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Reminder: Causal inference

Patient, X Intervention, T
(including all (e.g. medication,
confounding ? procedure)
factors)

Outcome, Y

High dimensional Observational data



Reminder: Causal inference

* Two approaches to use machine learning for
causal inference

— Predict outcome given features and treatment —i.e.,
E[Y | X, T] —then use to impute counterfactuals
(covariate adjustment)

— Predict treatment using features (propensity score) —
i.e., Pr(T|X) —then use to reweight outcomes

Consistency of estimates depend on:

— Causal graph being correct (i.e., no unobserved
confounding)

— ldentifiability of causal effect (i.e., overlap or correctly
specified model)



Same ideas can be used to evaluate
policies using observational data

* Suppose someone gave us a policy 7(l) that outputs a; vs a,

Example: which antibiotic to prescribe?

Patient has a urinary
tract infection (UTI)

Affects 1 in 2 women
during lifetime; 3rd
most common cause
for antibiotic treatment

[Kanjilal et al., A decision algorithm to promote outpatient antimicrobial stewardship for uncomplicated
urinary tract infection. Science Translational Medicine, 2020.]



Same ideas can be used to evaluate
policies using observational data

e Suppose someone gave us a policy m(/) that outputs a, vs a,

Example: which antibiotic to prescribe?

‘Woman with acute uncomplicated cystitis : Consider alternate diagnosis (such I nfe ctio u S Disea Se Society of

e Absence of fever, flank pain, or other as pyelonephritis or complicated
suspicion for pyelonephritis UTI) & treat accordingly

e Able to take oral medication (see text) Am e ri ca ( I DSA) gu id e I i n es

Fluoroquinolones

Can one of the recommended antimicrobials* (resistance prevalence high in
Lo S g
below be used considering: some areas)

Auvailability
Allergy history OR

. Resistance or exposure to

Nitrofurantoin monohydrate/macrocrystals 100
mg bid X 5 days
(avoid if early pyelonephritis suspected)

OR

Trimethoprim-sulfamethoxazole 160/800 mg
(one DS tablet) bid X 3 days
(avoid if resistance prevalence is known to
exceed 20% or if used for UTI in previous 3
months)

OR
Fosfomycin trometamol 3 gm single dose
(lower efficacy than some other recommended
agents; avoid if early pyelonephritis suspected)
OR
Pivmecillinam 400 mg bid x 5 days

(lower efficacy than some other recommended
agents; avoid if early pyelonephritis suspected)

(avoid ampicillin or amoxicillin
alone; lower efficacy than other

follow-up)

At MGH & BWH,
resistance
prevalence to SXT
does exceed 20%:
always avoid SXT

micn e | Simplifies to NIT in past 90 days?

No es

Prescribe NIT Prescribe CIP

*The choice between these agents should be
individualized and based on patient allergy and
compliance history, local practice patterns, local

community resistance prevalence, availability, cost, and
patient and provider threshold for failure (see Table 4)

(Nitrofurantoin) (Ciprofloxacin)

Prescribe a recommended antimicrobial

[Gupta et al., Clinical Infections Diseases, 2011.]



Same ideas can be used to evaluate
policies using observational data

Suppose someone gave us a policy 7(!) that outputs a; vs a,
How do we evaluate it?

We give two approaches, one based on potential outcomes
and the other based on propensity scores

In both cases, we have to first consider the causal graph that
underlies the observational data

State S

onfounders, X

Switched notation to
’ Action, A what’s more typically
(a; or a,) used in RL
action A: Treatment T
reward R: Outcome Y

Features
used for 7

Reward, R



Evaluating policies using potential
outcomes

* First, use machine learning to
Regression Outcome /

obtain a model that can Features
) . model reward
predict potential outcomes
(we need ignorability, f(s,4)
overlap) f — 7

e Then, use this model to
impute policy outcomes:



Evaluating policies using inverse
propensity scores

* First, use machine learning to Features Regre;“lo” Treatment
LA mode
obtain p(4|s) = f(s),
estimated propensity scores f(s)

-
e Then, use this model to
reweight the outcomes:

AIPW _l - 1[CL )]
Q —n;

pla; | sz)

Aside: is this the right goal? What if we wanted to control
worst-case reward instead of average?



