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Lecture 1: What makes healthcare unique?

David Sontag



The Problem

• Cost of health care expenditures in the US are 
over $3 trillion, and rising

• Despite having some of the best clinicians in 
the world, chronic conditions are
– Often diagnosed late
– Often inappropriately managed

• Medical errors are pervasive



Outline for today’s class

1. Brief history of AI and ML in healthcare
2. Interlude: Student & faculty introductions
3. Why now? What has changed?
4. Examples of how ML will transform 

healthcare
5. What is unique about ML in healthcare?
6. Course logistics & syllabus



1970’s: MYCIN expert system

• 1970’s (Stanford): MYCIN expert 
system for identifying bacteria 
causing severe infections

• Proposed a good therapy in 
~69% of cases. Better than 
infectious disease experts 4 The Context of the MYCIN Experiments
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FIGURE 1-1 Major parts of an expert system. Arrows indicate
information flow.

to help build a knowledge base, to explain a line of reasoning, and so forth.
The knowledge base is the program’s store of facts and associations it

"knows" about a subject area such as medicine. A critical design decision
is how such knowledge is to be represented within the program. There are
many choices, in general. For MYCIN, we chose to represent knowledge
mostly as conditional statements, or rules, of the following form:

IF: There is evidence that A and B are true,

THEN: Conclude there is evidence that C is true.

This form is often abbreviated to one of the following:

If A and B, then C

A& B--*C

We refer to the antecedent of a rule as the premise or left-hand side (LHS)
and to the consequent as the action or right-hand side (RHS).

The inference mechanism can take many forms. We often speak of
the control structure or control of inference to reflect the [’act that there
are different controlling strategies for the system. For example, a set of
rules may be chained together, as in this example:

If A, then B (Rule 1)

If B, then C (Rule 2)

A (Data)

.’.C (Conclusion)
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I am ready
** THIS IS A 26 YEAR OLD MALE PATIENT
My understanding is:
The age of the patient is 26
The sex of the patient is male
** FIVE DAYS AGO, HE HAD RESPIRATORY-TRACT SYMPTOMS
What is his name?
** JO
My understanding is:
The name of the patient is Jo
Respiratory-tract is one of the symptoms that the patient had
** A COUPLE OF DAYS BEFORE THE ADMISSION, HE HAD A MALAISE
Please give me the date of admission
** MARCH 12, 1979
My understanding is:
The patient was admitted at the hospital 3 days ago
Malaise is one of the symptoms that the patient had 5 days ago

FIGURE 33-1 Short sample dialogue. The physician’s inputs
appear in capital letters after the double asterisks.

some of the frames might rule out others, thus enabling the space of
possible inferences to be pruned. This isstie has also been raised by Char-
niak (1978). Embodying world knowledge in frames (Minsky, 1975) 
scripts (Abelson, 1973; Schank and Abelson, 1975) led to the development
of" programs that achieved a reasonably deep level of understanding, for
example, GUS (Bobrow et al., 1977), NUDGE (Goldstein and Roberts,
1977), FRUMP (DeJong, 1977) and SAM (Cullingford, 1977).

BAOBAB and the other programs mentioned so far have a common
feature: they do not interpret sentences in isolation. Rather, they interpret
in the context of an ongoing discourse and, hence, use discourse structure.
BAOBAB also explores issues of (a) what constitutes a model for structured
texts and (b) how and when topic shifts occur. However, BAOBAB is in-
terested neither in inferring implicit facts that might have occurred tem-
porally between facts explicitly described in a text nor in explaining inten-
tions of characters in stories (main emphases of works using scripts or
plans). Our program focuses instead on coherence of texts, which is mainly
a task of detecting anomalies, asking the user to clarify vague pieces of
information or disappointed expectations, and suggesting omissions. The
domain of application is patient medical summaries, a kind of text for
which language-processing research has mainly consisted of filling in for-
matted grids without demanding any interactive behavior (Sager, 1978).
BAOBAB’s objectives are to understand a summary typed in "natural med-

