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Course announcements

• We decided to have only 4 problem sets
• PS3 released by Mon 3/9, due Fri 3/20
– Interpretability, learning to defer, dataset shift

• PS4 released Fri 3/20 and due Wed 4/8
– Fairness, causal inference

• Project proposals due Wed 4/1
– Guidelines to be released early next week
– Teams should be formed by 3/17



Roadmap
• Module 1: Overview of clinical care & data (3 lectures)

• Module 2: Using ML for risk stratification and diagnosis (9 lectures)
– Learning with noisy labels, Interpretability, Learning to Defer, Uncertainty
– Applications to Clinical NLP and Physiological Time-Series
– Dataset Shift, Fairness

• Module 3: Suggesting treatments (4 lectures)
– Causal inference; Off-policy reinforcement learning

QUIZ

• Module 4: Understanding disease and its progression (3 lectures)
– Unsupervised learning on censored time series with substantial missing data
– Discovery of disease subtypes; Precision medicine

• Module 5: Human factors (3 lectures)
– Differential diagnosis; Utility-theoretic trade-offs
– Automating clinical workflows
– Translating technology into the clinic



Physiological time-series

(Quinn et al., TPAMI 2008)
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the quantity not being observed. We can effectively calculate these
on the fly, by checking at each step in the inference routine for
the presence of a zero in each measurement. When this occurs,
the corresponding column of C(i) is set to zero for all i.

We can also exploit the knowledge that the factor settings in
a given application might tend to change slowly relative to the
frequency of the measurements. Within the factorial model, it
is possible to constrain the transitions so that only one factor
can change its setting at each time step. Using the Gaussian
sum approximation, this speeds up inference from order O(K2)
per time step to O(K log K). We use this approximation in the
experiments described in section VI.

V. APPLICATION TO NEONATAL CONDITION MONITORING

We now turn our attention to the application of monitoring
the condition of a premature baby receiving intensive care.
Babies born three or four months prematurely in their first week
post partum are kept in a closely regulated environment, with
measurements of the heart rate, blood pressure, temperature and
so on taken every second. An experienced clinician can make
inferences about a baby’s condition based on these signals, though
this task is complicated by the fact that the observations depend
not just on the state of a baby’s physiology but also on the
operation of the monitoring equipment. There is observation noise
due to inaccuracies in the probes, and some operations can cause
the measurements to become corrupted with artifact.

Much of the time babies can be expected to be in a “normal”
state, where a degree of homeostasis is maintained and mea-
surements are stable. In specific situations, characteristic patterns
can appear which indicate particular conditions or pathologies.
Some patterns are common and can be easily recognised, whereas
at other times there might be periods of unusual physiological
variation to which it is difficult to attribute a cause.

In this section, we first review previous work in intensive
care unit (ICU) monitoring, then summarise the measurement
channels which are to be analysed in this particular application.
Constructing the model involves a combination of learning and
domain knowledge. We first characterise the normal dynamics of
the measurements, and then learn factor dynamics one by one to
obtain the full factorial model.

A. Relation to previous work on ICU monitoring

We briefly review some relevant work in the specific area of
intensive care unit monitoring. This work broadly fits into two
categories. One approach is based on using domain knowledge
to formulate high-level representations of particular patterns or
situations, then to find suitable abstractions of the data in order
to apply some matching rules. In this type of work, the goal is to
describe what is happening, and sometimes to suggest what to do
next; an interpretation is put on the data. Different schemes for
heuristic description of patterns have been used, see for example
[30]–[32].

By contrast, another body of work is based on making infer-
ences of a statistical nature from monitoring data using time series
analysis techniques. The goal in this case is to use the method-
ology of time series analysis to obtain informative descriptions
of the data, which offer insight into the underlying processes.
Notably, a switching linear dynamical system was used in [9] in
order to identify statistically significant changes in liver function.
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Fig. 4. Probes used to collect vital signs data from an infant in intensive care.
1) Three-lead ECG, 2) arterial line (connected to blood pressure transducer),
3) pulse oximeter, 4) core temperature probe (underneath shoulder blades), 5)
peripheral temperature probe, 6) transcutaneous probe.

Parametric models such as AR processes have been used to
identify significant changes (e.g. level changes or slope changes)
in physiological dynamics [33], [34]. Other work in this category
has looked at finding segmentations of physiological monitoring
data, e.g. finding segments which are approximately linear [35],
[36].

