
Machine Learning for Healthcare
6.871, HST.956

Lecture 15: Weak supervision

David Sontag

Outline for today’s class

1. Learning with noisy labels
– Consistent estimation under class-conditional noise

(Natarajan et al., NeurIPS ‘13)
– Application in health care (Halpern et al., JAMIA ‘16)

2. Weak supervision

Labels may be noisy

Source: https://phekb.org/sites/phenotype/files/T2DM-algorithm.pdf

If the derived label
is noisy, how does it
affect learning?

[Wang et al., “Chest X-ray8”]
figure credit: https://lukeoakdenrayner.wordpress.com/2017/12/18/the-chestxray14-dataset-problems/

The picture can't be displayed.

Fibrosis

red = mislabeled
orange = maybe
mislabeled

Labels may be noisy

[Natarajan et al., NeurIPS ’13. Figure 2]

Machine learning

40% label noise

Learning with noisy labels

We will show that if we have
a) class-conditional label noise and
b) lots of training data,
learning as usual, substituting noisy labels, works!

This opens the door to using noisy labels for training, and
coming up with clever ways of deriving these for free

(Natarajan et al., Learning with Noisy Labels. NeurIPS ‘13)

Natarajan et al: Introduction

• Features
• True unobserved labels
• Noisy observed labels
• True distribution 𝑿 (age) 𝒀 (diabetic) #𝒀 (noisy version)

30 -1 -1

64 1 1

75 1 -1

Natarajan et al: Introduction

• Features
• True unobserved labels
• Noisy observed labels
• True distribution

• Data sampled from

𝑿 (age) 𝒀 (diabetic) #𝒀 (noisy version)

30 -1 -1

64 1 1

75 1 -1

𝑿 (age) #𝒀 (noisy version)

30 -1

64 1

75 -1

Y exists, but it is
hidden during
training

Assumption: class-conditional label noise

• Assume that :

• Since Y is binary, need two parameters to fully define
𝑃 "𝑌 𝑌): &

(Natarajan et al., Learning with Noisy Labels. NeurIPS ‘13)

• Assume that and that are
known

!𝑌 only depends on 𝑌: label noise is
independent of input features

Learning with class-conditional noise

• If we could learn , then we
would be able to predict optimally.

(Natarajan et al., Learning with Noisy Labels. NeurIPS ‘13)

⌘(X) = P (Y = 1|X)

Learning with class-conditional noise

• If we could learn , then we
would be able to predict optimally.

(Natarajan et al., Learning with Noisy Labels. NeurIPS ‘13)

⌘(X) = P (Y = 1|X)

Learning with class-conditional noise

• If we could learn , then we
would be able to predict optimally.

(Natarajan et al., Learning with Noisy Labels. NeurIPS ‘13)

⌘(X) = P (Y = 1|X)

Learning with class-conditional noise

• If we could learn , then we
would be able to predict optimally.

(Natarajan et al., Learning with Noisy Labels. NeurIPS ‘13)

⌘(X) = P (Y = 1|X)

Learning with class-conditional noise

• If we could learn , then we
would be able to predict optimally.

(Natarajan et al., Learning with Noisy Labels. NeurIPS ‘13)

⌘(X) = P (Y = 1|X)

Learning with class-conditional noise

• If we could learn , then we
would be able to predict optimally.

(Natarajan et al., Learning with Noisy Labels. NeurIPS ‘13)

⌘(X) = P (Y = 1|X)

Learning with class-conditional noise

(Natarajan et al., Learning with Noisy Labels. NeurIPS ‘13)

• Learn using any ML algorithm which
returns calibrated classifiers. Substitute
in the above equation to get !

• When might noise be helpful?

is monotonically
increasing in

Outline for today’s class

1. Learning with noisy labels
– Consistent estimation under class-conditional noise

(Natarajan et al., NeurIPS ‘13)
– Application in health care (Halpern et al., JAMIA ‘16)

2. Weak supervision

Application to electronic phenotyping

Hundreds of relevant
clinical variables

Abdominal pain
Active malignancy

Altered mental status
Cardiac etiology

Renal failure
Infection

Urinary tract infection
Shock

Smoker
Pregnant

Lower back pain
Motor Vehicle accident

Psychosis
Anticoagulated
Type II diabetes

…

[Halpern, Horng, Choi, Sontag, AMIA ’14; Halpern, Horng, Choi, Sontag, JAMIA ‘16]

