of Xt may denote
a serum lab value or blood count, which is used by clinicians to measure organ function as a
proxy for disease severity. Xt frequently contains missing data. We assume access to a dataset
D = {(X1,U1,B1), . . . ,(XN ,UN ,BN )}. For a visual depiction of the data, we refer the reader to
Figure 1. Unless required, we ignore the superscript denoting the index of the datapoint and
denote concatenation with [].

Model: SSMs capture dependencies in sequential data via a time-varying latent state. The
generative process is:

p(X|U,B) =

Z

Z

TY

t=1

p✓(Zt|Zt�1, Ut�1, B)p✓(Xt|Zt)dZ

Zt|· ⇠N (µ✓(Zt�1, Ut�1, B), ⌃t

✓
(Zt�1, Ut�1, B)),

Xt|· ⇠N (✓(Zt),⌃
e

✓
(Zt)) (1)

We denote the parameters of a model by ✓, which may comprise weight matrices or the parameters
of functions that index ✓. SSMs make the Markov assumption on the latent variables, Zt, and
we assume that relevant information about past medications are captured by the state or
contained in Ut�1. We set ⌃t

✓
, ⌃e

✓
,✓(Zt) to be functions of a concatenation of their inputs, e.g.

⌃t

✓
(·) = softplus(W[Zt�1,Ut�1,B] + b). ⌃t

✓
, ⌃e

✓
are diagonal matrices where the softplus function

is used to ensure positivity.

Learning: We maximize
P

N

i=1 log p(Xi|Ui,Bi). For a nonlinear SSM, this function is intractable,
so we learn via maximizing a variational lower bound on it. To evaluate the bound, we perform
probabilistic inference using a structured inference network (Krishnan et al., 2017). The learning
algorithm alternates between predicting variational parameters using a bi-directional recurrent
neural network, evaluating a variational upper bound, and making gradient updates jointly with
respect to the parameters of the generative model and the inference network. We relegate further
details (e.g. how we deal with missingness) to the appendix.

4 Attentive Pharmacodynamic State Space Model

To make the shift from black-box models to those that capture useful structure for modeling
clinical data, we begin with a discussion of PK-PD models and some of the key limitations that
practitioners may face when directly applying them to modern clinical datasets.

4.1 Limitations of Pharmacokinetic-Pharmacodynamic Modeling

Pharmacology is a natural store of domain expertise for reasoning about how treatments a↵ect
disease. We look specifically at pharmacokinetics (PK), which deals with how drugs move in
the body, and pharmacodynamics (PD), which studies the body’s response to drugs. Consider
a classical pharmacokinetic-pharmacodynamic (PK-PD) model used to characterize variation
in tumor volume due to chemotherapy (Norton, 2014; West & Newton, 2017). Known as the
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details (e.g. how we deal with missingness) to the appendix.
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To make the shift from black-box models to those that capture useful structure for modeling
clinical data, we begin with a discussion of PK-PD models and some of the key limitations that
practitioners may face when directly applying them to modern clinical datasets.

4.1 Limitations of Pharmacokinetic-Pharmacodynamic Modeling

Pharmacology is a natural store of domain expertise for reasoning about how treatments a↵ect
disease. We look specifically at pharmacokinetics (PK), which deals with how drugs move in
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From lines of therapy to local and 
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055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Inductive Biases for Unsupervised, Sequential Models of Cancer Progression
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Figure 1: Illustration of the type of data our algorithms are designed to model; this example is for multiple myeloma, a blood cancer.
Baseline (static) data typically consists of genomics, demographics, and initial labs. Longitudinal data typically includes laboratory values
(e.g. serum IgG) and treatments. Baseline data is usually complete, but longitudinal measurements are frequently missing at various time
points. The data tells a rich story of a patient’s disease trajectory and the resulting treatment decisions. For example, a deviation of a lab
value from a healthy range (e.g. spike in serum IgG) might prompt a move to the next line of therapy. Data (in red) might be missing, and
in this case are forward filled.

like multiple myeloma, designed with inductive biases in-
spired from pharmacokinetic and pharmacodynamic models
of treatment effect for solid tumors and chronic diseases.