The first of these bodies of work uses expert knowledge, but
captures it using a series of ad-hoc frameworks. The second uses
established statistical techniques, but in general without incorpo-
rating the same level of expert insight and interpretation. The
work described in this paper is motivated by the idea that these
two approaches are not mutually exclusive, and uses extensive
knowledge engineering within a principled (probabilistic) time
series analysis framework.

B. Measurement channels

We now briefly describe the observations which are to be used
in this application. A number of probes, illustrated in Figure
4, continuously collect physiological data from each baby. The
resulting data channels are listed in Table I. Heart rate is obtained
either from the ECG unit or blood pressure sensor. The latter
also derives systolic and diastolic blood pressure measurements
(the arterial pressure when the heart is contracting and relax-
ing, respectively). A transcutaneous probe, sited on the chest,
measures the partial pressures of oxygen (TcPO2) and carbon
dioxide (TcPCO2) in the blood1. A pulse oximeter, attached to
the foot, measures the saturation of oxygen in arterial blood—
a related but different quantity to transcutaneous O2. The core
temperature and peripheral temperature are measured by two
probes, one of which is placed under the baby’s back (or under
the chest if the baby is prone) and the other attached to a foot. In
addition, environmental measurements (ambient temperature and
humidity) are collected directly from the incubator. The probes
used to collect these measurements are illustrated in Figure 4.
All these measurements are taken once per second. All the data
channels are applied without preprocessing to the model, with
the exception of incubator humidity. It is necessary to apply a
form of smoothing to this data channel because of measurement
quantisation; the measurements change gradually relative to the
measurement accuracy in this case, resulting in a “stepped” signal
which causes problems during learning and inference.

1Various gases are dissolved in the bloodstream, and the partial pressure
is used to quantify the amount of each. It is the amount of pressure that a
particular gas would exert on a container if it was present without the other
gases.



Physiological time-series

• Typical use cases:
1. Infer true physiological signal from noisy observations
2. Risk stratification, e.g. predict clinical deterioration, or 

diagnosis

• Approach taken depends on:
– Is labeled data available?
– Do we have a good mechanistic/statistical model?
– How much training data is there?



Why is using it hard? High-
dimensional, noisy, trajectories
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TABLE I
PHYSIOLOGICAL MEASUREMENT CHANNELS

Channel name Label

Core body temperature (�C) Core temp.
Diastolic blood pressure (mmHg) Dia. Bp

Heart rate (bpm) HR
Peripheral body temperature (�C) Periph. temp.
Saturation of oxygen in pulse (%) SpO2
Systolic blood pressure (mmHg) Sys. Bp

Transcutaneous partial pressure of CO2 (kPa) TcPCO2
Transcutaneous partial pressure of O2 (kPa) TcPO2

C. Learning normal dynamics

In training the FSLDS model for this application, we first learn
the “normal” dynamics for a baby. Much of the time, infants in
intensive care are in a stable condition. Because infants with a low
gestational age are usually asleep and motionless, there tends to be
low variability in their vital signs when in a stable condition. The
physiological systems underlying the observation channels are
too complicated to model explicitly, being governed by complex
interactions between a number of different sub-systems including
the central nervous system. Instead, the approach adopted here
is to try to find relatively simple models that are statistically
compelling.

The approach used here for fitting linear Gaussian state-space
models to each observation channel is first illustrated with heart
rate observations, which are generally the least stable and most
difficult to model of the observed channels. We then go on to
show how this approach is adapted to model the other observed
channels. Our resulting joint model is univariate in each observa-
tion channel, so that A and Q have a block diagonal structure.
This makes it easy to add or remove channels from the overall
model, and to specify the dependence of the state and channel
dynamics on various factors.

1) Normal heart rate dynamics: Looking at examples of
normal heart rate dynamics as in the top left and right panels
of Figure 5, it can be observed first of all that the measurements
tend to fluctuate around a slowly drifting baseline. This motivates
the use of a model with two hidden components: the signal xt, and
the baseline bt. These components are therefore used to represent
the true heart rate, without observation noise. The dynamics can
be formulated using autoregressive (AR) processes, such that an
AR(p1) signal varies around an AR(p2) baseline, as given by the
following equations:

xt � bt ⇠ N
 p1X

k=1

↵k(xt�k � bt�k), ⌘1

!
, (11)

bt ⇠ N
 p2X

k=1

�kbt�k, ⌘2

!
, (12)

where ⌘1, ⌘2 are noise variances. For example, an AR(2) signal
with AR(2) baseline has the following state-space representation:

xt =

2

664

xt

xt�1

bt

bt�1

3

775 , A =

2

664

↵1 ↵2 1� ↵1 �↵2

1 0 0 0
0 0 �1 �2

0 0 1 0

3

775 , (13)

