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Dataset shift / non-stationarity:
Models often do not generalize

Model

?

[Figure adopted from Jen Gong and Tristan Naumann]

MGH UCSF

What kinds of dataset 
shift might this have, 
and why?



Dataset shift / non-stationarity:
Diabetes Onset After 2009

[Geiss LS, Wang J, Cheng YJ, et al. Prevalence and Incidence Trends for Diagnosed 
Diabetes Among Adults Aged 20 to 79 Years, United States, 1980-2012. JAMA, 2014.]

→ Automatically derived labels may change meaning

Copyright 2014 American Medical Association. All rights reserved.

Using the 1997-2012 NHIS data, we conducted logistic re-
gression and calculated predictive margins to estimate inci-
dence after controlling for risk factors (ie, age group, sex, race/
ethnicity, educational level, and BMI). Predictive margins are
a type of direct standardization, in which the predicted val-
ues from the logistic regression models are averaged over the
covariate distribution in the population. We first built the base
model for incidence as a function of survey year and age cat-

egorized in 10-year intervals. Next, we added BMI to the base
model using BMI as a continuous variable. Then we further
added other demographic variables, including sex, race/
ethnicity, and educational level, to the model. The final model
included age, race/ethnicity, educational level, BMI, BMI as a
squared term and interaction terms for BMI by age, BMI by edu-
cation, and race/ethnicity by education. Hosmer-Lemeshow
goodness-of-fit was used to assess model fitting. Lastly, we con-

Table 1. Characteristics of US Adults Aged 20 to 79 Yearsa

1980 1990 2000 2010 2012

No. % (95% CI) No. % (95% CI) No. % (95% CI) No. % (95% CI) No. % (95% CI)
Total

Unweighted, No. 22 528 NA 13 253 NA 29 935 NA 24 940 NA 31 701 NA

Age group, y

20-44 12 442 56.0
(55.0-56.9)

7561 58.2
(57.2-59.3)

15 792 54.0
(53.3-54.7)

11 914 48.5
(47.6-49.3)

14 530 47.6
(46.8-48.4)

45-64 6925 30.3
(29.6-31.0)

3800 27.7
(26.8-28.7)

9537 32.5
(31.9-33.2)

9127 38.0
(37.2-38.8)

11 853 38.0
(37.3-38.8)

65-79 3161 13.8
(13.2-14.4)

1892 14.0
(13.3-14.8)

4606 13.5
(13.0-14.0)

3899 13.5
(13.0-14.1)

5318 14.4
(13.9-15.0)

Women 11 999 52.6
(52.2-53.0)

7122 52.1
(51.5-52.7)

16 829 51.7
(51.1-52.4)

13 781 51.2
(50.4-52.0)

17 470 51.4
(50.7-52.1)

Race/ethnicity

Non-Hispanic
white

18 639 81.9
(81.0-82.8)

10 029 77.7
(76.3-79.0)

19 537 73.8
(73.0-74.5)

14 090 68.1
(67.1-69.1)

18 953 66.9
(66.1-67.8)

Non-Hispanic black 2147 10.3
(9.5-11.0)

1778 10.9
(9.8-12.1)

4267 11.4
(10.8-11.9)

4185 12.0
(11.3-12.7)

4901 11.9
(11.3-12.4)

Hispanic 1341 6.0
(5.5-6.5)

1047 8.1
(7.2-9.2)

5065 10.6
(10.1-11.2)

4863 14.2
(13.6-14.9)

5496 15.1
(14.4-15.8)

Other 401 1.9
(1.6-2.2)

399 3.3
(2.7-3.9)

1066 4.2
(3.9-4.6)

1802 5.7
(5.3-6.1)

2351 6.2
(5.8-6.5)

Education

<High school 6423 28.6
(27.8-29.5)

2722 20.0
(19.1-21.0)

5803 16.3
(15.8-17.0)

4004 13.3
(12.7-13.9)

4710 13.0
(12.5-13.6)

High school 8580 38.6
(37.8-39.4)

5094 38.8
(37.7-39.9)

8662 30.4
(29.7-31.1)

6433 26.2
(25.5-26.9)

8031 25.6
(24.9-26.3)

>High school 7226 32.7
(31.9-33.6)

5307 41.2
(40.0-42.5)

15 181 53.2
(52.4-54.1)

14 404 60.5
(59.5-61.4)

18 833 61.4
(60.6-62.3)

Abbreviation: NA, not applicable.
a Data from the National Health Interview Survey; estimates were weighted.