Dialogue interface



1980’s: INTERNIST-1/QMR model

• 1980’s (Univ. of Pittsburgh): 
INTERNIST-1/Quick Medical 
Reference

• Diagnosis for internal medicine

Diseases

Symptoms

flu diabetespneumonia

fatigue chest
pain

cough high
A1C

Probabilistic model relating:

570 binary disease variables
4,075 binary symptom variables 
45,470 directed edges

Elicited from doctors:
15 person-years of work

Led to advances in ML & AI 
(Bayesian networks, approximate 
inference)

[Miller et al., ‘86, Shwe et al., ‘91]

Problems: 1. Clinicians entered symptoms manually
2. Difficult to maintain, difficult to generalize



1980’s: automating medical discovery

Discovers that prednisone 
elevates cholesterol
(Annals of Internal Medicine, ‘86)

[Robert Blum, “Discovery, Confirmation and Incorporation of Causal Relationships 
from a Large Time-Oriented Clinical Data Base: The RX Project”. Dept. of Computer 
Science, Stanford. 1981]



1990’s: neural networks in medicine

• Neural networks with 
clinical data took off in 
1990, with 88 new studies 
that year

• Small number of features 
(inputs)

• Data often collected by 
chart review
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where w,o is a bias weight. The ith neuron responds
to this activity by sending a signal

This type of neuron, called a perceptron, is illus-
trated in figure 1. The standard choice for the func-
tion F is the nonlinear logistic or sigmoid function

which restricts the output to be between 0 and 1. If
the incoming weighted activity is larger than the
(negative) bias weight, the activation is positive. Pos-
itive activations cause node outputs that tendj to 1.

Negative activations cause outputs that tend to 0.

Thus, the bias weight acts as a threshold above
which the node is active. For small activation levels,
the sigmoidal function is approximately linear.

Perceptrons are the basic processing element in
most neural network models. A feed-forward neural

network, called the multilayer perceptron (MLP), is
illustrated in figure 2. The network consists of sen-
sory units that make up the input layer, one or more
hidden layers of processing units (perceptrons), and
one output layer of processing units (perceptrons).
Every unit is connected to every unit in the layer
below. The input signal propagates through the net-
work a layer at a time. Because MLPs are trained
with an algorithm called error back-propagation,
they are also known as &dquo;backprop&dquo; networks.
There are many other types of networks, varying

in node models and patterns of connectivity,34 3’,‘~’4
but the MLP is the network used in nearly all med-

ical applications. Our discussion is therefore re-

stricted to MLPs.

Overall, the MLP performs a functional mapping
from the input space to the output space. The input
and output spaces are multidimensional, with one
dimension per input and output variable. The

input-output mapping is determined by the struc-
ture of the network and the values of its weights.
Changing the structure or the weights changes the
function implemented.
An MLP with a single hidden layer having H hid-

den units and a single output, y, implements map-
pings of the form

FIGURE 2. A multilayer perceptron. This is a two-layer percep-
tron with four inputs, four hidden units, and one output unit.

[Penny & Frost, Neural Networks in Clinical Medicine. Med Decis Making, 1996]

Problems: 1. Did not fit well into clinical workflow
2. Hard to get enough training data
3. Poor generalization to new places
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Table 1 9 25 Neural Network Studies in Medical Decision Making*

*For reference citations, see the reference list
tP = pnor probability of most prevalent category.
$D = ratio of tramng examples to weights per output
§A single integer in the accuracy column denotes percentage overall classification rate and a single real number between 0 and 1 indicates the

AUROCC value Neural = accuracy of neural net, Other = accuracy of best other method

differential identification of fatty liver and two

types of hepatitis on the basis of laboratory tests. 65
CART required that the ratio of two inputs be entered
explicitly as a third input. Without this extra in-
put, CART would not classify as accurately as a neural
net.

