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Interpretability Issues

• People understand simple models
• George Miller, 7±2: “There seems to be some limitation built into us either by 

learning or by the design of our nervous systems, a limit that keeps our channel 
capacities in this general range.”
• “… the number of chunks of information is constant for immediate memory. 

The span of immediate memory seems to be almost independent of the 
number of bits per chunk …”

• Not surprising that one cannot “keep in mind” complex models
• What leads to complex models? And what to do about it?

• Overfitting
• Restrict model complexity; e.g., regularization

• True complexity
• Make up “just-so” stories that give a simplified 

explanation of how the complex model applies 
to specific cases

• Trade off lower performance for simplicity of model
2Miller, G. A. (1956). The magical number seven plus or minus two:  some limits on our capacity for processing information. Psychological Review, 63(2), 81–97.



Trust

• Critical for adoption of ML models
• Case-specific prediction

• Clinical decision support
• Confidence in model

• Population health

• Recall what we’ve discussed of randomized controlled trials
• Simplest cases (no comorbidities), smallest sample needed for significance test, 

shortest follow-up time
• Results applied to very different populations

• Same concerns for ML models
• Train and test samples often drawn from same population
• Are results applicable elsewhere?
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Explanation — Not a New Idea!
Mycin, 1975

• Mycin (1974) used backward-chaining rules to 
determine whether a patient had a bacterial 
infection that needed to be treated, and how 
best to treat

• Collection of several hundred rules, each of 
which encoded a relatively independent fact

• Certainty factors encoded a theory of 
uncertain reasoning (tantamount to very strong 
independence assumptions, leading to 
problems)
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RULE092

IF we have identified organisms for 
which treatment is indicated

THEN select a treatment that
covers those organisms

RULE037

IF the organism
1) stains gram positive
2) has a coccus shape
3) grows in chains

THEN
There is suggestive evidence (.7)

that the identify of the organism
is streptococcus



How Mycin Works

• Dynamically generates an and/or tree via backward chaining
• To find out a fact

• If there are rules that can conclude it, run them
• Otherwise, ask the user

• To run a rule
• Find out if the facts in the premises are true (enough)
• If they all are, then assert the conclusion (with suitable certainty factor)

• This traces out the equivalent of a flowchart, but by generating it on the fly from 
underlying rules
• Knowledge is always applied when relevant
• Can answer questions about how/why it is working
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Explanation — Not a New Idea!
Mycin, 1975

• In light of the site from which the culture was obtained, and the method of 
collection, do you feel that a significant number of ORGANISM-1 were obtained? 
**WHY 

• [1.0] It is important to find out whether there is therapeutically significant disease 
associated with this occurrence of ORGANISM-1
It has already been established that: 
• [1.1] the site of the culture is not one of those which are normally sterile, and 
• [1.2] the method of collection is sterile 

• Therefore, if: 
• [1.3] the organism has been observed in significant numbers

• Then: there is strongly suggestive evidence (.9) that there is therapeutically 
significant disease associated with this occurrence of the organism 

• [Also : there is strongly suggestive evidence (.8) that the organism is not a 
contaminant] 

6Shortliffe, E. H., Davis, R., Axline, S. G., & Buchanan, B. G. (1975). Computer-based consultations in clinical therapeutics: explanation and rule acquisition 
capabilities of the MYCIN system. Computers and Biomedical Research, 8, 303–320.



• **WHY
• [2.0] . . . in order to find out a locus of infection in PATIENT-1 

It has already been established that: 
• [2.1] the site of the culture is known, and 
• [2.2] the number of days since the specimen for the culture was obtained 

is less than 7 
• Therefore, if: 

• [2.3] there is therapeutically significant disease associated with this occurrence 
of the organism 

• Then: it is definite (1.0) that the site of the culture is a locus of infection in the patient 
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• **WHY [i.e., WHY is it important to find out a locus of infection in PATIENT-1?] 
• [3.0] . . . in order to find out about an organism or class of organisms for which 

therapy should cover 
It has already been established that:
• [3.1] the site of the culture is blood, and 
• [3.2] the stain of the organism is grampos, and 
• [3.3] the portal of entry of the organism is GI 

• Therefore, if: 
• [3.4] [A- abdomen is a locus of infection in the patient, or B- pelvis is a locus of 

infection in the patient] 
• Then : there is strongly suggestive evidence (.9) that enterobacteriaceae is a class of 

organisms for which therapy should cover
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• ** HOW 3.0 [i.e., HOW were you finding out about an organism or class of 
organisms for which therapy should cover?]

• [4.0] At that point RULE095 was being used. 
In addition : 
• [4.1] RULE162 was used to conclude that bacteroides is an organism for which 

therapy should cover, and
• [4.2] RULE115 will be tried later, as well. 

• ** HOW 4.1 [i.e., HOW was RULE162 used?] 
• [5.0] We have already established that: 

• [5.1] the site of the culture is blood, and 
• [5.2] the portal of entry of the organism is GI, and 
• [5.3] the patient is a compromised host 

• Therefore : it is definite (1.0) that bacteroides is an organism for which therapy 
should cover (RULE162) 
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• ** DO YOU EVER PRESCRIBE CARBENICILLIN FOR PSEUDOMONAS 
INFECTIONS? 

• RELEVANT RULES: RULE064 RULE119 RULE120
WHICH ONES DO YOU WISH TO SEE?
** RULE064
IF: 1) IT IS KNOWN WITH CERTAINTY THAT THE IDENTITY OF THE ORGANISM IS 
PSEUDOMONAS, AND
2) THE DRUG UNDER CONSIDERATION IS GENTAMICIN 

• THEN: RECORD THE FOLLOWING AS A MORE APPROPRIATE THERAPY: 
GENTAMICIN-AND-CARBENICILLIN 
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Local vs. Global interpretability

• Global interpretability – understand model as a 
whole
– Will it work prospectively as intended?

(dataset shift, label misspecification, label leakage)
– What data was most useful? (find more signal of a similar 

type, form causal hypotheses, figure out how to simplify 
for deployment purposes)



Local vs. Global interpretability
• Global interpretability – understand model as a 

whole
– For any model: do feature ablation. How does performance on 

held-out data change?
– Ex. linear models: look at largest positive and negative weight 

features
– Ex: decision trees: look at the top few splits
– Ex. deep models: visualize specific filters

– Increasingly more difficult as models become more complex…

Olah et al., Feature Visualization: How neural networks build up their understanding of images, Distill 2017 https://distill.pub/2017/feature-visualization/

https://distill.pub/2017/feature-visualization/


Example of using global interpretability to 
debug ML setup

• In 2018, I submitted a paper using the Multiple 
Myeloma Research Foundation’s IA9 data release. 
Great results

Risk Stratification in Multiple Myeloma from Clinical Data

Table 3: Predicting Mortality

Method 1 Yr Full 1 Yr ISS-FISH 2 Yr Full 2 Yr ISS-FISH
LR 0.66± 0.1 0.62± 0.14 0.8± 0.08 0.69± 0.1
LR-B-PCA 0.66± 0.1 0.61± 0.13 0.79± 0.08 0.65± 0.11
LR-T-PCA 0.68± 0.1 0.61± 0.14 0.8± 0.08 0.65± 0.11
RF 0.65± 0.09 0.63± 0.12 0.82± 0.08 0.73± 0.09
RF-B-PCA 0.69± 0.11 0.63± 0.12 0.83± 0.08 0.73± 0.09
RF-T-PCA 0.72± 0.1 0.64± 0.12 0.85± 0.08 0.72± 0.09

Table 4: We report AUCs with 95% confidence intervals on the held out test set on one
and two eyar mortality. LR corresponds to logistic regression, RF corresponds to random
forests, B-PCA corresponds to kPCA with baseline features, and T-PCA to kPCA using
post-treatment data from the training set during learning. Full and ISS-FISH are the two
feature sets we explore.

learned using only baseline visits. When post-treatment variables are used during training,
we denote the method as “TKPCA“ for temporal kPCA, and when only baseline variables
are used, we refer to it as “BKPCA“ for baseline kPCA. Figure 2a depicts this framework.

4.2 Learning

We apply two supervised learning algorithms: logistic regression (a log-linear classifier) and
random forests (Breiman, 2001) (a non-linear classifier) to each combination of the feature
sets and feature representations described above. We also apply them to the raw features in
each feature set. Logistic regression is a linear classification method that is widely used due
to its simplicity and ease of interpretation. Random Forests are less interpretable and more
likely to overfit, but they model nonlinearities.

