Machine Learning for Healthcare 6.871, HST.956

Lecture 15: Weak supervision

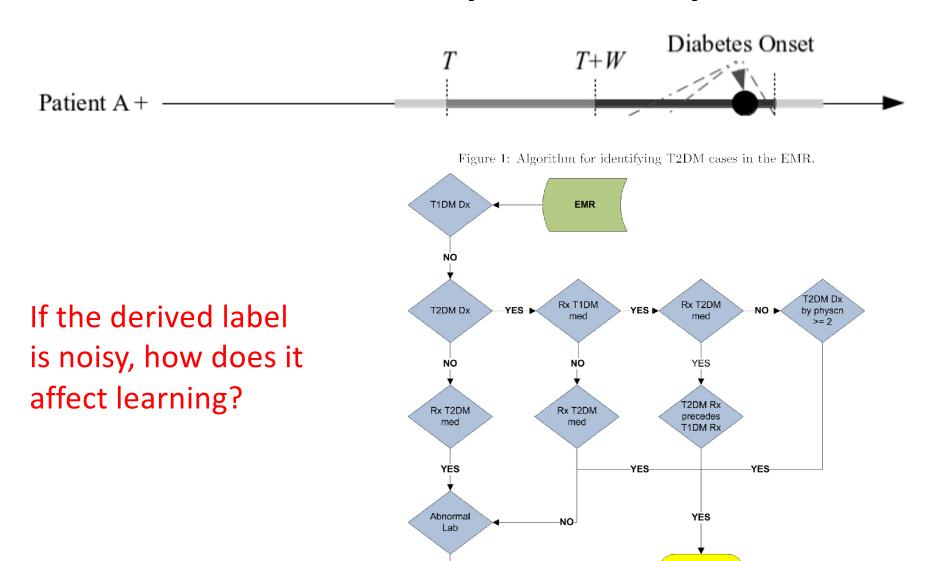
David Sontag

Outline for today's class

1. Learning with noisy labels

- Consistent estimation under class-conditional noise (Natarajan et al., NeurIPS '13)
- Application in health care (Halpern et al., JAMIA '16)
- 2. Weak supervision

Labels may be noisy



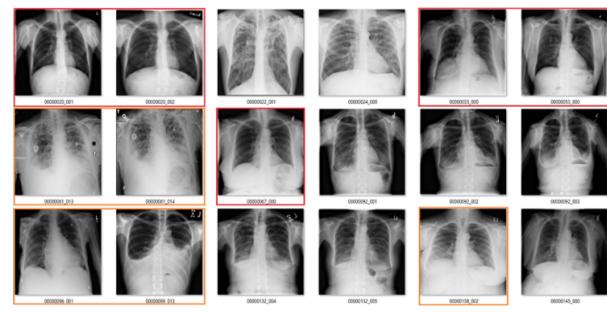
Source: https://phekb.org/sites/phenotype/files/T2DM-algorithm.pdf

