Machine Learning for Healthcare 6.871, HST.956

Lecture 1: What makes healthcare unique?

David Sontag

The Problem

- Cost of health care expenditures in the US are over \$3 trillion, and rising
- Despite having some of the best clinicians in the world, chronic conditions are
 - Often diagnosed late
 - Often inappropriately managed
- Medical errors are pervasive

Outline for today's class

- **1. Brief history of AI and ML in healthcare**
- 2. Interlude: Student & faculty introductions
- 3. Why now? What has changed?
- 4. Examples of how ML will transform healthcare
- 5. What is *unique* about ML in healthcare?
- 6. Course logistics & syllabus

1970's: MYCIN expert system

- 1970's (Stanford): MYCIN expert system for identifying bacteria causing severe infections
- Proposed a good therapy in ~69% of cases. Better than infectious disease experts

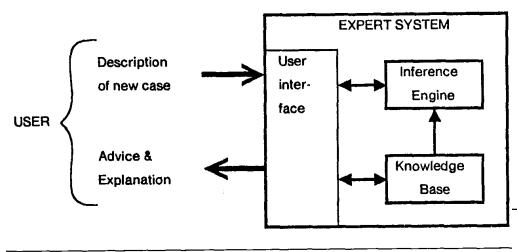


FIGURE 1-1 Major parts of an expert system. Arrows indicate information flow.

Dialogue interface

I am ready

** THIS IS A 26 YEAR OLD MALE PATIENT

My understanding is: The age of the patient is 26 The sex of the patient is male

** FIVE DAYS AGO, HE HAD RESPIRATORY-TRACT SYMPTOMS

What is his name?

** JO

My understanding is: The name of the patient is Jo Respiratory-tract is one of the symptoms that the patient had

** A COUPLE OF DAYS BEFORE THE ADMISSION, HE HAD A MALAISE

Please give me the date of admission

** MARCH 12, 1979

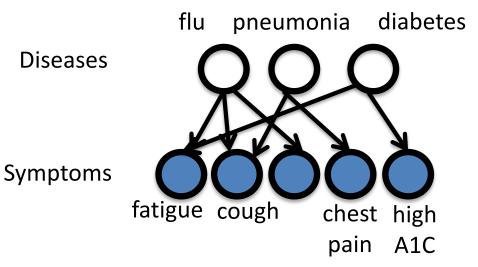
My understanding is:

The patient was admitted at the hospital 3 days ago Malaise is one of the symptoms that the patient had 5 days ago

FIGURE 33-1 Short sample dialogue. The physician's inputs appear in capital letters after the double asterisks.

1980's: INTERNIST-1/QMR model

- 1980's (Univ. of Pittsburgh): INTERNIST-1/Quick Medical Reference
- Diagnosis for internal medicine



Probabilistic model relating:

570 binary disease variables4,075 binary symptom variables45,470 directed edges

Elicited from doctors: **15 person-years of work**

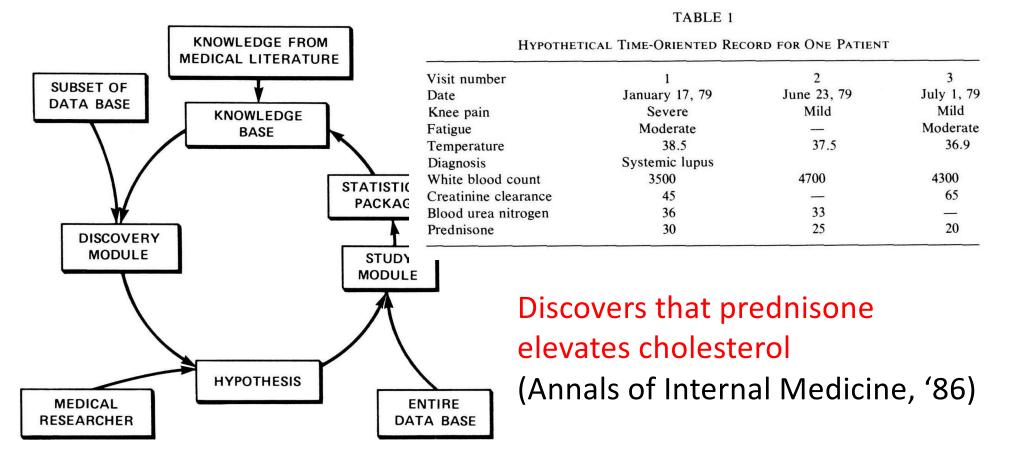
Led to advances in ML & AI (Bayesian networks, approximate inference)

Problems: 1. Clinicians entered symptoms *manually*2. Difficult to maintain, difficult to generalize

[Miller et al., '86, Shwe et al., '91]

1980's: automating medical discovery

RX PROJECT: AUTOMATED KNOWLEDGE ACQUISITION



[Robert Blum, "Discovery, Confirmation and Incorporation of Causal Relationships from a Large Time-Oriented Clinical Data Base: The RX Project". Dept. of Computer Science, Stanford. 1981]

1990's: neural networks in medicine

- Neural networks with clinical data took off in 1990, with 88 new studies that year
- Small number of features (inputs)
- Data often collected by chart review

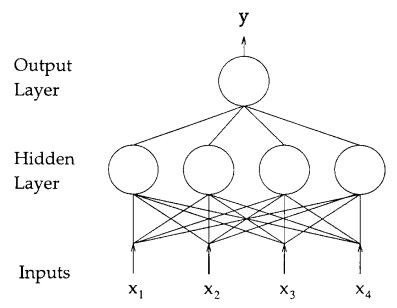


FIGURE 2. A multilayer perceptron. This is a two-layer perceptron with four inputs, four hidden units, and one output unit.

