Machine Learning for Healthcare 6.871, HST.956

Lecture 16: Survival modeling

David Sontag

Survival modeling

 Regression (i.e., predict time to event) with (potentially) <u>right-</u> <u>censored</u> data

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]

Why might censorship occur?

- Person does not experience event before study ends
- Person lost to follow-up during study period
- Person withdraws from the study because of death (if death is not event of interest) or some other reason (e.g. adverse drug reaction)

Notation and formalization

- *f(t|x)*, the probability of death/failure at time t, conditioned on x
- Survival function is 1 (f' s CDF): $S(t \mid x) = P(T > t \mid x) = \int_{x=t}^{\infty} f(u \mid x) du$

Fig. 2: Relationship among different entities f(t), F(t) and S(t).

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017] [Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]

Kaplan-Meier estimator of survival function S(t)=P(T > t)

 Example of a non-parametric method; good for unconditional density estimation

Kaplan-Meier estimator of survival function S(t)=P(T > t)

General Data Layout:

Indiv. #	t	d	X_1	$X_2 \ldots X_p$
1	t_1	d_1	<i>X</i> ₁₁	$X_{12} \ldots X_{1p}$
2	t_2	d_2	X_{21}	$X_{22} \ldots X_{2p}$
•	•	•	•	•
•	•	•	•	•
•	•	•	•	
п	t_n	d_n	X_{n1}	$X_{n2} \ldots X_{np}$

$$d = (0, 1) \text{ random variable}$$
$$= \begin{cases} 1 & \text{if failure} \\ 0 & \text{if censored} \end{cases}$$

Alternative (ordered) data layout:

Ordered failure times, $t_{(f)}$	# of failures <i>m_f</i>	# censored in $[t_{(f)}, t_{(f+1)}), q_f$	
$t_{(0)} = 0$	$m_0 = 0$	q_0	
$t_{(1)}$	m_1	q_1	
<i>t</i> ₍₂₎	m_2	q_2	
•	•		n_f
•	•	•	
•	•	•	
$t_{(k)}$	m_k	q_k	

Number of individuals who survived at least to this time (including those failing & censored in this interval)

The data: remission times (weeks) for two groups of leukemia patients

Group 1 ($n = 21$)	Group 2 ($n = 21$)	
treatment	placebo	
6, 6, 6, 7, 10,	1, 1, 2, 2, 3,	
13, 16, 22, 23,	4, 4, 5, 5,	
6+, 9+, 10+, 11+,	8, 8, 8, 8,	
17+, 19+, 20+,	11, 11, 12, 12,	
25+, 32+, 32+,	15, 17, 22, 23	
34+, 35+,		
Note: + denotes censored		

_	# failed	# censored	Total
Group 1	9	12	21
Group 2	21	0	21

failure times,	# at risk	# of failures	# censored in $[t_{(f)}, t_{(f+1)}),$
$t_{(f)}$	n_f	m_f	q_f
Gro	up 2 (placebo)		
$t_{(f)}$	n _f	m_f	q_f
0	21	0	0

By default, we always include t=0 with $n_f = n$

[Freireich et al. The Effect of 6-Mercaptopurine on the Duration of Steroid-Induced Remissions in Acute Leukemia: A Model for Evaluation of Other Potentially Useful Therapy. *Blood*, **21**: 699-716, 1963]

The data: remission times (weeks) for two groups of leukemia patients

treatment	nlaceho
	placebo
6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+,	1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

Note: $+ d$	lenotes	censored
-------------	---------	----------

	# failed	# censored	Total
Group 1	9	12	21
Group 2	21	0	21

fa ti	tilure mes, $t_{(f)}$	# at risk n_f	# of failures <i>m_f</i>	# censored in $[t_{(f)}, t_{(f+1)}), q_f$
	Group 2	(placebo)		
	<i>t</i> (<i>f</i>)	n_f	m_f	q_f
	0	21	0	0
	1	21	2	0

At t=1 there are 2 failure events (and no censoring events)

