
Machine Learning for Healthcare
6.871, HST.956

Lecture 11: Causal Inference Part 2

David Sontag

Acknowledgement: some slides adapted from Uri Shalit (Technion)



Intervention, 𝑇

(e.g. medication, 
procedure)

Outcome, 𝑌

Patient, 𝑋

(including all
confounding
factors)

?

High dimensional Observational data

Reminder: Causal inference



Reminder: Potential Outcomes

• Each unit (individual) 𝑥! has two potential outcomes: 
– 𝑌!(𝑥") is the potential outcome had the unit not been treated: 

“control outcome”
– 𝑌#(𝑥") is the potential outcome had the unit been treated: 

“treated outcome”

• Conditional average treatment effect for unit 𝑖: 
𝐶𝐴𝑇𝐸 𝑥! = 𝔼"$~$("$|'%) [𝑌)|𝑥!] − 𝔼"&~$("&|'%)[𝑌*|𝑥!]

• Average Treatment Effect:
𝐴𝑇𝐸 = 𝔼'~$(') 𝐶𝐴𝑇𝐸 𝑥



Two common approaches for counterfactual 
inference

Covariate adjustment 
Propensity scores



𝑥!

𝑥"

𝑥#

𝑇

… 𝑓(𝑥, 𝑇)
𝑦

Regression 
model

OutcomeCovariates
(Features)

Covariate adjustment (reminder)

Explicitly model the relationship between 
treatment, confounders, and outcome:

Treatment
(0/1)



Covariate adjustment (reminder)

• Under ignorability, can use the adjustment 
formula:

𝐴𝑇𝐸 𝑥 =
𝔼%~' % 𝔼 𝑌( 𝑇 = 1, 𝑥 − 𝔼 𝑌) 𝑇 = 0, 𝑥

• Fit a model 𝑓 𝑥, 𝑡 ≈ 𝔼 𝑌* 𝑇 = 𝑡, 𝑥 ,	then:
5𝐶𝐴𝑇𝐸 𝑥 = 𝑓 𝑥, 1 − 𝑓(𝑥, 0).



𝑻𝒙

𝒀𝟏𝒀𝟎

anti-
hypertensive 
medication

blood pressure
after medication 
A

age, gender, 
weight, diet, 
heart rate at 
rest,…

blood pressure
after  
medication B

Ignorability (no hidden 
confounding)

(𝑌#, 𝑌$) ⫫ 𝑇 | 𝑥



𝒙

𝒀𝟏𝒀𝟎blood pressure
after medication 
A

age, gender, 
weight, diet, 
heart rate at 
rest,…

blood pressure
after  
medication B

𝒉

No Ignorability

diabetic
𝑻

anti-
hypertensive 
medication

(𝑌#, 𝑌$) ⫫ 𝑇 | 𝑥



Covariate adjustment with linear models

• Assume that:

• Then:
𝐶𝐴𝑇𝐸(𝑥): = 𝔼[𝑌( 𝑥 − 𝑌) 𝑥 ] =

𝔼[(𝛽𝑥 + 𝛾 + 𝜖() − 𝛽𝑥 + 𝜖) ] = 𝛾

age medicationBlood pressure

𝑌* 𝑥 = 𝛽𝑥 + 𝛾 ⋅ 𝑡 + 𝜖*
𝔼 𝜖* = 0



• Assume that:

• Then:
𝐶𝐴𝑇𝐸(𝑥): = 𝔼[𝑌( 𝑥 − 𝑌) 𝑥 ] =

𝔼[(𝛽𝑥 + 𝛾 + 𝜖() − 𝛽𝑥 + 𝜖) ] = 𝛾

age medication

𝐴𝑇𝐸:= 𝔼' % 𝐶𝐴𝑇𝐸 𝑥 = 𝛾

Blood pressure

𝑌* 𝑥 = 𝛽𝑥 + 𝛾 ⋅ 𝑡 + 𝜖*
𝔼 𝜖* = 0

Covariate adjustment with linear models



• Assume that:

• For causal inference, need to estimate 𝛾 well, 
not 𝑌* 𝑥 - Identification, not prediction

• Major difference between ML and statistics

age medication

𝐴𝑇𝐸:= 𝔼' % 𝐶𝐴𝑇𝐸 𝑥 = 𝛾

Blood pressure

𝑌* 𝑥 = 𝛽𝑥 + 𝛾 ⋅ 𝑡 + 𝜖*
𝔼 𝜖* = 0

Covariate adjustment with linear models



What happens when there is 
misspecification?