Learning policies from observational
data

A

* Consider our first estimator: Q()

* Create data set {(l, o))} where

0; = arg mjx f(li, Li, A) Notice relationship to CATE

e Use an (interpretable) ML algorithm to fit this new dataset
* The resulting policy may be a much simpler function than f!

(Makar, Swaminathan, Kiciman. A distillation approach to data efficient individual treatment
effect estimation. AAAI, 2019)



Does gastric bypass surgery prevent
onset of diabetes?

2013

O <4.5% 0O 4.5%-5.9% O 6.0%7.4% M@ 7.5%-8.9% M >9.0%

e Gastric bypass surgery is the highest negative weight (9th
most predictive feature)
— Does this mean it would be a good intervention?

* Yes, if....
— Interpret ‘gastric bypass surgery’ feature as T

— Interpret all the other features as X; assume they all include all
relevant confounders and do not include anything post-treatment

— True potential outcome function is linear



What is the likelihood this patient, with
breast cancer, will survive 5 years?

N
B Diagnosis Treatment Death :
_:.’-f"""‘fji“ X | I l ! —> ) Time
-5{’." ] = ”Mary"

A long survival time may be because of treatment!

* Group into K categories of treatment strategies T (one of which might
be “no treatment”)

* Gather data on confounding factors C that might influence both
treatment decision and outcome

* Learn f(X,C,T) to predict Y (survival time)

* Assess overlap™® by looking at p(X,C|T) or p(T|X,C)

e Predict survival under a specific treatment regime k using f(X,C,k)
* Will survive 5 years when treated optimally if max, f(X,C, k) > 5

* See, e.g., Oberst, Johansson, Wei, Gao, Brat, Sontag, Varshney. Characterization of Overlap in Observational
Studies, Conference on Artificial Intelligence and Statistics (AI-STATS), 2020.



Many more ideas and methods

Doubly robust estimators that combine both
regression and IPW

Natural experiments & regression
discontinuity

Instrumental variables

Sensitivity analyses



Many more ideas and methods —
Natural experiments

Does stress during pregnancy affect later child
development?

Confounding: genetic, mother personality,
economic factors...

Natural experiment: the Cuban missile crisis of
October 1962. Many people were afraid a nuclear
war is about to break out.

Compare children who were in utero during the
crisis with children from immediately before and

after



Many more ideas and methods —
Instrumental variables

Informally: a variable which affects treatment
assignment but not the outcome

Example: are private schools better than public
schools? Which students would benefit the most?

Confounding: different student population,
different teacher population

Can’t force people which school to go to



Many more ideas and methods —
Instrumental variables

Informally: a variable which affects treatment
assignment but not the outcome

Example: are private schools better than public
schools? Which students would benefit the most?

Can’t force people which school to go to

Can randomly give out vouchers to some children,
giving them an opportunity to attend private

schools

The voucher assignment is the instrumental
variable



Estimation using an instrumental variable

Goal: estimation in setting where there are unobserved
confounders, U, not captured in X

Patient, X

(what we
know)

-\

( 1 U

Outcome, Y

?

Intervention, T

(e.g. medication,
procedure)



Estimation using an instrumental variable

First, assume no patient covariates (with this, we will only be
able to estimate ATE not CATE)

Patient, X

(what we
know)

-\

( 1 U

Outcome, Y

?

Intervention, T

(e.g. medication,
procedure)



Estimation using an instrumental variable

First, assume no patient covariates (with this, we will only be
able to estimate ATE not CATE)

Note: this is without loss of
generality (since U could
include all of X)

-\

( 1 U

N~

Outcome, Y

?

Intervention, T

(e.g. medication,
procedure)



Estimation using an instrumental variable

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Estimation using an instrumental variable

Instrument (e.g., voucher)

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Assumption 1: Relevance

Z has a causal effecton T

What is an Instrument?

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Assumption 2: Exclusion Restriction

The causal effect of Zon Y is fully mediated by T

What is an Instrument?