Figure source:
https://commons.wikimedia.org/wiki/File:GNU_Health_patient_main_screen.png

Simplest approach: rules
• We would like to estimate, for every patient,

which phenotypes apply to them (at some
point in time)

• Common practice is to derive manual rules:

T F

T 297 129

F 1,319 34511

text contains:
“nursing home”

physician response
(gold standard)Nursing home?Need to include:

nursing facility
nursing care
facility nursing /
rehab
nsg facility
nsg faclty
…

Sensitivity
0.18

PPV
0.70

Slow, expensive, poor sensitivity.

297/(297+129)

Often we can find noisy labels
WITHIN the data!

Phenotype Example of noisy label (“anchor”)
Diabetic (type I) gsn:016313 (insulin) in Medications

Strep Throat Positive strep test in Lab results

Nursing home “from nursing home” in Text

Pneumonia “pna” in Text

Heart attack ICD10 I21 in Billing codes

How can we use these for machine learning?

Often we can find noisy labels
WITHIN the data!

Phenotype Example of noisy label (anchor)
Heart attack ICD10 I21 in Billing codes

• Suppose we want to know, was a patient admitted to the
emergency department for a heart attack?

• Billing codes not available at prediction time, but can be used
for labels

• Reasonable to assume that 𝜌! = 𝑃 $𝑌 = 1 𝑌 = −1 ≈ 0, but
because of noisy nature of billing codes, 𝜌" =
𝑃 $𝑌 = −1 𝑌 = 1 likely non-zero

Called “positive only” noise since it implies 𝑃 𝑌 = 1 $𝑌 = 1 = 1

Anchor & Learn Algorithm

Training
1. Treat the anchors as “true” labels
2. Learn a classifier to predict whether the

anchor !𝑌 appears

3. Calibration step: divide by *
|,|
∑, 𝑃(!𝑌 = 1|𝑋)

Test time
1. Predict using the learned classifier (with

calibration)

(special case for anchors derived from future data)

𝑃 = data points with "𝑌 = 1

Often we can find noisy labels
WITHIN the data!

Phenotype Example of noisy label (anchor)
Nursing home “from nursing home” in Triage note

• We again assume that 𝜌! = 𝑃 $𝑌 = 1 𝑌 = −1 ≈ 0, but
because many ways to write “from nursing home” in text, we
have 𝜌" = 𝑃 $𝑌 = −1 𝑌 = 1 likely non-zero

• If we simply learn to predict $𝑌 using the notes, we will learn a
trivial classifier! It will simply extract mentions of this phrase!

• This is a clear violation of the assumption , since $𝑌
is derived from 𝑋

Anchor & Learn Algorithm

Training
1. Treat the anchors as “true” labels
2. Learn a classifier to predict whether the

anchor appears based on all other features

3. Calibration step: divide by *
|,|
∑, 𝑃(!𝑌 = 1|𝑋)

Test time
1. If the anchor is present: Predict 1
2. Else: Predict using the learned classifier (with

calibration)

𝑃 = data points with "𝑌 = 1

Evaluating phenotypes

• Derived anchors and learned phenotypes using 270,000
patients’ emergency department medical records

[Halpern, Horng, Choi, Sontag, AMIA ‘14]
[Halpern, Horng, Choi, Sontag, JAMIA ‘16]

Acute
Abdominal pain
Allergic reaction
Ankle fracture
Back pain
Bicycle accident
Cardiac etiology
Cellulitis
Chest pain
Cholecystitis
Cerebrovascular
accident

Deep vein thrombosis
Employee exposure
Epistaxis
Gastroenteritis
Gastrointestinal bleed
Geriatric fall
Headache
Hematuria
Intracerebral
hemorrhage
Infection
Kidney stone

Laceration
Motor vehicle accident
Pancreatitis
Pneumonia
Psych
Obstruction
Septic shock
Severe sepsis
Sexual assault
Suicidal ideation
Syncope
Urinary tract infection

History
Alcoholism
Anticoagulated
Asthma/COPD
Cancer
Congestive heart
failure
Diabetes
HIV+
Immunosuppressed
Liver malfunction