- **Problems:** 1. Did not fit well into clinical workflow
 - 2. Hard to get enough training data
 - 3. Poor generalization to new places

[Penny & Frost, Neural Networks in Clinical Medicine. Med Decis Making, 1996]

	No. of Ex	amples				Accuracy§	
Subject	Training	Test	P†	Network	D‡	Neural	Other
Breast cancer ⁴	57	20	60	9-15-2	0.6	80	75
Vasculitis ²	404	403	73	8-5-1	8.0	94	
Myocardial infarction ⁶	351	331	89	20-10 -10-1	1.1	97	84
Myocardial infarction ⁸	356	350	87	20-10-10-1	1.1	97	94
Low back pain ¹¹	100	100	25	50-48-2	0.2	90	90
Cancer outcome ¹³	5,169	3,102	_	54-40-1	1.4	0.779	0.776
Psychiatric length of stay ¹⁷	9 57	106	73	48-400-4	0.2	74	76
Intensive care outcome ²³	284	138	91	27-18-1	0.5	0.82	0.82
Skin tumor ²¹	150	100	80	18		80	90
Evoked potentials ³⁵	100	67	52	14-4-3	3.8	77	77
Head injury47	500	500	50	6-3-3	20	66	77
Psychiatric outcome54	289	9 2	60	41-10-1	0.7	79	-magaza-
Tumor classification55	53	6	38	8-9-3	1.4	99	88
Dementia ⁵⁷	75	18	19	80-10-7-7	0.6	61	
Pulmonary embolism59	607	606	69	50-4-1	2.9	0.82	0.83
Heart disease62	460	230	54	35-16-8-2	3	83	84
Thyroid function ⁶²	3,600	1,800	93	21-16-8-3	22	98	93
Breast cancer ⁶²	350	175	66	9-4-4-2	10	97	96
Diabetes ⁶²	384	192	65	8-4-4-2	12	77	75
Mycardial infarction63	2,856	1,429	56	291-1	9.8	85	
Hepatitis ⁶⁵	39	42	38	4-4-3	3.3	74	79
Psychiatric admission ⁷⁶	319	339	85	53-1-1	6.0	91	
Cardiac length of stay ⁸³	713	696	73	15-12-1	3.5	0.70	
Anti-cancer agents ⁸⁹	127	141	25	60-7-6	1.5	91	86
Ovarian cancer ⁹¹	75	98	—	6-6-2	2.6	84	81
Median value	350	175	71	20	2.8		

Table 1 • 25 Neural Network Studies in Medical Decision Making*

*For reference citations, see the reference list

 $\dagger P$ = prior probability of most prevalent category.

‡D = ratio of training examples to weights per output.

§A single integer in the accuracy column denotes percentage overall classification rate and a single real number between 0 and 1 indicates the AUROCC value. Neural = accuracy of neural net, Other = accuracy of best other method.

Outline for today's class

- 1. Brief history of AI and ML in healthcare
- 2. Interlude: Student & faculty introductions
- 3. Why now? What has changed?
- 4. Examples of how ML will transform healthcare
- 5. What is *unique* about ML in healthcare?
- 6. Course logistics & syllabus

Course staff

- David Sontag (instructor)
 - Associate Professor in EECS (course 6) and part of CSAIL and IMES
 - PhD '10, then 5 years as professor at NYU
 - Leads clinical machine learning research group
- Madhur Nayan (instructor)
 - Surgeon at MGH, Fellow in Urologic
 Oncology at Harvard
 - MD '12 McGill, PhD '17 Univ. of Toronto

Course staff – teaching assistants

- Intae Moon
 - PhD student in EECS advised by Alexander Gusev (Dana-Farber)
 - Research on diagnosing cancers of unknown primary origin using genomics, survival analysis

- Zeshan Hussain
 - PhD student in EECS advised by David Sontag
 - Research on disease progression modeling, causal inference, deep generative models

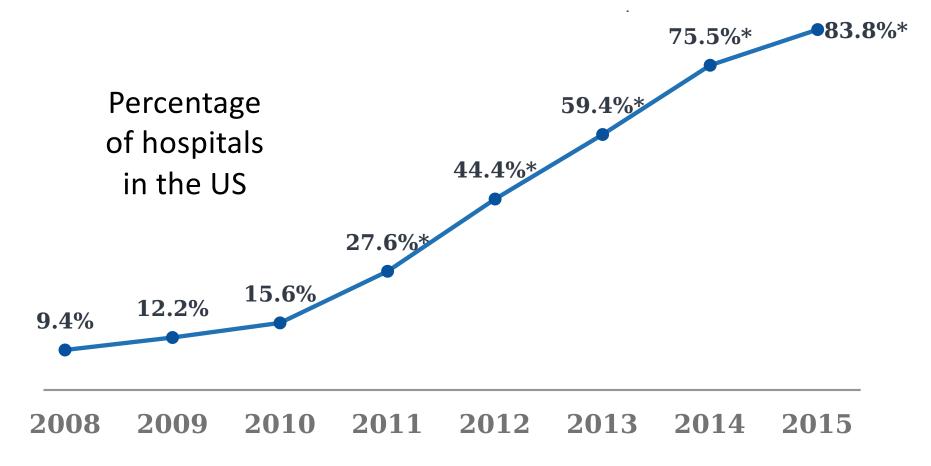
Student intros

 We have a diverse set of students from MIT, Harvard, and local hospitals – let's start to get to know each other!