Figure 1. Trends in Age-Adjusted Diagnosed Diabetes Prevalence and Incidence Among Adults Aged 20-79 Years, 1980-2012
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Data are from the National Health Interview Survey. Joinpoint regression was
conducted using the natural logarithm of the age-adjusted rate as the
dependent variable and year as the independent variable.

a In 1997, the diabetes diagnostic criteria for fasting plasma glucose was lowered
from 140 mg/dL or more to 126 mg/dL or more; in 2010, hemoglobin A1c was
adopted for the diagnosis of diabetes. To convert glucose to mmol/L, multiply
by 0.0555.
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[Figure credits: (Left) Mike Oberst, (Right) http://www.icd10codesearch.com/]

Dataset shift / non-stationarity:
ICD-9 to ICD-10 shift
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→ Significance of features may change over time
(note, map from ICD10 to ICD9 isn’t 1-1)



Outline for today’s class

• Examples & formalization of dataset shift
• Testing for dataset shift
• Mitigating dataset shift



Formalizing Dataset Shift

• General Task: Perform well on a “target 
domain” Q

• Assumptions:  What is changing vs. what is 
stable?
– Covariate Shift / Label Shift / more general shifts
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An Impossible Problem

Given 𝑋! , 𝑌! !"#$ from a source domain 𝑃(𝑋, 𝑌), 
find a model that performs well on some target 
domain 𝑄(𝑋, 𝑌)

min
%∈ℱ

𝔼([ℓ(𝑌, 𝑓 𝑋 ]

Not well-posed without further assumptions 
or information about Q!

Examples: 
• P and Q are two different hospital systems
• P is the past, Q is the future
• …



Formalizing Dataset Shift

• General Task: Perform well on a “target 
domain” Q

• Assumptions:  What is changing vs. what is 
stable?
– Covariate Shift / Label Shift / more general shifts



Example: Covariate Shift Assumption

𝑋 𝑌

𝑃 𝑋 ≠ 𝑄 𝑋
𝑃 𝑌 | 𝑋 = 𝑄 𝑌 | 𝑋

Why might this be true?  One 
rationale: 𝑃 𝑌 | 𝑋 encodes some 
“causal” mechanism

Example: Risk stratification for 
different patient populations 

Current Health Future Health

Assumptions: What Changes?



Example: Label Shift Assumption

𝑃 𝑌 ≠ 𝑄 Y
𝑃 𝑋 | 𝑌 = 𝑄 𝑋 | 𝑌

Assumptions: What Changes?

Why might this be true?  One 
rationale: 𝑃 𝑋 | 𝑌 encodes some 
“causal” mechanism

𝑋 𝑌
Symptoms Disease

Example: Diagnostic testing under 
changes in disease prevalence.



Example: “Domain Shift”

Quinonero-Candela et al., (2008). Dataset Shift in Machine Learning, MIT Press.

𝑈

𝑌

Latent 
Features

(Unobserved)

Label

𝑋

Observed 
Features

𝐷Domain 
(Source vs. Target)

We can also view the domain 
itself as a variable that influences 
others

Example: Changes in how 
features are derived (e.g., ICD-9 
versus ICD-10)

Note: So far, we have not 
discussed how to mitigate these 

shifts.  In this example, more 
information is required!

Assumptions: What Changes?



Example: Using causal graphs to 
reason about shift

Example from Subbaswany et al. (2021). Evaluating Model Robustness and Stability to Dataset Shift.  AISTATS

𝑆
Sepsis

𝑉
Vital Signs

𝐿
Lab Results

𝐷
Demographics

𝑂
Lab Ordered

𝑃 𝑂 | 𝐷, 𝑆 ≠ 𝑄 O| D, S

𝑃 𝐷, 𝑆, 𝑂, 𝑉, 𝐿 = 𝑃 𝐷 𝑃 𝑆 𝐷 𝑃 𝑉 𝐷, 𝑆)𝑃 𝑂 𝐷, 𝑆 𝑃(𝐿|𝑂, 𝑆)

More fine-grained shifts can be 
reasoned about as changes in 
marginal/conditional distributions 

Example: Changes in lab ordering 
patterns across hospitals

Assumptions: What Changes?



Outline for today’s class

• Examples & formalization of dataset shift
• Testing for dataset shift
• Mitigating dataset shift



Testing for dataset shift

• Shift in p(y):
– Plot distributions (across data sets, across time)
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Testing for dataset shift

• Shift in p(y):
– Plot distributions (across data sets, across time)

• Shift in p(x) or p(x|y):
– Compare feature means
– However: means can be identical even if two distributions are 

different!