…

…

Specified anchors Automated
suggestions

Detailed patient display

Ranked patient list

Patient filters

Rapid iteration
~30 min to add a new

phenotype

Evaluating phenotypes

• Derived anchors and learned phenotypes using 270,000
patients’ emergency department medical records

• To obtain ground truth, added a small number of questions to
patient discharge procedure, rotated randomly

[Halpern, Horng, Choi, Sontag, AMIA ‘14]
[Halpern, Horng, Choi, Sontag, JAMIA ‘16]

Comparison to supervised learning using labels for
5000 patients

Evaluating phenotypes

AUC

Time (minutes)

cmed

Ages
age=80-90
age=70-80
age=90+

nstemi
stemi

ntg
lasix
nitro

lasix
furosemide

Medications
aspirin

clopidogrel
Heparin Sodium

Metoprolol
Tartrate

Morphine Sulfate
Integrilin
Labetalol

Pyxis

Unstructured text

cp
chest pain

edema
cmed

chf exacerbation
sob

pedal edema

Sex=MICD9 codes
410.* acute MI

411.* other acute …
413.* angina pectoris

785.51 card. shock

Pyxis
coron. vasodilators

loop diuretic

Anchors Highly weighted terms

Evaluating phenotypes – example model
(cardiac etiology)

[Halpern, Horng, Choi, Sontag, AMIA ‘14]
[Halpern, Horng, Choi, Sontag, JAMIA ‘16]

cmed

Ages
age=80-90
age=70-80
age=90+

nstemi
stemi

ntg
lasix
nitro

lasix
furosemide

Medications
aspirin

clopidogrel
Heparin Sodium

Metoprolol
Tartrate

Morphine Sulfate
Integrilin
Labetalol

Pyxis

Unstructured text

cp
chest pain

edema
cmed

chf exacerbation
sob

pedal edema

Sex=MICD9 codes
410.* acute MI

411.* other acute …
413.* angina pectoris

785.51 card. shock

Pyxis
coron. vasodilators

loop diureticcardiac medicine
BIDMC shortform

Anchors Highly weighted terms

Evaluating phenotypes – example model
(cardiac etiology)

[Halpern, Horng, Choi, Sontag, AMIA ‘14]
[Halpern, Horng, Choi, Sontag, JAMIA ‘16]

Outline for today’s class

1. Learning with noisy labels
– Consistent estimation under class-conditional noise

(Natarajan et al., NeurIPS ‘13)
– Application in health care (Halpern et al., JAMIA ‘16)

2. Weak supervision

Figure from: https://www.snorkel.org/blog/weak-supervision

Weak supervision

• Define one or more labeling functions l(x) that
outputs a label (or no label) for each example

• E.g., for sentiment analysis
“good” -> +1
“bad” -> -1

• Reconcile conflicting labels; ignore data points
that are unlabeled

• Learn a model on the labeled data points

Classifying Aortic Valve Malformations

[Fries et al. Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences. Nature Communications 2019]

• Data: MRI sequences for
14,328 subjects from the UK
Biobank

• True gold standard labels for
aortic valve malformations
(BAV) derived for 412 subjects

• Goal: Train a model which
can classify BAV (positive or
negative) when given a new
MRI sequence

Classifying Aortic Valve Malformations

Methodology:
1. Train a factor graph-based model to predict

noisy labels for all unlabeled examples
2. Train a hybrid convolutional NN / LSTM

using the derived noisy labels

[Fries et al. Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences. Nature Communications 2019]
single series per channel) and models using only the MAG series. The MAG series
performed best, so we only report those results here.

Hyperparameters were tuned for L2 penalty, dropout, learning rate, and the
feature vector size of our last hidden layer before classification. Augmentation
hyperparameters were tuned to determine final translation, rotation, and scaling
ranges. All models use validation-based early stopping with F1 score as the
stopping criterion. The probability threshold for classification was tuned using the
validation set for each run to address known calibration issues when using deep
learning models51. Architectures were tuned using a random grid search over 10
models for non-augmented data and 24 for augmented data. See Supplementary
Table 2 for full parameter grid settings.