Outline for today's class

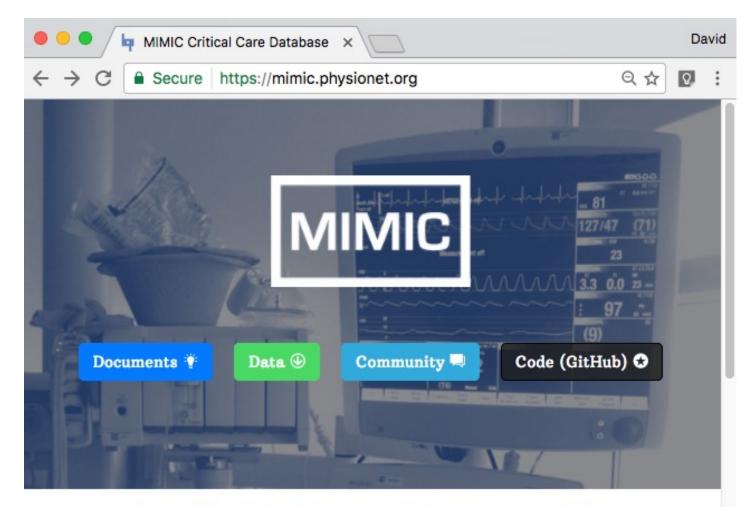
- 1. Brief history of AI and ML in healthcare
- 2. Interlude: Student & faculty introductions
- 3. Why now? What has changed?
- 4. Examples of how ML will transform healthcare
- 5. What is *unique* about ML in healthcare?
- 6. Course logistics & syllabus

The Opportunity: Adoption of Electronic Health Records (EHR) has increased 9x in US since 2008



[Henry et al., ONC Data Brief, May 2016]

Large datasets



If you use MIMIC data or code in your work, please cite the following publication:

MIMIC-III, a freely accessible critical care database. Johnson AEW, Pollard TJ, Shen L, Lehman L, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, and Mark RG. Scientific Data (2016). DOI: 10.1038/sdata.2016.35. Available from: http://www.nature.com/articles/sdata201635 Laboratory for Computational Physiology

De-identified health data from ~60K critical care patients

Demographics, vital signs, laboratory tests, medications, notes, ...

Diversity of digital health data

 Diagnosis codes: ICD-9 and ICD-10 (International Classification of Diseases)

ICD-9 codes 290–319: mental disorders ICD-9 codes 320–359: diseases of the nervous system ICD-9 codes 360–389: diseases of the sense organs ICD-9 codes 390–459: diseases of the circulatory system ICD-9 codes 460–519: diseases of the respiratory system ICD-9 codes 520–579: diseases of the digestive system ICD-9 codes 580–629: diseases of the genitourinary system ICD-9 codes 630–679: complications of pregnancy, childbirth,

[https://en.wikipedia.org/wiki/Lis t_of_ICD-9_codes] [https://blog.curemd.com/the-most-bizarreicd-10-codes-infographic/]

Bitten by a turtle

W5921XS

Struck by macaw

Bitten by sea lion W5611XD

THE MOST BIZARRE

ICD-10 CODES

Knowing what you are up against

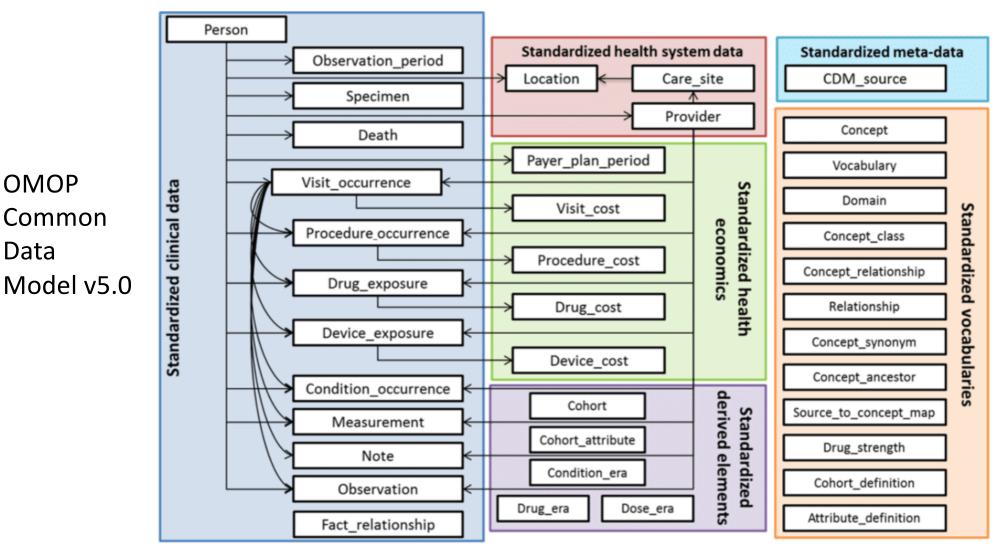
ANIMAL CATEGORY

- Diagnosis codes: ICD-9 and ICD-10 (International **Classification of Diseases**)
- Laboratory tests: LOINC codes
- Pharmacy: National Drug Codes (NDCs)
- Unified Medical Language System (UMLS): millions of medical concepts