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Assumption 3: Instrumental
Unconfoundedness

Z is unconfounded (in the setting of no X, this simply
means U and Z are independent)

l/U)

/\ /
N~ -

What is an Instrument?

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Warm-up: linear potential outcome,
no X

Assume potential outcomes given by the linear model,

V,(U)= ayU +8-t+¢, E[le]=0

Z doesn’t appear because of
the exclusion restriction
assumption

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Warm-up: linear potential outcome,
no X

ElY | Z=1]-E[Y | Z=0]
=E[T+a,U | Z=1]-E[6T + a,U | Z=0] (exclusion restriction and linear outcome assumptions)

=0(E[T|Z=1-E[T|Z=0))+a,(E[U|Z=1]-E[U | Z =0])
=0 (E[T | Z=1]-E[T | Z=0]) + oy (E[U] — E[U]) (instrumental unconfoundedness assumption)
=0(E[T|Z=1]—-E[T| Z=0])
s _EY|Z=1-E[Y|Z=0 ‘U
CET|Z=1-E[T|Z=0] N
J T Y

(non-zero due to relevance assumption)

Y;(U) = a,U +8-t+ ¢

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Estimation using (conditional) instruments

Assume potential outcomes given by:

Yr(x,U) = §(x)T + g(x,U) + €7

Goal: estimate
CATE(x) = 6(x)




Estimation using (conditional) instruments

Assume potential outcomes given by:

Yo(x,U) = 6(x)T + g(lx,U) + e7(x)

E[Y|Z = 1,x] — E[Y|Z = 0, x]

Th , = =
eorem.  CATE(x) = §(x) p(T=1Z=14x) —p(T=1|Z=0,x)

(proof shown on board)

Assume
Elegl x] = 0
Ele;|x] =0




What if you have unobserved
confounding but no instrument?

Sensitivity analysis will help us build
intuition on how biased our
estimates might be



Sensitivity analysis and hidden
confounding

* Major challenge: how to define the amount of
hidden confounding?

* This is not a purely mathematical problem!
We need to frame it in terms that enable us to

make judgement calls about plausible and
implausible levels of hidden confounding

(Slides adapted from Uri Shalit’s causal inference class)



Scenario #1

Patients treated with blood pressure drug A
live longer than patients without on
average.

However, drug A is very expensive, so
mostly wealthy patients get drug A.

If income is not in our dataset, it could be
very likely that it explains much or all of the
ATE due to general lifestyle factors

(Example from Monica Agrawal)



Scenario #2

Patients who smoke are likelier to develop lung
cancer than patients who don't.

There is believed to be some heritability for
both addiction and lung cancer.

Even if patients’ mutations are not in the
dataset, it is unlikely that the genetic factors

are sufficient to overpower the overwhelming
ATE.

(Example from Monica Agrawal)

SN




Sensitivity analysis and hidden
confounding

e How to define the amount of hidden
confounding?

* How much H affects T and y? @ o
' confounders
* What “units” do we use for this? N
. ? measured x ) T treatment
How to ground it: confounders \ /
y

outcome

(Slides adapted from Uri Shalit’s causal inference class)



Special case to build intuition

Notation change (!)
these slides use W
instead of X

Continuous T

Linear T and no randomness T := a,W + a,U
Linear Y Y = B,W + B,U + 0T

Goal: recoverd

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Bias in Simple Linear Setting

T :=a,W + a,U
Y =, W+ B, U+ 0T

Proof coming
after next
slide

@_.

E[Y(1) =Y (0)] =Ewy [EY |T=1,W,U]—E[Y |T=0W,U]] =4

Ew [E[Y |7 = 1,W] ~E[Y | T=0,W]] L5+
au
BiasofEW[E[Y|T:1,W]—E[Y|T:0,W”:5+§_“_5:§_“

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Contour Plots for Sensitivity to
Confounding

Bias of Ew [E[Y | T = 1,W] —E[Y | T = 0, W]|

10.0

— 1 BU
. 10
25 Qy
5.0 St
2.5 L
By 00
25
-5.0
75
~10.0
~15 -10 -5 0 5 10 15
1
Qyy

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Bias in Simple Linear Setting Proof:
Step 1

