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Survival modeling

* Regression (i.e., predict time to event) with (potentially) right-
censored data

Event occurrence

/ e.g., death, divorce, college graduation
S6

S5 ®
sS4 X
s3 o <4— Censoring

Subjects

S2 -

51 =

4
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Time T

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]



Why might censorship occur?

* Person does not experience event before
study ends

* Person lost to follow-up during study period

* Person withdraws from the study because of
death (if death is not event of interest) or
some other reason (e.g. adverse drug
reaction)

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



Notation and formalization

* f(t/x), the probability of death/failure at time t, conditioned
on X

e Survival functionis 1 —(fs CDF): S(t|z)=P(T >t|z) = / flu | z)du
A u=t

F(t) or proportion dead
0.8
f{t) or death density

S 0.6
b5
5 S(0)=1
L
Z 04 S(t) or proportion surviving to ¢
‘»
5 S(00) =0
(a]

0.2

0.8 '

1 2 3
Time in years

Fig. 2: Relationship among different entities f(¢), F'(t) and S(%).

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]
[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]



Kaplan-Meier estimator of survival
function S(t)=P(T > t)

 Example of a non-parametric method; good for
unconditional density estimation

Estimated
survival S(7)
probability

0 t Study end

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



Kaplan-Meier estimator of survival
function S(t)=P(T > t)

Alternative (ordered) data

General Data Layout: — . )
ayout:
Indiv. # ¢ d Xl Xz ce Xp
Ordered
1 tv di X111 Xio... Xip failure #of  # censored in
2 t» dr Xo1 Xoo ... Xo, times, failures  [¢¢), t(ri1)),
- : - L) my qr
t(o) =0 Mo = 0 qo
' | ) ’ ) (1) ny q1
n t, d, X,1 X, D, L(2) m; q>
. . . nf
d = (0, 1) random variable ‘
_ { 1 if failure Lo i dx
0 if censored Number of individuals who survived at

least to this time (including those failing &
censored in this interval)

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



failure

# at risk #of # censored in
EXAMPLE times, failures  [t¢), t(ri1)),
L) nyf my qr
The data: remission times (weeks) for

two groups of leukemia patients Group 2 (placebo)

Group 1 (n = 21) -Group 2(n=21)] — L nf i qf
treatment placebo 0 21 0 0
6, 6, 6,7, 10, 1,1, 2, 2, 3,

13, 16, 22, 23, 4,4,5,5,

6+, 9+, 10+, 11+, [ 8, 8, 8, 8§, .

174+, 194, 20+, 11,11, 12, 12, By default, er always include t=0
25+, 32+, 32+, 15, 17, 22, 23 with ng=n

34+, 35+,

Note: + denotes censored

# failed # censored Total

Group 1 9 12 21
Group 2 21 0 21

[Freireich et al. The Effect of 6-Mercaptopurine on the Duration of Steroid-Induced
Remissions in Acute Leukemia: A Model for Evaluation of Other Potentially Useful
Therapy. Blood, 21: 699-716, 1963]

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



failure

: # at risk #of  # censored in
EXAMPLE times, failures [t ¢r11),

L) ny my qr
The data: remission times (weeks) for
two groups of leukemia patients Group 2 (placebo)
Group 1 (n =21) | Group 2 (n = 21) — L nf my qar
treatment placebo 0 21 0 0
6,6,6,7, 10, 1,1,2,2,3, 1 21 2 0
13, 16, 22, 23, 4,4,5,5,
6+, 9+, 10+, 11+, | 8, 8, 8, 8, .
174+, 194, 20+, 11,11, 12, 12, At t=1 there are 2 failure events
25+, 32+, 32+, 15, 17, 22, 23 (and no censoring events)
34+, 35+,

Note: + denotes censored

# failed # censored Total

Group 1 9 12 21
Group 2 21 0 21

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



EXAMPLE

The data: remission times (weeks) for
two groups of leukemia patients

Group 1 (n = 21)