	Regenstrief glucose
ĸ	1 /5 H
LOINC	LongName
<u>27353-2</u>	Glucose mean value [Mass/volume] in Blood Estimated from glycated hemoglobin
2352-3	Glucose in CSF/Glucose plas
<u>49689-3</u>	Glucose tolerance [Interpretation] in Serum or Plasma Narrativepost 100 g glucose PO
<u>49688-5</u>	1 Vial + 50 mL (100 certs-3475+11)
<u>72650-5</u>	ation

[http://oplinc.com/newsletter/index May08.htm]

Foundation Base Do		Base Documentation, X	cumentation, XML, JSON, REST API + Search, Data Types, Extensions					
vel 2 Supporting Imple	mentation, an	d binding to external sp	ecifications		<u></u> (
Implementer Support	Secur & Priv	Con	formance	Terminolo	gy Cinked Data			
Downloads, Common Use Cases, Testing Consent Provenance AuditEvent		Capability	StructureDefinition, CapabilityStatement, ImplementationGuide, Profiling		RDF			
Administration		n the healthcare system Patient, Practitioner, De		tion, Location, Heal	hcare Service			
Clinical	nd Data Excha	Diagnostics		lications	Workflow			
CarePlan, DetectedIssue, Specimen,		rvation, Report, men, ingStudy,Genomics,etc	Order, Dispense, Administration, Statement, Immunization, etc.		Task, Appointment, Schedule, Referral, PlanDefinition, etc.			
Financial								
~	ge, Claim, Eliç	gibilityRequest, Explana	tionOfBenefit, e	etc.				
4				etc.				



Breakthroughs in machine learning

AlphaGo (reinforcement learning)

of selected subtrees

ESP Cat Subtree

Imagenet Cat Subtree

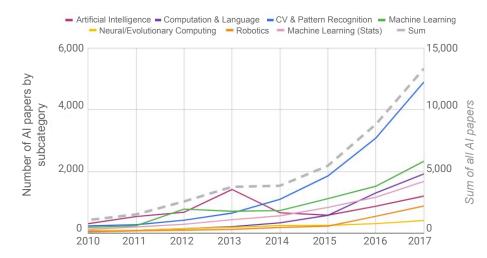
Generating realistic data

(GANs, VAEs)

What's driving these advances?

- Democratization of machine learning
 - Large datasets
 - Cheap fast processing (GPUs + TPUs)
 - High-quality open-source software (scikit-learn, PyTorch, TensorFlow)
- More and more researchers

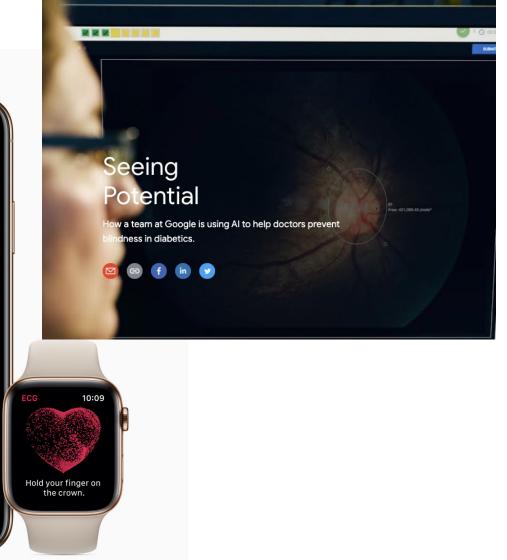
Number of AI papers on arXiv by subcategory (2010–2017) Source: arXiv



Tech industry interest in health care

 \equiv Google

10:09 K Back ECG Detail Sinus Rhythm (i) ♥ 88 BPM Average This ECG does not show signs of atrial fibrillation. Export a PDF for Your Doctor If you believe you're having a heart attack or a medical emergency, call emergency services. SAMPLE DETAILS Start Time Sep 12, 2018 at 10:08:31 AM Sep 12, 2018 at 10:09:01 AM ECG * Ś Health Data Medical ID Sources