CASE

YES

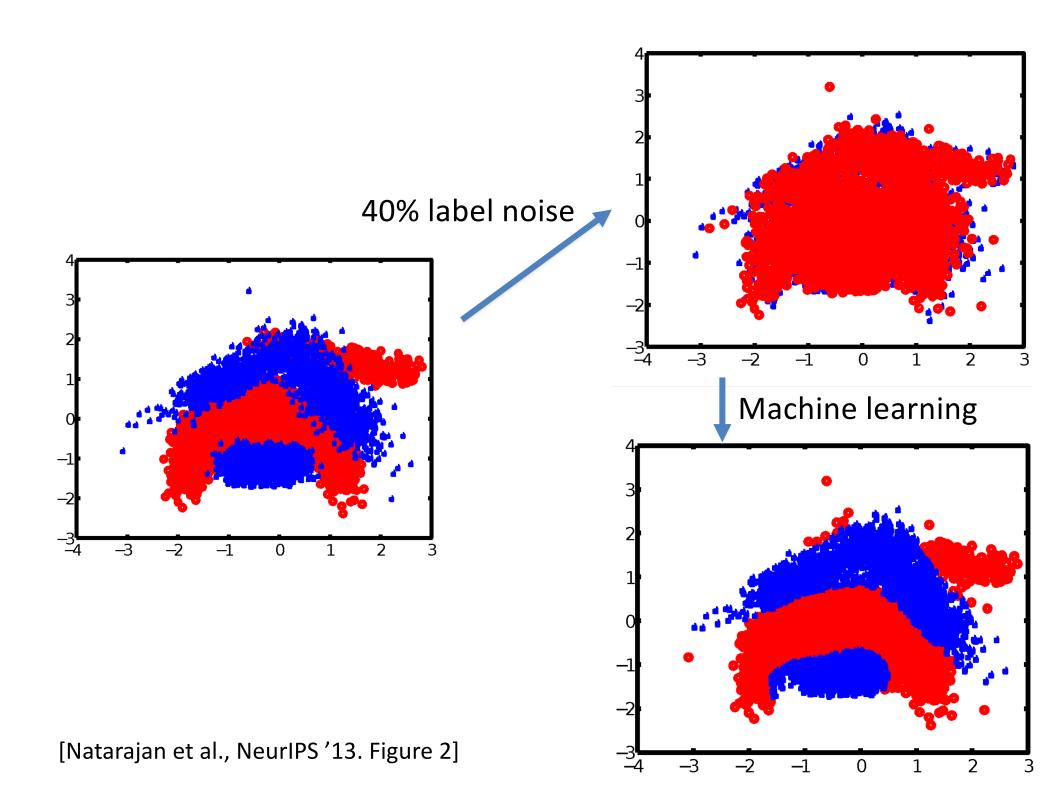
Labels may be noisy

Fibrosis



red = mislabeled orange = maybe mislabeled

[Wang et al., "Chest X-ray8"] figure credit: https://lukeoakdenrayner.wordpress.com/2017/12/18/the-chestxray14-dataset-problems/



Learning with noisy labels

We will show that if we have

- *a) class-conditional* label noise and
- b) lots of training data,

learning as usual, substituting noisy labels, works!

This opens the door to using noisy labels for training, and coming up with clever ways of deriving these for free

Natarajan et al: Introduction

- Features X
- True unobserved labels $Y \in \{-1,1\}$
- Noisy observed labels $ilde{Y} \in \{-1,1\}$
- True distribution $P(X, Y, \tilde{Y})$ reaction

X (age)	Y (diabetic)	\widetilde{Y} (noisy version)
30	-1	
64	1	
75	1	

Natarajan et al: Introduction

- Features X
- True unobserved labels $Y \in \{-1,1\}$
- Noisy observed labels $ilde{Y} \in \{-1,1\}$
- True distribution $P(X, Y, \tilde{Y})$ $\overline{X_{(age)}}$

X (age)	Y (diabetic)	\widetilde{Y} (noisy version)
30	-1	-1
64	1	1
75	1	-1

• Data sampled from $P(X, \tilde{Y}) = \sum_{y} P(X, Y = y, \tilde{Y})$

Y *exists,* but it is hidden during training

X (age)	\widetilde{Y} (noisy version)
30	-1
64	1
75	-1

Assumption: class-conditional label noise

• Assume that $\tilde{Y} \perp X | Y$:

$$P(X, Y, \tilde{Y}) = P(X, Y)P(\tilde{Y}|Y)$$

 \tilde{Y} only depends on Y: label noise is independent of input features

- Since Y is binary, need two parameters to fully define $P(\tilde{Y}|Y)$: $\rho_+ = P(\tilde{Y} = -1|Y = 1)$ & $\rho_- = P(\tilde{Y} = 1|Y = -1)$
- Assume that $ho_+ +
 ho_- < 1\,$ and that $ho_+,
 ho_-$ are known

• If we could learn $\eta(X) = P(Y = 1|X)$, then we would be able to predict optimally.

• If we could learn $\eta(X) = P(Y = 1|X)$, then we would be able to predict optimally.