Group 2 (n = 21)

treatment placebo

6, 6,6, 7, 10, 1,1, 2, 2,3,
13, 16, 22, 23, 4,4,5,5,

6+, 9+, 10+, 11+, | §, §, §, 8§,
17+, 19+, 20+, 11,11, 12,12,
25+, 32+, 32+, 15,17, 22, 23
34+, 35+,

Note: + denotes censored

# failed # censored Total

Group 1 9
Group 2 21

12 21
0 21

failure

#of # censored in

. # at risk '
times, failures [, t(r1 1)),
L) ny nig qaf
Group 2 (placebo)
L i 7 qaf
0 21 0 0
1 21 2 0
2 19 2 0

Beginning at t=2 there are 19
subjects still in the study,
and there are 2 failure events
(and no censoring events)

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



EXAMPLE

The data: remission times (weeks) for
two groups of leukemia patients

Group 1 (n =21) | Group 2 (n = 21)
treatment placebo

6, 6,6, 7, 10, 1,1, 2, 2,3,

13, 16, 22, 23, 4,4,5,5,

6+, 9+, 10+, 11+, |18, 8, 8, 8,

17+, 19+, 20+, 11,11, 12,12,
25+, 32+, 32+, 15,17, 22, 23
34+, 35+,

Note: + denotes censored

# failed # censored Total
Group 1 9 12 21
Group 2 21 0 21

fa.lilure # at risk # of  # censored in
times, failures  [z(), t(r11)),
L ny my qar

Group 2 (placebo)

L nf "y qr
0 21 0 0
1 21 2 0
2 19 2 0
3

What are n, mg, and q;
for t(f)=3?

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



failure # at risk #of # censored in
EXAMPLE times, failures  [¢(), t(ri1)),
4@ ny my ar

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



failure # at risk #of # censored in
EXAMPLE times, failures  [¢(), t(ri1)),
4@ ny my ar

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



failure #atrisk #of # censored in
times, failures [#), te1)),
e omy a

L)

A # surviving past t(

S(ts)) =

n

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



failure # at risk
times,

L) v

# of # censored in
failures [?¢), t(+1)),

niy

ar

Group 2: no censored subjects

Group 2 (placebo)

L ng my qr S (t(f))
0 21 0 0 1
1 21 2 0 19/21 = .90
2 19 2 0
3 17 1 0
4 16 2 0
5 14 2 0
8 12 4 0
11 8 2 0
12 6 2 0
15 4 1 0
17 3 1 0
22 2 1 0
23 1 1 0

A

S(t)) =

# surviving past ()

n

Kaplan-Meier curve

S()

_1/ 1 from t=0 to t=1
< Drops to .90 at t=1

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



failure # at risk
times,

L) v

# of # censored in
failures [?¢), t(+1)),

niy

ar

Group 2: no censored subjects

Group 2 (placebo)

L ng my qr S (t(f))
0 21 0 0 1
1 21 2 0 19/21 = .90
2 19 2 0 17/21 = .81
3 17 1 0
4 16 2 0
5 14 2 0
8 12 4 0
11 8 2 0
12 6 2 0
15 4 1 0
17 3 1 0
22 2 1 0
23 1 1 0

A

S(t)) =

# surviving past ()

n

Kaplan-Meier curve

S()

Stays at .90 from t=1 to
—|_l next event time (t=2)

T Drops to .81 at t=2

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



failure #atrisk #of # censored in
times, failures [?¢), t(+1)),
L s my qar

Group 2: no censored subjects
Group 2 (placebo)

Ly — ng My gr $ (1)

0 21 0 0 1

1 21 2 0  1921=.90
2 19 2 0 1721 =81
317 1 0 1621=.76
4 16 2 0

5 14 2 0

8 12 4 0

11 8 2 0

2 6 2 0

15 4 1 0

17 3 1 0

2 2 1 0

23 1 1 0

# surviving past ()

S(tp) =

n

Kaplan-Meier curve

| Stays at .81 from t=2 to
—LL[/ next event time (t=3)
S(1) ¥ Drops to .76 at t=3
.5 =
05101520
Weeks