0 1000 2000 3000 4000
150

160

170

180

H
ea

rt 
ra

te
 (b

pm
)

b t

0 1000 2000 3000 4000
160
170
180

Time (s)

x t −
 b

t

0 1000 2000 3000 4000
−5

0

5

0 1000 2000 3000 4000
150

160

170

180

H
ea

rt 
ra

te
 (b

pm
)

b t

0 1000 2000 3000 4000
150
160
170

Time (s)

x t −
 b

t

0 1000 2000 3000 4000
−10

0

10

Fig. 5. In these two examples, HR measurements (in the top left and top
right panels) are varying quickly within normal ranges. The estimates of the
underlying signal (bottom left and bottom right panels) are split into a smooth
baseline process and zero-mean high frequency component.

Q =

2

664

⌘1 + ⌘2 0 0 0
0 0 0 0
0 0 ⌘2 0
0 0 0 0

3

775 , C = [1 0 0 0] . (14)

It is straightforward to adjust this construction for different values
of p1 and p2. The measurements are therefore generally taken
to be made up of a baseline with low frequency components
and a signal with high frequency components. We begin training
this model with a heuristic initialisation, in which we take
sequences of training data and remove high frequency components
by applying a symmetric 300-point moving average filter. The
resulting signal is taken to be the low frequency baseline. The
residual between the original sequences and the moving-averaged
sequences are taken to contain both stationary high frequency
hemodynamics as well as measurement noise. These two signals
can be analysed according to standard methods and modelled as
AR or integrated AR processes (specific cases of autoregressive
integrated moving average (ARIMA) processes [37]) of arbitrary
order. Heart rate sequences were found to be well modelled by
an AR(2) signal varying around an ARIMA(1,1,0) baseline. An
ARIMA model is a compelling choice for the baseline, because
with a low noise term it produces a smooth drift2. Having found
this initial setting of the model parameters, EM updates are then
applied [17]. This has been found to be particularly useful for
refining the estimates of the noise terms Q and R.

Examples of the heart rate model being applied as a Kalman
filter to heart rate sequences are shown in Figure 5. The top panels
show sequences of noisy heart rate observations, and the lower
panel shows estimates of the high frequency and low frequency
components of the heart rate.

2) Other channels : Most of the remaining observation chan-
nels are modelled according to the same principle. Heart rate,

2The ARIMA(1,1,0) model has the form (Xt � �Xt�1) = ↵1(Xt�1 �
�Xt�2) + Zt where � = 1 and Zt ⇠ N(0, �2

Z). This can be expressed in
un-differenced form as a non-stationary AR(2) model. In our implementation
we set � = 0.999 and with |↵1| < 1 we obtain a stable AR(2) process, which
helps to avoid problems with numerical instability. This slight damping makes
the baseline mean-reverting, so that the resulting signal is stationary. This has
desirable convergence properties for dropout modelling.

(Quinn et al., TPAMI 2008)



Problem: measurements confounded by 
interventions & measurement errors

(Quinn et al., TPAMI 2008)
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Fig. 6. Inferred distributions of switch settings for two situations involving recalibration of the transcutaneous probe. BS denotes a blood sample, TR denotes
a recalibration, and TD denotes a core temperature probe disconnection. In panel (a) the recalibration is preceeded by a dropout, followed by a blood sample.
Diastolic BP is shown as a dashed line which lies below the systolic BP plot. Transcutaneous readings drop out at around t = 1200 before the recalibration.
In panel (b), the solid line shows the core temperature and the dashed line shows incubator temperature. A core temperature probe disconnection is identified
correctly, as well as the recalibration. Temperature measurements can occasionally drop below the incubator temperature if the probe is near to the portals;
this is accounted for in the model by the system noise term Q.
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Fig. 7. Inferred distributions of switch settings for two further situations in which there are effects due to multiple known factors. In panel (a) there are
incidences of bradycardia, after which the incubator is entered. There is disturbance of heart rate during the period of handling, which is correctly taken to
be associated with the handling and not an example of spontaneous bradycardia. In panel (b), bradycardia and blood samples are correctly inferred. During
the blood sample, heart rate measurements (supplied by the blood pressure sensor) are interrupted.
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Can we identify the artifactual
processes?

• Once identified, can remove for use in downstream 
predictive tasks (must deal with missing data)

• Can help mitigate alarm fatigue by not alerting the 
clinicians when unnecessary

• More broadly, can we maintain beliefs about the true 
physiological values of a patient?