 $ilde{\eta}(X) = P(ilde{Y} = 1|X)$

• If we could learn $\eta(X) = P(Y = 1|X)$, then we would be able to predict optimally.

$$egin{aligned} & ilde{\eta}(X) = P(ilde{Y} = 1|X) \ &= P(ilde{Y} = 1, Y = 1|X) + P(ilde{Y} = 1, Y = -1|X) \end{aligned}$$

• If we could learn $\eta(X) = P(Y = 1|X)$, then we would be able to predict optimally.

$$egin{aligned} & ilde{\eta}(X) = P(ilde{Y} = 1|X) \ &= P(ilde{Y} = 1, Y = 1|X) + P(ilde{Y} = 1, Y = -1|X) \ &= P(Y = 1|X) P(ilde{Y} = 1|Y = 1) \ &+ P(Y = -1|X) P(ilde{Y} = 1|Y = -1) \end{aligned}$$

• If we could learn $\eta(X) = P(Y = 1|X)$, then we would be able to predict optimally.

$$egin{aligned} & ilde{\eta}(X) = P(ilde{Y} = 1|X) \ &= P(ilde{Y} = 1, Y = 1|X) + P(ilde{Y} = 1, Y = -1|X) \ &= P(Y = 1|X) P(ilde{Y} = 1|Y = 1) \ &+ P(Y = -1|X) P(ilde{Y} = 1|Y = -1) \ &= \eta(X)(1-
ho_+) + (1-\eta(X))
ho_- \end{aligned}$$

(Natarajan et al., Learning with Noisy Labels. NeurIPS '13)

• If we could learn $\eta(X) = P(Y = 1|X)$, then we would be able to predict optimally.

$$egin{aligned} & ilde{\eta}(X) = P(ilde{Y} = 1|X) \ &= P(ilde{Y} = 1, Y = 1|X) + P(ilde{Y} = 1, Y = -1|X) \ &= P(Y = 1|X) P(ilde{Y} = 1|Y = 1) \ &+ P(Y = -1|X) P(ilde{Y} = 1|Y = -1) \ &= \eta(X)(1-
ho_+) + (1-\eta(X))
ho_- \ &= \eta(X)(1-
ho_+ -
ho_-) +
ho_- \end{aligned}$$

$$o \eta(X) = rac{ ilde\eta(X) -
ho_-}{1 -
ho_+ -
ho_-}$$

 $\eta(X)$ is monotonically increasing in $\tilde{\eta}(X)$

- Learn $\tilde{\eta}(X)$ using any ML algorithm which returns calibrated classifiers. Substitute $\tilde{\eta}(X)$ in the above equation to get $\eta(X)$!
- When might noise be helpful?

Outline for today's class

- 1. Learning with noisy labels
 - Consistent estimation under class-conditional noise (Natarajan et al., NeurIPS '13)
 - Application in health care (Halpern et al., JAMIA '16)
- 2. Weak supervision

Application to electronic phenotyping

ain Info											
篃 Ana Betz		Fer	nale -> Male		-	Age:	34y 4m 0d			6	5
Tritical Information											
Z88.0 : Personal history of allergy to pe E10 : Type 1 diabetes mellitus A90 : Dengue fever [classical dengue] A40 : Streptococcal sepsis Z31.2 : In vitro fertilization	nicillin		Severe all	lergic rea	actions to	o β-lac	tams.				
Disabilities / Barriers:										 ≛ ⊰	
General Info Functioning and Disabilit	y Surgeries	Socioeconomics	Lifestyle C	DB/GYN	Geneti	ics M	ledication				
Main Misc											
GP: 📔 Cordara, Cameron	\$	Family: 📔 Zenon-	Betz			\$	Single	~	Insurance:	👕 Insurator : 938291	
Conditions										S (1/5)) 🕜 I
Condition	Status		A	c In Sev	erity	All	Pr Date of Diagno Hea	aled	Remarks		Ir
Z88.0 : Personal history of allergy to p	en unchange	d		Sev	ere		01/07/1991				
E10 : Type 1 diabetes mellitus	chronic			Mo	derate		11/10/1993				
A90 : Dengue fever [classical dengue]	acute										
A40 : Streptococcal sepsis											
Z31.2 : In vitro fertilization											

Hundreds of relevant clinical variables

Abdominal pain Active malignancy Altered mental status Cardiac etiology Renal failure Infection Urinary tract infection Shock Smoker Pregnant Lower back pain Motor Vehicle accident Psychosis Anticoagulated Type II diabetes

...