Knowledge-based expert systems have been

widely used in the medical domain. The difficulty in
eliciting rules from experts and the inconsistency
and brittleness of resulting systems have been their
main drawbacks. Neural networks offer a more di-
rect approach but have the disadvantage that their
workings are not readily interpreted.

Curve-fitting methods such as generalized spline
fitting are similar to regression methods. A differ-
ence is that the data may be approximated by many
local functions, which are then combined to form a
single global nonlinear function.

Fuzzy-logic systems implement general nonlinear
functions, which are initialized by heuristic, expert
knowledge. They are based on readily understood
but vague linguistic rules, which are given precise
meaning via algebraic operators called &dquo;member-

ship functions.&dquo;
Curve-fittings’ and fuzzy-logic methods3° are sim-

ilar to a type of neural network called a &dquo;radial basis
function network.&dquo; This is a two-layer network with

Gaussian activation-output functions in the hidden
layer and linear functions in the output layer.

Considerable research effort is being devoted to
systems involving combinations of the above-men-
tioned methods and neural networks. A recent se-
lection of studies involving such &dquo;hybrid&dquo; systems
for medical reasoning is given by Cohen and Hud-
son. 15
Table 1 shows how accurate neural nets are in

comparison with other methods. Michie et aI.51
compare machine learning, neural nets, and statis-
tical classifiers on a variety of data sets, including
classifications of heart disease, head injury, and di-
abetes.

Conclusion

Certain issues must be addressed for neural net-
works to truly perform well in medical applications.
These include choosing input and output represen-
tations and performance measures that are suitable
for the low-prevalence categories and missing data
items often found in medical data sets. If the data
set is small, then the statistical techniques of folded
cross validation and bootstrapping allow a more ac-
curate assessment of the network’s performance.



Outline for today’s class

1. Brief history of AI and ML in healthcare
2. Interlude: Student & faculty introductions
3. Why now? What has changed?
4. Examples of how ML will transform 

healthcare
5. What is unique about ML in healthcare?
6. Course logistics & syllabus



Course staff

• David Sontag (instructor)
– Associate Professor in EECS (course 6) and 

part of CSAIL and IMES
– PhD ‘10, then 5 years as professor at NYU
– Leads clinical machine learning research 

group

• Madhur Nayan (instructor)
– Surgeon at MGH, Fellow in Urologic 

Oncology at Harvard
–MD ‘12 McGill, PhD ‘17 Univ. of Toronto



Course staff – teaching assistants

• Intae Moon
– PhD student in EECS advised by Alexander 

Gusev (Dana-Farber)
– Research on diagnosing cancers of unknown 

primary origin using genomics, survival 
analysis

• Zeshan Hussain
– PhD student in EECS advised by David Sontag
– Research on disease progression modeling,  

causal inference, deep generative models



Student intros

• We have a diverse set of students from MIT, 
Harvard, and local hospitals – let’s start to get 
to know each other!
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The Opportunity:
Adoption of Electronic Health Records 

(EHR) has increased 9x in US since 2008

[Henry et al., ONC Data Brief, May 2016]



Large datasets

Laboratory for 
Computational 
Physiology

De-identified 
health data from 
~60K critical care 
patients

Demographics, 
vital signs, 
laboratory tests, 
medications, 
notes, …



Diversity of digital health data

genomics

imaging

phone

lab tests

vital signs

proteomics 

devices

social media



Standardization

• Diagnosis codes: ICD-9 and 
ICD-10 (International 
Classification of Diseases)

[https://blog.curemd.com/the-most-bizarre-
icd-10-codes-infographic/]

[https://en.wikipedia.org/wiki/Lis
t_of_ICD-9_codes]

…
…

…



Standardization

• Diagnosis codes: ICD-9 and 
ICD-10 (International 
Classification of Diseases)

• Laboratory tests: LOINC 
codes

• Pharmacy: National Drug 
Codes (NDCs)

• Unified Medical Language 
System (UMLS): millions of 
medical concepts

[http://oplinc.com/newsletter/index_May08.htm]



Standardization



Standardization

OMOP
Common
Data
Model v5.0



Breakthroughs in machine learning

Figure 4: Random samples from the model, with temperature 0.7.