• True data generating process, 𝑥 ∈ ℝ:

𝐴𝑇𝐸 = 𝔼 𝑌( − 𝑌) = 𝛾
• Hypothesized model:

𝑌* 𝑥 = 𝛽𝑥 + 𝛾 ⋅ 𝑡 + 𝛿 ⋅ 𝑥+

D𝑌* 𝑥 = E𝛽𝑥 + F𝛾 ⋅ 𝑡

F𝛾 = 𝛾 + 𝛿
𝔼 𝑥𝑡 𝔼 𝑥+ − 𝔼[𝑡+]𝔼[𝑥+𝑡]
𝔼 𝑥𝑡 + − 𝔼[𝑥+]𝔼[𝑡+]

Depending on 𝜹, can be made to be arbitrarily large or 
small!



Covariate adjustment with non-linear 
models

• Random forests and Bayesian trees 
Hill (2011), Athey & Imbens (2015), Wager & Athey (2015)

• Gaussian processes 
Hoyer et al. (2009), Zigler et al. (2012), Alaa & van der Schaar (2017)

• Neural networks
Beck et al. (2000), Johansson et al. (2016), Shalit et al. (2016), Lopez-
Paz et al. (2016)

Called nonparametric estimators, since they do not make assumptions 
about form of 𝔼 𝑌 𝑋, 𝑇 and, given enough data, could fit any function



Example: Gaussian processes
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Figures: Vincent Dorie & Jennifer Hill

Separate treated and 
control models

Joint treated and 
control model

𝑌# 𝑥

𝑌! 𝑥

𝑌# 𝑥

𝑌! 𝑥

𝑥𝑥

𝑦

Treated

Control



Example: Neural networks

	"
	#$

	#% 	&%

Covariates

Predicted potential outcomes

Group-conditional risk

Estimator for control group

Estimator for treated

	&$

(a) T-learner

	" 	Φ…

…

… 	%&

	%' 	(

	)

	*

Covariates Shared representation

Predicted potential outcomes

Empirical risk Outcome

InterventionNeural network layers

(b) TARNet (Shalit et al., 2017)

Figure 3: Estimator architectures for potential outcomes and conditional average treat-
ment e↵ects. Green boxes indicate inputs, white boxes outputs and loss terms, yellow
boxes shared representations and blue/red boxes estimators of potential outcomes. Solid
lines indicate transformation part of the prediction function and dashed lines indicate com-
putations part of the learning procedure.

6.2 Representation learning estimators

Objectives (19) and (20) may be used to learn or select a representation � which trades
o↵ treatment-group invariance and empirical risk. The two arguably most prominent ap-
proaches to representation learning in the literature are based on a) neural networks (Bengio
et al., 2013) or b) variable selection (Schneeweiss et al., 2009). As the latter does not satisfy
our assumption of invertibility, and may be viewed as a subset of the former, we restrict
our attention to parameterizations of � as neural networks. As this choice leaves a lot of
freedom in the design of estimators, we discuss alternatives from the literature below.

Described in Section 3, T-learner estimators fit potential outcomes entirely indepen-
dently. These may be viewed as operating in the representation space of the identity
transform, �(X) = X. While this does not allow for minimization of treatment group
variance, other than through re-weighting, T-learners serve as a natural baselines for other
architectures. A natural extension was proposed in the Treatment-Agnostic Representation
Network (TARNet) by Shalit et al. (2017). In TARNet, a T-learner architecture is appended
to a representation � shared between treatment groups (see Figure 3 for a comparison).
TARNet has the advantage of sharing samples between treatment groups in learning the
representation which may be useful when ⌧ is a simpler function of X than Y (0), Y (1).

6.3 Regularizing distributional distance

In Section 4, we bound the generalization error in CATE using integral probability metrics
(IPM), a family of distances between distributions p, q based on the density di↵erence p�q.
The idea of regularizing models to be invariant to changes in a variable, e.g., the treat-
ment indicator, is prevalent through-out machine learning (Ganin et al., 2016; Goodfellow
et al., 2014; Long et al., 2015). As a result, several families of distance metrics between
distributions have been used to impose such constraints. The most common of these are
f -divergences (e.g. the KL-divergence) (Nowozin et al., 2016), integral probability metrics
(e.g., the maximum-mean discrepancy) and adversarial discriminators (Ganin et al., 2016).