Our implementation uses scikit-learn (Pedregosa et al., 2011), and we search over the
following hyperparameters. For logistic regression, we try both L1 and L2 regularization,
and inverse regularization constants of 0.0001 through 100 with steps sizes of 1 on a log
base 10 scale. We balance class weights and use the liblinear solver. For random forests,
we search over tree depths of 2, 5, 10, 15 and 20, and we search over minimum leaf sizes
of 1, 5 and 10. In all experiments, we balance class weights and use 200 estimators. For
kernel PCA, we search over a linear, polynomial and rbf kernel, and we use 15 components,
roughly half the number of features used in the the unsupervised representation learning
experiments on the full dataset.

5. Experimental Evaluation

5.1 Study Design

We separate the dataset by patient into 70% training data and 30% test data, with outcomes
for both prediction tasks balanced across the split. To perform hyperparameter selection,
we split the training set into 5 equally sized folds using the same label balancing criteria
(Breiman and Spector, 1992). We report results using the hyperparameter setting with the
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• Curious to see why “full” feature set with random forests
so much better, so looked at one decision tree:

• Surprised to see cd319% at the top, but after discussing 
with clinical collaborator, concluded it is reasonable

Authors

cd319 pc% <= 50.0
gini = 0.5

samples = 331
value = [165.5, 165.5]

beta 2 microglobulin (mcg/ml) <= 3.89
gini = 0.4875
samples = 310

value = [165.5, 120.3636]

True

gini = 0.0
samples = 21

value = [0.0, 45.1364]

False

KPCA Component 9 <= 0.3996
gini = 0.3778
samples = 172

value = [101.6457, 34.3896]

KPCA Component 7 <= 0.0833
gini = 0.4891
samples = 138

value = [63.8543, 85.974]

do you have any trouble doing strenuous activities; like carrying a heavy shopping bag or a suitcase? <= 1.5
gini = 0.315

samples = 160
value = [97.0846, 23.6429]

gini = 0.4184
samples = 12

value = [4.561, 10.7468]

gini = 0.0
samples = 65

value = [42.3524, 0.0]

KPCA Component 3 <= 0.0718
gini = 0.4213
samples = 95

value = [54.7323, 23.6429]

have you had pain in your back? <= 1.5
gini = 0.4965
samples = 49

value = [25.4114, 21.4935]

lytic lesions <= 0.5
gini = 0.1273
samples = 46

value = [29.3209, 2.1494]

gini = 0.0
samples = 15

value = [9.7736, 0.0]

KPCA Component 12 <= 0.0107
gini = 0.4876
samples = 34

value = [15.6378, 21.4935]

mean of financial difficulties questions <= 1.5
gini = 0.41

samples = 21
value = [7.8189, 19.3442]

gini = 0.3383
samples = 13

value = [7.8189, 2.1494]

gini = 0.4944
samples = 11

value = [5.2126, 6.4481]

gini = 0.2797
samples = 10

value = [2.6063, 12.8961]

gini = 0.3926
samples = 10

value = [5.8642, 2.1494]

gini = -0.0
samples = 36

value = [23.4567, 0.0]

24 hr urine total protein (g/24 hr) <= 4.1115
gini = 0.4617
samples = 109

value = [46.2618, 81.6753]

KPCA Component 11 <= 0.0181
gini = 0.3156
samples = 29

value = [17.5925, 4.2987]

KPCA Component 12 <= -0.0864
gini = 0.4404
samples = 99

value = [39.7461, 81.6753]

gini = -0.0
samples = 10

value = [6.5157, 0.0]

KPCA Component 10 <= -0.003
gini = 0.4828
samples = 29

value = [15.6378, 10.7468]

patient age <= 65.5
gini = 0.3786
samples = 70

value = [24.1083, 70.9286]

gini = 0.0
samples = 14

value = [9.122, 0.0]

gini = 0.47
samples = 15

value = [6.5157, 10.7468]

platelet count x10^9/l <= 205.0
gini = 0.4919
samples = 32

value = [14.9862, 19.3442]

KPCA Component 6 <= 0.0713
gini = 0.2554
samples = 38

value = [9.122, 51.5844]

gini = 0.3344
samples = 17

value = [5.2126, 19.3442]

gini = 0.0
samples = 15

value = [9.7736, 0.0]

patient age <= 71.5
gini = 0.0964
samples = 20

value = [1.9547, 36.539]

gini = 0.4371
samples = 18

value = [7.1673, 15.0455]

gini = 0.0
samples = 10

value = [0.0, 21.4935]

gini = 0.2035
samples = 10

value = [1.9547, 15.0455]

gini = 0.0
samples = 19

value = [12.3799, 0.0]

gini = 0.4954
samples = 10

value = [5.2126, 4.2987]

Figure 5: A decision tree for predicting 2 year mortality from the full TPCA features with
AUC 0.71. We see that CD319 separates out a subset of patients immediately, and that the
model includes beta 2 microglobulin early on. This is one of two features included in the
ISS risk score, so this makes clinical sense.
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Example of using global interpretability to 
debug ML setup



• 3 months later, new release of data (IA11) is available 
and I ask students to reproduce results

4 Results

4.1 AUC of Different Model Parameters

Table 1: Predicting Mortality – Ike’s IA10 Results (from notebook)

Models 1 Yr Full 1 Yr ISS-FISH 2 Yr Full 2 Yr ISS-FISH

LR 0.66± 0.1 0.62± 0.14 0.8± 0.08 0.69± 0.1
LR-B-PCA 0.66± 0.1 0.61± 0.14 0.79± 0.09 0.67± 0.11
LR-T-PCA 0.67± 0.1 0.62± 0.13 0.8± 0.08 0.65± 0.11
RF 0.65± 0.09 0.61± 0.11 0.82± 0.08 0.73± 0.09
RF-B-PCA 0.66± 0.11 0.62± 0.12 0.82± 0.08 0.72± 0.1
RF-T-PCA 0.67± 0.11 0.62± 0.11 0.84± 0.08 0.72± 0.1

Table 2: IA10 Predicting Mortality - RP - tensors identical to Ike’s

Models 1 Yr Full 1 Yr ISS-FISH 2 Yr Full 2 Yr ISS-FISH

LR 0.66± 0.1 0.62± 0.14 0.8± 0.08 0.69± 0.1
LR-B-PCA 0.66± 0.1 0.62± 0.13 0.79± 0.09 0.65± 0.11
LR-T-PCA 0.67± 0.1 0.61± 0.13 0.8± 0.08 0.67± 0.11
RF 0.65± 0.09 0.61± 0.11 0.82± 0.08 0.73± 0.09
RF-B-PCA 0.66± 0.11 0.62± 0.11 0.82± 0.08 0.72± 0.1
RF-T-PCA 0.67± 0.11 0.62± 0.11 0.84± 0.08 0.71± 0.1

Table 3: Predicting Mortality - reproduce Ike IA10 - myeloma typo fixed

Models 1 Yr Full 1 Yr ISS-FISH 2 Yr Full 2 Yr ISS-FISH

LR 0.66± 0.1 0.62± 0.14 0.8± 0.08 0.69± 0.1
LR-B-PCA 0.66± 0.1 0.62± 0.13 0.79± 0.09 0.65± 0.11
LR-T-PCA 0.67± 0.1 0.61± 0.13 0.8± 0.08 0.67± 0.11
RF 0.72± 0.09 0.61± 0.11 0.83± 0.08 0.73± 0.09
RF-B-PCA 0.7± 0.12 0.62± 0.11 0.83± 0.08 0.72± 0.1
RF-T-PCA 0.66± 0.11 0.62± 0.11 0.85± 0.08 0.71± 0.1

Table 4: IA10 Predicting Mortality - RP - myeloma typo fixed - flow cyt ind = SELF

Models 1 Yr Full 1 Yr ISS-FISH 2 Yr Full 2 Yr ISS-FISH

LR 0.64± 0.13 0.61± 0.14 0.8± 0.08 0.69± 0.1
LR-B-PCA 0.66± 0.1 0.62± 0.14 0.79± 0.09 0.65± 0.11
LR-T-PCA 0.68± 0.1 0.62± 0.13 0.8± 0.08 0.67± 0.11
RF 0.7± 0.09 0.61± 0.11 0.83± 0.08 0.73± 0.09
RF-B-PCA 0.67± 0.11 0.63± 0.11 0.84± 0.07 0.72± 0.1
RF-T-PCA 0.66± 0.11 0.63± 0.11 0.82± 0.08 0.71± 0.1