Amazon Comprehend 🗸

aws

Amazon Comprehend Medical

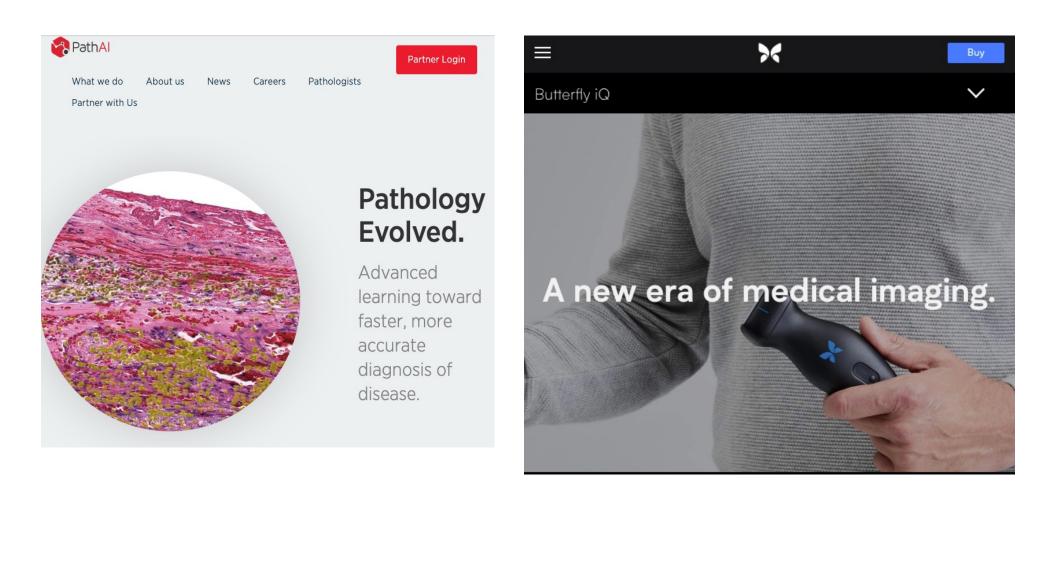
Extract information from unstructured medical text accurately and quickly No machine learning experience required

> Get started with Amazon Comprehend Medical

TECH TALK

AI-Powered Health Data Masking Learn how to use a pre-built solution from AWS to identify and mask health data in images or text.

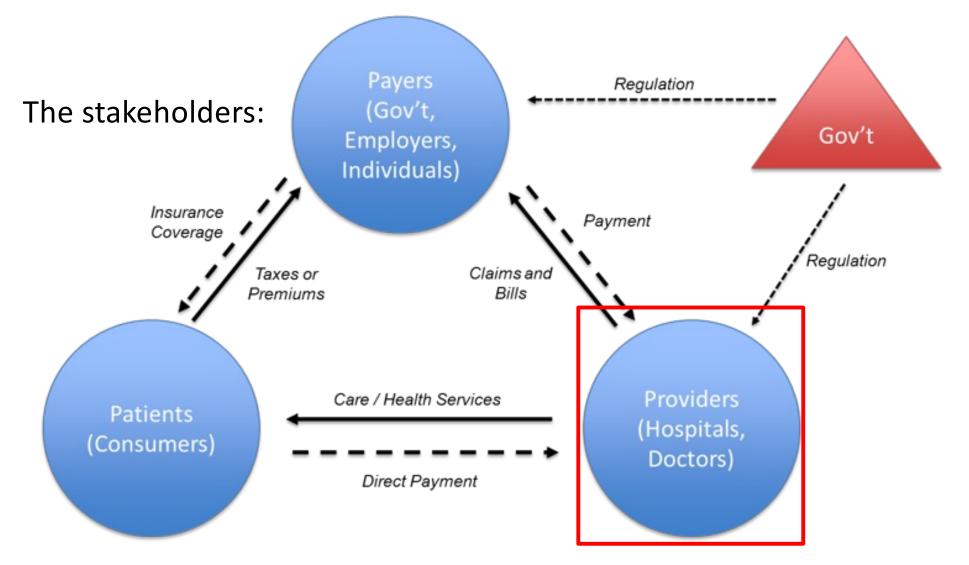
Tech industry interest in health care



Outline for today's class

- 1. Brief history of AI and ML in healthcare
- 2. Interlude: Student & faculty introductions
- 3. Why now? What has changed?
- 4. Examples of how ML will transform healthcare
- 5. What is *unique* about ML in healthcare?
- 6. Course logistics & syllabus

ML will transform every aspect of healthcare



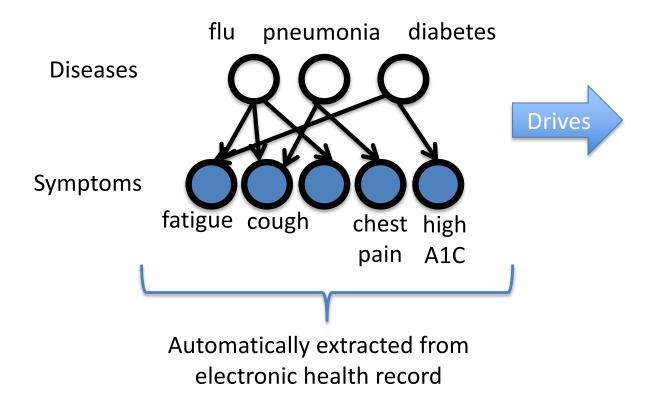
Source for figure:

http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry

Emergency Department:

- Limited resources
- Time sensitive
- Critical decisions

Behind-the-scenes reasoning about the patient's conditions (current and future)

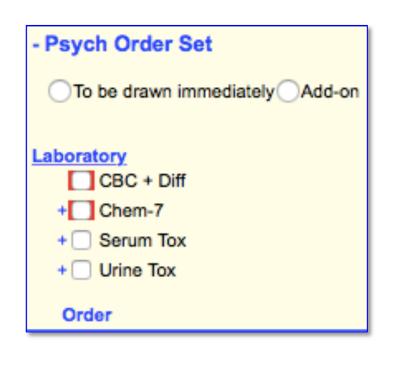


- Better triage
- Faster diagnosis
- Early detection of adverse events
- Prevent medical errors