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



failure #atrisk #of # censored in

times, failures [?¢), t(+1)),
L) s my ar
Group 2: no censored subjects S( b)) = # surviving past ¢y
Group 2 (placebo) n
L ng my qr S (t(f))
o 21 0 0 1 Kaplan-Meier curve
1 21 2 0 19/21 = .90
2 19 2 0 17/21 = .81
3 17 1 0 16/21 = .76
4 16 p) 0 14/21 = 67 Stays at .57 from
5 14 2 0 12/21 = 57 t=5 to next event
8 12 4 0 8/21 = .38 time (t=8)
11 8 2 0
12 6 2 0 " Drops to .38
15 4 1 0 at t=8
17 3 1 0
22 2 1 0 L
23 1 1 0 0 S 10 15 20

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



failure #atrisk #of # censored in

times, failures [?¢), t(+1)),
L) v my ar
Group 2: no censored subjects g( ty) = # surviving past ¢
Group 2 (placebo) n
L ng my qr S (t(f))
6 21 0 0 1 Kaplan-Meier curve
1 21 2 0 19/21 = .90
2 19 2 0 17/21 = .81
3 17 1 0 16/21 = .76
4 16 2 0 14/21 = .67
5 14 2 0 12/21 = .57
8 12 4 0 8/21 = .38
11 8 2 0 6/21 = .29
12 6 2 0 4/21 = .19
15 4 1 0 3/21 = .14
17 3 1 0 2/21 = .10
22 2 1 0 1/21 = .05
23 1 1 0 0/21 = .00 0 S 10 520

Weeks

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



EXAMPLE

The data: remission times (weeks) for
two groups of leukemia patients

Group 1 (n =21) || Group 2 (n = 21)
treatment placebo

6, 6,6, 7, 10, 1,1, 2, 2,3,

13, 16, 22, 23, 4,4,5,5,

6+, 9+, 10+, 11+,1| 8, 8, §, 8,

17+, 19+, 20+, 11,11, 12,12,
25+, 32+, 32+, 15,17, 22, 23
34+, 35+,

Note: + denotes censored

# failed # censored Total

Group 1 9 12 21
Group 2 21 0 21

fa.lilure # at risk # of  # censored in
times, failures  [z(), t(r11)),

L) ny ny qr

Group 1 (treatment)

L e it ar
0 21 0 0
6 21 3 1

At t=6 there are 3 failure events
and 1 censoring event

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



EXAMPLE

The data: remission times (weeks) for
two groups of leukemia patients

Group 1 (n =21) || Group 2 (n = 21)
treatment placebo

6, 6,6, 7, 10, 1,1, 2, 2,3,

13, 16, 22, 23, 4,4,5,5,

6+, 9+, 10+, 11+,1| 8, 8, §, 8,

17+, 19+, 20+, 11,11, 12,12,
25+, 32+, 32+, 15,17, 22, 23
34+, 35+,

Note: + denotes censored

# failed # censored Total

Group 1 9 12 21
Group 2 21 0 21

fe.lilure # at risk # of  # censored in
times, failures  [z(), t(r11)),

L) ny ny qr

Group 1 (treatment)

L e it ar
0 21 0 0
6 21 3 1
7 17 1 1

10
Beginning at t=7 there are 17

subjects still in the study

Between t=7 and t=10 there is 1
failure event and 1 censoring event

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



EXAMPLE

The data: remission times (weeks) for
two groups of leukemia patients

Group 1 (n =21) || Group 2 (n = 21)
treatment placebo

6, 6,6, 7, 10, 1,1, 2, 2,3,

13, 16, 22, 23, 4,4,5,5,

6+, 9+, 10+, 11+,1| 8, 8, §, 8,

17+, 19+, 20+, 11,11, 12,12,
25+, 32+, 32+, 15,17, 22, 23
34+, 35+,

Note: + denotes censored

# failed # censored Total

Group 1 9 12 21
Group 2 21 0 21

fa.lilure # at risk # of  # censored in
times, failures  [z(), t(r11)),

L) ny ny qr

Group 1 (treatment)

L) i e ar
0 21 0 0
6 21 3 1
7 17 1 1
10 15 1 2
13

16

What are n, mg, and q;
for t,=13?