Evaluation metrics. Classification models were evaluated using positive predictive
value (precision), sensitivity (recall), F1 score (i.e., the harmonic mean of precision
and recall), and AUROC. Due to the extreme class imbalance of this task we also
report discounted cumulative gain (DCG) to capture the overall ranking quality of
model predictions52. Each BAV or TAV case was assigned a relevance weight r of 1
or 0, respectively, and test set patients were ranked by their predicted probabilities.
DCG is computed as

Pp
i

ri
log2ðiþ1Þ where p is the total number of instances and i is

the corresponding rank. This score is normalized by the DCG score of a perfect
ranking (i.e., all true BAV cases in the top ranked results) to compute normalized
DCG (NDCG) in the range [0.0, 1.0]. Higher NDCG scores indicate that the model
does a better job of ranking BAV cases higher than TAV cases. All scores were
computed using test set data, using the best performing models found during grid
search, and reported as the mean and 95% confidence intervals of 5 different
random model weight initializations.

For labeling functions, we report two additional metrics: coverage (Eq. (5)) a
measure of how many data points a labeling function votes {−1, 1} on; and conflict
(Eq. (6)) the percentage of data points where a labeling function disagrees with one
or more other labeling functions.

coverageλj ¼
1
N

XN

i¼1

1 λjðxiÞ 2 f%1; 1g
! "

ð5Þ

conflictλj ¼
1
N

XN

i¼1

1
Xλn

k≠j

1 λjðxiÞ 2 f%1; 1g ^ λjðxiÞ≠λkðxiÞ
! "

0

@

1

A>0 ð6Þ

Model evaluation with clinical outcomes data. To construct a real-world vali-
dation strategy dependent upon the accuracy of image classification but completely
independent of the imaging data input, we used model-derived classifications
(TAV vs. BAV) as a predictor of validated cardiovascular outcomes using standard
epidemiological methods. For 9230 patients with prospectively obtained MRI
imaging who were excluded from any aspect of model construction, validation, or
testing we performed an ensemble classification with the best performing CNN-
LSTM model.

For evaluation we assembled a standard composite outcome of major adverse
cardiovascular events (MACE). Phenotypes for MACE were inclusive of the first
occurrence of coronary artery disease (myocardial infarction, percutaneous
coronary intervention, coronary artery bypass grafting), ischemic stroke (inclusive
of transient ischemic attack), heart failure, or atrial fibrillation. These were defined
using ICD-9, ICD-10, and OPCS-4 codes from available hospital encounter, death
registry, and self-reported survey data of all 500,000 participants of the UK
Biobank at enrollment similar to previously reported methods53.

Starting 10 years prior to enrollment in the study, median follow up time for the
participants with MRI data included in the analysis was 19 years with a maximum
of 22 years. For survival analysis, we employed the “survival” and “survminer”
packages in R version 3.4.3, using aortic valve classification as the predictor and
time-to-MACE as the outcome, with model evaluation by a simple log-rank test.

To verify the accuracy of the CNN-LSTM’s predicted labels, we generated
2 subsets of our model’s predictions for manual review: (1) 36 randomly chosen
MRI sequences (18 TAV and 18 BAV patients); and (3) 100 positive BAV
predictions, binned into quartiles by predicted probability. All MRIs were reviewed
and labeled by a single annotator (J.R.P.). The output of the last hidden layer was
visualized using a t-distributed stochastic neighbor embedding (t-SNE)54 plot to
assist error analysis.

Related work. In medical imaging, weak supervision refers to a broad range of
techniques using limited, indirect, or noisy labels. Multiple instance learning (MIL)
is one common weak supervision approach in medical images55. MIL approaches

1) Input mag sequences 2) Frame encoder 3) Sequence encoder

A
ttention

4) Classification

LSTM

… TAV

BAV
0.97

0.89

DenseNet
40–12

… XW }, yi({ x1)

…

fx1

fx2
Semb

fxW

Fig. 7 Deep neural network for MRI sequence classification. Each MRI frame is encoded by the DenseNet into a feature vector fxi. These frame features are
fed in sequentially to the LSTM sequence encoder, which uses a soft attention layer to learn a weighted mean embedding of all frames Semb. This forms the
final feature vector used for binary classification

Label model

Binary threshold masks

Pixel data

Area

Perimeter

Eccentricity

Intensity

Ratio (area/perimeter2)

1) Extract primitives & apply labeling functions

Primitive feature matrix

1.32
0.12 0.92 1.02 0.32

0.420.013.20
Discriminative

model

2) Generate training data

!1!1
!2!2
!3!3
!4!4
!5!5

!1!1

!2!2

!3!3

!4!4

!5!5

LF_area(x)
LF_eccentricity(x)