Propagating best practices

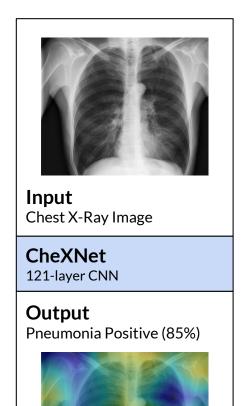
The ED Dashboard decision support algorithms have determined that this patient may be eligible for the Atrius Cellulitis pathway. Please choose from the following options:
Enroll in pathway
Decline
You can include a comment for the reviewers: Mandatory if Declining
Below are links to the pathway and/or other supporting documents: Atrius Cellulitis Pathway

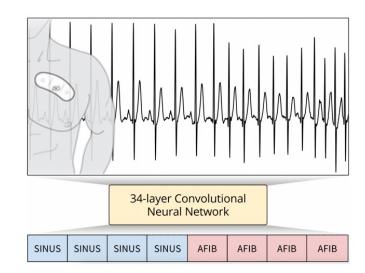
Anticipating the clinicians' needs



- Chest Pain Order Set
 To be drawn immediately Add-on
Initial
Place IV (saline lock);
flush per protocol
Continuous Cardiac monitoring
Continuous Pulse oximetry
EKG (pick 1)
Indication: Chest Pain
Indication: Dyspnea
Laboratory
CBC + Diff
+ Chem-7
Troponin
Aspirin (pick 1)
Aspirin 324 mg PO chewed
Aspirin 243 mg PO chewed
Aspirin taken before arrival
Imaging XR Chest PA & Lateral

Reducing the need for specialist consults

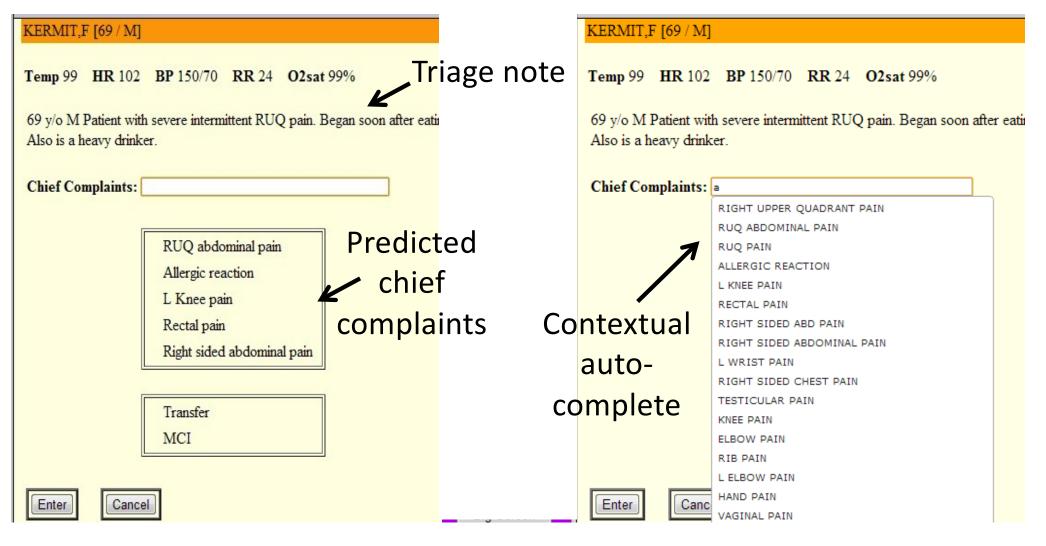




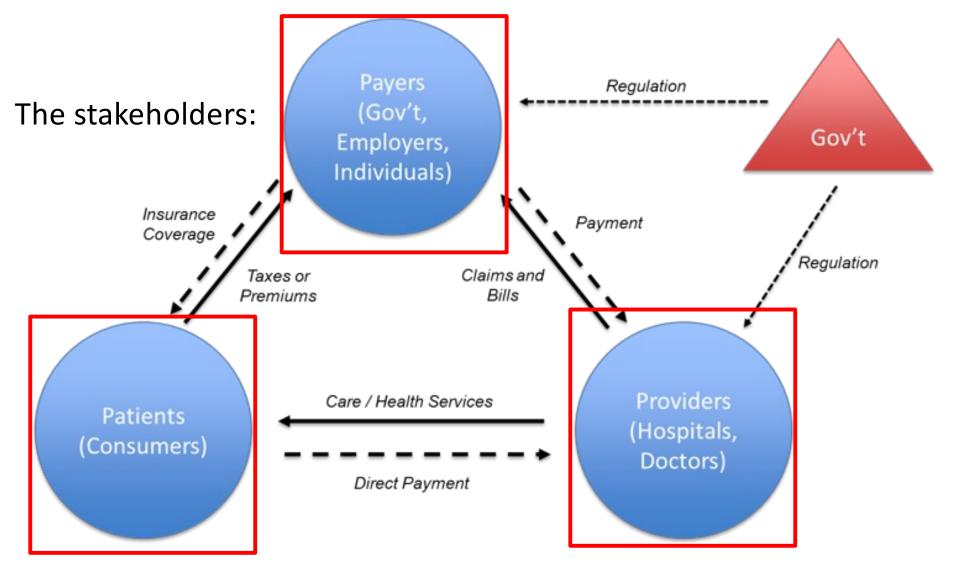
Arrhythmia?