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



failure # at risk #of # censored in
EXAMPLE times, failures  [¢(), t(ri1)),
4@ ny my ar

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



failure # at risk #of # censored in
EXAMPLE times, failures  [¢(), t(ri1)),
4@ ny my ar

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



failure #atrisk # of # censored in
times, failures [f¢) tren)),
Ly ny o my qar

Pr(surviving to time t) = Pr(surviving to time t-1)
X Pr(surviving to time t | survived to time t-1)

S(tipy) = S(ts_1) x Pr(T >ty | T > tp))

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



failure #atrisk # of # censored in
times, failures [f¢) tren)),
Ly ny o my qar

Pr(surviving to time t) = Pr(surviving to time t-1)
X Pr(surviving to time t | survived to time t-1)

S(tipy) = S(ts_1) x Pr(T >ty | T > tp))

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



failure #atrisk # of # censored in
times, failures [f¢) tren)),
Ly ny o my qar

Pr(surviving to time t) = Pr(surviving to time t-1)
X Pr(surviving to time t | survived to time t-1)

S(tipy) = S(ts_1) x Pr(T >ty | T > tp))

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



failure # atrisk # of # censored in

times,
L)

Group 1 (treatment)

ny

failures [Z¢), tr1)),

my qr

ty nr mp g S (tp)

0 21 0 o (1

6 21 3 1 1>< — 8571

7 17 1 1 .8571>< — 8067
10 15 1 2 .8067><%§::.7529
13 12 1 0 .7529><%%::.6902
16 11 1 3 .6902><%%::.6275
2 7 1 0 .6275><g<:.5378
23 6 1 5 .5378><§<:.4482

Fraction at Ly Pr(T > L) | T> f(f))

Pr(surviving to time t) = Pr(surviving to time t-1)
X Pr(surviving to time t | survived to time t-1)

S(t(p) = Str—1) x Pr(T > t(p) | T > t(y))

Kaplan-Meier curve

KM Plots for Remission Data

1 -
0.8F
- Group 1 (treatment)
0.6
0.4F
0.2F
0 - 1 1 | 1 1 | 1 1 | 1 1 | 1
0 8 16 24 32

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



Kaplan-Meier estimator of survival
function S(t)=P(T > t)

 Example of a non-parametric method; good for
unconditional density estimation

x=0 -~ x=1 How do we compute
ro0] confidence intervals for

| , KM curves?
- Use Greenwood’s
0.75 formUIa (See Ch 2, V”,

~+

Survival pgs 78-79)
probability, °*
S(t) Are these two curves
oren statistically significantly
P= 000 different?
- Use log-rank test (see
Ch. 2, IV, pgs 67-73)

0 500 1000 1500 2000

0.25

Time t
[Kleinbaum & Klein. Survival Analysis: A

[Figure credit: Rebecca Boiarsky] Self-Learning Text. Springer, 2005]



Relationship between probability
density, hazard, and survival functions

e [
eCa — u)du
(*) /u:t f(w) ® T Weibull
The hazard function h(t) is: o) for Teukemia J
—d S t dt patients
= SO
5(t)
t
o ® | Weibull
Constant hazard
(exponential model) h(t) for Persons
recovering from
surgery L
h(t) for healthy A
persons
t
t @ T 1 lognormal

h(t) = A if and only if

S(t) = €_>\t h(¢) for TB /\
patients
[Kleinbaum & Klein. Survival Analysis: A Self-
t

Learning Text. Springer, 2005]




Commonly used parametric survival
models

Table 2.1 Useful parametric distributions for survival analysis

Distribution Hazard rate h(t) Survival function Density function f (¢)
S(t)

Exponential (A > 0) | A exp(—At) Aexp(—At)

Weibull (\, ¢ > 0) | Apt®! exp(—Ar?) Apt?~ L exp(—\t?)