–1
–1

–1–1 1
1 1

1
00

0 0
0

0
0

0
LF_perimeter(x)
LF_intensity(x)
LF_ratio(x)

3) Train deep
learning model

Probabilistic
training labels

y1 = 0.031

y2 = 0.935

y3 = 0.995

y

Unlabeled MRI series

Weak supervision

Fig. 6Weak supervision workflow. Pipeline for probabilistic training label generation based on user-defined primitives and labeling functions. Primitives and
labeling functions (step 1) are used to weakly supervise the BAV classification task and programmatically generate probabilistic training data from large
collections of unlabeled MRI sequences (step 2), which are then used to train a noise-aware deep learning classification model (step 3)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11012-3

8 NATURE COMMUNICATIONS | ����� ���(2019)�10:3111� | https://doi.org/10.1038/s41467-019-11012-3 | www.nature.com/naturecommunications

Classifying Aortic Valve Malformations

[Fries et al. Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences. Nature Communications 2019]

Classifying Aortic Valve Malformations

[Fries et al. Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences. Nature Communications 2019]

Weak supervision for text classification

• Example labeling functions:

Reference: https://github.com/HazyResearch/cross-modal-ws-demo/blob/master/lfs/lfs_hct.py

Weak supervision for text classification

• Example labeling functions:

Reference: https://github.com/HazyResearch/cross-modal-ws-demo/blob/master/lfs/lfs_hct.py

Weak supervision for text classification

• Use BERT as “end model”

• Why does this not simply learn to reproduce
the labeling functions?

Figure 1: A cross-modal data programming pipeline for rapidly training medical classifiers. A
clinician first writes several labeling functions (LFs), which are Python functions that express
pattern-based rules or other heuristics, over the auxiliary modality (e.g. text report). Here, for
instance, the function LF pneumo would label a text report as “abnormal” if the report contains a
word with the prefix “pneumo”; note that these LFs can be noisy, incorrect, and correlated with
each other. During the offline model training phase, LFs are applied to unstructured clinician
reports and combined to generate probabilistic (confidence-weighted) training labels for a classifier
defined over the target modality (e.g. radiograph). At test time, the model receives only this target
modality as input, and returns predictions.

hand-labeled training datasets, and scaling with additional unlabeled data.

Cross-Modal Data Programming In our proposed approach (Fig. 1), clinicians provide two ba-
sic inputs: first, unlabeled cross-modal data points, which we represent as target-auxiliary modality
pairs (x(i)target,x

(i)
aux) 2 Xtarget ⇥Xaux (e.g. an imaging study and the accompanying text report); and

second, a set of LFs, which are user-defined functions (e.g. pattern matching rules) that take
in an auxiliary modality data point x

(i)
aux as input, and either output a label, l (i)

j
2 Y , or abstain

(l (i)
j

= 0), where we consider the binary setting Y = {�1,1}, corresponding to e.g. “normal”
and “abnormal.” Importantly, our only theoretical requirement is that the majority of these LFs be
more accurate than random chance.33 In our experiments, clinicians also hand-label a small (sev-
eral hundred examples) development set for use while writing LFs; however, this data is not used
as training data to avoid potential bias.

Given m LFs, we apply them to unlabeled auxiliary modality data points {x
(i)
aux}i=1,...,n to

generate a matrix of noisy labels, L 2Rn⇥m, where the non-zero elements in each row Li represent
the possible training labels generated by the labeling functions. In general these labels will overlap,
conflict, and be arbitrarily correlated. Our goal is to re-weight and combine them to generate
a single probabilistic (i.e. confidence-weighted) label ỹ

(i). To do this, we use an unsupervised

generative modeling procedure to learn both the correlation structure and accuracies of the LFs.33, 35

Concretely, we first estimate the structure of an exponential family generative model pq , using an
unsupervised technique,35 and then learn the labeling function accuracies and correlation weights q

4

Figure 1: A cross-modal data programming pipeline for rapidly training medical classifiers. A
clinician first writes several labeling functions (LFs), which are Python functions that express
pattern-based rules or other heuristics, over the auxiliary modality (e.g. text report). Here, for
instance, the function LF pneumo would label a text report as “abnormal” if the report contains a
word with the prefix “pneumo”; note that these LFs can be noisy, incorrect, and correlated with
each other. During the offline model training phase, LFs are applied to unstructured clinician
reports and combined to generate probabilistic (confidence-weighted) training labels for a classifier
defined over the target modality (e.g. radiograph). At test time, the model receives only this target
modality as input, and returns predictions.

hand-labeled training datasets, and scaling with additional unlabeled data.