The data: remission times (weeks) for two groups of leukemia patients

treatmentplacebo $6, 6, 6, 7, 10,$ $1, 1, 2, 2, 3,$ $13, 16, 22, 23,$ $4, 4, 5, 5,$ $6+, 9+, 10+, 11+,$ $8, 8, 8, 8,$ $17+, 19+, 20+,$ $11, 11, 12, 12,$ $25+, 32+, 32+,$ $15, 17, 22, 23$	Group 1 (<i>n</i> = 21)	Group 2 ($n = 21$)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	treatment	placebo
	6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+	1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

Note: +	denotes	censored
Note: +	denotes	censored

	# failed	# censored	Total
Group 1	9	12	21
Group 2	21	0	21

failure times, $t_{(f)}$	# at risk n_f	# of failures <i>m_f</i>	# censored in $[t_{(f)}, t_{(f+1)}), q_f$
Group	2 (placebo)		
<i>t</i> (<i>f</i>)	n _f	m_f	q_f
0	21	0	0
1	21	2	0
2	19	2	0

Beginning at t=2 there are 19 subjects still in the study, and there are 2 failure events (and no censoring events)

The data: remission times (weeks) for two groups of leukemia patients

Group 1 ($n = 21$) treatment	Group 2 ($n = 21$)
6, 6, 6, 7, 10,	1, 1, 2, 2, 3,
13, 16, 22, 23, 6+, 9+, 10+, 11+,	4, 4, 5, 5, 8, 8, 8, 8,
17+, 19+, 20+, 25+, 32+, 32+	11, 11, 12, 12, 15, 17, 22, 23
34+, 35+,	13, 11, 22, 23

Note: +	denotes	censored
---------	---------	----------

	# failed	# censored	Total
Group 1	9	12	21
Group 2	21	0	21

fa t	ailure imes, $t_{(f)}$	# at risk n_f	# of failures <i>m</i> _f	# censored in $[t_{(f)}, t_{(f+1)}), q_f$
	Group 2	e (placebo)		
	<i>t</i> (<i>f</i>)	n_f	m_f	q_f
	0	21	0	0
	1	21	2	0
	2	19	2	0
	3			

What are n_f, m_f, and q_f for t_(f)=3?

The data: remission times (weeks) for two groups of leukemia patients

Group 1 (<i>n</i> = 21)	Group 2 ($n = 21$)
treatment	placebo
6, 6, 6, 7, 10,	1, 1, 2, 2, 3,
13, 16, 22, 23,	4, 4, 5, 5,
6+, 9+, 10+, 11+,	8, 8, 8, 8,
17+, 19+, 20+,	11, 11, 12, 12,
25+, 32+, 32+,	15, 17, 22, 23
34+, 35+,	

Note: $+ \mathbf{c}$	lenotes	censored
----------------------	---------	----------

	# failed	# censored	Total
Group 1	9	12	21
Group 2	21	0	21

f 1	failure times, t _(f)	# at risk n_f	# of failures <i>m</i> f	# censored in $[t_{(f)}, t_{(f+1)}), q_f$
	Group	2 (placebo)		
	$t_{(f)}$	n_f	m_f	q_f
	0	21	0	0
	1	21	2	0
	2	19	2	0
	3	17	1	0

The data: remission times (weeks) for two groups of leukemia patients

Group 1 $(n = 21)$ treatment		Group 2 $(n = 21)$ placebo	
6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+,		1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23	
<i>Note</i> : + d	enotes cer	nsored	
	# failed	# censored	Total
Group 1	9	12	21
Group 2	21	0	21

failure times, $t_{(f)}$	# at risk n_f	# of failures <i>m</i> _f	# censored in $[t_{(f)}, t_{(f+1)}), q_f$
Group	2 (placebo)		
$t_{(f)}$	n_f	m_f	q_f
0	21	0	0
1	21	2	0
2	19	2	0
3	17	1	0
4	16	2	0
5	14	2	0
8	12	4	0
11	8	2	0
12	6	2	0
15	4	1	0
17	3	1	0
22	2	1	0
23	1	1	0

failure	# at risk	# of	# censored in
times,		failures	$[t_{(f)}, t_{(f+1)}),$
$t_{(f)}$	n_f	m_f	q_f