Testing for dataset shift

• Shift in p(y):
– Plot distributions (across data sets, across time)

• Shift in p(x) or p(x|y):
– Compare feature means
– Use kernel two-sample test (Gretton et al., JMLR ‘12)

(a) Misspecified hypothesis ft (b) Lipschitz loss `ft (c) Bound on loss di↵erence

Figure 2: Example illustrating assumptions on the pointwise loss `ft . In (a) we see the true
potential outcome µt and a hypothesis ft. The pointwise loss between them is plotted in
(b). In (c), we illustrate the di↵erence between two densities p0 and p1 on {�1, 0, 1}. The
bottom panel shows the worst-case contribution of any loss function in an rbf-kernel RKHS
L to the di↵erence in risk R0(ft) � R1(ft). The more similar p0, p1, or the smoother the
functions in L, the smaller the overall contribution.

the hypothesis class H. However, in many cases we have reason to make assumptions about
the worst-case loss in generalization, as is typical in statistical learning theory. In this
section, we give bounds on R(ft) under such assumptions.

Let L ⇢ {X ! R+} be a space of pointwise loss functions with respect to the covariates
X endowed with a norm k · kL. In this work, we assume that the expected conditional loss
`ft for each potential outcome belongs to such a family, i.e., that `ft 2 L. A simple example
of such a family is the set of loss functions with bounded maximum value, LM = {` :!
R+ ; supx2X `(x)  M}. This assumption is satisfied without loss of generality as long
as the outcome Y is bounded. However, it is not very informative and will lead to loose
bounds in general. Instead, we may make assumptions about the functional properties of
`ft . Such assumptions include that `ft is C-Lipschitz or belongs to a reproducing-kernel
Hilbert space (RKHS). We illustrate the former with an example in Figures 2a–2b.

Now, consider the marginal distribution p and a re-weighted treatment group p
w
t on X .

Let ` 2 L be a pointwise loss on X . Recall that R(ft) and R
w
t (ft) denote the marginal and

re-weighted factual risks respectively. By definition,

R(`) = R
w
t (`) +

Z

x2X
`(x)(p(x) � p

w
t (x))dx

 R
w
t (`) + sup

`02L

����
Z

x2X
`
0(x)(p(x) � p

w
t (x))dx

���� . (11)

The second term on the right-hand side in (11) is known as the integral probability metric
distance (IPM) between p and p

w
t w.r.t. L, defined as follows (Müller, 1997) :

IPML(p, q) := sup
`2L

|Ep[`(x)] � Eq[`(x)]| . (12)

Particular choices of L make the IPM equivalent to di↵erent well-known distances on distri-
butions: With L the family of functions in the norm-1 ball in a reproducing kernel Hilbert

12

Integral probability metric:
(Muller, 1997)
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Maximum mean discrepancy (MMD): 𝐿 are functions with norm 1 in a RKHS:
(Gretton et al., 2012)
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Figure 4: Illustration of the Counterfactual Regression (CFR) estimator. Here, d represents
a distributional distance such as an IPM. The visual elements are described in Figure 3.

f -divergences are often ill-suited for comparing two empirical densities as they are based on
the density ratio which is undefined in any point outside of the support of either density. In
contrast, IPMs are based on the density di↵erence which is defined everywhere. Adversar-
ial methods are based on the metric implied by a learned discriminator function which is
trained to distinguish samples from the two densities. The flexibility of this approach—that
it tailors the metric to observed data—is also its weakness since optimization of adversarial
discriminators is fraught with di�culty.

The TARNet architecture described above is well-suited for incorporating regularization
on the distributional distance in � according to Objective (19). In particular, we use the
empirical kernel MMD (Gretton et al., 2012) and the Wasserstein distance (Villani, 2008)
for this purpose. We dubbed the resulting estimator Counterfactual Regression (CFR) in
Shalit et al. (2017) (see Figure 4). In Johansson et al. (2018), we derived a further extension,
incorporating a learned sample re-weighting function minimizing (20), called Re-weighted
CFR (RCFR) and illustrated in Appendix C

Minimizing the maximum mean discrepancy. The maximum mean discrepancy
(MMD) was popularized in machine learning through its kernel-based incarnation in which
the associated function family is a reproducing kernel Hilberg space (RKHS) (Gretton et al.,
2012). We restrict our attention to this family here. An unbiased estimator of the MMD
distance between densities p, q on X , with respect to a kernel k, may be obtained from
samples x1, ..., xm ⇠ p, x

0
1
, ..., x

0
n ⇠ q as follows.