Table 5: IA11 Predicting Mortality - incorp all updates (typo fix, ind=SELF, add MEDHX,

artificial 0) - update cohorts to include new patients

Models 1 Yr Full 1 Yr ISS-FISH 2 Yr Full 2 Yr ISS-FISH

LR 0.68± 0.09 0.65± 0.14 0.76± 0.08 0.7± 0.09
LR-B-PCA 0.68± 0.1 0.65± 0.13 0.75± 0.08 0.67± 0.09
LR-T-PCA 0.69± 0.09 0.64± 0.13 0.77± 0.07 0.66± 0.09
RF 0.63± 0.1 0.63± 0.11 0.75± 0.08 0.73± 0.08
RF-B-PCA 0.66± 0.1 0.64± 0.11 0.76± 0.08 0.72± 0.08
RF-T-PCA 0.78± 0.08 0.64± 0.11 0.77± 0.08 0.72± 0.08

2

Risk Stratification in Multiple Myeloma from Clinical Data

Table 3: Predicting Mortality

Method 1 Yr Full 1 Yr ISS-FISH 2 Yr Full 2 Yr ISS-FISH
LR 0.66± 0.1 0.62± 0.14 0.8± 0.08 0.69± 0.1
LR-B-PCA 0.66± 0.1 0.61± 0.13 0.79± 0.08 0.65± 0.11
LR-T-PCA 0.68± 0.1 0.61± 0.14 0.8± 0.08 0.65± 0.11
RF 0.65± 0.09 0.63± 0.12 0.82± 0.08 0.73± 0.09
RF-B-PCA 0.69± 0.11 0.63± 0.12 0.83± 0.08 0.73± 0.09
RF-T-PCA 0.72± 0.1 0.64± 0.12 0.85± 0.08 0.72± 0.09

Table 4: We report AUCs with 95% confidence intervals on the held out test set on one
and two eyar mortality. LR corresponds to logistic regression, RF corresponds to random
forests, B-PCA corresponds to kPCA with baseline features, and T-PCA to kPCA using
post-treatment data from the training set during learning. Full and ISS-FISH are the two
feature sets we explore.

learned using only baseline visits. When post-treatment variables are used during training,
we denote the method as “TKPCA“ for temporal kPCA, and when only baseline variables
are used, we refer to it as “BKPCA“ for baseline kPCA. Figure 2a depicts this framework.

4.2 Learning

We apply two supervised learning algorithms: logistic regression (a log-linear classifier) and
random forests (Breiman, 2001) (a non-linear classifier) to each combination of the feature
sets and feature representations described above. We also apply them to the raw features in
each feature set. Logistic regression is a linear classification method that is widely used due
to its simplicity and ease of interpretation. Random Forests are less interpretable and more
likely to overfit, but they model nonlinearities.

Our implementation uses scikit-learn (Pedregosa et al., 2011), and we search over the
following hyperparameters. For logistic regression, we try both L1 and L2 regularization,
and inverse regularization constants of 0.0001 through 100 with steps sizes of 1 on a log
base 10 scale. We balance class weights and use the liblinear solver. For random forests,
we search over tree depths of 2, 5, 10, 15 and 20, and we search over minimum leaf sizes
of 1, 5 and 10. In all experiments, we balance class weights and use 200 estimators. For
kernel PCA, we search over a linear, polynomial and rbf kernel, and we use 15 components,
roughly half the number of features used in the the unsupervised representation learning
experiments on the full dataset.

5. Experimental Evaluation

5.1 Study Design

We separate the dataset by patient into 70% training data and 30% test data, with outcomes
for both prediction tasks balanced across the split. To perform hyperparameter selection,
we split the training set into 5 equally sized folds using the same label balancing criteria
(Breiman and Spector, 1992). We report results using the hyperparameter setting with the
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Old results 
(IA9):

New results 
(IA11):

Big differences!

Example of using global interpretability to 
debug ML setup



• 3 months later, new release of data (IA11) is available 
and I ask students to reproduce results

• Cd319% no longer shows up as a top predictor!
• What happened!?

Figure 7: Two year mortality decision tree, full feature set, b-PCA - IA11.

4.4 Two year mortality decision tree, full feature set, no PCA

Figure 8: Two year mortality decision tree, full feature set, no PCA - IA10 (from dir incorp all updates).

Figure 9: Two year mortality decision tree, full feature set, no PCA - IA11.

4

Example of using global interpretability to 
debug ML setup



• After digging deeper, we realized that what was predictive 
originally was the feature Cd319% being missing, and 
moreover that this was correlated with the outcome (i.e. label 
leakage!)

[Figure credit: Rebecca Boiarsky]

Example of using global interpretability to 
debug ML setup



What are other ways to learn 
models that have “good” global

interpretability?



Generalized additive models (GAMs)

• GAMs with pairwise interactions have the form:

• g is the link function (e.g. logistic, for binary data), 
and E[f] = 0.

if the rule-based system had learned that asthma lowers risk,
certainly the neural nets had learned it, too. The rule-based
system was intelligible and modular, making it easy to recog-
nize and remove dangerous rules like the asthma rule. While
there are methods for repairing the neural nets so they do
not incorrectly predict that asthmatics are at lower risk and
thus less likely to need hospitalization, e.g., re-train without
asthmatics in the population, remove the asthma feature,
modify the targets for asthmatics to “1” in the data to re-
flect the care they received (unfortunately confounding care
with death), the decision was made to not use the neural nets
not because the asthma problem could not be solved, but be-
cause the lack of intelligibility made it di�cult to know what
other problems might also need fixing. Because the neural
nets were more accurate than the rules, it was possible that
the neural nets had learned other patterns that could put
some kinds of patients at risk if used in a clinical trial. For
example, perhaps pregnant women with pneumonia also re-
ceive aggressive treatment that lowers their risk compared
to the general population. The neural net might learn that
pregnancy lowers risk, and thus recommend not admitting
pregnant women, thus putting them at increased risk. In an
e↵ort to “do no harm”, the decision was made to go forward
only with models that were intelligible such as logistic regres-
sion, even if they had lower AUC than other unintelligible
models. The logistic regression model also learned that hav-
ing asthma lowered risk, but this could easily be corrected
by changing the weight on the asthma feature from negative
to positive (or to zero).

Jumping two decades forward to the present, we now
have a number of new learning methods that are very ac-
curate, but unfortunately also relatively unintelligible such
as boosted trees, random forests, bagged trees, kernelized-
SVMs, neural nets, deep neural nets, and ensembles of these
methods. Applying any of these methods to mission-critical
problems such as healthcare remains problematic, in part
because usually it is not ethical to modify (or randomize)
the care delivered to patients to collect data sets that will
not su↵er from the kinds of bias described above. Learning
must be done with the data that is available, not the data
one would want. But it is critical that models trained on
real-world data be validated prior to use lest some patients
be put at risk, which makes using the most accurate learning
methods challenging.

In this paper we describe the application of a learning
method based on high-performance generalized additive mod-
els [5, 6] to the pneumonia problem described above, and to
a modern, much larger problem predicting 30-day hospital
readmission. On both of these problems our GA2M models
yield state-of-the-art accuracy while remaining intelligible,
modular, and editable. We believe this class of models repre-
sents a significant step forward in training models with high
accuracy that are also intelligible. The main contributions of
this paper are that it: shows that GA2Ms yield competitive
accuracy on real problems; demonstrates that the learned
models are intelligible; demonstrates that the predictions
made by the model for individual cases (patients) also are
intelligible, and demonstrates how, because the models are
modular, they can be edited by experts.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief introduction to GAM and GA2M.
Sections 3 and 4 present our case studies of training intelli-
gible GA2M model on the pneumonia and the 30-day read-

mission data, respectively. Section 5 discusses a wide range
of issues that arise when learning with intelligible models
and our general lessons for the research community.

2. INTELLIGIBLE MODELS
Let D = {(xi, yi)}N1 denote a training dataset of size N ,

where xi = (xi1, ..., xip) is a feature vector with p features
and yi is the target (response). We use xj to denote the jth
variable in the feature space.

Generalized additive models (GAMs) are the gold stan-
dard for intelligibility when low-dimensional terms are con-
sidered [4, 5, 6]. Standard GAMs have the form

g(E[y]) = �0 +
X

fj(xj), (1)

where g is the link function and for each term fj , E[fj ] = 0.
Generalized linear models (GLMs), such as logistic regres-
sion, are a special form of GAMs where each fj is restricted
to be linear. Since the contribution of a single feature to the
final prediction can be easily understood by examining fj ,
such models are considered intelligible.