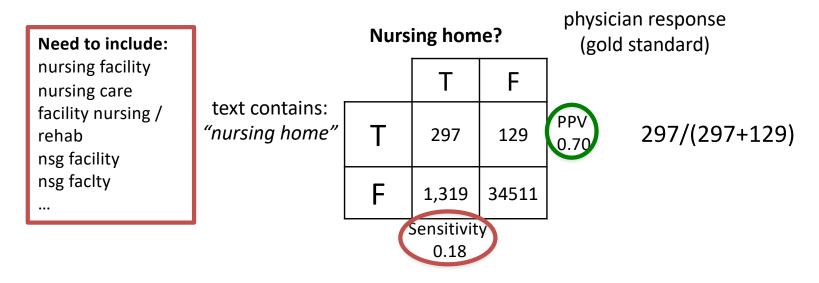
Figure source:

https://commons.wikimedia.org/wiki/File:GNU_Health_patient_main_screen.png

[Halpern, Horng, Choi, Sontag, AMIA '14; Halpern, Horng, Choi, Sontag, JAMIA '16]

Simplest approach: rules

- We would like to estimate, for every patient, which phenotypes apply to them (at some point in time)
- Common practice is to derive manual rules:



Slow, expensive, poor sensitivity.

Often we can find noisy labels WITHIN the data!

Phenotype	Example of noisy label ("anchor") $ \mathring{f U} $
Diabetic (type I)	gsn:016313 (insulin) in Medications
Strep Throat	Positive strep test in Lab results
Nursing home	"from nursing home" in Text
Pneumonia	"pna" in Text
Heart attack	ICD10 I21 in Billing codes

How can we use these for machine learning?

Often we can find noisy labels WITHIN the data!

Phenotype	Example of noisy label (anchor)	Ĵ
Heart attack	ICD10 I21 in Billing codes	

- Suppose we want to know, was a patient admitted to the emergency department for a heart attack?
- Billing codes not available at prediction time, but can be used for labels
- Reasonable to assume that $\rho_{-} = P(\tilde{Y} = 1 | Y = -1) \approx 0$, but because of noisy nature of billing codes, $\rho_{+} = P(\tilde{Y} = -1 | Y = 1)$ likely non-zero

Called "positive only" noise since it implies $P(Y = 1 | \tilde{Y} = 1) = 1$

Anchor & Learn Algorithm

(special case for anchors derived from future data)

Training

Test time

- 1. Treat the anchors as "true" labels
- 2. Learn a classifier to predict whether the **anchor** \tilde{Y} appears
- 3. Calibration step: divide by $\frac{1}{|P|} \sum_{P} P(\tilde{Y} = 1|X)$

P = data points with \tilde{Y} = 1

1. Predict using the learned classifier (with calibration)

Often we can find noisy labels WITHIN the data!

Phenotype	Example of noisy label (anchor)	Ļ
Nursing home	"from nursing home" in Triage note	

- We again assume that $\rho_{-} = P(\tilde{Y} = 1 | Y = -1) \approx 0$, but because many ways to write "from nursing home" in text, we have $\rho_{+} = P(\tilde{Y} = -1 | Y = 1)$ likely non-zero
- If we simply learn to predict \tilde{Y} using the notes, we will learn a trivial classifier! It will simply extract mentions of this phrase!
- This is a clear violation of the assumption $ilde{Y} \perp X | Y$, since $ilde{Y}$ is derived from X

Anchor & Learn Algorithm

Training

- 1. Treat the anchors as "true" labels
- Learn a classifier to predict whether the anchor appears based on all other features
- 3. Calibration step: divide by $\frac{1}{|P|} \sum_{P} P(\tilde{Y} = 1|X)$ **Test time** $P = \text{data points with } \tilde{Y} = 1$
- 1. If the anchor is present: Predict 1
- 2. Else: Predict using the learned classifier (with calibration)

Evaluating phenotypes

 Derived anchors and learned phenotypes using 270,000 patients' emergency department medical records

History	Acute	Deep vein thrombosis	Laceration
Alcoholism	Abdominal pain	Employee exposure	Motor vehicle accident
Anticoagulated	Allergic reaction	Epistaxis	Pancreatitis
Asthma/COPD	Ankle fracture	Gastroenteritis	Pneumonia
Cancer	Back pain	Gastrointestinal bleed	Psych
Congestive heart	Bicycle accident	Geriatric fall	Obstruction
failure	Cardiac etiology	Headache	Septic shock
Diabetes	Cellulitis	Hematuria	Severe sepsis
HIV+	Chest pain	Intracerebral	Sexual assault
Immunosuppressed	Cholecystitis	hemorrhage	Suicidal ideation
Liver malfunction	Cerebrovascular	Infection	Syncope
	accident	Kidney stone	Urinary tract infection