ˆMMD
2
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By choosing a di↵erentiable kernel k, such as the Gaussian RBF-kernel, we can ensure that
the MMD is amenable to gradient-based learning. In applications where the quadratic time
complexity w.r.t. sample size is prohibitively large, another unbiased estimator (but with
larger variance) may be obtained by sampling pairs of points (x1, x

0
1
), ..., (x2n, x

0
2n) ⇠ p ⇥ q
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Testing for dataset shift

• Shift in p(y):
– Plot distributions (across data sets, across time)

• Shift in p(x) or p(x|y):
– Compare feature means
– Use kernel two-sample test such as maximum mean discrepancy/MMD 

(Gretton et al., JMLR ‘12)
– (Attempt to) learn a classifier to distinguish one dataset from the other
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D = {(x1, 1), . . . , (xm, 1), (x0
1, 0), . . . , (x

0
n, 0)}

Binary classification (0 vs. 1)



Testing for dataset shift

• Testing for covariate shift (wound healing):
Testing for covariate shift

❖ Fit a model to 
distinguish 2013 vs 
pre-2013 samples

❖ 0.98 AUC on test set

0.00
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0.50

0.75

1.00

0.000.250.500.751.00
Specificity

Se
ns
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vi

ty

ROC − 2013 vs pre−2013

Using just data from 2013

❖ Train a model from first 
two-thirds of 2013 to 
predict on last third

❖ 29k train, 14k test (1/3 
data)

❖ AUC of 0.863
0.00

0.25

0.50

0.75

1.00

0.000.250.500.751.00
Specificity

Se
ns

iti
vi

ty

ROC − delayed wound healing w/2013 data only

Distinguish 2013 from pre-2013 Distinguish first 2/3 of 2013 from
last 1/3 of 2013

(Figures from Ken Jung. See also Jung & Shah, Implications of non-stationarity on predictive modeling using EHRs, 
Journal of Biomedical Informatics, 2015)



Outline for today’s class

• Examples & formalization of dataset shift
• Testing for dataset shift
• Mitigating dataset shift



Some practical answers

• Domain shift – transform features (e.g., imputation of 
missing values or artificially introduce noise/missingness 
during training, reprocess images, map to a common 
space), or drop features that do not transfer

• Concept drift / non-stationarity (eg, p(y|x) changes 
because of new medical treatments) –
Retrain the model with most recent data

(Research question: how to automate the above?)

• Covariate shift?



Covariate shift: nonparametric 
regression just “works”

When can we expect training on p(x,y) and testing on q(x,y) to give good 
results, for p ≠ 𝑞?

Theorem: If p x > 0 whenever q x > 0 and 𝑝 𝑦 𝑥 = 𝑞 𝑦 𝑥 , then in 
the limit of infinite data from p, can achieve Bayes’ error on q



Covariate shift: nonparametric 
regression just “works”

When can we expect training on p(x,y) and testing on q(x,y) to give good 
results, for p ≠ 𝑞?

Theorem: If p x > 0 whenever q x > 0 and 𝑝 𝑦 𝑥 = 𝑞 𝑦 𝑥 , then in 
the limit of infinite data from p, can achieve Bayes’ error on q

We never have infinite data!

May have to use a more restricted model to prevent overfitting 
(e.g. a linear model despite true one being non-linear) 



Effect of covariate shift when (naively) 
learning with misspecified models

• Training data p(x,y)=      and test data q(x,y)=

y

x

[Storkey, “When Training and Test Sets are Different”, Dataset in Machine Learning, 
MIT Press 2009]



Effect of covariate shift when (naively) 
learning with misspecified models

• Training data p(x,y)=      and test data q(x,y)=

y

x

[Storkey, “When Training and Test Sets are Different”, Dataset in Machine Learning, 
MIT Press 2009]

Ideal linear 
model



Effect of covariate shift when (naively) 
learning with misspecified models

• Training data p(x,y)=      and test data q(x,y)=

y

x

[Storkey, “When Training and Test Sets are Different”, Dataset in Machine Learning, 
MIT Press 2009]

Linear model
learned on 
training data



• Training data p(x,y)=      and test data q(x,y)=

y

x

Learning using importance reweighting 
under covariate shift



• Training data p(x,y)=      and test data q(x,y)=

y

x

Learned using 
importance 
reweighted 
objective

Learning using importance reweighting 
under covariate shift



• Training data p(x,y)=      and test data q(x,y)=

y

x
We only needed to know q(x) to figure out how to reweight the 
training data! Example of unsupervised domain adaptation
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Figure 4: Illustration of the Counterfactual Regression (CFR) estimator. Here, d represents
a distributional distance such as an IPM. The visual elements are described in Figure 3.

f -divergences are often ill-suited for comparing two empirical densities as they are based on
the density ratio which is undefined in any point outside of the support of either density. In
contrast, IPMs are based on the density di↵erence which is defined everywhere. Adversar-
ial methods are based on the metric implied by a learned discriminator function which is
trained to distinguish samples from the two densities. The flexibility of this approach—that
it tailors the metric to observed data—is also its weakness since optimization of adversarial
discriminators is fraught with di�culty.