Figure sources: Rajpurkar et al., arXiv:1711.05225 '17 Rajpurkar et al., arXiv:1707.01836, '17

Automated documentation and billing



ML will transform every aspect of healthcare



Source for figure:

http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry

What is the future of how we treat chronic disease?

Predicting a patient's future disease progression

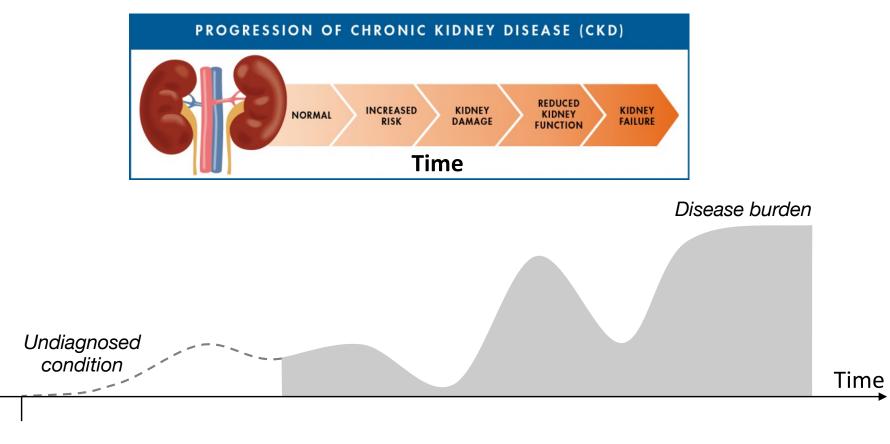


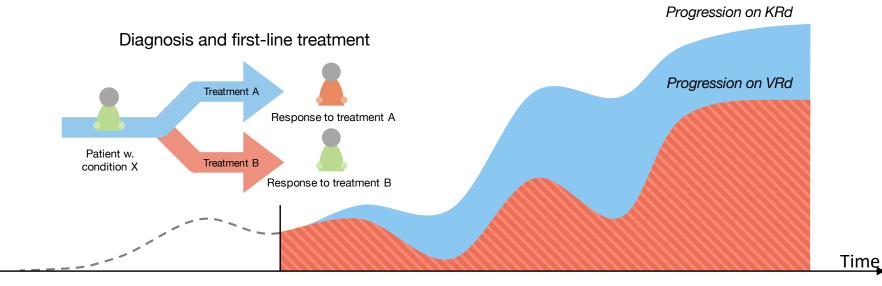
Figure credit: https://www.cdc.gov/kidneydisease/prevention-risk.html

What is the future of how we treat chronic disease?

- Predicting a patient's future disease progression
- Precision medicine

Choosing first line therapy in multiple myeloma

A) KRd: carfilzomib-lenalidomide-dexamethasone, B) VRd: bortezomib-lenalidomide-dexamethasone



What is the future of how we treat chronic disease?

• Early diagnosis, e.g. of diabetes, Alzheimer's, cancer

Figure sources: NIH,

https://www.roche.com/research_and_development/what_we_are_working_on/oncology /liquid-biopsy.htm

What is the future of how we treat chronic disease?

• Continuous monitoring and coaching, e.g. for the elderly, diabetes, psychiatric disease

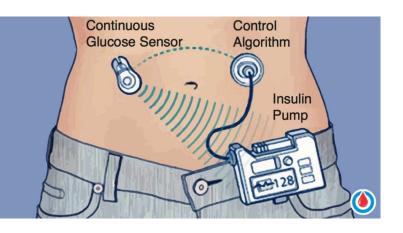


Figure source (left): http://www.emeraldforhome.com/

What is the future of how we treat chronic disease?

 Discovery of new disease subtypes; design of new drugs; better targeted clinical trials

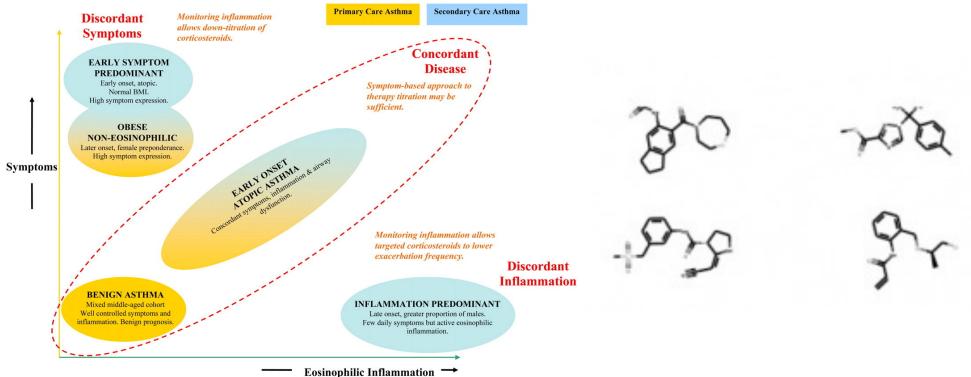


Figure sources: Haldar et al., Am J Respir Crit Care Med, 2008 http://news.mit.edu/2018/automating-molecule-design-speed-drug-development-0706