Our work suggests a way to use known models of treat-
ment response to construct new treatment effect functions
for a disease where we lack good mechanistic knowledge.
Although our work instantiates this idea in the context of
multiple myeloma, the implications of our work are broader
– it suggest ways to transfer knowledge from diseases that
we do understand to build models for diseases that we do
not.

2. Background
Cancer progression models aim to capture the effect of
chemotherapy in the progression of solid tumor growth.
We denote by V (t) and E(t) the tumor volume and drug
effect, respectively, over time. We describe three popular
choices for modeling treatment effect drawn from the rich
pharmacokinetic-pharmacodynamic (PK-PD) literature.

Linear A linear model is one of the simplest disease pro-
gression models that is used for accurately estimating tumor
dynamics (Klein, 2009):

V (t) = V (0) + (↵ + E(t)) · t,

where E(t) is a linear function of treatment dose. Linear
models have also been been used successfully to describe
progression in neurological disorders such as Alzheimer’s
disease (Doyle et al. , 2014), and Huntington’s disease
(Warner & Sampaio, 2016).

Log-Cell Kill The log-cell kill hypothesis (Norton, 2014)
states that a given dose of chemotherapy results in killing
a constant fraction of tumor cells rather than a constant
number of cells. The Log Cell Kill model can be described
by the following ordinary differential equation (ODE),

dV (t)

dt
= ��cC(t)V (t),

where C(t) is the concentration of a chemotherapeutic
drug over time. C(t) is specified as follows: C(t) =

Cmaxe
� log(2)

half-life t, where Cmax is the maximum concentra-
tion of the drug (i.e. the dose at which the drug was given),
half-life is the half-life of the drug, and �c is a parameter
that represents the drug effect on tumor size (Lim, 2018;
West & Newton, 2017).

Variants of the model also incorporate the kinetics of tumor
growth (Evain & Benzekry, 2016; Lim, 2018; Grassberger
& Paganetti, 2016) where the evolution of tumor volume, V ,
is described via an ODE:

dV (t)

dt
= ⇢ log

� K

V (t)

�
,

where, ⇢, the growth rate, and K, the tumor carrying ca-
pacity, determine the growth curve of the tumor. In Figure
2, we show an example of the dynamics of the log-cell kill
model combined with this form of Gompertzian growth.

An analytic expression for the tumor dynamics may be
derived as:

V (t) = V (t�1) · (1+⇢ log(K/V (t�1))��cC(t)), (1)

Treatment Exponential The third treatment effect model
we study is loosely inspired by disease progression models

Global clock

Local clock

Hussain, Krishnan, Sontag, Neural Pharmacodynamic State Space Models, ICML 2021



Neural intervention effect functions

• Modeling baseline conditional variation

• Modeling slow gradual relapse after treatment
– Log-cell kill

– Captures rapid variation in representations due to 
treatment

their e�cacy in clinical trials; subsequent lines may be decided by clinician preference. Lines of
therapy index treatment plans that span multiple time-steps and are often laid out by clinicians
at first diagnosis. We show how to make use of this information within a mechanism function.

To capture the clinician’s intention when prescribing treatment, we incorporate line of therapy
as a one-hot vector in Ut[: K] 8t (K is the maximal line of therapy). Lines of therapy typically
change when a drug combination fails or causes adverse side e↵ects. By conditioning on line of
therapy, a transition function (of the SSM) parameterized by a neural network can, in theory,
infer the length of time a patient has been on that line. However, although architectures such as
Neural Turing Machines can learn to count occurrences, they would need a substantial amount
of data to do so (Graves et al., 2014).

To enforce the specified drug mechanism functions to capture time since change in line of therapy,
we use clocks to track the time elapsed since an event. This strategy has precedent in RNNs,
where Che et al. (2018) use time since the last observation to help RNNs learn well when data
is missing. Koutnik et al. (2014) partition the hidden states in RNNs so they are updated at
di↵erent time-scales. Here, we augment our interventional vector, Ut, with two more dimensions.
A global clock, gc, captures time elapsed since T = 0, i.e. Ut[K] = gct = t. A local clock, lc,
captures time elapsed since a line of therapy began; i.e. Ut[K +1] = lct = t� pt where pt denotes
the index of time when the line last changed. By using the local clock, µ✓(Zt�1,Ut�1,B) can
modulate Zt to capture patterns such as: the longer a line of therapy is deployed, the less or
(more) e↵ective it may be.