22



Example: Neural networks

Shalit, Johansson, Sontag. Estimating Individual Treatment Effect: Generalization 
Bounds and Algorithms. ICML, 2017
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InterventionNeural network layers



Necessary assumption for nonparametric 
estimation – common support

Y!, 𝑌": potential outcomes for control and treated
𝑥: unit covariates (features)
𝑇: treatment assignment

We assume:

𝑝 𝑇 = 𝑡 𝑋 = 𝑥 > 0 ∀𝑡, 𝑥



Example of how (nonparametric) 
covariate adjustment fails when there is 

no common support (overlap)

TreatedTreated

Control 𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌& 𝑥

𝑌' 𝑥



Matching
• Find each unit’s long-lost counterfactual 

identical twin, check up on his outcome



Matching
• Find each person’s long-lost counterfactual 

identical twin, check up on his outcome

Obama, had he gone to law school Obama, had he gone to business school



Matching
• Find each person’s long-lost counterfactual 

identical twin, check up on his outcome
• Used for estimating both ATE and CATE



Match to nearest neighbor from 
opposite group

Treated

Control Age

Charleson
comorbidity
index



Match to nearest neighbor from 
opposite group

Treated

Control Age

Charleson
comorbidity
index



1-NN Matching

• Let 𝑑 ⋅,⋅ be a metric between 𝑥’s

• For each 𝑖, define 𝑗 𝑖 = argmin
: ;.*. *!<*"

𝑑(𝑥: , 𝑥=)

𝑗 𝑖 is the nearest counterfactual neighbor of 𝑖
• 𝑡= = 1, unit 𝑖 is treated:

5𝐶𝐴𝑇𝐸 𝑥= = 𝑦= − 𝑦: =
• 𝑡= =0, unit 𝑖 is control:

5𝐶𝐴𝑇𝐸 𝑥= = 𝑦:(=) − 𝑦=



1-NN Matching

• Let 𝑑 ⋅,⋅ be a metric between 𝑥’s

• For each 𝑖, define 𝑗 𝑖 = argmin
: ;.*. *!<*"

𝑑(𝑥: , 𝑥=)

𝑗 𝑖 is the nearest counterfactual neighbor of 𝑖

• 5𝐶𝐴𝑇𝐸 𝑥= = (2𝑡= − 1)(𝑦=−𝑦: = )

• 5𝐴𝑇𝐸 = (
>
∑=?(> 5𝐶𝐴𝑇𝐸 𝑥=



Matching

• Interpretable, especially in small-sample regime
• Nonparametric
• Heavily reliant on the underlying metric
• Could be misled by features which don’t affect 

the outcome



Covariate adjustment and matching

• Matching is equivalent to covariate adjustment 
with two 1-nearest neighbor classifiers:
R𝑌( 𝑥 = 𝑦@@# % , R𝑌) 𝑥 = 𝑦@@$ %
where 𝑦@@% % is the nearest-neighbor of 𝑥
among units with treatment assignment

𝑡 = 0,1

• 1-NN matching is in general inconsistent, 
though only with small bias (Imbens 2004) 



Two common approaches for counterfactual 
inference

Covariate adjustment 
Propensity scores



Propensity scores

• Tool for estimating ATE
• Imagine that we had data from a randomized 

control trial (RCT). Then we could simply 
estimate the ATE using:

(
>#
∑= ;.*.A"?(𝑌= −

(
>$
∑= ;.*.A"?)𝑌=

• Basic idea: turn observational study into a 
pseudo-randomized trial by re-weighting 
samples



Inverse propensity score re-weighting

𝑥# = 𝑎𝑔𝑒

𝑥' =
Charlson
comorbidity 
index

Treated

Control

𝑝(𝑥|𝑡 = 0) ≠ 𝑝 𝑥 𝑡 = 1
control          treated



𝑝 𝑥 𝑡 = 0 ⋅ 𝑤)(𝑥) ≈ 𝑝 𝑥 𝑡 = 1 ⋅ 𝑤((𝑥)
reweighted control     reweighted treated

Inverse propensity score re-weighting

𝑥# = 𝑎𝑔𝑒

𝑥' =
Charlson
comorbidity 
index

Treated

Control



Propensity score
• Propensity score: 𝑝 𝑇 = 1 𝑥 ,

using machine learning tools, e.g. logistic 
regression

• Samples re-weighted by the inverse propensity 
score of the treatment they received