To improve accuracy, pairwise interactions can be added
to standard GAMs, leading to a model called GA2Ms [6]:

g(E[y]) = �0 +
X

j

fj(xj) +
X

i 6=j

fij(xi, xj). (2)

Note that pairwise interactions are intelligible because they
can be visualized as a heat map. GA2M builds the best
GAM first and then detects and ranks all possible pairs of
interactions in the residuals. The top k pairs are then in-
cluded in the model (k is determined by cross-validation).

There are various methods to train GAMs and GA2Ms.
Each component can be represented using splines, leading to
an optimization problem which balances the smoothness of
splines and empirical error [7]. Other representations include
regression trees on a single or a pair of features. Empirical
study showed gradient boosting with bagging of shallow re-
gression trees yields as components very good accuracy [5].
Interested readers are referred to [5, 6] for details.2

3. CASE STUDY: PNEUMONIA RISK
In this case study we use one of the pneumonia datasets

discussed earlier in the motivation [3]. This dataset has
14,199 pneumonia patients. To facilitate comparison with
prior work, we use the same train and test set folds from the
earlier study: the train set contains 9847 patients and the
test set has 4352 patients (a 70:30 train:test split). There
are 46 features describing each patient. These range from
history features such as age and gender, to simple measure-
ments taken at a routine physical such as heart rate, blood
pressure, and respiration rate, to lab tests such as White
Blood Cell count (WBC) and Blood Urea Nitrogen (BUN),
to features read from a chest x-ray such as lung collapse or
pleural e↵usion. See Table 1 for a complete list.

As discussed earlier, the goal is to predict probability of
death (POD) so that patients at high risk can be admit-
ted to the hospital, while patients at low risk are treated as
outpatients.3 10.86% of the patients in the dataset (1542 pa-
tients) died from pneumonia. The GAM/GA2M models are
2Code is available at https://github.com/yinlou/mltk.
3Hospitals are dangerous places, particularly for patients
with impaired immune systems. Treating low-risk patients
as outpatients not only saves money, but is actually safer.
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Patient-history findings
chronic lung disease - age C
re-admission to hospital - gender -
admitted through ER - diabetes mellitus -
admitted from nursing home - asthma -
congestive heart failure - cancer -
ischemic heart disease - number of diseases C
cerebrovascular disease - history of seizures -
chronic liver disease - renal failure -
history of chest pain -

Physical examination findings
diastolic blood pressure C wheezing -
gastrointestinal bleeding - stridor -
respiration rate C heart murmur -
altered mental status - temperature C
heart rate C

Laboratory findings
liver function tests - BUN level C
glucose level C creatinine level C
potassium level C albumin level C
hematocrit C WBC count C
percentage bands C pH C
pO2 C pCO2 C
sodium level C

Chest X-ray findings
positive chest x-ray - lung infiltrate -
pleural e↵usion - pneumothorax -
cavitation/empyema - chest mass -
lobe or lung collapse -

Table 1: Pneumonia attributes, grouped by
type. Continuous features that will be shaped by
GAM/GA2M models are marked with a “C”.

trained on this data using 100 rounds of bagging. Bagging is
done to reduce overfitting, and to provide pseudo-confidence
intervals for the graphs in the intelligible model.

The AUC area for di↵erent models trained on this data are
shown in Table 2. On this dataset logistic regression achieves
AUC = 0.843, Random Forests achieves 0.846, LogitBoost
0.849, GAM 0.854, and GA2M is best with AUC = 0.857.4

The di↵erence in AUC between the methods is not huge (less
than 0.02), but it is reassuring to see the GAM/GA2Mmeth-
ods achieve the best accuracy on this problem. The im-
portant question is if the GAM/GA2M models are able to
achieve this accuracy while remaining intelligible?

Figure 1 shows 28 of the 56 terms in the GA2M model
for pneumonia. Unfortunately, the compact representation
necessary for the paper reduces intelligibility. For small
models like this with fewer than 100 terms we would pre-
fer to present all terms, possibly sorted by their importance
to the model. In the actual deployment, for each term we
would also show a histogram of data density for di↵erent
values of the feature, descriptive statistics about the fea-
ture, several di↵erent measures of term importance in the
model, and links to online resources that provide informa-
tion about the term, e.g., links to a hospital database, or
Wikipedia or WebMD pages that describe features, how they
are measured, what the normal ranges are, and what abnor-
mal values indicate. Because of space limitations we have
suppressed all of this auxiliary information (including some
axis labels!) and just present shape plots for some of the
more interesting terms. Presenting the terms in multicol-
umn format without the auxiliary information further hin-
ders intelligibility — the models are more readable when

4The GA2M model uses 10 of the 46⇤45/2 = 1035 possible
pairwise interaction terms (k chosen by cross-validation).

Model Pneumonia Readmission

Logistic Regression 0.8432 0.7523

GAM 0.8542 0.7795
GA2M 0.8576 0.7833

Random Forests 0.8460 0.7671
LogitBoost 0.8493 0.7835

Table 2: AUC for di↵erent learning methods on the
pneumonia and 30-day readmission tasks.

presented in sorted order as a scrollable list of graphs plus
auxiliary information.

The 1st term in the model is for age. Age (in years) on the
x-axis ranges from 18-106 years old (the pneumonia dataset
contains only adults). The vertical axis is the risk score
predicted by the model for patients as a function of age. The
risk score for this term varies from -0.25 for patients with age
less than 50, to a high of about 0.35 for patients age 85 and
above. The green errorbars are pseudo-errorbars of the risk
score predicted for each age: each errorbar is ±1 standard
deviation of the variation in the risk score measured by 100
rounds of bagging. We use ±1 standard deviation instead
of the standard error of the mean because it is well known
that bagging underestimates the variance of predictions from
complex models. We believe it is safer to be conservative
than to present unrealistically narrow confidence intervals.
(See the top of Figure 3(a) for an enlarged version of this
graph, and the discussion in Section 5.5 for more detailed
analysis of the age feature.)

The 2nd term in the model, asthma, is the one that caused
trouble in the CEHC study in the mid-90’s and prevented
clinical trials with the very accurate neural net model. The
GA2M model has found the same pattern discovered back
then: that having asthma lowers the risk of dying from pneu-
monia. As with the logistic regression and rule-based mod-
els trained then, but unlike with the neural net models, this
term is easy to recognize and fix in the GA2M model. We
can “repair” the model by eliminating this term (e↵ectively
setting the weight on this graph to zero), or by using hu-
man expertise to redraw the graph so that the risk score
for asthma=1 is positive, not negative. Because asthma is
boolean, it is not necessary to use a graph, and we could
present a weight and o↵set (RiskScore = w*hasAsthma +
b) instead. We prefer to use graphs for boolean terms like
asthma for three reasons: 1) it is necessary to show graphs
for features with multiple or continuous values such as age
as well as for interactions between features, and it is awk-
ward for the user to jump from terms presented as graphs to
terms presented as equations; 2) we find graphs provide an
intuitive display of risk where up implies higher risk, down
implies lower risk, and the magnitude of the change in risk is
captured by the distance moved; and 3) some users are not
as comfortable with numbers as they are with graphs, and
it is important that the model is intelligible to real users,
whatever their background.

The 3rd term in the model is BUN (Blood Urea Nitro-
gen) level. Most patients have BUN=0 because, as in many
medical datasets, if the variable is not measured or assumed
normal it is coded as 0. The model says risk is reduced
for patients where BUN was not measured, suggesting that
this test typically is not ordered for patients who appear
to be healthy. BUN levels below 30 appear to be low risk,
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Figure 1: 28 (of 56 total) components for the GA2M model trained on the pneumonia data. The line graphs
are terms that contain single features. The heat maps at the bottom are pairwise interaction terms. The
vertical scale on all line graphs are the same to facilitate rapid scanning of the relative contribution of each
term. The green errorbars are pseudo-errorbars from bagging. Boolean features such as asthma are presented
as graphs because this aids interpretation among other features that must be presented as graphs.
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Figure 1: 28 (of 56 total) components for the GA2M model trained on the pneumonia data. The line graphs
are terms that contain single features. The heat maps at the bottom are pairwise interaction terms. The
vertical scale on all line graphs are the same to facilitate rapid scanning of the relative contribution of each
term. The green errorbars are pseudo-errorbars from bagging. Boolean features such as asthma are presented
as graphs because this aids interpretation among other features that must be presented as graphs.
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Falling rule lists

• Ordered list of if-then rules where:
1. It is a decision list, i.e. order matters
2. Probability of outcome decreases monotonically

[Wang & Rudin, AISTATS ‘15]

Falling Rule Lists

Conditions Probability Support
IF IrregularShape AND Age � 60 THEN malignancy risk is 85.22% 230
ELSE IF SpiculatedMargin AND Age � 45 THEN malignancy risk is 78.13% 64
ELSE IF IllDefinedMargin AND Age � 60 THEN malignancy risk is 69.23% 39
ELSE IF IrregularShape THEN malignancy risk is 63.40% 153
ELSE IF LobularShape AND Density � 2 THEN malignancy risk is 39.68% 63
ELSE IF RoundShape AND Age � 60 THEN malignancy risk is 26.09% 46
ELSE THEN malignancy risk is 10.38% 366

Table 1: Falling rule list for mammographic mass dataset.

than by data-driven or algorithmic approaches. These
manually-created risk assessment tools are used in pos-
sibly every hospital; e.g., the TIMI scores, CHADS2
score, Apache scores, and the Ranson score, to name a
few (Antman et al. , 2000; Morrow et al. , 2000; Gage
et al. , 2001; Knaus et al. , 1981, 1985, 1991; Ranson
et al. , 1974). These models can be computed without
a calculator, making them very practical as decision
aids. Of course, we aim for this level of interpretabil-
ity in purely data-driven classifiers, with no manual
feature selection or rounding coe�cients.