Group 2: no censored subjects Group 2 (placebo)

$t_{(f)}$	n_f	m_f	q_f	$\hat{S}\left(t_{(f)}\right)$
0	21	0	0	1
1	21	2	0	
2	19	2	0	
3	17	1	0	
4	16	2	0	
5	14	2	0	
8	12	4	0	
11	8	2	0	
12	6	2	0	
15	4	1	0	
17	3	1	0	
22	2	1	0	
23	1	1	0	

$$\hat{S}(t_{(f)}) = \frac{\# \text{ surviving past } t_{(f)}}{n}$$

Group 2: no censored subjects Group 2 (placebo)

$t_{(f)}$	n_f	m_f	q_f	$\hat{S}\left(t_{(f)} ight)$	
0	21	0	0	1	Kaplan-Me
1	21	2	0	19/21 = .90	
2	19	2	0	17/21 = .81	
3	17	1	0	16/21 = .76	
4	16	2	0	14/21 = .67	
5	14	2	0	12/21 = .57	$S(t) \downarrow \neg \neg$
8	12	4	0	8/21 = .38	
11	8	2	0		.5 –
12	6	2	0		
15	4	1	0		-
17	3	1	0		-
22	2	1	0		
23	1	1	0		0 5 1
-					

$$\hat{S}(t_{(f)}) = \frac{\# \text{ surviving past } t_{(f)}}{n}$$

failure	# at risk	# of	# censored in
times,		failures	$[t_{(f)}, t_{(f+1)}),$
$t_{(f)}$	n_f	m_f	q_f

Group 2: no censored subjects Group 2 (placebo)

<i>t</i> (<i>f</i>)	n_f	m_f	q_f	$\hat{S}(t_{(f)})$	
0	21	0	0	1	
1	21	2	0	19/21 = .90	
2	19	2	0	17/21 = .81	
3	17	1	0	16/21 = .76	
4	16	2	0	14/21 = .67	
5	14	2	0	12/21 = .57	
8	12	4	0	8/21 = .38	
11	8	2	0	6/21 = .29	
12	6	2	0	4/21 = .19	
15	4	1	0	3/21 = .14	
17	3	1	0	2/21 = .10	
22	2	1	0	1/21 = .05	
23	1	1	0	0/21 = .00	

$$\hat{S}(t_{(f)}) = \frac{\# \text{ surviving past } t_{(f)}}{n}$$

Kaplan-Meier curve

The data: remission times (weeks) for two groups of leukemia patients

Group 1 (<i>n</i> = 21)	Group 2 $(n = 21)$
treatment	placebo
6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+,	1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

Note: $+ c$	lenotes	censored
-------------	---------	----------

	# failed	# censored	Total
Group 1	9	12	21
Group 2	21	0	21

failure times,	# at risk	# of failures	# censored in $[t_{(f)}, t_{(f+1)})$,
$t_{(f)}$	n_f	m_f	q_f
Group	1 (treatment)		
$\frac{t_{(f)}}{}$	n _f	m_f	q_f
0	21	0	0
6	21	3	1

At t=6 there are 3 failure events and 1 censoring event

The data: remission times (weeks) for two groups of leukemia patients

Group 1 ($n = 21$) treatment	Group 2 ($n = 21$) glacebo
6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+,	1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

C	1
	C

	# failed	# censored	Total
Group 1	9	12	21
Group 2	21	0	21

failure times,	# at risk	# of failures	# censored in $[t_{(f)}, t_{(f+1)}),$
$t_{(f)}$	n_f	m_f	q_f
Grou	p 1 (treatment)		
<i>t</i> (<i>f</i>)	n_f	m_f	q_f
0	21	0	0
6	21	3	1
7	17	1	1
10			