00		🗙 tk		
		chors	suggest code med pyx	
hiv immunosuppressed	hiv hiv+ Specified	anchors	cd4 med_ATRIPLA med_Truvada hep id suggestions med_Raltegravir testing test	
new variable current var is hiv anchored patients: 268 hand labeled patients: 0 evaluator patients: 0 precision@0.8: ?	cd4 Learn! ChiefComplaint: r / o flu TriageAssessment: pt with fl MDcomments: 44m hiv + (cd4 MedRecon: Alprazolam Truvada Diagnosis: FLU W RESP MANIFE DIABETES-NON INSULIN DEP LONG-TERM (CURRENT) USE OF I	ST NEC	a new	
Patient filters				
 ○ do labeling ○ view not anchored ● view all anchored 	1.000: 42 M CELLULITUS RT LE 0.999: 51 M DYSPNEA : 0.999: 49 M SOB : 0.999: 44 M R/O FLU :	G :	Ranked patient list	
view selected anchored	0.999: 44 M RO FLO : 0.999: 47 M HA WEAKNESS :			
view recently anchored	0.999: 53 M SHORTNESS OF E	BREATH :		

Evaluating phenotypes

- Derived anchors and learned phenotypes using 270,000 patients' emergency department medical records
- To obtain ground truth, added a small number of questions to patient discharge procedure, rotated randomly

Unlikely	Unsure	Like
0 0	0	0
< Previous	Abort	Next>

[Halpern, Horng, Choi, Sontag, AMIA '14] [Halpern, Horng, Choi, Sontag, JAMIA '16]

Evaluating phenotypes



Comparison to supervised learning using labels for 5000 patients

Evaluating phenotypes – example model (cardiac etiology)

Anchors

Highly weighted terms

ICD9 codes 410.* acute MI 411.* other acute 413.* angina pectoris	Ages age=80-90 age=70-80 age=90+	Medications lasix furosemide cp chest pain	Нер	aspirin lopidogrel arin Sodium
785.51 card. shock	nstemi stemi	edema		1etoprolol Tartrate
Pyxis coron. vasodilators loop diuretic	ntg lasix nitro	cmed chf exacerbation sob		phine Sulfate Integrilin Labetalol
		pedal edema	structu	red text

[Halpern, Horng, Choi, Sontag, AMIA '14] [Halpern, Horng, Choi, Sontag, JAMIA '16]

Evaluating phenotypes – example model (cardiac etiology)

Anchors

Highly weighted terms

ICD9 codes 410.* acute MI 411.* other acute 413.* angina pectoris 785.51 card. shock	Ages age=80-90 age=70-80 age=90+ nstemi stemi ntg	Medications lasix furosemide cp chest pain edema cmed chf exacerbation	Hep N Mor	aspirin opidogrel arin Sodium letoprolol Tartrate phine Sulfate
coron. vasodilators cardiac medicine	lasix mtro	sob		Integrilin _abetalol
BIDMC shortform		pedal edema Uns	tructur	ed text

[Halpern, Horng, Choi, Sontag, AMIA '14] [Halpern, Horng, Choi, Sontag, JAMIA '16]

Outline for today's class

- 1. Learning with noisy labels
 - Consistent estimation under class-conditional noise (Natarajan et al., NeurIPS '13)
 - Application in health care (Halpern et al., JAMIA '16)
- 2. Weak supervision

How to get more labeled training data?