For the patient in Figure 1, we can see that the first dimension of U denoting line of therapy
would be [0,0,0,0,1,1,2,2,2]. Line 0 was used four times, line 1 used twice, line 2 used thrice.
Then, p = [0,0,0,0,4,4,6,6,6,6], gc = [0,1,2,3,4,5,6,7,8,9] and lc = [0,1,2,3,0,1,0,1,2,3]. To the
best of our knowledge, we are the first to make use of lines-of-therapy information and clocks
concurrently to capture temporal information when modeling clinical data.

4.5 Neural PK-PD Functions for Chronic Diseases

Having developed solutions to tackle some of the limitations of PK-PD models, we turn to the
design of three new mechanism functions, each of which captures di↵erent hypotheses a clinician
may have about how the underlying disease burden of a patient changes (as manifested in their
latent states).

Modeling baseline conditional variation: Biomarkers of chronic diseases can increase, decrease,
or stay the same. Such patterns may be found in the dose-response to chemotherapy used in
solid cancerous tumors (Klein, 2009). In reality, clinicians find that these changes are often
modulated by patient specific features such as age, genetic mutations, and history of illness.
Patients who have been in therapy for a long time may find decreased sensitivity to treatments.
To capture this variation:

g1(Zt�1,Ut�1,B) = Zt�1 · tanh(blin + Wlin[Ut�1,B]) (4)

where blin 2 RQ, Wlin 2 RQ⇥(L+J). Here, the e↵ects on the representation are bounded (via the
tanh function) but depend on the combination of drugs prescribed and the patient’s baseline
data, including genetics.
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Modeling slow, gradual relapse after treatment: One of the defining features of many chronic
diseases is the possibility of a relapse during active therapy. In cancer, a relapse can happen
due to cancerous cells escaping the treatment or a variety of other bio-chemical processes, such
as increased resistance to treatment due to mutations. The relapse can result in bio-markers
reverting to values that they held prior to the start of treatment; for an example of this, see
Figure 2 (right). We design the following neural architectures to capture such patterns in a
latent representation.

Neural Log-Cell Kill: This architecture is inspired by the classical log cell kill model of tumor
volume in solid cell tumors (West & Newton, 2017) but unlike the original model, scales to
high-dimensional representations and takes into account lines of therapy via the local clock. This
allows the model to e↵ectively reset every time a new line of therapy begins. The functional
form of the model is,

g2(Zt�1,Ut�1,B) = Zt�1 · (1 � ⇢ log(Z2
t�1) (5)

� � exp(�� · lct�1)),

where � = tanh(WlcUt�1 + blc). Wlc 2 RQ⇥L, blc 2 RQ, � 2 RQ and ⇢ 2 RQ are learned.
While diseases may not have a single observation that characterizes the state of the organ
system (akin to tumor volume), we hypothesize that representations, Zt, of the observed clinical
biomarkers may benefit from mimicking the dynamics exhibited by tumor volume when exposed
to chemotherapeutic agents. We emphasize that unlike Equation 2, the function in Equation
5 operates over a vector valued set of representations that can be modulated by the patient’s
genetic markers.

Neural Treatment Exponential: Xu et al. (2016) develop a Bayesian nonparameteric model to
explain variation in creatinine, a single biomarker, due to treatment. We design an architecture
inspired by their model that scales to high dimensional representations, allows for the represen-
tation to vary as a function of the patient’s genetics, and makes use of information in the lines
of therapy via the clocks.

g3(Zt�1,Ut�1,B) (6)