Algorithms that discretize the input space have gained
in popularity purely because they yield interpretable
models. Decision trees (Breiman et al. , 1984; Quinlan,
1986, 1993), as well as decision lists (Rivest, 1987), or-
ganize a collection of simple rules into a larger logical
structure, and are popular despite being greedy. In-
ductive logic programming (Muggleton & De Raedt,
1994) returns an unstructured set of conjunctive rules
such that an example is classified as positive if it sat-
isfies any of the rules in that set. An extremely sim-
ple way to induce a probabilistic model from the un-
ordered set of rules given by an ILP method is to place
them into a decision list (e.g., see Fawcett, 2008), or-
dering rules by empirical risk. This is also done in as-
sociative classification (e.g., see Thabtah, 2007). How-
ever, the resulting model cannot be expected to exhibit
good predictive performance, as its constituent rules
were chosen with a di↵erent objective.

Since it is possible that decision tree methods can pro-
duce results that are inconsistent with monotonicity
properties of the data, there is a subfield dedicated to
altering these greedy decision tree algorithms to obey
monotonicity properties (Ben-David, 1995; Feelders &
Pardoel, 2003; Altendorf et al. , 2005). Studies showed
that in many cases, no accuracy is lost in enforcing
monotonicity constraints, and that medical experts
were more willing to use the models with the mono-
tonicity constraints (Pazzani et al. , 2001).

Even with (what seem like) rather severe constraints
on the hypothesis space such as monotonicity or spar-
sity in the number of leaves and nodes, it still seems

that the set of accurate classifiers is often large enough
so that it contains interpretable classifiers (see Holte,
1993). Because the monotonicity properties we enforce
are much stronger than those of Ben-David (1995);
Feelders & Pardoel (2003); Altendorf et al. (2005)
(we are looking at monotonicity along the whole list
rather than for individual features), we do find that
accuracy is sometimes sacrificed, but not always, and
generally not by much. On the other hand, it is pos-
sible that our method gains a level of practicality and
interpretability that other methods simply cannot.

Interpretability is very context dependent (see Ko-
drato↵, 1994; Pazzani, 2000; Freitas, 2014; Huysmans
et al. , 2011; Allahyari & Lavesson, 2011; Martens &
Baesens, 2010; Rüping, 2006; Verbeke et al. , 2011;
Martens et al. , 2011), and no matter how one mea-
sures it in one domain, it can be di↵erent in the next
domain. A falling rule list used in medical practice has
the benefit that it can, in practice, be as sparse as de-
sired. Since it automatically stratifies patients by risk
in the order used for decision making, physicians can
choose to look at as much of the list as they need to
make a decision; the list is as sparse as one requires it
to be. If physicians only care about the most high risk
patients, they look only at the top few rules, and check
whether the patient obeys any of the top clauses.

The algorithm we provide for falling rule lists aims to
have the best of all worlds: accuracy, interpretability,
and computation. The algorithm starts with a statisti-
cal assumption, which is that we can build an accurate
model from pre-mined itemsets. This helps tremen-
dously with computation, and restricts us to build-
ing models with only interpretable building blocks (see
also Letham et al. , 2014; Wang et al. , 2014). Once the
itemsets are discovered, a Bayesian modeling approach
chooses a subset and permutation of the rules to form
the decision list. The user determines the desired size
of the rule list through a Bayesian prior. Our gener-
ative model is constructed so that the monotonicity
property is fully enforced (no “soft” monotonicity).

The code for fitting falling rule lists is available online1.

1http://web.mit.edu/rudin/www/falling_rule_list

Fulton Wang, Cynthia Rudin

Figure 1: Mean distance to true list decreases with
sample size.

by using a falling rule list instead of, say, a support vec-
tor machine, consistent with the observations of Holte
(1993) about very simple classifiers performing well.

Later in this section, we aim to quantify the loss in pre-
dictive power from Falling Rule Lists over other meth-
ods by using an out-of-sample predictive performance
evaluation. Specifically, we compare to several base-
line methods on standard publicly available datasets to
quantify the possible loss in predictive performance.

5.1 Predicting Hospital Readmissions

We applied Falling Rule Lists to preliminary readmis-
sions data being compiled through a collaboration with
a major hospital in the U.S. (Cronin et al. , 2014),
where the goal is to predict whether a patient will be
readmitted to the hospital with 30 days, using data
prior to their release. The dataset contains features
and binary readmissions outcomes for approximately
8,000 patients who had no prior history of readmis-
sions. The features are very detailed, and include as-
pects like “impaired mental status,” “di�cult behav-
ior,” “chronic pain,” “feels unsafe” and over 30 other
features that might be predictive of readmission. As
we will see, luckily a physician may not be required to
collect this amount of detailed information to assess
whether a given patient is at high risk for readmission.

For these experiments and the experiments in the next
section, no parameters were tuned in Falling Rule Lists
(FRL), and the global hyperparameters were chosen as
follows. We mined rules with a support of at least 5%
and a cardinality of at most 2 conditions per rule. We
assumed in the prior that conditioned on L, each rule
had an equal chance of being in the rule list. We set
the prior of {�l}|L to have noninformative and inde-
pendent distributions of gamma(1, 0.1), and the prior
expected length of the decision list, �, to be 8. We

Method Mean AUROC (STD)

FRL .80 (.02)
NF FRL .75 (.02)
NF GRD .75 (.02)

RF .79 (.03)
SVM .62 (.06)
Logreg .82 (.02)
Cart .52 (.01)

Table 3: AUROC values for readmission data

performed simulated annealing search for 5000 steps
with a constant temperature of 1 for simplicity.

We measured out-of-sample performance using the
AUROC from 5-fold cross validation where the MAP
decision list from training was used to predict on each
test fold in turn. We compared with SVM (with Radial
Basis Function kernels), `2 regularized logistic regres-
sion (Ridge regression, denoted LogReg), CART, and
random forests (denoted RF), implemented in Python
using the scikit-learn package. For SVM and logis-
tic regression, hyperparameters were tuned with grid
search in nested cross validation.

As discussed, decision lists consisting of rules from
an inductive logic programming method are not ex-
pected to exhibit strong performance. We tested nFoil
(Landwehr et al. , 2005) with the default settings (max
number of clauses set to 2) to obtain a set of rules.
These rules were ordered in two di↵erent ways, to form
two additional comparison methods: 1. by the empir-
ical risk of each rule (denoted NF GRD), and 2. by
using the set of rules as the pre-mined rule set that
FRL accepts as input (denoted NF FRL). Note that
the risk probabilities in rule lists returned by NF GRD
are not necessarily decreasing monotonically, and that
not all of the nFoil rules are necessarily in the rule
list returned by NF FRL, since omission of a rule can
increase the posterior.

The AUROC’s for the di↵erent methods are in Table 3,
indicating that there was no loss in accuracy for using
Falling Rule Lists on this particular dataset. For all
of the training folds, the decision lists had a length of
either 6 or 7 – all very sparse.

Figure 2 shows ROC curves for all test folds for all
methods. The mean ROC curves are bolded. For this
particular dataset, SVM RBF and CART did not per-
form well. It is unclear why SVM did not perform
well, as cross-validation was performed for SVM; usu-
ally SVM’s perform well when cross-validated (though
it is definitely possible for them to have poor perfor-
mance on some datasets – on the other hand, CART
often performs poorly relative to other methods, in our
experience). As expected, the nFoil-based methods



Supersparse linear integer models

• Learn linear model where:
1. Coefficients are all integer
2. As sparse as possible

[Ustun & Rudin, ML ‘16]
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Fig. 6: ROC curve for SLIM, Lasso and Elastic Net instances that satisfy the sign and model size constraints.
For each method, we plot the instance that attains the highest 10-CV mean test TPR for 10-CV mean FPR
values of 5%, 10%, . . . , 95%. Note that we had to train 19 additional instances of SLIM to create this plot.