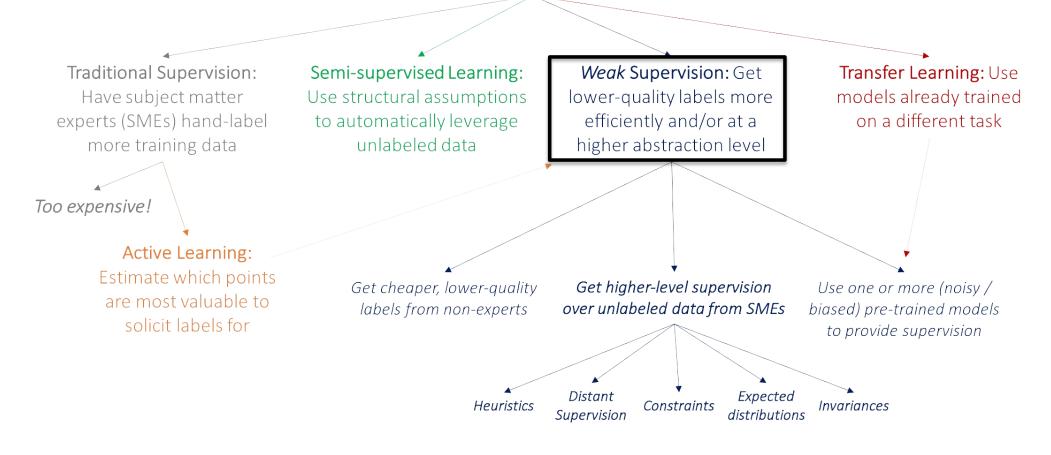
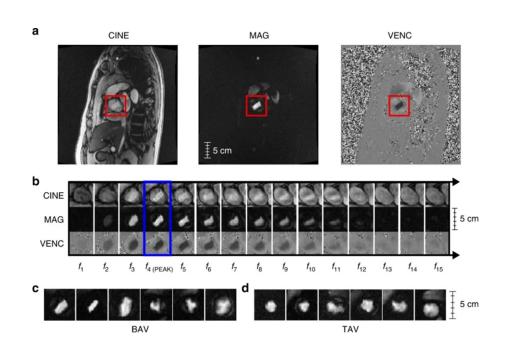


Figure from: https://www.snorkel.org/blog/weak-supervision

Weak supervision

- Define one or more labeling functions I(x) that outputs a label (or no label) for each example
- E.g., for sentiment analysis
 "good" -> +1
 "bad" -> -1
- Reconcile conflicting labels; ignore data points that are unlabeled
- Learn a model on the labeled data points

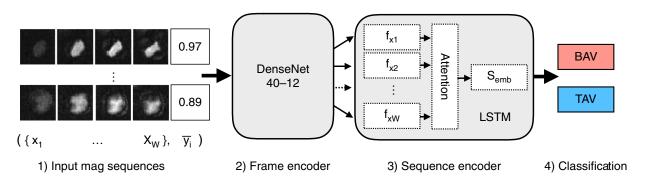


- Data: MRI sequences for 14,328 subjects from the UK Biobank
- True gold standard labels for aortic valve malformations (BAV) derived for 412 subjects
- Goal: Train a model which can classify BAV (positive or negative) when given a new MRI sequence

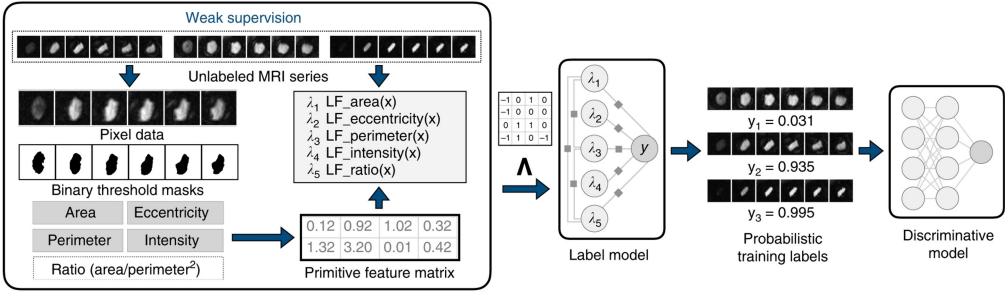
[Fries et al. Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences. Nature Communications 2019]

Methodology:

- Train a factor graph-based model to predict noisy labels for all unlabeled examples
- Train a hybrid convolutional NN / LSTM using the derived noisy labels



[Fries et al. Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences. Nature Communications 2019]