A 4 SCM T :=a,W + a,U [ T — a W
ssume . —
Y = ﬁwW —|— BuU —|— 5T Oy,

Getl Xloded-fornl exgresBion foTEw [EI Y- BT =1t AW terms of ¢w, &, By, and Bu.
— By [BuW + BuE[U | T = t, W] + 61

— By _6wW+Bu (t ijsz) + 5t]

_ By 5ww+§“ 6ZWW+515]
— BLE[W ]+§—“t—52% W]+ 6t

o) (o

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Bias in Simple Linear Setting Proof:
Step 2

Step 1: B [S[Y [T =t.W]) = (5+ 22 ) 4 (5, - 22 )
Ew [EY |T=1,W]—E[Y |T=0,W] = (5+§—Z> (1) + <6w— ﬁ“j“’)E[W]
. [(5 ' g—) (0) + (ﬁw - ﬁgj“’) E[W}]
‘“%

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Bias in Simple Linear Setting Proof:
Step 3

Bias = Eyw [E[Y | T = 1,W] —E[Y | T = 0, W]] a5 )
Ewy|E[Y |T=1,W,U]—E[Y | T =0,W,U]] B
_s4 s
E (—)
_ Pu
Qyy

T :=a,W + a,U
Y =38, W+ 8, U+ 0T

Sensitivity Analysis: Linear Single Confounder

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)



Sensitivity analysis with binary
treatment

P

T :=a,W+ a,U U P(T=1|W,U) := sigmoid (., W + a,U)
Y = Bu,W + B, U + 6T ~-7 Y := B, W + B, U+0T+ N
1
: () —
l where sigmoid(x) e

D)

Rosenbaum & Rubin (1983) and Imbens (2003)
* Simple parametric form for T

 Simple parametric form for Y
e Uisbinary

U isascalar (only one unobserved
confounder)

(Slides adapted from Brady Neal’s Introduction to Causal Inference class)


https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1983.tb01242.x
https://scholar.harvard.edu/files/imbens/files/sensitivity_to_exogeneity_assumptions_in_program_evaluation.pdf

Sensitivity analysis with binary
treatment

* How much unmeasured confounding to flip
our conclusions?

(Slides adapted from Uri Shalit’s causal inference class)



Does cigarette
smoking

increase blood ol 77 7~  MERp=VEIiE=0/05

P, [J Max. p—value >0.05
lead: O 2 Max. p-value <0.05

Male
© S S| Female

Unmeasured 0 00
g > Less than 9th grade

confounding .| i) vs.
| ' S '/ / College

exp(d) in ) :
Mexican Amencan /

Ns /S S Ageof21-SD dlffe nce
outcome S White’ 4 Black vs White /7> :
mOdel U - — - .-f‘.,---.v,v:’ﬁ.p...OmeJracpsv,s Wmte ______ Some(}oﬂege _______
457 . j S iy Sl o 6<1ith grade g

358 Income—torpwerw,bvel 7 Collede” s L

Y 0
d °

Other Hispanic
QA vs. White

[ I I I I | |

Hsu & Small, 0 05 1 2 4 6 8 10

2013 Unmeasured confounding exp(y) in treatment assignment U —» T

(Slides adapted from Uri Shalit’s causal inference class)



Generalization: Austen plots

* Here, both treatment Bias = 2.0
. @ age ® sex
mechanism and the ., bloodwork e socioeconomic
outcome mechanism canbe =
. . .©
modeled with arbitrary £ .
machine learning models =
=
S 0.50
. . 3
 Assumptions on how hidden ¢
: © 0.25
confounders modify 3
treatment & outcome 2 g
(-
models B 0 025 050  0.75 1

Influence on treatment (o)

(Veitch & Zaveri, Sense and Sensitivity Analysis: Simple Post-Hoc Analysis of Bias Due to
Unobserved Confounding. NeurlPS 2020)



Summary

* Close connection between causal inference
and off-policy evaluation

— Will return to this later when we talk about off-
policy reinforcement learning

 Instrumental variables can be used to
estimate ATE and CATE when there is
unobserved confounding

e Sensitivity analysis can help build intuition for
how unobserved confounding affects bias
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