Log-normal f(@)/S() I —®{(nt — p)/o} | o{(Int — ,LL)/O'}(O'I)_l

(0 >0,u€R)

Log-logistic At /(1 4+ At?) [ 1/(1 4+ At9) Aot?~ 1) /(1 + At?)?

(A>0,¢0>0)

Gamma (\, ¢ > 0) | £(t)/S(t) 1 — I(\t, ¢) A2/ T (p)}t? ! exp(— A1)

Gompertz Ae? exp{%(l — ™)) Ae? exp{%(l — ™))

(A, ¢ > 0)

We obtain conditional models f(t | x; ) by letting, e.g., 1 = exp(B - x)

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]



Likelihood function

Barry, Gary, Larry,..., Outcome

Examples of Censored Subjects: Distribution £() Likelihood of
observations:
Right-censored: | X time . E\_]ent
10 Subject Time 00
Barry t=2 L :f(2)x/f(l‘)dt X f(6)
Gary t>8 2
Left-censored: _X 1|0 time (right-censored) 5 o
Harry t=6 X / f(t)dr x / f(t)dt
Carrie <2 0 0
Tnterval-censored: | X | time (left-censored) (Barry x Gary x Harry
8 10 Larry d<t<? x Carrie x Larry)
(interval-censored)
3 . m
For rlght-ce'nso.red obsgrvatlons, jche | e.g., / f(t)dt = S(8)
corresponding integral is the survival function: 8

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



Maximum likelihood estimation

* Random variables T, C, X
— Ci: censoring time of i’th individual
— T;: event time of i"th individual
— Xi: features of i"th individual

* Observed data are {(t;, d;, x;)}, where x; are the features
and d; is the indicator of whether the outcome is
censored for the i’th individual

— If di=1, then time t is the time of the event occurrence
— If di=0, then time t is the time of censoring
— Thus, d=1[T.< C]and t, = d.T; + (1-d,)C,

* Formally, we assume (a) C; L T; | X;, i.e. censoring time
is (conditionally) independent of event time, and (b) all
individuals’ are independent



Maximum likelihood estimation

 Two kinds of observations: censored and right uncensored

* Putting the two together, we get the log-likelihood is, where

n=# data points:

> ldilog f(ti | xi; 8) + (1 — di) log S(t; | x4 B)]

1=1

* Maximize via gradient or stochastic gradient ascent!

Distribution Hazard rate h(t)

Survival function
S(1)

Density function f(r)

Exponential (A > 0) | A

exp(—Ar)

Aexp(—At)

Suppose 1 = exp(B - x;). Then: f(t; | Xi38) = exp(B - x;) exp(— exp(f - x;)t;)
S(ti | xi; 8) = exp(—exp(B - x;)t;)



Example: estimating (heterogeneous)
treatment effects

One can perform covariate adjustment using survival models

Goal: predict individual’s survival

Patient, X Intervention, T curve
(e.g. medication, Treatment
procedure) S(1) ¢
Outcome, Y,i.e.S(t) for all t
Placebo

6 [
Must include all confounding factors in X (needed for
adjustment formula to hold)

[Kleinbaum & Klein. Survival Analysis: A Self-Learning Text. Springer, 2005]



Example: estimating (heterogeneous)
treatment effects

T=0 T=1

Group 1 Group 2
t (weeks) log WBC ¢ (weeks) log WBC
6 2.31 1 2.80
6 4.06 1 5.00
6 3.28 2 491
7 4.43 2 4.48
10 2.96 3 4.01
13 2.88 4 4.36
16 3.60 4 2.42
22 2.32 5 3.49
23 2.57 5 3.97
6+ 3.20 8 3.52
9+ 2.80 8 3.05
10+ 2.70 8 2.32
11+ 2.60 8 3.26
17+ 2.16 11 3.49
19+ 2.05 11 2.12
20+ 2.01 12 1.50
25+ 1.78 12 3.06
32+ 2.20 15 2.30
32+ 2.53 17 2.95
34+ 1.47 22 2.73
35+ 1.45 23 1.97

Same leukemia data as
before, from Freireich et.
al. Blood, 21: 699-716,
1963.