Beginning at t=7 there are 17 subjects still in the study

Between t=7 and t=10 there is 1 failure event and 1 censoring event

The data: remission times (weeks) for two groups of leukemia patients

Group 1 ($n = 21$) treatment	Group 2 ($n = 21$) placebo
6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+,	1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

	# failed	# censored	Total
Group 1	9	12	21
Group 2	21	0	21

fa ti	ailure imes,	# at risk	# of failures	# censored in $[t_{(f)}, t_{(f+1)}),$
	$t_{(f)}$	n_f	m_f	q_f
	Group 1	(treatment)	
	<i>t</i> (<i>f</i>)	n_f	m_f	q_f
	0	21	0	0
	6	21	3	1
- 1	7	17	1	1
	10	15	1	2
	13			
	16			

What are n_f, m_f, and q_f for t_(f)=13?

The data: remission times (weeks) for two groups of leukemia patients

Group 1 ($n = 21$) treatment	Group 2 ($n = 21$) placebo
6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+,	1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

<i>Note</i> : $+ d\epsilon$	enotes c	ensored
-----------------------------	----------	---------

	# failed	# censored	Total
Group 1	9	12	21
Group 2	21	0	21

fail tim	ure es,	# at risk	# of failures	# censored in $[t_{(f)}, t_{(f+1)}),$
$t_{(j)}$	^)	n_f	m_f	q_f
G	roup 1	(treatment	.)	
$t_{(}$	f)	n_f	m_f	q_f
	0	21	0	0
	6	21	3	1
	7	17	1	1
1	0	15	1	2
1	3	12	1	0
1	6			

The data: remission times (weeks) for two groups of leukemia patients

$\frac{\text{Oroup I}(n-21)}{\text{treatment}}$	dicup 2 (n - 2i)
treatment	placebo
6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+	1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

Note: $+ c$	lenotes	censored
-------------	---------	----------

	# failed	# censored	Total
Group 1	9	12	21
Group 2	21	0	21

fa t	ailure imes,	# at risk	# of failures	# censored in $[t_{(f)}, t_{(f+1)}),$
	$t_{(f)}$	n_f	m_f	q_f
	Group	0 1 (treatment)		
	$t_{(f)}$	n_f	m_f	q_f
	0	21	0	0
	6	21	3	1
	7	17	1	1
	10	15	1	2
	13	12	1	0
	16	11	1	3
	22	7	1	0
	23	6	1	5
	>23		—	

fai tir <i>t</i>	lure nes,	# at risk n_f	# of failure <i>m</i> f	# ce es $[t_{(f)}]$	nsored in $(t_{f+1}), t_{(f+1)}), q_f$
	Gro	oup 1	(treat	tmen	t)
	$t_{(f)}$	n_f	m_f	q_f	$\hat{S}(t_{(f)})$
	0	21	0	0	1
	6	21	3	1	$1 \times \frac{18}{21} = .8571$
	7	17	1	1	
	10	15	1	2	
	13	12	1	0	
	16	11	1	3	
	22	7	1	0	
	23	6	1	5	
	Fra	ction	at $t_{(f)}$): P r($T > t_{(f)} \mid T \ge t_{(f)})$

Pr(surviving to time t) = Pr(surviving to time t-1)
x Pr(surviving to time t | survived to time t-1)

$$\hat{S}(t_{(f)}) = \hat{S}(t_{(f-1)}) \times \hat{Pr}(T > t_{(f)} \mid T \ge t_{(f)})$$

tir <i>t</i>	nes,	n_f	failure m_f	es $\lfloor t_{(f)} \rfloor$	$(f_{f+1}), t_{(f+1)}), q_{f}$
	Gro	up 1	(treat	men	t)
	$t_{(f)}$	n _f	m_f	q_f	$\hat{S}(t_{(f)})$
	0	21	0	0	1
	6	21	3	1	$1 \times (18) = .8571$
	7	17	1	1	$.8571 \times \frac{16}{17} = .8067$
	10	15	1	2	?
	13	12	1	0	
	16	11	1	3	
	22	7	1	0	
	23	6	1	5	
	Frac	ction	at $t_{(f)}$: Pr($T > t_{(f)} \mid T \ge t_{(f)})$