Cross-Modal Data Programming In our proposed approach (Fig. 1), clinicians provide two ba-
sic inputs: first, unlabeled cross-modal data points, which we represent as target-auxiliary modality
pairs (x(i)target,x

(i)
aux) 2 Xtarget ⇥Xaux (e.g. an imaging study and the accompanying text report); and

second, a set of LFs, which are user-defined functions (e.g. pattern matching rules) that take
in an auxiliary modality data point x

(i)
aux as input, and either output a label, l (i)

j
2 Y , or abstain

(l (i)
j

= 0), where we consider the binary setting Y = {�1,1}, corresponding to e.g. “normal”
and “abnormal.” Importantly, our only theoretical requirement is that the majority of these LFs be
more accurate than random chance.33 In our experiments, clinicians also hand-label a small (sev-
eral hundred examples) development set for use while writing LFs; however, this data is not used
as training data to avoid potential bias.

Given m LFs, we apply them to unlabeled auxiliary modality data points {x
(i)
aux}i=1,...,n to

generate a matrix of noisy labels, L 2Rn⇥m, where the non-zero elements in each row Li represent
the possible training labels generated by the labeling functions. In general these labels will overlap,
conflict, and be arbitrarily correlated. Our goal is to re-weight and combine them to generate
a single probabilistic (i.e. confidence-weighted) label ỹ

(i). To do this, we use an unsupervised

generative modeling procedure to learn both the correlation structure and accuracies of the LFs.33, 35

Concretely, we first estimate the structure of an exponential family generative model pq , using an
unsupervised technique,35 and then learn the labeling function accuracies and correlation weights q

4

4185

%(57

(>&/6@ (� �(>6(3@��� (1 (�¶ ��� (0¶

& 7� 7>6(3@��� 71 7�¶ ��� 70¶

>&/6@
7RN�
� �>6(3@��� 7RN�

1
7RN�
� ��� 7RN

0

4XHVWLRQ 3DUDJUDSK

%(57

(>&/6@ (� �(�
�(1

& 7� �7� �71

6LQJOH�6HQWHQFH�

���

���

%(57

7RN�� �7RN�� �7RN�1���>&/6@

(>&/6@ (� �(�
�(1

& 7� �7� �71

6LQJOH�6HQWHQFH�

%�3(52 2

���

���(>&/6@ (� �(>6(3@

&ODVV�
/DEHO

��� (1 (�¶ ��� (0¶

& 7� 7>6(3@��� 71 7�¶ ��� 70¶

6WDUW�(QG�6SDQ

&ODVV�
/DEHO

%(57

7RN�� �7RN�� �7RN�1���>&/6@ 7RN��>&/6@>&/6@
7RN�
� �>6(3@��� 7RN�

1
7RN�
� ��� 7RN

0

6HQWHQFH��

���

6HQWHQFH��

Figure 4: Illustrations of Fine-tuning BERT on Different Tasks.

with human annotations of their sentiment (Socher
et al., 2013).

CoLA The Corpus of Linguistic Acceptability is
a binary single-sentence classification task, where
the goal is to predict whether an English sentence
is linguistically “acceptable” or not (Warstadt
et al., 2018).

STS-B The Semantic Textual Similarity Bench-
mark is a collection of sentence pairs drawn from
news headlines and other sources (Cer et al.,
2017). They were annotated with a score from 1
to 5 denoting how similar the two sentences are in
terms of semantic meaning.

MRPC Microsoft Research Paraphrase Corpus
consists of sentence pairs automatically extracted
from online news sources, with human annotations
for whether the sentences in the pair are semanti-
cally equivalent (Dolan and Brockett, 2005).