=

8
>>>><

>>>>:

b0 + ↵1,t�1/[1 + exp(�↵2,t�1(lct�1 � �l
2 ))],

if 0  lct�1 < �l

bl + ↵0,t�1/[1 + exp(↵3,t�1(lct�1 � 3�l
2 ))],

if lct�1 � �l

Despite its complexity, the intermediate representations learned within this architecture have
simple intuitive meanings. ↵1,t�1 = Wd[Zt�1, Ut�1, B] + bd, where Wd 2 RQ⇥(Q+L+J), bd 2 RQ

is used to control whether each dimension in Zt�1 increases or decreases as a function of the
treatment and baseline data. ↵2,t�1, ↵3,t�1, and �l control the steepness and duration of the
intervention e↵ect. We restrict these characteristics to be similar for drugs administered under
the same line of therapy. Thus, we parameterize: [↵2, ↵3, �l]t�1 = �(We · Ut�1[0] + be). If there
are three lines of therapy, We 2 R3⇥3, be 2 R3 and the biases, b0 2 RQ and bl 2 RQ, are learned.
Finally, ↵0,t�1 = (↵1,t�1 + 2b0 � bl)/(1 + exp(�↵3,t�1�l/2)) ensures that the e↵ect peaks at
t = lct + �l. Figure 2 (right) depicts how a single latent dimension may vary over time for a
single line of therapy using this neural architecture.

8

Modeling slow, gradual relapse after treatment: One of the defining features of many chronic
diseases is the possibility of a relapse during active therapy. In cancer, a relapse can happen
due to cancerous cells escaping the treatment or a variety of other bio-chemical processes, such
as increased resistance to treatment due to mutations. The relapse can result in bio-markers
reverting to values that they held prior to the start of treatment; for an example of this, see
Figure 2 (right). We design the following neural architectures to capture such patterns in a
latent representation.

Neural Log-Cell Kill: This architecture is inspired by the classical log cell kill model of tumor
volume in solid cell tumors (West & Newton, 2017) but unlike the original model, scales to
high-dimensional representations and takes into account lines of therapy via the local clock. This
allows the model to e↵ectively reset every time a new line of therapy begins. The functional
form of the model is,

g2(Zt�1,Ut�1,B) = Zt�1 · (1 � ⇢ log(Z2
t�1) (5)

� � exp(�� · lct�1)),

where � = tanh(WlcUt�1 + blc). Wlc 2 RQ⇥L, blc 2 RQ, � 2 RQ and ⇢ 2 RQ are learned.
While diseases may not have a single observation that characterizes the state of the organ
system (akin to tumor volume), we hypothesize that representations, Zt, of the observed clinical
biomarkers may benefit from mimicking the dynamics exhibited by tumor volume when exposed
to chemotherapeutic agents. We emphasize that unlike Equation 2, the function in Equation
5 operates over a vector valued set of representations that can be modulated by the patient’s
genetic markers.

Neural Treatment Exponential: Xu et al. (2016) develop a Bayesian nonparameteric model to
explain variation in creatinine, a single biomarker, due to treatment. We design an architecture
inspired by their model that scales to high dimensional representations, allows for the represen-
tation to vary as a function of the patient’s genetics, and makes use of information in the lines
of therapy via the clocks.

g3(Zt�1,Ut�1,B) (6)

=

8
>>>><

>>>>:

b0 + ↵1,t�1/[1 + exp(�↵2,t�1(lct�1 � �l
2 ))],

if 0  lct�1 < �l
bl + ↵0,t�1/[1 + exp(↵3,t�1(lct�1 � 3�l

2 ))],

if lct�1 � �l

Despite its complexity, the intermediate representations learned within this architecture have
simple intuitive meanings. ↵1,t�1 = Wd[Zt�1, Ut�1, B] + bd, where Wd 2 RQ⇥(Q+L+J), bd 2 RQ

is used to control whether each dimension in Zt�1 increases or decreases as a function of the
treatment and baseline data. ↵2,t�1, ↵3,t�1, and �l control the steepness and duration of the
intervention e↵ect. We restrict these characteristics to be similar for drugs administered under
the same line of therapy. Thus, we parameterize: [↵2, ↵3, �l]t�1 = �(We · Ut�1[0] + be). If there
are three lines of therapy, We 2 R3⇥3, be 2 R3 and the biases, b0 2 RQ and bl 2 RQ, are learned.
Finally, ↵0,t�1 = (↵1,t�1 + 2b0 � bl)/(1 + exp(�↵3,t�1�l/2)) ensures that the e↵ect peaks at
t = lct + �l. Figure 2 (right) depicts how a single latent dimension may vary over time for a
single line of therapy using this neural architecture.