failure # at risk # of # censored in

Pr(surviving to time t) = Pr(surviving to time t-1)
x Pr(surviving to time t | survived to time t-1)

$$\hat{S}(t_{(f)}) = \hat{S}(t_{(f-1)}) \times \hat{Pr}(T > t_{(f)} \mid T \ge t_{(f)})$$

tir.	nes,	n_f	failure m_f	es $[t_{(f)}]$	$(f_{f+1}), t_{(f+1)}), q_f$
	Gro	up 1	(treat	men	it)
	$t_{(f)}$	n _f	m_f	q_f	$\hat{S}(t_{(f)})$
	0	21	0	0	
	6	21	3	1	$1 \times \frac{18}{21} = .8571$
	7	17	1	1	$.8571 \times \frac{16}{17} = .8067$
	10	15	1	2	$.8067 \times \frac{14}{15} = .7529$
	13	12	1	0	
	16	11	1	3	
	22	7	1	0	
	23	6	1	5	
	Fra	ction	at $t_{(f)}$: Pr($T > t_{(f)} \mid T \ge t_{(f)})$

failure # at risk # of # censored in

Pr(surviving to time t) = Pr(surviving to time t-1)
x Pr(surviving to time t | survived to time t-1)

$$\hat{S}(t_{(f)}) = \hat{S}(t_{(f-1)}) \times \hat{Pr}(T > t_{(f)} \mid T \ge t_{(f)})$$

fai tir 1	ilure # nes, ^t (f)	${}^{\sharp}$ at risk n_f	x # of failure <i>m</i> f	# ceres $[t_{(f)}]$	nsored in (j), $t_{(f+1)}$), q_f			
	Gro	up 1	(treat	men	t)			
	<i>t</i> _(f)	n _f	m_f	q_f	$\hat{S}(t_{(f)})$	Pr(surviving to time t) = Pr(surviving to time t-1)		
	0	21	0	0	(1)	x Pr(surviving to time t survived to time t-1)		
	6	21	3	1	$1 \times \frac{18}{21} = .8571$	$\hat{S}(t_{(f)}) = \hat{S}(t_{(f-1)}) \times \hat{Pr}(T > t_{(f)} \mid T \ge t_{(f)})$		
	7	17	1	1	$.8571 \times \frac{16}{17} = .8067$	g y Karalara NAaian arrum ra		
						Kaplan-Meler curve		
	10	15	1	2	$.8067 \times \frac{14}{15} = .7529$	KM Plots for Remission Data		
	13	12	1	0	$.7529 \times \frac{11}{12} = .6902$	0.8 Group h(treatment)		
	16	11	1	3	$.6902 imes rac{10}{11} = .6275$			
	22	7	1	0	$.6275 imes rac{6}{7} = .5378$	0.4		
	23	6	1	5	$.5378 \times \frac{5}{6} = .4482$	0.2		
	Frac	ction	at $t_{(f)}$: Pr($T > t_{(f)} \mid T \ge t_{(f)})$	$0 \frac{16}{24} \frac{16}{32}$		
	[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]							

Kaplan-Meier estimator of survival function S(t)=P(T > t)

 Example of a non-parametric method; good for unconditional density estimation

How do we compute confidence intervals for KM curves?