SLIM 4 age � 60 + 4 hypertension + 2 bmi � 30 + 2 bmi � 40 � 6 female � 1

Lasso 0.13 snoring + 0.12 hypertension � 0.26 female � 0.17

Elastic Net 0.03 snoring + 0.02 hypertension � 0.09 female � 0.02

Fig. 7: Score functions of the most sensitive predictive models that satisfied all three operational constraints.
The baseline models have very poor sensitivity as shown in Table 2.

PREDICT PATIENT HAS OBSTRUCTIVE SLEEP APNEA IF SCORE > 1

1. age � 60 4 points · · · · · ·

2. hypertension 4 points + · · · · · ·

3. body mass index � 30 2 points + · · · · · ·

4. body mass index � 40 2 points + · · · · · ·

5. female -6 points + · · · · · ·

ADD POINTS FROM ROWS 1 – 5 SCORE = · · · · · ·

Fig. 8: SLIM scoring system for sleep apnea screening. This model achieves a 10-CV mean test TPR/FPR of
61.4/20.9%, obeys all operational constraints, and was trained without parameter tuning. It also generalizes
well due to the simplicity of the hypothesis space: here the training TPR/FPR of the final model is 62.0/19.6%.

provide this kind of qualitative understanding due to their high level of sparsity and small integer coe�cients.
These qualities help users gauge the influence of each input variable with respect to the others, which is
especially important because humans can only handle a few cognitive entities at once (7 ± 2 according
to Miller 1984), and are seriously limited in estimating the association between three or more variables
(Jennings et al., 1982). Sparsity and small integer coe�cients also allow users to make quick predictions
without a computer or a calculator, which may help them understand how the model works by actively
using it to classify prototypical examples. Here, this process helped our collaborators come up with the
following simple rule-based explanation for our model predicted that a patient has OSA (i.e., when SCORE
> 1): “if the patient is male, predict OSA if age � 60 OR hypertension OR bmi � 30; if the patient is female,
predict OSA if bmi � 40 AND (age � 60 OR hypertension).”

4 Berk Ustun, Cynthia Rudin

2 Methodology

We start with a dataset of N i.i.d. training examples DN = {(xi, yi)}
N
i=1 where xi 2 X ✓ RP+1 denotes a

vector of features [1, xi,1, . . . , xi,P ]
T and yi 2 Y = {�1, 1} denotes a class label. We consider linear models

of the form ŷ = sign(�Tx), where � = [�0,�1, . . . ,�P ]
T represents a vector of coe�cients and �0 represents

an intercept term. We learn the coe�cients by solving an optimization problem of the form:

min
�

Loss (�;DN ) + C · �(�)

s.t. � 2 L.
(1)

Here: the loss function Loss (�;DN ) : RP+1
⇥(X⇥Y)N ! R penalizes misclassifications; the coe�cient penalty

�(�) : RP+1
! R induces soft qualities that are desirable but may be sacrificed for greater accuracy; the

coe�cient set L encodes hard qualities must be satisfied; and the trade-o↵ parameter C controls the balance
between accuracy and soft qualities. We assume: (i) the coe�cient set contains the null vector, 0 2 L; (ii)

the penalty is additively separable, �(�) =
PP

j=0 �j(�j); (iii) the intercept is never penalized, �0(�0) = 0.
A Supersparse Linear Integer Model (SLIM) is a special case of the optimization in (1):

min
�

1
N

NX

i=1

h
yi�

Txi  0
i
+ C0 k�k0 + ✏ k�k1

s.t. � 2 L.

(2)

SLIM directly optimizes accuracy and sparsity by minimizing the 0–1 loss 1
N

PN
i=1

h
yi�

Txi  0
i
and

`0-norm k�k0 :=
PP

j=1 [�j 6= 0] respectively. The constraints usually restrict coe�cients to a finite set

of discrete values such as L = {�10, . . . , 10}P+1, and may include additional operational constraints such
as k�k0  10. SLIM includes a tiny `1-penalty ✏ k�k1 in the objective for the sole purpose of restricting
coe�cients to coprime values.1 To be clear, the `1-penalty parameter ✏ is always set to a value that is
small enough to avoid `1-regularization (that is, ✏ is small enough to guarantee that SLIM never sacrifices
accuracy or sparsity to attain a smaller `1-penalty).

SLIM is designed to produce scoring systems that attain a pareto-optimal trade-o↵ between accuracy
and sparsity: when we minimize 0–1 loss and the `0-penalty, we only sacrifice classification accuracy to
attain higher sparsity, and vice versa. Minimizing the 0–1 loss produces scoring systems that are completely
robust to outliers and attain the best learning-theoretic guarantee on predictive accuracy (see e.g. Brooks,
2011, Nguyen and Sanner, 2013). Similarly, controlling for sparsity via `0-regularization prevents the ad-
ditional loss in accuracy due to `1-regularization (see Lin et al., 2008, for a discussion). In addition to
these performance benefits, minimizing an approximation-free object function over a finite set of discrete
coe�cients means that the free parameters in SLIM’s object have special properties.

Remark 1 If ✏ < min (1/N,C0)
max�2Lk�k

1

and L is a finite subset of ZP+1 then the optimization of (2) will produce a

scoring system with coprime coe�cients without a↵ecting accuracy or sparsity:

argmin
�2L

1
N

NX

i=1

h
yi�

Txi  0
i
+ C0 k�k0 + ✏ k�k1 ✓ argmin

�2L

1
N

NX

i=1

h
yi�

Txi  0
i
+ C0 k�k0

and gcd({�⇤j}
P
j=0) = 1 for all �⇤

2 argmin
�2L

1
N

NX

i=1

h
yi�

Txi  0
i
+ C0 k�k0 + ✏ k�k1 .

1 To illustrate the use of the `1-penalty, consider a classifier such as ŷ = sign (x1 + x2). If the objective in (2) only mini-
mized the 0–1 loss and an `0-penalty, then ŷ = sign (2x1 + 2x2) would have the same objective value as ŷ = sign (x1 + x2)
because it makes the same predictions and has the same number of non-zero coe�cients. Since coe�cients are restricted to
a finite discrete set, we add a tiny `1-penalty in the objective of (2) so that SLIM chooses the classifier with the smallest
(i.e. coprime) coe�cients, ŷ = sign (x1 + x2).

Training objective:



Local vs. Global interpretability

• Local interpretability – understand predictions for 
individual data points (i.e., patients)
– Build trust in predictions; recognize errors due to model 

being poor, data point being an outlier, or engineering 
problems

– Provide guidance to decision makers who may have 
additional information

– Explanations that we described earlier, for Mycin, are 
an example of this



Local vs. Global interpretability
• Local interpretability – understand predictions for 

individual data points (i.e., patients)
– Ex: linear (bag of words) models: look at highest 

weighted non-zero feature
– Ex: decision trees: look at path to prediction for this 

patient
– Ex: deep models: saliency maps and GradCAM (as in 

lectures 5 & 8, and PS3)

– How can we do this more generally?

Lead V2 Lead V3

LETTERS NATURE MEDICINE

Extended Data Fig. 4 | See next page for caption.

NATURE MEDICINE | www.nature.com/naturemedicine

Gradient-CAM (Selvaraju et al., IJCV ‘19)

Patient 
with 
anterior 
STEMI 
who 
died 
within 1 
year

[Raghunath et al., Prediction of 
mortality from 12-lead electro-
cardiogram voltage data using a 
deep neural network, Nature 
Medicine 2020]



Model-agnostic Explanations

• A model predicts that a patient has the flu, and LIME highlights:
• Sneeze and headache are portrayed as contributing to the “flu” prediction
• “no fatigue” is evidence against it. 

• With these, a doctor can make an informed decision about whether to trust the 
model’s prediction.

• Approach helps detect data leakage, data set shift, using human expertise

24LIME slides developed from Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?” (pp. 1135–1144). Presented at 
the the 22nd ACM SIGKDD International Conference, New York, New York, USA: ACM Press. http://doi.org/10.1145/2939672.2939778



Explanation of Cases May be Useful to Compare Models

• Predict whether a post is about “Christianity” or “Atheism”
• Algorithm 2 may be overall more accurate, but Algorithm 1 makes more sense, at 

least on this example.