(Switching) linear dynamical systems

• Conditioned on st, linear Gaussian state-space 
models (Kalman filters):

2

II. MODEL DESCRIPTION

We first review the SLDS before generalising to the factorial
case. In such models, the hidden switch setting st affects the
hidden continuous state xt and the observations yt. Conditional
on a particular switch setting, the model is equivalent to a linear
Gaussian state-space model (Kalman filter). The switch setting
evolves according to the transition probabilities p(st|st�1), and
for a given setting of st the hidden continuous state and the
observations are related by:

xt ⇠ N
“
A(st)xt�1 + d(st)

,Q(st)
”

(1)

yt ⇠ N
“
C(st)xt,R

(st)
”

(2)

where x 2 Rdx and y 2 Rdy . Here A(st) is a square system
matrix, d(st) is a drift vector, C(st) is the state-observations
matrix, and Q(st) and R(st) are noise covariance matrices.
Note that in this formulation, all dynamical parameters can be
switched between regimes. Similar models referred to in the above
literature sometimes switch only the state dynamics {A,Q}, or
the observation dynamics {C,R}.

It is possible to factorise the switch variable, so that M factors
f

(1)
t . . . f

(M)
t affect the observations yt. The factor f

(m) can take
on L

(m) different values. The state space is the cross product of
the factor variables,

st = f
(1)
t ⌦ . . .⌦ f

(M)
t (3)

with K =
QM

m=1 L
(m) being the number of settings that st can

take on. The value of f
(m)
t depends on f

(m)
t�1 . The factors are a

priori independent, so that

p(st|st�1) =
MY

m=1

p

“
f

(m)
t |f (m)

t�1

”
. (4)

Notice that the factors are not, in general, a posteriori indepen-
dent. The joint distribution of the model is

p(s1:T ,x1:T ,y1:T ) = p(s1)p(x1)p(y1|x1, s1) .

TY

t=2

p(st|st�1)p(xt|xt�1, st)p(yt|xt, st)
(5)

where s1:T denotes the sequence s1, s2, . . . , sT and similarly for
x1:T and y1:T . p(xt|xt�1, st) is defined in eq (1), p(yt|xt, st)
in eq (2) and p(st|st�1) in eq (4). By considering the factored
nature of the switch setting, we have an observation term of the
form p(yt|xt, f

(1)
t , . . . , f

(M)
t ). This can be parameterised in dif-

ferent ways. In this work, we specify conditional independencies
between particular components of the observation yt given the
factor settings. This is explained further in sections II-B and V-E.
Although we make use of prior factored dynamics in eq (4) in
this work, it is very simple to generalize the model so that this
no longer holds. The inference algorithms described in section IV
can still be applied. However, the separate factors are crucial in
structuring the system dynamics and observations model.

A. Learning
In a condition monitoring problem, it is assumed that we are

able to interpret at least some of the regimes in the data; otherwise
we would be less likely to have an interest in monitoring them.
We can therefore usually expect to obtain some labelled training
data {y1:T , s1:T }. When available, this data greatly simplifies

the learning process, because determining the switch setting in
the (F)SLDS makes the model equivalent to a linear dynamical
system, therefore making the process of parameter estimation a
standard system identification problem.

Given training data with known switch settings, the learning
process is therefore broken down into the training of a set of LDS
models—one per switch setting. We might choose a particular
parameterisation, such as an autoregressive (AR) model of order
p hidden by observation noise and fit parameters accordingly [16].
Expectation maximisation can be useful in this setting to improve
parameter settings given an initialisation [17]. We describe partic-
ular methods used for parameter estimation in the physiological
monitoring application in section V which incorporate both of
these ideas. Note that if labellings for the training data were not
available, it would still be possible to learn the full switching
model directly using EM [11] or variational learning [18].

When labelled training data is available, estimates of the factor
transition probabilities are given by

P (f
(m)
t = j|f (m)

t�1 = i) =
nij + ⇣

PM
k=1 nik + ⇣

, (6)

where nij is the number of transitions from factor setting i to
setting j in the training data. The constant terms ⇣ (set to ⇣ = 1
in the experiments described later in the paper) are added to stop
any of the transition probabilities being zero or very small.