→ Use Greenwood's formula (see Ch. 2, VII, pgs 78-79)

Are these two curves statistically significantly different? → Use log-rank test (see

Ch. 2, IV, pgs 67-73)

Relationship between probability density, hazard, and survival functions

Recall $S(t) = \int_{u=t}^{\infty} f(u) du$

The hazard function h(t) is: $h(t) = \frac{-d[S(t)]/dt}{S(t)}$

Commonly used parametric survival models

Table 2.1	Useful	parametric	distributions	for	survival	analy	vsis
------------------	--------	------------	---------------	-----	----------	-------	------

Distribution	Hazard rate $h(t)$	Survival function	Density function $f(t)$	
		S(t)		
Exponential ($\lambda > 0$)	λ	$\exp(-\lambda t)$	$\lambda \exp(-\lambda t)$	
Weibull $(\lambda, \phi > 0)$	$\lambda \phi t^{\phi-1}$	$\exp(-\lambda t^{\phi})$	$\lambda \phi t^{\phi-1} \exp(-\lambda t^{\phi})$	
Log-normal	f(t)/S(t)	$1 - \Phi\{(\ln t - \mu)/\sigma\}$	$\varphi\{(\ln t - \mu)/\sigma\}(\sigma t)^{-1}$	
$(\sigma > 0, \mu \in R)$				
Log-logistic	$(\lambda \phi t^{\phi-1})/(1+\lambda t^{\phi})$	$1/(1+\lambda t^{\phi})$	$(\lambda\phi t^{\phi-1})/(1+\lambda t^{\phi})^2$	
$(\lambda > 0, \phi > 0)$				
Gamma ($\lambda, \phi > 0$)	f(t)/S(t)	$1 - I(\lambda t, \phi)$	$\{\lambda^{\phi}/\Gamma(\phi)\}t^{\phi-1}\exp(-\lambda t)$	
Gompertz	$\lambda e^{\phi t}$	$\exp\{\frac{\lambda}{\phi}(1-e^{\phi t})\}$	$\lambda e^{\phi t} \exp\{\frac{\lambda}{\phi}(1-e^{\phi t})\}$	
$(\lambda, \phi > 0)$		T	T	

We obtain **conditional** models $f(t | x; \beta)$ by letting, e.g., $\lambda = \exp(\beta \cdot x)$

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]

Likelihood function

Examples of Censored Subjects:

 Right-censored:
 X time

 10
 10
 time

 Left-censored:
 X 10

 Interval-censored:
 X 10

 Interval-censored:
 X 10

Barry, Gary, Larry, ..., Outcome Distribution f(t)

EventSubjectTimeBarryt = 2Garyt > 8(right-censored)Harryt = 6Carriet < 2(left-censored)Larry4 < t < 8(interval-censored)

Likelihood of observations:

$$L = f(2)x \int_{8}^{\infty} f(t)dt \times f(6)$$
$$\times \int_{0}^{2} f(t)dt \times \int_{0}^{8} f(t)dt$$

 $\begin{array}{l} (\text{Barry} \times \text{Gary} \times \text{Harry} \\ \times \text{Carrie} \times \text{Larry}) \end{array}$

For **right-censored observations**, the corresponding integral is the survival function:

e.g., $\int_8^\infty f(t)dt = S(8)$

Maximum likelihood estimation

- Random variables T_i, C_i, X_i
 - C_i: censoring time of i'th individual
 - T_i : event time of i'th individual
 - X_i: features of i'th individual
- Observed data are {(t_i, d_i, x_i)}, where x_i are the features and d_i is the indicator of whether the outcome is censored for the i'th individual
 - If $d_i=1$, then time t is the time of the event occurrence
 - If $d_i=0$, then time t is the time of censoring
 - Thus, $d_i = 1[T_i < C_i]$ and $t_i = d_iT_i + (1-d_i)C_i$
- Formally, we assume (a) $C_i \perp T_i \mid X_i$, i.e. censoring time is (conditionally) independent of event time, and (b) all individuals' are independent

Maximum likelihood estimation

- Two kinds of observations: censored and right uncensored
- Putting the two together, we get the log-likelihood is, where n=# data points:

$$\sum_{i=1} \left[d_i \log f(t_i \mid \mathbf{x}_i; \beta) + (1 - d_i) \log S(t_i \mid \mathbf{x}_i; \beta) \right]$$