The TARNet architecture described above is well-suited for incorporating regularization
on the distributional distance in � according to Objective (19). In particular, we use the
empirical kernel MMD (Gretton et al., 2012) and the Wasserstein distance (Villani, 2008)
for this purpose. We dubbed the resulting estimator Counterfactual Regression (CFR) in
Shalit et al. (2017) (see Figure 4). In Johansson et al. (2018), we derived a further extension,
incorporating a learned sample re-weighting function minimizing (20), called Re-weighted
CFR (RCFR) and illustrated in Appendix C

Minimizing the maximum mean discrepancy. The maximum mean discrepancy
(MMD) was popularized in machine learning through its kernel-based incarnation in which
the associated function family is a reproducing kernel Hilberg space (RKHS) (Gretton et al.,
2012). We restrict our attention to this family here. An unbiased estimator of the MMD
distance between densities p, q on X , with respect to a kernel k, may be obtained from
samples x1, ..., xm ⇠ p, x
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By choosing a di↵erentiable kernel k, such as the Gaussian RBF-kernel, we can ensure that
the MMD is amenable to gradient-based learning. In applications where the quadratic time
complexity w.r.t. sample size is prohibitively large, another unbiased estimator (but with
larger variance) may be obtained by sampling pairs of points (x1, x
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), ..., (x2n, x

0
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When importance reweighting is not 
enough

• Importance reweighted estimator can be high 
variance 

• If there is no overlap, then in general 
impossible – even with infinite data



Current state of research on dataset shift

• Seek “invariant” representations that will work well 
even after dataset shift

𝑌
Label

𝐷
Domain 

(Multi-Source)

𝑋)
“Spurious”
Features

𝑋* “Invariant”
Features

Caveat: The right “invariance” depends on the 
generative structure, and how D impacts X, Y

What properties should a representation have?

Here, the domain only influences (some) features. 
But, how do we know which ones?

Observe: The distribution 𝑃 𝑌 𝑋!) does not 
depend on D.  Can we encourage our 
representation to recover 𝑋!?
Potential approach: Given multiple source 
environments, learn a representation such that 

𝝓 𝑿 ⊥ 𝑫



Current state of research on dataset shift

• Seek “invariant” representations that will work well 
even after dataset shift

𝑌
Label

𝐷

𝑋+
“Causal”
Features

𝑋, “Anti-Causal”
Features

Here, the domain influences all features.

Observe: The distribution 𝑃 𝑌 𝑋") does not 
depend on D.  Can we encourage our 
representation to recover 𝑋"?
Potential approach: Given multiple source 
environments, learn a representation such that 

𝒀 ⊥ 𝑫 | 𝝓 𝑿

Note: Under this generative structure,  it no 
longer makes sense to seek 𝝓 𝑿 ⊥ 𝑫

What properties should a representation have?Domain 
(Multi-Source)



Current state of research on dataset shift

• Assume knowledge of ‘anchors’ that tell you what 
can change; learn to extrapolate

Assume p(A) will change in test distribution, 
and use distributionally robust training

H
A

YXWZ

Figure 2: In contrast to Rothenhäusler et al. (2018), we assume that anchor variables
(denoted A) are unobserved, but that we have access to either one or two proxies W,Z.
Observed variables are shown in dark grey and unobserved variables in light grey. We do not
assume knowledge of the causal structure between A,X,H, Y (except that A has no causal
parents). The relationship between X,H, Y could be cyclic, but all relationships are linear.

• Targeted shifts: In Section 4, we show how to target our loss to interventions on A

contained in a specified robustness set. We show that this formulation includes Anchor
Regression as a special case, but also allows for sets that are not centered around the
mean of A. In this setting we give an estimator, using two proxies, that identifies the
target loss.

In Section 5, we evaluate our theoretical findings on synthetic experiments, and in Section 6
we demonstrate our method on a real-world dataset consisting of hourly pollution readings
across five major cities in China.

2 Preliminaries

2.1 Notation

We use upper case letters X to denote (possibly vector-valued) random variables, and
lower-case letters x to denote values in the range of those random variables. Vectors are
assumed to be column vectors, so that X 2 RdX indicates that X = (X1, . . . , XdX )

>, a
column vector of dX random variables. We use ⌃X 2 RdX⇥dX to denote the covariance
matrix of a variable X. We use bold upper-case letters X to denote a data matrix in Rn⇥dX ,
consisting of n i.i.d. observations of X, and 1 {·} as an indicator random variable. When
dealing with matrices C,D, we use C � D and C � D to indicate the positive definite and
positive semi-definite partial order, respectively. That is, C � D if D�C is positive definite,
and C � D if D � C is positive semi-definite. We use Id to denote the identity matrix,
whose dimension is given by context. All proofs are provided in the supplementary material.