Figure 5: Linear interpolation in latent space between real images.

between the latents to obtain samples. The results in Figure 5 show that the image manifold of the
generator distribution is smooth and almost all intermediate samples look like realistic faces.

Semantic Manipulation. We now consider modifying attributes of an image. To do so, we use the
labels in the CelebA dataset. Each image has a binary label corresponding to presence or absence of
attributes like smiling, blond hair, young, etc. This gives us 30000 binary labels for each attribute.
We then calculate the average latent vector zpos for images with the attribute and zneg for images
without, and then use the difference (zpos � zneg) as a direction for manipulating. Note that this is a
relatively small amount of supervision, and is done after the model is trained (no labels were used
while training), making it extremely easy to do for a variety of different target attributes. The results
are shown in Figure 6 (appendix).

Effect of temperature and model depth. Figure 8 (appendix) shows how the sample quality and
diversity varies with temperature. The highest temperatures have noisy images, possibly due to
overestimating the entropy of the data distribution; we choose a temperature of 0.7 as a sweet spot
for diversity and quality of samples. Figure 9 (appendix) shows how model depth affects the ability
of the model to learn long-range dependencies.

7 Conclusion

We propose a new type of generative flow and demonstrate improved quantitative performance in
terms of log-likelihood on standard image modeling benchmarks. In addition, we demonstrate that
when trained on high-resolution faces, our model is able to synthesize realistic images.

References

Deco, G. and Brauer, W. (1995). Higher order statistical decorrelation without information loss.
Advances in Neural Information Processing Systems, pages 247–254.

3For 128⇥ 128 and 96⇥ 96 versions, we centre cropped the original image, and downsampled. For 64⇥ 64
version, we took random crops from the 96⇥ 96 downsampled image as done in Dinh et al. (2016)
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AlphaGo
(reinforcement learning)

Generating realistic data
(GANs, VAEs)

mammal placental carnivore canine dog working dog husky

vehicle craft watercraft sailing vessel sailboat trimaran

Figure 1: A snapshot of two root-to-leaf branches of ImageNet: the top row is from the mammal subtree; the bottom row is from the
vehicle subtree. For each synset, 9 randomly sampled images are presented.
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Vehicle 520 610 317K

GeoForm 176 436 77K

Furniture 197 797 157K

Bird 872 809 705K

MusicInstr 164 672 110K

Summary of selected subtrees

Figure 2: Scale of ImageNet. Red curve: Histogram of number
of images per synset. About 20% of the synsets have very few
images. Over 50% synsets have more than 500 images. Table:
Summary of selected subtrees. For complete and up-to-date statis-
tics visit http://www.image-net.org/about-stats.

images spread over 5247 categories (Fig. 2). On average
over 600 images are collected for each synset. Fig. 2 shows
the distributions of the number of images per synset for the
current ImageNet 1. To our knowledge this is already the
largest clean image dataset available to the vision research
community, in terms of the total number of images, number
of images per category as well as the number of categories 2.

Hierarchy ImageNet organizes the different classes of
images in a densely populated semantic hierarchy. The
main asset of WordNet [9] lies in its semantic structure, i.e.
its ontology of concepts. Similarly to WordNet, synsets of
images in ImageNet are interlinked by several types of re-
lations, the “IS-A” relation being the most comprehensive
and useful. Although one can map any dataset with cate-

1About 20% of the synsets have very few images, because either there
are very few web images available, e.g. “vespertilian bat”, or the synset by
definition is difficult to be illustrated by images, e.g. “two-year-old horse”.

2It is claimed that the ESP game [25] has labeled a very large number
of images, but only a subset of 60K images are publicly available.