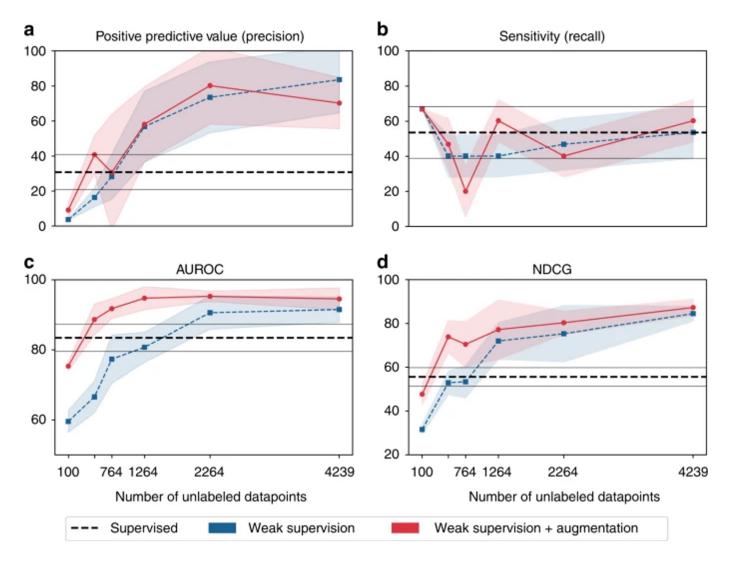


1) Extract primitives & apply labeling functions

2) Generate training data

3) Train deep learning model

[Fries et al. Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences. Nature Communications 2019]



[Fries et al. Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences. Nature Communications 2019]

```
• Example labeling functions:
```

```
# Setting LF output values
3
4 ABSTAIN_VAL = 0
5 HEMORRHAGE VAL = 1
    NO HEMORRHAGE VAL = -1
6
    def LF_positive_hematoma(report):
63
         .....
64
        Checking for words indicating hematoma
65
         .....
66
67
        r1 = re.compile('(No|without|resolution|scalp|subgaleal)\\s([\S]*\\s){0,10}(hematoma)', re.IGNORECASE)
        r = re.compile('hematoma', re.IGNORECASE)
68
        for s in report.report.sentences:
69
             if r.search(s.text) and (not r1.search(s.text)):
70
                 return HEMORRHAGE_VAL
71
72
         return ABSTAIN_VAL
73
    def LF hemorrhage hi cover(report):
74
         .....
75
        Checking for both hemorrhage and hematoma
76
         .....
77
        if LF_positive_hemorrhage(report) == 0 and LF_positive_hematoma(report) == 0:
78
             return NO_HEMORRHAGE_VAL
79
         return HEMORRHAGE VAL
80
```

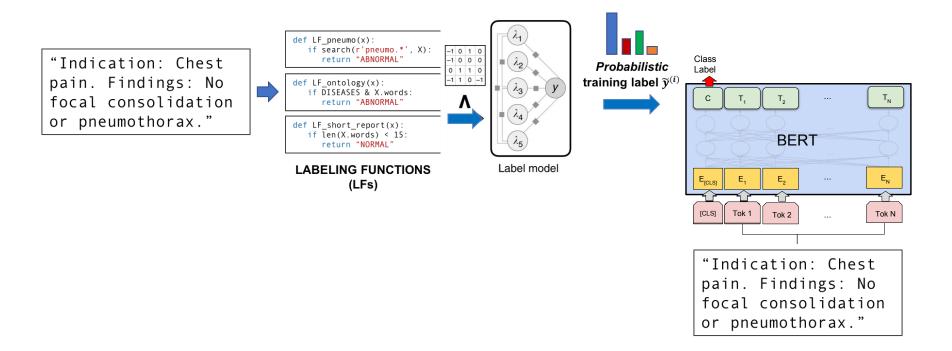
Reference: https://github.com/HazyResearch/cross-modal-ws-demo/blob/master/lfs/lfs_hct.py

```
• Example labeling functions:
```

```
3 # Setting LF output values
4 ABSTAIN_VAL = 0
5 HEMORRHAGE VAL = 1
6
    NO_HEMORRHAGE_VAL = -1
    def LF_normal_V01(report):
12
         .....
13
         Checking for specific normal phrase
14
         .....
15
         r = re.compile('Normal CT of the Head', re.IGNORECASE)
16
17
         for s in report.report.sentences:
18
             if r.search(s.text):
19
                 return NO_HEMORRHAGE_VAL
20
         return ABSTAIN_VAL
21
    def LF_normal_V02(report):
22
         .....
23
24
         Checking for specific normal phrase
         .....
25
         r = re.compile('No acute intracranial abnormality', re.IGNORECASE)
26
         for s in report.report.sentences:
27
28
             if r.search(s.text):
29
                 return NO_HEMORRHAGE_VAL
         return ABSTAIN_VAL
30
```

Reference: https://github.com/HazyResearch/cross-modal-ws-demo/blob/master/lfs/lfs_hct.py

Use BERT as "end model"



 Why does this not simply learn to reproduce the labeling functions?