2.2 Linear structural causal model

We assume the general class of causal graphs represented in Figure 2, where X 2 RdX

denotes observed covariates that can be used in prediction, Y 2 RdY is the target we seek to
predict, H 2 RdH are unobserved variables, and A 2 RdA represents anchor variables, which
are assumed to have no causal parents in the graph. We assume the linear structural causal
model (SCM) given in Assumption 1.

3

[Oberst, Thams, Peters, Sontag. Regularizing towards Causal Invariance: Linear Models with Proxies, ICML, ‘21]
[Rothenhausler et al., Anchor regression: heterogeneous data meets causality. J. of the Royal Statistical Society: Series B, ‘18]

LabelFeatures

Anchors Hidden 
variables

Proxies for A

Regularizing towards Causal Invariance: Linear Models with Proxies

invariance directly across environments (Arjovsky et al.,
2019), or use known causal structure to select predictors
with invariant performance (Subbaswamy et al., 2019).

Our proposed objective takes the form of a standard loss,
plus a regularization term that encourages invariance. This
builds upon Rothenhäusler et al. (2021), who introduce a
similar objective, and prove that their objective optimizes a
worst-case loss over bounded interventions on A, under a
large class of linear structural causal models.

In contrast to Rothenhäusler et al. (2021), we do not assume
that A is observed. Instead we assume that, during training,
we have access to noisy proxies of A. For most of the paper,
we assume that neither A nor proxies are available during
testing. With this in mind, our contributions are as follows

• Distributional robustness to bounded shifts: In Sec-
tion 3, we show that a single proxy can be used to con-
struct estimators with distributional robustness guar-
antees under bounded interventions on A. However,
these estimators are robust to a strictly smaller set of
interventions, compared to when A is used directly,
and the size of this set depends on the (unidentifiable)
noise in the proxy. When two proxies are available,
we propose a modified estimator that can be used to
recover the same guarantees as when A is observed.

• Targeted shifts: In Section 4, we show how to target
our loss to interventions on A contained in a specified
robustness set. We show that this formulation includes
Anchor Regression as a special case, but also allows
for sets that are not centered around the mean of A. In
this setting we give an estimator, using two proxies,
that identifies the target loss.

In Section 5, we evaluate our theoretical findings on syn-
thetic experiments, and in Section 6 we demonstrate our
method on a real-world dataset consisting of hourly pollu-
tion readings across five major cities in China.

2. Preliminaries

2.1. Notation

We use upper case letters X to denote (possibly vector-
valued) random variables, and lower-case letters x to denote
values in the range of those random variables. Vectors are
assumed to be column vectors, so that X 2 RdX indicates
that X = (X1, . . . , XdX )>, a column vector of dX random
variables. We use ⌃X 2 RdX⇥dX to denote the covariance
matrix of a variable X . We use bold upper-case letters
X to denote a data matrix in Rn⇥dX , consisting of n i.i.d.
observations of X , and 1 {·} as an indicator random vari-
able. When dealing with matrices C,D, we use C � D

and C � D to indicate the positive definite and positive
semi-definite partial order, respectively. That is, C � D

H

A

YXWZ

Figure 2. In contrast to Rothenhäusler et al. (2021), we assume
that anchor variables (denoted A) are unobserved, but that we have
access to either one or two proxies W,Z. Observed variables are
shown in dark grey and unobserved variables in light grey. We do
not assume knowledge of the causal structure between A,X,H, Y

(except that A has no causal parents). The relationship between
X,H, Y could be cyclic, but all relationships are linear.

if D � C is positive definite (PD), and C � D if D � C

is positive semi-definite (PSD). We use Id to denote the
identity matrix, whose dimension is given by context. All
proofs are provided in the supplementary material.

2.2. Linear structural causal model

We assume the general class of causal graphs represented in
Figure 2, where X 2 RdX denotes observed covariates that
can be used in prediction, Y 2 RdY is the target we seek to
predict, H 2 RdH are unobserved variables, and A 2 RdA

represents anchor variables, which are assumed to have no
causal parents in the graph. We assume the linear structural
causal model (SCM) given in Assumption 1.
Assumption 1 (Linear SCM). We assume the SCM

0

@
X

Y

H

1

A := B

0

@
X

Y

H

1

A+MAA+ ✏, (1)

where A, ✏ have zero mean, bounded covariance, and are
independently distributed. We assume that E[AA>] and
Id�B are invertible, where Id is the identity matrix. See
Figure 2 for a graphical representation.

Note that we do not assume here (or anywhere in this paper)
that either A or ✏ is Gaussian. The invertibility of Id�B is
satisfied if the causal graph is a directed acyclic graph. The
matrices B,MA encode the linear causal relationships. For
instance, Figure 1 can be represented in this form by B =
0 0
↵ 0

�
, M =


�X

�Y

�
. In general, ✏ 2 RD, B 2 RD⇥D,

and M 2 RD⇥dA , where D := dX + dY + dH . We assume
that dY = 1 for simplicity.