Propensity scores – algorithm
Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score
for sample 𝑥(, 𝑡(, 𝑦( , … , (𝑥>, 𝑡>, 𝑦>)

1. Use any ML method to estimate F𝑝 𝑇 = 𝑡 𝑥

2. ˆATE =
1

n

X

i s.t. ti=1

yi
p̂(ti = 1|xi)

� 1

n

X

i s.t. ti=0

yi
p̂(ti = 0|xi)



Propensity scores – algorithm
Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score
for sample 𝑥(, 𝑡(, 𝑦( , … , (𝑥>, 𝑡>, 𝑦>)

1. Randomized trial 𝑝(𝑇 = 𝑡|𝑥) = 0.5

2. ˆATE =
1

n

X

i s.t. ti=1

yi
p̂(ti = 1|xi)

� 1

n

X

i s.t. ti=0

yi
p̂(ti = 0|xi)



Propensity scores – algorithm
Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score
for sample 𝑥(, 𝑡(, 𝑦( , … , (𝑥>, 𝑡>, 𝑦>)

1. Randomized trial 𝑝(𝑇 = 𝑡|𝑥) = 0.5

2. ˆATE =
1

n

X

i s.t. ti=1

yi
0.5

� 1

n

X

i s.t. ti=0

yi
0.5

=

2

n

X

i s.t. ti=1

yi �
2

n

X

i s.t. ti=0

yi



Propensity scores – algorithm
Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score
for sample 𝑥(, 𝑡(, 𝑦( , … , (𝑥>, 𝑡>, 𝑦>)

1. Randomized trial 𝑝(𝑇 = 𝑡|𝑥) = 0.5

2. ˆATE =
1

n

X

i s.t. ti=1

yi
0.5

� 1

n

X

i s.t. ti=0

yi
0.5

=

2

n

X

i s.t. ti=1

yi �
2

n

X

i s.t. ti=0

yi



Propensity scores – algorithm
Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score
for sample 𝑥(, 𝑡(, 𝑦( , … , (𝑥>, 𝑡>, 𝑦>)

1. Randomized trial 𝑝 = 0.5

2. ˆATE =
1

n

X

i s.t. ti=1

yi
0.5

� 1

n

X

i s.t. ti=0

yi
0.5

=

2

n

X

i s.t. ti=1

yi �
2

n

X

i s.t. ti=0

yi

Sum over ~ 𝒏
𝟐

terms



Propensity scores - derivation

• How do we derive this estimator?

• Recall definition of average treatment effect:

• Naively, using observed data we can estimate

ˆATE =
1

n

X

i s.t. ti=1

yi
p̂(ti = 1|xi)

� 1

n

X

i s.t. ti=0

yi
p̂(ti = 0|xi)

ATE = Ex⇠p(x)[Y1(x)]� Ex⇠p(x)[Y0(x)]

Ex⇠p(x|T=1)[Y1(x)] Ex⇠p(x|T=0)[Y0(x)]&



• We want:

• We know that:

• Thus:

• We can approximate this empirically as:

p(x|T = 1) · p(T = 1)

p(T = 1|x) = p(x)

Ex⇠p(x)[Y1(x)]

Ex⇠p(x|T=1)


p(T = 1)

p(T = 1 | x)Y1(x)

�
= Ex⇠p(x)[Y1(x)]

1

n1

X

i s.t.ti=1


n1/n

p̂(ti = 1 | xi)
yi

�
=

1

n

X

i s.t.ti=1

yi
p̂(ti = 1 | xi)

Propensity scores -
derivation

(similarly for ti=0)



Problems with inverse propensity 
weighting (IPW)

• Need to estimate propensity score (problem in 
all propensity score methods)

• If there’s not much overlap, propensity scores 
become non-informative and easily mis-
calibrated

• Weighting by inverse can create large variance 
and large errors for small propensity scores
– Exacerbated when more than two treatments



Summary
• Two approaches to use machine learning for 

causal inference
– Predict outcome given features and treatment, then 

use resulting model to impute counterfactuals 
(covariate adjustment)

– Predict treatment using features (propensity score), 
then use to reweight outcome or stratify the data

• Consistency of estimates depend on:
– Causal graph being correct (i.e., no unobserved 

confounding)
– Identifiability of causal effect (i.e., overlap)
– Nonparametric regression is used (or correctly 

specified model)
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