RTE Recognizing Textual Entailment is a bi-
nary entailment task similar to MNLI, but with
much less training data (Bentivogli et al., 2009).14

WNLI Winograd NLI is a small natural lan-
guage inference dataset (Levesque et al., 2011).
The GLUE webpage notes that there are issues
with the construction of this dataset, 15 and every
trained system that’s been submitted to GLUE has
performed worse than the 65.1 baseline accuracy
of predicting the majority class. We therefore ex-
clude this set to be fair to OpenAI GPT. For our
GLUE submission, we always predicted the ma-
jority class.

14Note that we only report single-task fine-tuning results
in this paper. A multitask fine-tuning approach could poten-
tially push the performance even further. For example, we
did observe substantial improvements on RTE from multi-
task training with MNLI.

15https://gluebenchmark.com/faq

Weak supervision for text classification

[Zhang et al. WRENCH: A Comprehensive Benchmark for Weak Supervision. NeurIPS Track on Datasets and Benchmarks, 2021]

Table 1: Statistics of all the tasks, domains and datasets
included in WRENCH.

Train Dev Test
Task (#) Domain (#) Dataset (#) #Label #LF #Data #Data #Data
Income Class. Tabular Data Census [40, 3] 2 83 10,083 5,561 16,281

Sentiment Class. Movie IMDb [61, 79] 2 5 20,000 2,500 2,500
Review Yelp [107, 79] 2 8 30,400 3,800 3,800

Spam Class. Review Youtube [1] 2 10 1,586 120 250
Text Message SMS [2, 3] 2 73 4,571 500 500

Topic Class. News AGNews [107, 79] 4 9 96,000 12,000 12,000

Question Class. Web Query TREC [49, 3] 6 68 4,965 500 500

Relation Class.

News Spouse [11, 77] 2 9 22,254 2,811 2,701
Biomedical CDR [13, 77] 2 33 8,430 920 4,673
Web Text SemEval [31, 109] 9 164 1,749 200 692
Chemical ChemProt [41, 102] 10 26 12,861 1,607 1,607

Image Class. Video
Commercial [22] 2 4 64,130 9,479 7,496
Tennis Rally [22] 2 6 6,959 746 1,098
Basketball [22] 2 4 17,970 1,064 1,222

Sequence Tagging

News CoNLL-03 [85, 53] 4 16 14,041 3250 3453

Web Text WikiGold [5, 53] 4 16 1,355 169 170
OntoNotes 5.0 [96] 18 17 115,812 5,000 22,897

Biomedical BC5CDR [47, 50] 2 9 500 500 500
NCBI-Disease [16, 50] 1 5 592 99 99

Review Laptop-Review [74, 50] 1 3 2,436 609 800
MIT-Restaurant [55] 8 16 7,159 500 1,521

Movie MIT-Movies [54] 12 7 9,241 500 2,441

Figure 2: Box plots: The coverage, over-
lap, conflict and accuracy of LFs in col-
lected datasets. We can see the LFs have
diverse properties across datasets.

{Sj}mj=1, each assigning a label �j 2 Y to Xi to vote on its respective Yi or abstaining (�j = �1).
We define the propensity of one source Sj as p(�j 6= �1). For concreteness, we follow the general
convention of WS [78] and refer to these sources as labeling functions (LFs) throughout the paper. In
WRENCH, we focus on two major machine learning tasks:

Classification: for each Xi, there is an unobserved true label denoted by Yi 2 Y . A label matrix
L 2 Rn⇥m is obtained via applying m LFs to the dataset X = [X1, X2, . . . , Xn]. We seek to build
an end model fw : X ! Y to infer the labels Ŷ for each X 2 X .

Sequence tagging: each Xi 2 X is a sequence of tokens [xi,1, xi,2, . . . , xi,t], where t is the length
of Xi, with an unobserved true label list denoted by Yi = [yi,1, yi,2, . . . , yi,t] where yi,j 2 Y . For
each sequence Xi with its associated label matrix Li 2 Rn⇥t, we aim to produce an sequence tagger
model fw : X ! Y which infers labels Ŷ = [ŷ1, ŷ1, . . . , ŷt] for each sequence.

It is worth noting that, different from the semi-supervised setting, and some recent WS work, where
some ground-truth labeled data is available [3, 62, 38, 67, 68], we consider the setting where we train
the end model without observing any ground truth training labels. However, we note that WRENCH
can be extended in future work to accommodate these settings as well.