2.3. Distributional robustness of anchor regression

Our goal is to learn a predictor f⇤(X) of Y that minimizes
a worst-case risk of the following form

f
⇤ = argmin

f2F
sup
P2P

EP[`(Y, f(X))], (2)

Change in A is assumed to be bounded.
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Figure 3. Test performance under interventions do(A := (⌫1, ⌫2)) which give rise to different test distributions over X and Y . Each dot
corresponds to a different intervention (i.e., test distribution on X,Y ), and the color gives the resulting mean squared prediction error
(MSPE). (Far Left) OLS performs well for interventions in the set COLS (solid circle), corresponding to the training covariance of A.
However, it performs poorly under interventions far from this region (e.g., top left). (Middle Left) Anchor Regression (AR) minimizes
the worst-case loss over interventions on A within the region CA(�1) (cf., (8)), a re-scaling of COLS. There is a trade-off, with better
performance than OLS under large interventions, but worse performance under small interventions. Given two proxies W,Z, we introduce
Cross-Proxy Anchor Regression (xPAR, cf., (14)) and prove that it minimizes the same worst-case loss. (Middle Right) When only a
single proxy W is used in place of A, the result is a weaker guarantee, in the form of a smaller robustness set CW (�1) (cf., (11)) for the
same value of �1. The shape of this set depends on the noise in the proxy along different dimensions. (Far Right) As a result, there does
not generally exist a �2 such that CW (�2) = CA(�1). If we choose some �2 > �1 such that CA(�1) ⇢ CW (�2), we enforce a stronger
constraint than intended, resulting in an unwanted trade-off between performance and robustness.

where � � �1 is a hyperparameter and we suppress the
dependence on X,Y in the notation.
Theorem 1. Under Assumptions 1 and 2, for all � 2 RdX

and for all � � �1

`PAR(W ; �,�) = sup
⌫2CW (�)

Edo(A:=⌫)[(Y � �
>
X)

2
],

where the robustness set is given by

CW (�) := {⌫ : E[⌫⌫>] � E[AA
>] + �⌦W } (11)

and where ⌦W is defined as

⌦W := E[AW
>]
�
E[WW

>]
��1E[WA

>]. (12)

Intuitively, ⌦W defines a signal-to-variance relationship in
W , and this determines the robustness guarantee. In the
case where both A,W 2 R are one-dimensional, and A has
unit variance, the robustness sets simplify to

COLS = {⌫ : E[⌫2]  1}
CW (�) = {⌫ : E[⌫2]  1 + � · ⇢W }
CA(�) = {⌫ : E[⌫2]  1 + �},

where ⇢W := �
2
W /(�2

W + E✏2W ) < 1 is the signal-to-
variance ratio of W , also referred to as the reliability ratio
in the measurement error literature (Fuller, 1987). Thus,
in the one-dimensional case, the robustness set using W

is strictly smaller than the one obtained by using A when
� > 0, except in the case where ✏W = 0 a.s. This result
generalizes to higher dimensions.

Proposition 1. Assume Assumptions 1 and 2 and that
E[✏W ✏

>
W ] 2 RdW⇥dW is positive definite. Then for � > 0

COLS ✓ CW (�) ⇢ CA(�),

and the set CW (�) increases monotonically when E[✏W ✏
>
W ]

decreases w.r.t. the partial matrix ordering. If dW = dA,
�W is full rank, and ✏W = 0 a.s., then CW (�) = CA(�).

If ⌦W were known, we could choose a larger �⇤ such that
CA(�) ✓ CW (�⇤). In contrast to the one-dimensional case,
where we could choose �

⇤ = �/⇢W to obtain an equality
CA(�) = CW (�⇤), we cannot generally achieve equality in
higher dimensions (see Figure 3).

However, ⌦W is not generally identifiable from the ob-
served distribution over (X,Y,W ) alone. Moreover, SCMs
compatible with the observed distribution react differently
under interventions on A and yield different coefficients that
are optimal w.r.t. interventions in CA(�). Consequently, in
this setting, it is not possible to recover the guarantees of
Anchor Regression without further assumptions (e.g., on
⌦W ). See Supplement B for an example.