Table 1: Statistics of all the tasks, domains and datasets included in WRENCH.

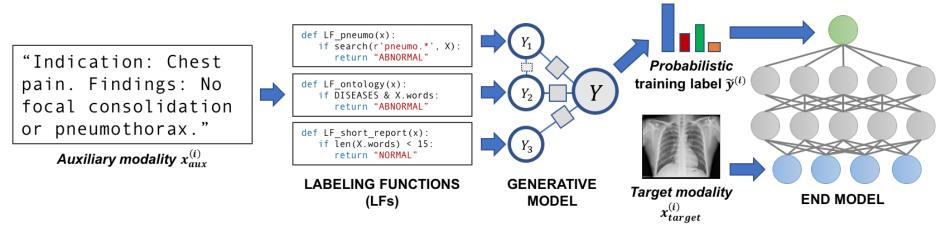
					Train	Dev	Test
Task (↓)	Domain (\downarrow)	Dataset (\downarrow)	#Label	#LF	#Data	#Data	#Data
Sentiment Class.	Movie	IMDb [61, 79]	2	5	20,000	2,500	2,500
	Review	Yelp [107, 79]	2	8	30,400	3,800	3,800
Spam Class.	Review	Youtube [1]	2	10	1,586	120	250
	Text Message	SMS [2, 3]	2	73	4,571	500	500
Topic Class.	News	AGNews [107, 79]	4	9	96,000	12,000	12,000
Question Class.	Web Query	TREC [49, 3]	6	68	4,965	500	500
Relation Class.	News	Spouse [11, 77]	2	9	22,254	2,811	2,701
	Biomedical	CDR [13, 77]	2	33	8,430	920	4,673
	Web Text	SemEval [31, 109]	9	164	1,749	200	692
	Chemical	ChemProt [41, 102]	10	26	12,861	1,607	1,607

EM: end model (R=RoBERTa, RC=COSINE-RoBERTa, BC=COSINE-BERT) LM: label model (MV="majority vote", WMC="weighted majority vote")

		Best	Gold]	Top 1		Top 2		Top 3			
Dataset	Metric	EM	Value	EM	LM	Value	EM	LM	Value	EM	LM	Value
IMDb	Acc.	R	93.25	RC	MeTaL	88.86	RC	<u>FS</u>	88.48	RC	MV	88.48
Yelp	Acc.	R	97.13	RC	FS	95.45	RC	<u>FS</u>	95.33	RC	<u>DS</u>	95.01
Youtube	Acc.	В	97.52	BC	MV	98.00	RC	MV	97.60	RC	MV	97.60
SMS	F1	В	96.96	RC	WMV	98.02	RC	MeTaL	97.71	RC	<u>WMV</u>	97.27
AGNews	Acc.	R	91.39	RC	DS	88.20	RC	MV	88.15	RC	<u>WMV</u>	88.11
TREC	Acc.	R	96.68	RC	DP	82.36	RC	<u>MeTaL</u>	79.84	BC	DP	78.72
Spouse	F1	—	—	BC	FS	56.52	—	MeTaL	46.62	RC	MV	46.28
CDR	F1	R	65.86	-	MeTaL	69.61	_	DP	63.51	RC	DP	61.40
SemEval	Acc.	В	95.43	BC	DP	88.77	BC	MV	86.80	RC	DP	86.73
ChemProt	Acc.	В	89.76	BC	DP	61.56	RC	MV	59.43	RC	MV	59.32

Weak supervision with multiple views

 Alternatively, one could just use the noisy labels from the label model to directly train the downstream model:



• Co-training (Blum & Mitchell, '98) can be used to improve performance further

Conclusion

- Can be difficult to get labeled data for machine learning in health care
- Often possible to quickly derive *noisy* labels (i.e., anchors or labeling functions)
- With conditionally independent noise, ML as usual can be used (with recalibration)
 - $-x \perp \tilde{Y} \mid Y$ (noise rate constant for all examples)
 - Can sometimes *censor* the features to make this assumption more realistic (the anchor & learn method)
 - Alternatively, use pretrained representations