• Again, relies on human expertise, which is much broader than any of our models

25



Desiderata for Explanations

• Interpretable — “provide qualitative understanding between the input variables and 
the response”
• depends on audience
• requires sparsity
• features must make sense

• e.g., eigenvectors in principal component analysis are not explainable 
features

• Local fidelity — “it must correspond to how the model behaves in the vicinity of the 
instance being predicted”

• Model-agnostic — “treat the original model as a black box”
• Is this really a good idea for all models?

26



LIME: Local Interpretable Model-Agnostic Explanations

1. Sample points around xi
2. Use complex model to predict 

labels for each sample
3. Weigh samples according 

to distance to xi
4. Learn new simple model

on weighted samples
5. Use simple model to explain

(Slide credit: Marco Tulio Ribeiro) [Ribeiro et al., KDD ‘16]



How to Make Interpretable Models

• If the original data are            , define a new set of variables,                     that can 
serve as the interpretable representation of the data

• An explanation is a model           where G is the class of interpretable models
• E.g., linear models, additive scores, decision trees, falling rule lists, …
• The domain of g is            , i.e., the interpretable representation of the data

• The complexity of a model is 
• E.g., depth of a decision tree, number of non-zero weights in a linear model

• The full model is 
• E.g., for classification, f is probability that x belongs to a certain class

• is a proximity measure of how close z is to x, thus defining a locality around x
• Let                  be a measure of how unfaithful g is to f in the locality defined by 
• Then                                                           

is the best explanatory model for x given our choices for 

28



Sparse Linear Explanation

• Choose G to be the class of linear models 
such that 

• Let                                             be an exponential kernel on some distance function D
with width 
• E.g., cosine distance for bag-of-words, L2 distance or DICE for images
• Below, z’ is the sampled point, nearby to x, and z (a function of z’) is the same 

point in the original space:

30

Toy example to present intuition for LIME. The 
black-box model’s complex decision function f 
(unknown to LIME) is represented by the 
blue/pink background, which cannot be 
approximated well by a linear model. The bold 
red cross is the instance being explained. LIME 
samples instances, gets predictions using f, and 
weighs them by the proximity to the instance 
being explained (represented here by size). The 
dashed line is the learned explanation that is 
locally (but not globally) faithful. 



Apply to Text Classification

• Bag of words representation, cosine distance for 
• Choose K as a limit on the number of words in an explanation

• When sampling data points, subsample words from the original document x

31



Apply to Image Interpretation

• Superpixel is a group of connected pixels with similar colors or gray levels
• Image is segmented into super pixels
• K is chosen as the number of superpixels to represent

• K-LASSO predicts label from superpixels, to select which K of them to use for 
explanation

• with N=5000, scikit-learn random forests with 1000 trees ⇒ 3 sec
• explaining Inception network results ⇒ ~10 min

32



Choosing a Suite of Examples to Explain

• Choose a diverse, comprehensive set of B examples to explain
• WHY?



Choosing a Suite of Examples to Explain

• Choose a diverse, comprehensive set of B examples to explain
• Given explanations for a set of instances                  , consider the           explanation 

matrix      whose rows are examples and columns are features
• Each entry gives the local importance of that feature for that example
• For linear models, for instance                     , set 

• recall that 
• is a measure of global importance of that feature

• for text
• more difficult for superpixels because they don’t

recur over different instances 

• Use greedy algorithm to maximize marginal coverage
(submodular optimization)

34
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LIME Experiments

• Two sentiment analysis datasets (2000 instances, each; used 1600/400 test/train)
• Bag-of-words as features
• Models:

• Decision Trees
• Logistic Regression with L2 regularization
• Nearest Neighbors
• Support Vector Machines with RBF kernels
• Random Forest (1000 trees) with word2vec embeddings

• K = 10

36
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Human Experiments

• Questions:
• Can users choose which of two classifiers generalizes better 
• Based on the explanations, can users perform feature engineering to improve the 

model 
• Are users able to identify and describe classifier irregularities by looking at 

explanations
• “Christianity” vs. “Atheism” from 20-newsgroups dataset

• known problems of data leakage from headers, …
• trained original and “cleaned” classifiers for comparison
• test set accuracy favors the “wrong” classifier!!!

• Separate test set of 819 web pages about these topics from http://dmoz-odp.org
• SVM with RBF kernels, trained on the 20-newsgroup data
• Mechanical Turk, 100 users, K=6 words, B=6 documents/Turk

• in 2nd experiment, they are asked to remove word features they believe 
inappropriate

38
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Can People Gain Insight from these Explanations?

• Trained a deliberately bad classifier 
between Wolf and Husky
• All wolves in training set had snow 

in the picture, no huskies did
• Presented cases to graduate students 

with ML background
• 10 balanced test predictions, with 

one husky in snow, one wolf not in 
snow

• Comparison between pre- and post-
experiment trust and understanding

40



Critique of LIME

• Choice of    (size of neighborhood) is arbitrary and can lead to bad sampling
• in implementation, often set to 

• it is important to tune the size of the neighborhood according to how far z is to the 
closest decision boundary 

41Adhikari, A., Tax, D. M. J., Satta, R., & Fath, M. (2018, December 21). Example and Feature importance-based Explanations for Black-box Machine Learning Models. arXiv.



Counterfactual explanations

• Why did the treatment not work on the patient?
• Why was my loan rejected?
• Simplest approach:

• Find the smallest change to the features that would change the 
prediction from rejected to approved

• Note: (a) there may be many, (b) should be realistic

[Molnar, Interpretable 
Machine Learning: A guide for 
Making Black Box Models 
Explainable, 2022]

Counterfactual Explanations for Machine Learning: A Review , ,

that users prefer counterfactual explanations over case-based rea-
soning, which is another example-based approach. Fernández-Loría
et al. [48] give examples where counterfactual explanations are bet-
ter than feature importance methods.

3 COUNTERFACTUAL EXPLANATIONS
This section illustrates counterfactual explanations by giving an
example and then outlines the major aspects of the problem.

3.1 An Example
Suppose Alice walks into a bank and seeks a home mortgage loan.
The decision is impacted in large part by a machine learning classi-
�er which considers Alice’s feature vector of {Income, CreditScore,
Education, Age}. Unfortunately, Alice is denied for the loan she
seeks and is left wondering (1) why was the loan denied? and (2)
what can she do di�erently so that the loan will be approved in the
future? The former question might be answered with explanations
like: “CreditScore was too low”, and is similar to the majority of
traditional explainability methods. The latter question forms the
basis of a counterfactual explanation: what small changes could be
made to Alice’s feature vector in order to end up on the other side of
the classi�er’s decision boundary. Let’s suppose the bank provides
Alice with exactly this advice (through the form of a counterfactual
explanation) of what she might change in order to be approved next
time. A possible counterfactual recommended by the system might
be to increase her Income by $10K or get a new master’s degree
or a combination of both. The answer to the former question does
not tell Alice what action to take, while the counterfactual expla-
nation explicitly helps her. Figure 1 illustrates how the datapoint
representing an individual, which originally got classi�ed in the
negative class, can take two paths to cross the decision boundary
into the positive class region.
The assumption in a counterfactual explanation is that the underly-
ing classi�er would not change when the applicant applies in the
future. And if the assumption holds, the counterfactual guarantees
the desired outcome in the future time.

3.2 Desiderata and Major Themes of Research
The previous example alludes to many of the desirable properties
of an e�ective counterfactual explanation. For Alice, the counter-
factual should quantify a relatively small change, which will lead
to the desired alternative outcome. Alice might need to increase
her income by $10K to get approved for a loan, and even though
an increase of $50K would do the job, it is most pragmatic for her
if she can make the smallest possible change. Additionally, Alice
might care about a simpler explanation - it is easier for her to focus
on changing a few things (such as only Income) instead of trying
to change many features. Alice certainly also cares that the coun-
terfactual she receives is giving her advice, which is realistic and
actionable. It would be of little use if the recommendation were to
decrease her age by ten years.
These desiderata, among others, have set the stage for recent devel-
opments in the �eld of counterfactual explainability. As we describe
in this section, major themes of research have sought to incorpo-
rate increasingly complex constraints on counterfactuals, all in the
spirit of ensuring the resulting explanation is truly actionable and

useful. Development in this �eld has focused on addressing these
desiderata in a way that is generalizable across algorithms and is
computationally e�cient.

Figure 1: Two possible paths for a datapoint (shown in blue),
originally classi�ed in the negative class, to cross the de-
cision boundary. The end points of both the paths (shown
in red and green) are valid counterfactuals for the original
point. Note that the red path is the shortest, whereas the
green path adheres closely to the manifold of the training
data, but is longer.