Outline for today's class

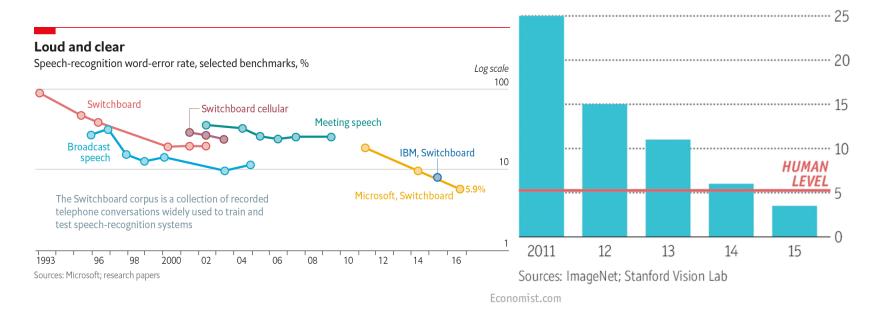
- 1. Brief history of AI and ML in healthcare
- 2. Interlude: Student & faculty introductions
- 3. Why now? What has changed?
- 4. Examples of how ML will transform healthcare
- 5. What is *unique* about ML in healthcare?
- 6. Course logistics & syllabus

- Life or death decisions
 - Need robust algorithms
 - Checks and balances built into ML deployment
 - (Also arises in other applications of AI such as autonomous driving)
 - Need fair and accountable algorithms
- Many questions are about unsupervised learning
 - Discovering disease subtypes, or answering question such as "characterize the types of people that are highly likely to be readmitted to the hospital"?
- Many of the questions we want to answer are *causal*
 - Naïve use of supervised machine learning is insufficient

- Very little labeled data
 - Recent breakthroughs in Al depended on *lots* of labeled data!

Ever cleverer

Error rates on ImageNet Visual Recognition Challenge, %



- Very little labeled data
 - Motivates semi-supervised learning algorithms
- Sometimes small numbers of samples (e.g., a rare disease)
 - Learn as much as possible from other data (e.g. healthy patients)
 - Model the problem carefully
- Lots of missing data, varying time intervals, censored labels

- Difficulty of de-identifying data
 - Need for data sharing agreements and sensitivity
- Difficulty of deploying ML
 - Commercial electronic health record software is difficult to modify
 - Data is often in silos; everyone recognizes need for interoperability, but slow progress
 - Careful testing and iteration is needed

Goals for the semester

- Intuition for working with healthcare data
- How to set up as machine learning problems
- Understand which learning algorithms are likely to be useful and when
- Appreciate subtleties in safely & robustly applying ML in healthcare
- Set the research agenda for the next decade

Outline for today's class

- 1. Brief history of AI and ML in healthcare
- 2. Interlude: Student & faculty introductions
- 3. Why now? What has changed?
- 4. Examples of how ML will transform healthcare
- 5. What is *unique* about ML in healthcare?
- 6. Course logistics & syllabus

Prerequisites

- Previous undergraduate-level ML (e.g. 6.036):
 - Machine learning methodology (e.g. generalization, cross-validation)
 - Supervised machine learning techniques (e.g. linear and logistic regression, neural networks)
 - Loss functions, regularization, and optimization (e.g. stochastic gradient descent)
 - Statistical modeling (e.g. Gaussian mixture models)
- Python

Logistics

- Course website: <u>https://mlhcmit.github.io/</u>
- All announcements made via Canvas
- Use Piazza for Q&A with staff and each other
- Recitation (required): Fridays 3-4pm in 4-270 (starts this week)
- Office hours TBD

Grading

- 40% course project
- 35% homework (5 problem sets; both theory & practice)
- 20% final exam (date to be scheduled by registrar)
- 5% participation note: class attendance is required*

* Exceptions will be made for quarantine/isolation.

This week's assignments/readings

- PSO (due Weds 2/2, 11:59pm): human subjects training & MIMIC data use agreement
- Project rankings (due Fri 2/4, 1pm)
- Reading response (due Fri 2/4, 1pm)

Al in Health and Medicine – required reading Pranav Rajpurkar, Emma Chen, Oishi Banerjee & Eric J. Topol *Nature Medicine*, 2022

Machine Learning in Medicine – optional reading Alvin Rajkomar, Jeffrey Dean, Isaac Kohane New England Journal of Medicine, 2019

Future assignments (dates approximate)

- PS1: EMRs, physiological data, risk modeling
 - Released 2/7, Due 2/16
- PS2: Clinical NLP
 Released 2/16, Due 2/25
 Mostly
 programming
- PS3: Imaging, interpretability
 Released 2/25, Due 3/9
- Project checkpoint 1, 3/2
- PS4: Causal inference
 Released 3/9, Due 3/18
- Project checkpoint 2, 4/6
- PS5: Dataset shift, learning with imperfect data
 - Released 4/6, due 4/20
- Project reports due, 5/4

Mostly math / ML / theory

Course project

- Teams of 3-5 students
- Each project will have one or more clinicians involved as mentors and/or students
- Project ranking form sent out later today
- Project poster presentations May 5, 9:30am-12pm in 34-401 (no recitation 5/6)