ESP Cattle Subtree Imagenet Cattle Subtree
176

Imagenet Cat SubtreeESP Cat Subtree

1377

376

1830

Figure 3: Comparison of the “cat” and “cattle” subtrees between
ESP [25] and ImageNet. Within each tree, the size of a node is
proportional to the number of images it contains. The number of
images for the largest node is shown for each tree. Shared nodes
between an ESP tree and an ImageNet tree are colored in red.

gory labels into a semantic hierarchy by using WordNet, the
density of ImageNet is unmatched by others. For example,
to our knowledge no existing vision dataset offers images of
147 dog categories. Fig. 3 compares the “cat” and “cattle”
subtrees of ImageNet and the ESP dataset [25]. We observe
that ImageNet offers much denser and larger trees.

Accuracy We would like to offer a clean dataset at all
levels of the WordNet hierarchy. Fig. 4 demonstrates the
labeling precision on a total of 80 synsets randomly sam-
pled at different tree depths. An average of 99.7% preci-
sion is achieved on average. Achieving a high precision for
all depths of the ImageNet tree is challenging because the
lower in the hierarchy a synset is, the harder it is to classify,
e.g. Siamese cat versus Burmese cat.

Diversity ImageNet is constructed with the goal that ob-
jects in images should have variable appearances, positions,

Object recognition
(deep neural networks)

Text comprehension
(language models)



What’s driving these advances?
• Democratization of machine learning
– Large datasets
– Cheap fast processing (GPUs + TPUs)
– High-quality open-source software (scikit-learn, 

PyTorch, TensorFlow)
• More and more researchers
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Source for figure:
http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry

ML will transform every aspect of healthcare

The stakeholders:



Emergency Department:
• Limited resources
• Time sensitive
• Critical decisions



What will the ER of the future be like?

Diseases

Symptoms

flu diabetespneumonia

fatigue chest
pain

cough high
A1C

Drives

Automatically extracted from 
electronic health record

• Better triage
• Faster diagnosis
• Early detection of 

adverse events
• Prevent medical 

errors

Behind-the-scenes reasoning about the patient’s 
conditions (current and future)



What will the ER of the future be like?

Propagating best practices 



What will the ER of the future be like?

Anticipating the clinicians’
needs



What will the ER of the future be like?CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays
with Deep Learning
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Abstract

We develop an algorithm that can detect
pneumonia from chest X-rays at a level ex-
ceeding practicing radiologists. Our algo-
rithm, CheXNet, is a 121-layer convolutional
neural network trained on ChestX-ray14, cur-
rently the largest publicly available chest X-
ray dataset, containing over 100,000 frontal-
view X-ray images with 14 diseases. Four
practicing academic radiologists annotate a
test set, on which we compare the perfor-
mance of CheXNet to that of radiologists.
We find that CheXNet exceeds average radi-
ologist performance on pneumonia detection
on both sensitivity and specificity. We extend
CheXNet to detect all 14 diseases in ChestX-
ray14 and achieve state of the art results on
all 14 diseases.

1. Introduction

More than 1 million adults are hospitalized with pneu-
monia and around 50,000 die from the disease every
year in the US alone (CDC, 2017). Chest X-rays
are currently the best available method for diagnosing
pneumonia (WHO, 2001), playing a crucial role in clin-
ical care (Franquet, 2001) and epidemiological studies
(Cherian et al., 2005). However, detecting pneumo-
nia in chest X-rays is a challenging task that relies on
the availability of expert radiologists. In this work, we
present a model that can automatically detect pneu-
monia from chest X-rays at a level exceeding practicing
radiologists.

*
Equal contribution

1
Stanford University De-

partment of Computer Science
2
Stanford University

School of Medicine. Correspondence to: Pranav Ra-

jpurkar <pranavsr@cs.stanford.edu>, Jeremy Irvin

<jirvin16@cs.stanford.edu>.

Project website at https://stanfordmlgroup.
github.io/projects/chexnet
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Figure 1. CheXNet is a 121-layer convolutional neural net-

work that takes a chest X-ray image as input, and outputs

the probability of a pathology. On this example, CheXnet

correctly detects pneumonia and also localizes areas in the

image most indicative of the pathology.