8



Example of using SSM PK-PD to predict 
future clinical biomarkers
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forward samples after observing the patient for 15 months

(normalized) healthy 
maximum value

(normalized) healthy 
minimum value

on real world dataset 
(multiple myeloma) 



Conclusion

• Many open questions
– Is it possible to disentangle subtype and stage?
– What are sample efficient learning algorithms, good 

architectures for multi-modal data, …?
• Next few years, there will be an explosion of 

patient data from genomics, proteomics, and 
metabolomics
– Will help differentiate subtypes where otherwise 

impossible or very difficult
– Small sample sizes. Infrequent measurements. 

Modified by treatment. Confounded by comorbidities. 
Outcomes must still be derived from clinical data

– Incredible opportunity



Additional references for disease 
subtyping

• Cluster Analysis and Clinical Asthma Phenotypes  (discussed in class)
Haldar et al., Am J Respir Crit Care Med. 2008.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992366/pdf/emss-29902.pdf

• Phenomapping for Novel Classification of Heart Failure with Preserved Ejection Fraction
Shah et al., Circulation 2015
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302027/

• Subtyping: What It Is and Its Role in Precision Medicine
Saria & Goldberg, IEEE Intelligent Systems 2015
https://www.dropbox.com/s/krofvs7da6u3r4k/Saria_IEEE2015_SubtypingAndPredicionMedicine.p
df

• Comorbidity Clusters in Autism Spectrum Disorders: An Electronic Health Record Time-Series 
Analysis
Doshi-Velez, Ge, Kohane. Pediatrics, 2014. https://www.ncbi.nlm.nih.gov/pubmed/24323995

• Learning Probabilistic Phenotypes from Heterogeneous EHR Data
Pivovarov, et al. Journal of Biomedical Informatics 2015
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025140/

• A Bayesian Nonparametric Model for Disease Subtyping: Application to Emphysema Phenotypes
Ross et al., IEEE Transactions on Medical Imaging, 2017
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267575/

• Clustering Interval-Censored Time-Series for Disease Phenotyping. Chen, Krishnan, Sontag. AAAI
2022. https://arxiv.org/pdf/2102.07005.pdf

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992366/pdf/emss-29902.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302027/
https://www.dropbox.com/s/krofvs7da6u3r4k/Saria_IEEE2015_SubtypingAndPredicionMedicine.pdf
https://www.ncbi.nlm.nih.gov/pubmed/24323995
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025140/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267575/
https://arxiv.org/pdf/2102.07005.pdf


Additional references for disease 
progression modeling

• Unsupervised Learning of Disease Progression Models
Wang, Sontag, Wang., KDD 2014
https://people.csail.mit.edu/dsontag/papers/WanSonWan_kdd14.pdf

• Cross-Corpora Unsupervised Learning of Trajectories in Autism Spectrum Disorders
Elibol et al., JMLR 2016
https://www.jmlr.org/papers/volume17/15-431/15-431.pdf

• Modeling Disease Progression via Fused Sparse Group Lasso
Zhou et al., KDD ’12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191837/

• Attentive State-Space Modeling of Disease Progression
Alaa & van der Schaar, NeurIPS 2019
https://openreview.net/pdf?id=BkllWHBxUH

• Constructing Disease Network and Temporal Progression Model via Context-
Sensitive Hawkes Process
Choi et al., IEEE International Conference on Data Mining, 2015
https://www.cc.gatech.edu/grads/e/echoi48/docs/icdm2015.pdf

• Neural pharmacodynamic state space modeling. Hussain, Krishnan, Sontag. ICML 
2021. http://proceedings.mlr.press/v139/hussain21a/hussain21a.pdf

https://people.csail.mit.edu/dsontag/papers/WanSonWan_kdd14.pdf
https://www.jmlr.org/papers/volume17/15-431/15-431.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191837/
https://openreview.net/pdf?id=BkllWHBxUH
https://www.cc.gatech.edu/grads/e/echoi48/docs/icdm2015.pdf
http://proceedings.mlr.press/v139/hussain21a/hussain21a.pdf