[Kleinbaum & Klein. Survival Analysis: A
Self-Learning Text. Springer, 2005]



Example: estimating (heterogeneous)

Treatment
treatment effects

Individual ¢ X, X,

# (weeks) d (Group) (log WBC)
=0 T=1 L1 5 3

2 b

Group 1 Group 2 " o i
t (weeks) log WBC ¢ (weeks) log WBC S0 1 296
o 23 1 2w A R
o . 9 23 1 1 2.57
6 328 2 4.91 Siene < T
7 443 2 448 12 10 0 1 2.70
o 29 3 4ol E RN
1 2 2.01
» oy ) g I
o o 18 32 0 1 2.20
22 2.32 5 3.49 - 2.0 1 e
23 257 5 3.97 S S R
6+ 3.20 8 3.52 e » 1 1 o 2.80
9+ 2.80 8 3.05 S Lo o
10+ 2.70 8 2.32 2 : Lo 148
114+ 2.60 8 3.26 27 4 1 0 436
17+ 2.16 11 3.49 o . L T
19+ 2.05 11 2.12 oo Lo 7
204+ 2.01 12 1.50 Grgup 3 § 1 0 3.05
25+ 1.78 12 3.06 SR S S
32+ 2.20 15 2.30 SR | ‘ S
32+ 2.53 17 2.95 gg 12 ! g ;gg
34+ 1.47 22 2.73 9 15 1 0 2.30
35+ 1.45 23 1.97 n . | 0 o
&2 23 1 0 1.97




Evaluation for survival modeling

* Concordance-index (also called C-statistic): look at
model’s ability to predict relative survival times:

o1 o :
6= — DU <G ne=Y Y1 i =EprpsT]

Me 1:d; =1 ti<tj t:d;=11;<t;
Example:
Distribution Hazard rate h(t) Survival function Density function f (¢)
S(1)
Exponential (A > 0) | A exp(—Ar) Aexp(—Ar)

The mean of an exponential distribution is 1/A.
Suppose we parameterize with A = exp(f - x). Then y; = exp(—p - x;).

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]



Evaluation for survival modeling

* Concordance-index (also called C-statistic): look at
model’s ability to predict relative survival times:

1 o )
c=— ) D Wi<gl n=3 Y1 §i=EprpplT]

¢ 1:d; =1 ti<tj i:d;=1t;<t;

* |llustration — blue lines denote pairwise comparisons:

t3 t4 t

Black = uncensored (d; = 1) @ £ O & ® O o
Red = censored (d; = 0)

* Equivalent to AUC for binary variables and no censoring

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]



Comments on survival modeling

* Could also evaluate:
— Mean-squared error for uncensored individuals
— Held-out (censored) likelihood

— Derive binary classifier from learned model and check
calibration

* Partial likelihood estimators (e.g. for cox-
proportional hazards models) can be much more
data efficient (see Ch. 3 of book)

exp (f(0;x;))
> exp (f(0;xy))

jE%(ti)

220)=]]

i:(si:1



Deep Cox mixtures for survival
regression

Cluster Specific Survival Functions

Individual Survival Function :

1.0 e
B 1.0
’ Z~P(Z]X) "
.—’U‘
B e .
: ’
"
—~———
0.2

i=1"
where, A(u;|z;) = Ap.(ui) exp (fx(0, i), Sk(uilz;) = Sk(u)™P (fx(@:20))
and, P(Z = k| X =x;) = Softmax(g(H; :nz))

[Nagpal et al., Conference on Machine Learning for Healthcare, 2021]



Conclusion

e Last lecture and this, we tackled two challenges that
commonly arise in supervised learning in health care
1. Classification with noisy labels
2. Regression with censored labels

* Strong assumptions allowed us to develop simple
solutions
— X L Y|Y (noise rate constant for all examples)
— C L T | X (censoring time independent of survival time)

* Can we relax these assumptions? Can we do survival
modeling with noisy labels?
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