Note that these results apply regardless of whether or not
�W is full rank. However, if �W is not full rank, then there
will be directions of variation in A that are not reflected in
W , and we will not be able to achieve additional robust-
ness (beyond that of OLS) against interventions along these
directions.
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where � � �1 is a hyperparameter and we suppress the
dependence on X,Y in the notation.
Theorem 1. Under Assumptions 1 and 2, for all � 2 RdX

and for all � � �1

`PAR(W ; �,�) = sup
⌫2CW (�)

Edo(A:=⌫)[(Y � �
>
X)

2
],

where the robustness set is given by

CW (�) := {⌫ : E[⌫⌫>] � E[AA>] + �⌦W } (11)

and where ⌦W is defined as

⌦W := E[AW>]
�
E[WW
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��1E[WA

>]. (12)

Intuitively, ⌦W defines a signal-to-variance relationship in
W , and this determines the robustness guarantee. In the
case where both A,W 2 R are one-dimensional, and A has
unit variance, the robustness sets simplify to

COLS = {⌫ : E[⌫2]  1}
CW (�) = {⌫ : E[⌫2]  1 + � · ⇢W }
CA(�) = {⌫ : E[⌫2]  1 + �},

where ⇢W := �
2
W /(�2

W + E✏2W ) < 1 is the signal-to-
variance ratio of W , also referred to as the reliability ratio
in the measurement error literature (Fuller, 1987). Thus,
in the one-dimensional case, the robustness set using W

is strictly smaller than the one obtained by using A when
� > 0, except in the case where ✏W = 0 a.s. This result
generalizes to higher dimensions.

Proposition 1. Assume Assumptions 1 and 2 and that
E[✏W ✏

>
W ] 2 RdW⇥dW is positive definite. Then for � > 0

COLS ✓ CW (�) ⇢ CA(�),

and the set CW (�) increases monotonically when E[✏W ✏
>
W ]

decreases w.r.t. the partial matrix ordering. If dW = dA,
�W is full rank, and ✏W = 0 a.s., then CW (�) = CA(�).

If ⌦W were known, we could choose a larger �⇤ such that
CA(�) ✓ CW (�⇤). In contrast to the one-dimensional case,
where we could choose �

⇤ = �/⇢W to obtain an equality
CA(�) = CW (�⇤), we cannot generally achieve equality in
higher dimensions (see Figure 3).

However, ⌦W is not generally identifiable from the ob-
served distribution over (X,Y,W ) alone. Moreover, SCMs
compatible with the observed distribution react differently
under interventions on A and yield different coefficients that
are optimal w.r.t. interventions in CA(�). Consequently, in
this setting, it is not possible to recover the guarantees of
Anchor Regression without further assumptions (e.g., on
⌦W ). See Supplement B for an example.

Note that these results apply regardless of whether or not
�W is full rank. However, if �W is not full rank, then there
will be directions of variation in A that are not reflected in
W , and we will not be able to achieve additional robust-
ness (beyond that of OLS) against interventions along these
directions.
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a2



Current state of research on dataset shift: 
benchmarking



[Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts. arXiv:2012.07421, 2021.]



[Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts. arXiv:2012.07421, 2021.]



TL;DR: Existing algorithms don’t 
substantially improve over ERM

[Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts. arXiv:2012.07421, 2021.]

Note: These are blind implementations (with no domain knowledge injected) that do not 
attempt to understand the causal nature of the dataset shifts.



Current state of industry on dataset shift

Source: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-monitor-datasets

See also: https://cloud.google.com/solutions/machine-learning/ml-modeling-monitoring-identifying-
training-server-skew-with-novelty-detection & https://docs.seldon.io/projects/alibi-detect/en/latest/

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-monitor-datasets
https://cloud.google.com/solutions/machine-learning/ml-modeling-monitoring-identifying-training-server-skew-with-novelty-detection
https://docs.seldon.io/projects/alibi-detect/en/latest/


Conclusion

• Dataset shift happens all the time with 
healthcare data

• It doesn’t always hurt performance
• Interpretability methods can help with 

detecting and mitigating dataset shift
• Safe deployments should include automated 

checks for dataset shift
• Active area of research in ML



Additional references
• The Clinician and Dataset Shift in Artificial Intelligence. Finlayson et 

al., NEJM 2021
• Lipton et al. Detecting and Correcting for Label Shift with Black Box 

Predictors. ICML, 2018
• Finlayson et al., Adversarial attacks on medical machine learning, 

Science, 2019
• Arjovsky et al., Invariant Risk Minimization, arXiv:1907.02893, 2019
• Peters, Bühlmann, Meinshausen. Causal inference by using invariant 

prediction: identification and confidence intervals, Journal of the
Royal Statistical Society 2016

• Veitch et al., Counterfactual Invariance to Spurious Correlations: 
Why and How to Pass Stress Tests, arXiv:2106.00545, 2021

https://www.nejm.org/doi/full/10.1056/NEJMc2104626
https://arxiv.org/abs/1802.03916
https://www.science.org/doi/10.1126/science.aaw4399
https://arxiv.org/pdf/1907.02893.pdf
https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssb.12167
https://arxiv.org/pdf/2106.00545.pdf