Our model, ChexNet (shown in Figure 1), is a 121-
layer convolutional neural network that inputs a chest
X-ray image and outputs the probability of pneumonia
along with a heatmap localizing the areas of the im-
age most indicative of pneumonia. We train CheXNet
on the recently released ChestX-ray14 dataset (Wang
et al., 2017), which contains 112,120 frontal-view chest
X-ray images individually labeled with up to 14 di↵er-
ent thoracic diseases, including pneumonia. We use
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Arrhythmia?

Figure sources: Rajpurkar et al., arXiv:1711.05225 ’17
Rajpurkar et al., arXiv:1707.01836, '17



Table 1. Performance of the different negation detection algorithms on 200 test sentences.

NegEx Added rules Perceptron

Precision 0.699 0.833 0.901

Recall 0.875 0.982 0.925

F1 0.777 0.901 0.913

Table 2. Performance of the linear SVMs on chief complaint prediction, without and with negation detection.  The 

Best-n accuracy measures how often the list of n most likely predicted labels actually contained all of the true chief 
complaints, and DCG stands for the Discounted Cumulative Gain, which measures the quality of the whole ranking.

many-to-one Multiclass SVM

Negation detection none perceptron none perceptron

Best-5 0.496 0.511 0.753 0.757

Best-10 0.615 0.620 0.819 0.825

DCG 0.381 0.393 0.601 0.613

Figure 1.  Screenshots  of  the  system now running at  BIDMC hospital  on  note:  69  y/o M patient  with severe  
intermittent RUQ pain. Began soon after eating bucket of ice cream and cupcake. Also is a heavy drinker. Left: the 

system correctly proposes both ‘RUQ abdominal pain’ and ‘Allergic reaction’ as possible chief complaints. Right: 
If the nurse does not see the label they want, they can start typing and see a list of suggested auto-completes. Again, 

the four most likely labels describe ‘RUQ abdominal pain’ and ‘Allergic reaction’.
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What will the ER of the future be like?

Automated documentation and billing



Source for figure:
http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry

ML will transform every aspect of healthcare

The stakeholders:



What is the future of how we treat 
chronic disease?

• Predicting a patient’s future disease progression

Figure credit: https://www.cdc.gov/kidneydisease/prevention-risk.html
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What is the future of how we treat 
chronic disease?

• Predicting a patient’s future disease progression

• Precision medicine
Choosing first line therapy in multiple myeloma
A) KRd: carfilzomib-lenalidomide-dexamethasone, B) VRd: bortezomib-lenalidomide-dexamethasone

Treatment A

Treatment B
Patient w.

condition X

Response to treatment A

Response to treatment B

Diagnosis and first-line treatment

Progression on VRd

Time

Progression on KRd



What is the future of how we treat 
chronic disease?

• Early diagnosis, e.g. of diabetes, Alzheimer's, 
cancer

Liquid biopsy

Figure sources: NIH, 
https://www.roche.com/research_and_development/what_we_are_working_on/oncology
/liquid-biopsy.htm



What is the future of how we treat 
chronic disease?

• Continuous monitoring and coaching, e.g. for the 
elderly, diabetes, psychiatric disease

Figure source (left): http://www.emeraldforhome.com/



What is the future of how we treat 
chronic disease?

• Discovery of new disease subtypes; design of 
new drugs; better targeted clinical trials

Figure sources: Haldar et al., Am J Respir Crit Care Med, 2008 
http://news.mit.edu/2018/automating-molecule-design-speed-drug-development-0706



Outline for today’s class

1. Brief history of AI and ML in healthcare
2. Interlude: Student & faculty introductions
3. Why now? What has changed?
4. Examples of how ML will transform 

healthcare
5. What is unique about ML in healthcare?
6. Course logistics & syllabus



What makes healthcare different?