3.2 Two-stage Method

Two-stage methods usually decouple the process of training label models and end models. In the
first stage, a label model is used to combine the label matrix L with either probabilistic soft labels or
one-hot hard labels, which are in turn used to train the desired end model in the second stage. Most
studies focus on developing label models while leaving the end model flexible to the downstream
tasks. Existing label models include Majority Voting (MV), Probabilistic Graphical Models (PGM)
[14, 78, 76, 22, 53, 84, 50], etc.. Note that prior crowd-worker modeling work can be included and
subsumed by this set of approaches, e.g. [14].

3.3 One-stage Method

One-stage methods attempt to effectively train a label model and end model simultaneously [79,
45]. Specifically, they usually design a neural network for aggregating the prediction of labeling
functions while utilizing another neural network for final prediction. We refer to the model designed
for one-stage methods as a joint model.

4

Weak supervision for text classification

EM: end model (R=RoBERTa, RC=COSINE-RoBERTa, BC=COSINE-BERT)
LM: label model (MV=“majority vote”, WMC=“weighted majority vote”)

[Zhang et al. WRENCH: A Comprehensive Benchmark for Weak Supervision. NeurIPS Track on Datasets and Benchmarks, 2021]

Weak supervision with multiple views

[Dunnmon et al., Cross-Modal Data Programming Enables Rapid Medical Machine Learning. arXiv:1903.1101, 2019.]

Figure 1: A cross-modal data programming pipeline for rapidly training medical classifiers. A
clinician first writes several labeling functions (LFs), which are Python functions that express
pattern-based rules or other heuristics, over the auxiliary modality (e.g. text report). Here, for
instance, the function LF pneumo would label a text report as “abnormal” if the report contains a
word with the prefix “pneumo”; note that these LFs can be noisy, incorrect, and correlated with
each other. During the offline model training phase, LFs are applied to unstructured clinician
reports and combined to generate probabilistic (confidence-weighted) training labels for a classifier
defined over the target modality (e.g. radiograph). At test time, the model receives only this target
modality as input, and returns predictions.

hand-labeled training datasets, and scaling with additional unlabeled data.

Cross-Modal Data Programming In our proposed approach (Fig. 1), clinicians provide two ba-
sic inputs: first, unlabeled cross-modal data points, which we represent as target-auxiliary modality
pairs (x(i)target,x

(i)
aux) 2 Xtarget ⇥Xaux (e.g. an imaging study and the accompanying text report); and

second, a set of LFs, which are user-defined functions (e.g. pattern matching rules) that take
in an auxiliary modality data point x

(i)
aux as input, and either output a label, l (i)

j
2 Y , or abstain

(l (i)
j

= 0), where we consider the binary setting Y = {�1,1}, corresponding to e.g. “normal”
and “abnormal.” Importantly, our only theoretical requirement is that the majority of these LFs be
more accurate than random chance.33 In our experiments, clinicians also hand-label a small (sev-
eral hundred examples) development set for use while writing LFs; however, this data is not used
as training data to avoid potential bias.

Given m LFs, we apply them to unlabeled auxiliary modality data points {x
(i)
aux}i=1,...,n to

generate a matrix of noisy labels, L 2Rn⇥m, where the non-zero elements in each row Li represent
the possible training labels generated by the labeling functions. In general these labels will overlap,
conflict, and be arbitrarily correlated. Our goal is to re-weight and combine them to generate
a single probabilistic (i.e. confidence-weighted) label ỹ

(i). To do this, we use an unsupervised

generative modeling procedure to learn both the correlation structure and accuracies of the LFs.33, 35

Concretely, we first estimate the structure of an exponential family generative model pq , using an
unsupervised technique,35 and then learn the labeling function accuracies and correlation weights q

4

• Alternatively, one could just use the noisy labels
from the label model to directly train the
downstream model:

• Co-training (Blum & Mitchell, ‘98) can be used to
improve performance further

Conclusion

• Can be difficult to get labeled data for machine
learning in health care

• Often possible to quickly derive noisy labels (i.e.,
anchors or labeling functions)

• With conditionally independent noise, ML as usual can
be used (with recalibration)
– 𝑥 ⊥ $𝑌| 𝑌 (noise rate constant for all examples)
– Can sometimes censor the features to make this assumption

more realistic (the anchor & learn method)
– Alternatively, use pretrained representations