• Maximize via gradient or stochastic gradient ascent!

n

Distribution	Hazard rate $h(t)$	Survival function $S(t)$	Density function $f(t)$
Exponential ($\lambda > 0$)	λ	$\exp(-\lambda t)$	$\lambda \exp(-\lambda t)$

Suppose $\lambda = \exp(\boldsymbol{\beta} \cdot \boldsymbol{x_i})$. Then: $f(t_i \mid \mathbf{x}_i; \beta) = \exp(\beta \cdot \mathbf{x}_i) \exp(-\exp(\beta \cdot \mathbf{x}_i)t_i)$

$$S(t_i \mid \mathbf{x}_i; \beta) = \exp(-\exp(\beta \cdot \mathbf{x}_i)t_i)$$

Example: estimating (heterogeneous) treatment effects

One can perform covariate adjustment using survival models

Must include all confounding factors in X (needed for adjustment formula to hold)

Example: estimating (heterogeneous) treatment effects

	T=0		T=1
Gi	roup 1		Group 2
t (week	s) log WE	BC t (wee	eks) log WBC
6	2.31	1	2.80
6	4.06	1	5.00
6	3.28	2	4.91
7	4.43	2	4.48
10	2.96	3	4.01
13	2.88	4	4.36
16	3.60	4	2.42
22	2.32	5	3.49
23	2.57	5	3.97
6+	3.20	8	3.52
9+	2.80	8	3.05
10 +	2.70	8	2.32
11 +	2.60	8	3.26
17 +	2.16	11	3.49
19+	2.05	11	2.12
20 +	2.01	12	1.50
25 +	1.78	12	3.06
32+	2.20	15	2.30
32+	2.53	17	2.95
34+	1.47	22	2.73
35+	1.45	23	1.97

Same leukemia data as before, from Freireich et. al. *Blood*, **21**: 699-716, 1963.

Example: estimating (heterogeneous) treatment effects

	T=0		T=1		
Gi	roup 1	(Group 2		
t (week	s) log WE	BC t (wee	eks) log WBC		
6	2.31	1	2.80		
6	4.06	1	5.00		
6	3.28	2	4.91		
7	4.43	2	4.48		
10	2.96	3	4.01		
13	2.88	4	4.36		
16	3.60	4	2.42		
22	2.32	5	3.49		
23	2.57	5	3.97		
6+	3.20	8	3.52		
9+	2.80	8	3.05		
10+	2.70	8	2.32		
11 +	2.60	8	3.26		
17 +	2.16	11	3.49		
19+	2.05	11	2.12		
20 +	2.01	12	1.50		
25 +	1.78	12	3.06		
32+	2.20	15	2.30		
32+	2.53	17	2.95		
34+	1.47	22	2.73		
35+	1.45	23	1.97		

LS	_	Individua #	al <i>t</i> (weeks)	d	X ₁ (Group)	X_2 (log WBC
	Group 1	$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ \end{array} $	$\begin{array}{c} 6\\ 6\\ 7\\ 10\\ 13\\ 16\\ 22\\ 23\\ 6\\ 9\\ 10\\ 11\\ 17\\ 19\\ 20\\ 25\\ 32\\ 32\\ 32\\ 34\\ 35 \end{array}$	$ \begin{array}{c} 1\\1\\1\\1\\1\\1\\1\\1\\1\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 2.31\\ 4.06\\ 3.28\\ 4.43\\ 2.96\\ 2.88\\ 3.60\\ 2.32\\ 2.57\\ 3.20\\ 2.80\\ 2.70\\ 2.60\\ 2.16\\ 2.05\\ 2.01\\ 1.78\\ 2.20\\ 2.53\\ 1.47\\ 1.45\end{array}$
	Group 2	22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	1 1 2 3 4 4 5 5 8 8 8 8 11 11 12 15 17 22 23			$\begin{array}{c} 2.80\\ 5.00\\ 4.91\\ 4.48\\ 4.01\\ 4.36\\ 2.42\\ 3.49\\ 3.97\\ 3.52\\ 3.05\\ 2.32\\ 3.26\\ 3.49\\ 2.12\\ 1.50\\ 3.06\\ 2.30\\ 2.95\\ 2.73\\ 1.97\\ \end{array}$