• Life or death decisions
– Need robust algorithms
– Checks and balances built into ML deployment
– (Also arises in other applications of AI such as autonomous 

driving)
– Need fair and accountable algorithms

• Many questions are about unsupervised learning
– Discovering disease subtypes, or answering question such 

as “characterize the types of people that are highly likely to 
be readmitted to the hospital”?

• Many of the questions we want to answer are causal
– Naïve use of supervised machine learning is insufficient



What makes healthcare different?

• Very little labeled data
Recent breakthroughs in AI

depended on lots of labeled data!



What makes healthcare different?

• Very little labeled data
–Motivates semi-supervised learning algorithms

• Sometimes small numbers of samples (e.g., a 
rare disease)
– Learn as much as possible from other data (e.g. 

healthy patients)
–Model the problem carefully

• Lots of missing data, varying time intervals, 
censored labels



What makes healthcare different?

• Difficulty of de-identifying data
– Need for data sharing agreements and sensitivity

• Difficulty of deploying ML
– Commercial electronic health record software is 

difficult to modify
– Data is often in silos; everyone recognizes need for 

interoperability, but slow progress
– Careful testing and iteration is needed



Goals for the semester

• Intuition for working with healthcare data
• How to set up as machine learning problems
• Understand which learning algorithms are 

likely to be useful and when
• Appreciate subtleties in safely & robustly 

applying ML in healthcare
• Set the research agenda for the next decade



Outline for today’s class

1. Brief history of AI and ML in healthcare
2. Interlude: Student & faculty introductions
3. Why now? What has changed?
4. Examples of how ML will transform 

healthcare
5. What is unique about ML in healthcare?
6. Course logistics & syllabus



Prerequisites

• Previous undergraduate-level ML (e.g. 6.036):
–Machine learning methodology (e.g. generalization, 

cross-validation)
– Supervised machine learning techniques (e.g. linear 

and logistic regression, neural networks)
– Loss functions, regularization, and optimization (e.g. 

stochastic gradient descent)
– Statistical modeling (e.g. Gaussian mixture models)

• Python



Logistics

• Course website: 
https://mlhcmit.github.io/

• All announcements made via Canvas
• Use Piazza for Q&A with staff and each other

• Recitation (required): Fridays 3-4pm in 4-270 
(starts this week)

• Office hours TBD

https://mlhcmit.github.io/


Grading

• 40% course project
• 35% homework (5 problem sets; both theory & 

practice)
• 20% final exam (date to be scheduled by registrar)
• 5% participation – note: class attendance is 

required*

* Exceptions will be made for quarantine/isolation.



This week’s assignments/readings
• PS0 (due Weds 2/2, 11:59pm): human subjects training & 

MIMIC data use agreement
• Project rankings (due Fri 2/4, 1pm)
• Reading response (due Fri 2/4, 1pm)

AI in Health and Medicine – required reading
Pranav Rajpurkar, Emma Chen, Oishi Banerjee & Eric J. Topol
Nature Medicine, 2022

Machine Learning in Medicine – optional reading
Alvin Rajkomar, Jeffrey Dean, Isaac Kohane
New England Journal of Medicine, 2019



Future assignments (dates approximate)

• PS1: EMRs, physiological data, risk modeling
– Released 2/7, Due 2/16

• PS2: Clinical NLP
– Released 2/16, Due 2/25

• PS3: Imaging, interpretability
– Released 2/25, Due 3/9

• Project checkpoint 1, 3/2
• PS4: Causal inference

– Released 3/9, Due 3/18
• Project checkpoint 2, 4/6
• PS5: Dataset shift, learning with imperfect data

– Released 4/6, due 4/20
• Project reports due, 5/4

Mostly 
programming

Mostly math / ML 
theory



Course project

• Teams of 3-5 students
• Each project will have one or more clinicians 

involved as mentors and/or students

• Project ranking form sent out later today
• Project poster presentations May 5, 9:30am-

12pm in 34-401 (no recitation 5/6)