(1) Validity: Wachter et al. [111] �rst proposed counterfactual ex-
planations in 2017. They posed counterfactual explanation as
an optimization problem. Equation (1) states the optimization
objective, which is to minimize the distance between the coun-
terfactual (G 0) and the original datapoint (G ) subject to the con-
traint that the output of the classi�er on the counterfactual
is the desired label (~0 2 Y). Converting the objective into a
di�erentiable, unconstrained form yields two terms (see Equa-
tion (2)). The �rst term encourages the output of the classi�er
on the counterfactual to be close to the desired class and the
second term forces the counterfactual to be close the original
datapoint. A metric 3 is used to measure the distance between
two datapoints G, G 0 2 X, which can be the L1/L2 distance, or
quadratic distance, or distance functions which take as input
the CDF of the features [107]. Thus, this original de�nition al-
ready emphasized that an e�ective conterfactual must be small
change relative to the starting point.

arg min
G 0

3 (G, G 0) subject to 5 (G 0) = ~0 (1)

arg min
G 0

max
_

_(5 (G 0) � ~0)2 + 3 (G, G 0) (2)

A counterfactual which indeed is classi�ed in the desired class is
a valid counterfactual. As illustrated in �g. 1, the points shown
in red and green are valid counterfactuals, as they are indeed
in the positive class region, and the distance to the red counter-
factual is smaller than the distance to the green counterfactual.

(2) Actionability: An important consideration while making recom-
mendation is about which features are mutable (for e.g. income,
age) and which aren’t (for e.g. race, country of origin). A rec-
ommended counterfactual should never change the immutable
features. In fact, if change to a legally sensitive feature produces

3

[Figure from: Verma et al., 
Counterfactual Explanations 
for Machine Learning: A
Review, arXiv:2010.10596, 
2020]



Counterfactual explanations

• Why did the treatment not work on the patient?
• Why was my loan rejected?
• Simplest approach:

• Find the smallest change to the features that would change the 
prediction from rejected to approved

• Note: (a) there may be many, (b) should be realistic
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et al. [48] give examples where counterfactual explanations are bet-
ter than feature importance methods.

3 COUNTERFACTUAL EXPLANATIONS
This section illustrates counterfactual explanations by giving an
example and then outlines the major aspects of the problem.

3.1 An Example
Suppose Alice walks into a bank and seeks a home mortgage loan.
The decision is impacted in large part by a machine learning classi-
�er which considers Alice’s feature vector of {Income, CreditScore,
Education, Age}. Unfortunately, Alice is denied for the loan she
seeks and is left wondering (1) why was the loan denied? and (2)
what can she do di�erently so that the loan will be approved in the
future? The former question might be answered with explanations
like: “CreditScore was too low”, and is similar to the majority of
traditional explainability methods. The latter question forms the
basis of a counterfactual explanation: what small changes could be
made to Alice’s feature vector in order to end up on the other side of
the classi�er’s decision boundary. Let’s suppose the bank provides
Alice with exactly this advice (through the form of a counterfactual
explanation) of what she might change in order to be approved next
time. A possible counterfactual recommended by the system might
be to increase her Income by $10K or get a new master’s degree
or a combination of both. The answer to the former question does
not tell Alice what action to take, while the counterfactual expla-
nation explicitly helps her. Figure 1 illustrates how the datapoint
representing an individual, which originally got classi�ed in the
negative class, can take two paths to cross the decision boundary
into the positive class region.
The assumption in a counterfactual explanation is that the underly-
ing classi�er would not change when the applicant applies in the
future. And if the assumption holds, the counterfactual guarantees
the desired outcome in the future time.

3.2 Desiderata and Major Themes of Research
The previous example alludes to many of the desirable properties
of an e�ective counterfactual explanation. For Alice, the counter-
factual should quantify a relatively small change, which will lead
to the desired alternative outcome. Alice might need to increase
her income by $10K to get approved for a loan, and even though
an increase of $50K would do the job, it is most pragmatic for her
if she can make the smallest possible change. Additionally, Alice
might care about a simpler explanation - it is easier for her to focus
on changing a few things (such as only Income) instead of trying
to change many features. Alice certainly also cares that the coun-
terfactual she receives is giving her advice, which is realistic and
actionable. It would be of little use if the recommendation were to
decrease her age by ten years.
These desiderata, among others, have set the stage for recent devel-
opments in the �eld of counterfactual explainability. As we describe
in this section, major themes of research have sought to incorpo-
rate increasingly complex constraints on counterfactuals, all in the
spirit of ensuring the resulting explanation is truly actionable and

useful. Development in this �eld has focused on addressing these
desiderata in a way that is generalizable across algorithms and is
computationally e�cient.

Figure 1: Two possible paths for a datapoint (shown in blue),
originally classi�ed in the negative class, to cross the de-
cision boundary. The end points of both the paths (shown
in red and green) are valid counterfactuals for the original
point. Note that the red path is the shortest, whereas the
green path adheres closely to the manifold of the training
data, but is longer.

(1) Validity: Wachter et al. [111] �rst proposed counterfactual ex-
planations in 2017. They posed counterfactual explanation as
an optimization problem. Equation (1) states the optimization
objective, which is to minimize the distance between the coun-
terfactual (G 0) and the original datapoint (G ) subject to the con-
traint that the output of the classi�er on the counterfactual
is the desired label (~0 2 Y). Converting the objective into a
di�erentiable, unconstrained form yields two terms (see Equa-
tion (2)). The �rst term encourages the output of the classi�er
on the counterfactual to be close to the desired class and the
second term forces the counterfactual to be close the original
datapoint. A metric 3 is used to measure the distance between
two datapoints G, G 0 2 X, which can be the L1/L2 distance, or
quadratic distance, or distance functions which take as input
the CDF of the features [107]. Thus, this original de�nition al-
ready emphasized that an e�ective conterfactual must be small
change relative to the starting point.
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3 (G, G 0) subject to 5 (G 0) = ~0 (1)

arg min
G 0
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_(5 (G 0) � ~0)2 + 3 (G, G 0) (2)

A counterfactual which indeed is classi�ed in the desired class is
a valid counterfactual. As illustrated in �g. 1, the points shown
in red and green are valid counterfactuals, as they are indeed
in the positive class region, and the distance to the red counter-
factual is smaller than the distance to the green counterfactual.

(2) Actionability: An important consideration while making recom-
mendation is about which features are mutable (for e.g. income,
age) and which aren’t (for e.g. race, country of origin). A rec-
ommended counterfactual should never change the immutable
features. In fact, if change to a legally sensitive feature produces
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[Figure from: Verma et al., Counterfactual 
Explanations for Machine Learning: A
Review, arXiv:2010.10596, 2020]

See also:
Karimi, Scholkopf, Valera. 
Algorithmic Recourse: from 
Counterfactual Explanations 
to Interventions. FAccT ‘21



Can we constrain model class to 
give an explanation as part of 

prediction?



Can Attention Models in Deep Learning Serve
as Explanations?

45Liu, G., Hsu, T.-M. H., McDermott, M., Boag, W., Weng, W.-H., Szolovits, P., & Ghassemi, M. (2019, April 4). Clinically Accurate Chest X-Ray Report Generation. arXiv.



• Image encoder (CNN)
• Spacial image features 

• computed by fully connected layer on pre-global-pooling layer of CNN
• Sentence decoder (RNN/LSTM) uses image features

•
• topic vector and stop signal                                       , 

• Word decoder (RNN/LSTM)
• Uses    ,   , and embedding of previous word generated
• Word is sampled from either conditional probability or overall corpus probability

• Reinforcement learning to favor most readable and clinically correct output
• Use CheXpert annotations for 12 diagnoses: pos, neg, uncertain, absent

• Hack: remove duplicate generated sentences
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Attention Map Identified Relevant Parts of the Image

48



But

• “assumption that the input units (e.g., words) accorded high attention weights are 
responsible for model outputs”

• Desiderata if attention actually is to give insight into how a DNN operates
• Attention weights should correlate with feature importance measures (e.g., 

gradient-based measures) 
• Alternative (or counterfactual) attention weight configurations ought to yield 

corresponding changes in prediction 

• Mixed results, though the study has been criticized for methodology
• “evidence that correlation between intuitive feature importance measures 

(including gradient and feature erasure approaches) and learned attention 
weights is weak”

• counterfactual attention distributions — which would tell a different story about 
why a model made the prediction that it did — often have no effect on model 
output 

49Jain, S., & Wallace, B. C. (2019, February 26). Attention is not Explanation. arXiv.
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