Evaluation for survival modeling

 Concordance-index (also called C-statistic): look at model's ability to predict *relative* survival times:

$$\hat{c} = \frac{1}{n_c} \sum_{i:d_i=1} \sum_{t_i < t_j} 1[\hat{y}_i < \hat{y}_j] \qquad n_c = \sum_{i:d_i=1} \sum_{t_i < t_j} 1 \qquad \hat{y}_i = \mathbb{E}_{f(T|\mathbf{x}_i;\beta)}[T]$$

Example:

Distribution	Hazard rate $h(t)$	Survival function $S(t)$	Density function $f(t)$
Exponential ($\lambda > 0$)	λ	$\exp(-\lambda t)$	$\lambda \exp(-\lambda t)$

The mean of an exponential distribution is $1/\lambda$. Suppose we parameterize with $\lambda = \exp(\boldsymbol{\beta} \cdot \boldsymbol{x})$. Then $\hat{y}_i = \exp(-\boldsymbol{\beta} \cdot \boldsymbol{x}_i)$.

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]

Evaluation for survival modeling

 Concordance-index (also called C-statistic): look at model's ability to predict *relative* survival times:

$$\hat{c} = \frac{1}{n_c} \sum_{i:d_i=1} \sum_{t_i < t_j} \mathbb{1}[\hat{y}_i < \hat{y}_j] \qquad n_c = \sum_{i:d_i=1} \sum_{t_i < t_j} \mathbb{1} \qquad \hat{y}_i = \mathbb{E}_{f(T|\mathbf{x}_i;\beta)}[T]$$

• Illustration – blue lines denote pairwise comparisons:

Black = uncensored ($d_i = 1$) Red = censored ($d_i = 0$)

Equivalent to AUC for binary variables and no censoring

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]

Comments on survival modeling

- Could also evaluate:
 - Mean-squared error for uncensored individuals
 - Held-out (censored) likelihood
 - Derive binary classifier from learned model and check calibration
- Partial likelihood estimators (e.g. for coxproportional hazards models) can be much more data efficient (see Ch. 3 of book)

$$\mathscr{PL}(\boldsymbol{\theta}) = \prod_{i:\delta_i=1} \frac{\exp\left(f(\boldsymbol{\theta}; \boldsymbol{x}_i)\right)}{\sum_{j \in \mathscr{R}(t_i)} \exp\left(f(\boldsymbol{\theta}; \boldsymbol{x}_j)\right)}$$

Deep Cox mixtures for survival regression

[Nagpal et al., Conference on Machine Learning for Healthcare, 2021]

Conclusion

- Last lecture and this, we tackled two challenges that commonly arise in supervised learning in health care
 - 1. Classification with noisy labels
 - 2. Regression with censored labels
- Strong assumptions allowed us to develop simple solutions
 - $-X \perp \tilde{Y} \mid Y$ (noise rate constant for all examples)
 - $-C \perp T \mid X$ (censoring time independent of survival time)
- Can we relax these assumptions? Can we do survival modeling with noisy labels?

References

- Recommended starting place: Kleinbaum & Klein.
 <u>Survival Analysis: A Self-Learning Text</u>. Springer Statistics for biology and Health, 2005
- Additional detail: Kalbfleisch & Prentice, <u>The</u> <u>Statistical Analysis of Failure Time Data</u>, Wiley 2002 [<u>MIT proxy</u>]
- Ishwaran et al., <u>Random Survival Forests</u>. The Annals of Applied Statistics, 2008
- Alaa and van der Schaar. <u>Deep multi-task</u> gaussian processes for survival analysis with <u>competing risks</u>. NeurIPS, 2017