Some verification of the learned model is possible by clamping
the switch setting to a certain value and studying the resulting
LDS. One simple but effective test is to draw a sample sequence
and check by eye whether it resembles the dynamics of training
data which is known to follow the same regime. Some insight
into the quality of the parameter settings can also be gained by
considering estimation of the hidden state x in the LDS. The
Kalman filter equations yield both an innovation sequence, ỹ1:T

(the difference between the predicted and actual observations),
and a specification of the covariance of the innovations under ideal
conditions. An illuminating test is therefore to compare the actual
and ideal properties of the innovation sequence when applied to
training data. In particular, the innovations ỹt should come from
a Gaussian distribution with zero mean and a specific covariance,
and should be uncorrelated in time. We find in practice that such
tests are highly significant when training (F)SLDS models for
condition monitoring. For more details about verification in linear
dynamical systems, see [19, §5.5].

B. Learning the factorial model
The previous discussion assumes that we train the model con-

ditioned on each switch setting independently, and then combine
parameters. Where there are many factors this implies a great
quantity of training data is needed. In practice, however, this
requirement can be mitigated.

Where there are several measurement channels it may be found
that some factors “overwrite” others. For example, if we are moni-
toring the physiological condition of a patient, we might have two
factors: heart problem and probe disconnection. If there is a heart
problem and the probe is disconnected, then we would see the
same measurements as though only the probe was disconnected
(that is, a sequence of zeros). It is often possible to specify
an ordering of factors such that some overwrite measurement
channels of others in this way. The significance of this is that
examples of every combination of factors do not need to be found

!"# !$# !%# !&# !'# !(#

)"# )$# )%# )&# )'# )(#
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(Switching) linear dynamical systems

• Full model:

compare its graphical structure and inference methods to
those of the FSLDS, and briefly describe related work. In
Section 2 we describe our experiments and provide results
for the comparison between the DSLDS and the FSLDS.
Finally, in Section 3 we conclude with general remarks
about our proposed model and suggestions for future work.

1 MODEL DESCRIPTION

The graphical model of the FSLDS is depicted in Figure 1
(top). It operates on three different sets of variables: The
observed variables, yt 2 Rdy represent the patient’s vital
signs obtained from the monitoring devices at time t, which
act as the input to our model. The continuous latent vari-
ables, xt 2 Rdx , track the evolution of the dynamics of a
patient’s underlying physiology. The discrete variable, st,
represents the switch setting or regime which the patient is
currently in (e.g. stable, a blood sample is being taken etc.
). The switch variable can be factorised according to the
cross-product of M factors, so that st = f1

t ⌦f2
t ⌦...⌦fM

t .
Each factor variable, fm

t , is usually a binary vector indicat-
ing the presence or absence of a factor, but in general it
can take on L(m) different values and K =

QM
m=1 L(m)

is the total number of possible configurations of the switch
variable, st. Also, st depends explicitly on the previous
time step, so that p(st|st�1) =

QM
m=1 p(fm

t |fm
t�1). Condi-

tioned on a particular regime, the FSLDS is equivalent to an
LDS. The FSLDS can be seen then as a collection of LDS’s,
where each LDS models the dynamics of a patient’s under-
lying physiology under a particular regime, and can also be
used to generate a patient’s observed vital signs. An LDS
provides a generative framework for modelling our belief
over the state space, given observations.

We can alternatively adopt a discriminative view. We start
by modelling p(st|yt�l:t+r) with a discriminative classi-
fier, where (features of) observations from the previous l
and future r time steps affect the belief of the model about
st. The inclusion of r frames of future context is analogous
to fixed-lag smoothing in an FSLDS (see e.g. Särkkä, 2013,
sec. 10.5). We note that inclusion of future observations in
the conditioning set means that the DSLDS will operate
with a delay of r seconds, since an output of the model
at time t can be produced only after time t + r. Provided
that r is small enough (r 10 in experiments), this delay
is negligible compared to the increase in performance. The
LDS can also be regarded from a similarly discriminative
viewpoint which allows us to model p(xt|xt�1,yt). This is
similar to the Maximum Entropy Markov Model (MEMM)
(McCallum et al., 2000) with the difference that the latent
variable is continuous rather than discrete. The main ad-
vantage of this discriminative view is that it allows for a
rich number of (potentially highly correlated) features to
be used without having to explicitly model their distribu-
tion or the interactions between them, as is the case in a
generative model. A combination of these two discrimina-

tive viewpoints gives rise to the DSLDS graphical model in
Figure 1 (bottom). The DSLDS, conditioned on st, can be
seen then as a collection of MEMM’s, where each MEMM
in the DSLDS plays a role equivalent to that of each LDS
in the FSLDS.

The DSLDS can be defined as

p(s,x|y) = p(s1|y1)p(x1|s1,y1)⇥
TY

t=2

p(st|yt�l:t+r)p(xt|xt�1, st,yt) . (1)

st�1 st st+1

xt�1 xt xt+1

yt�1 yt yt+1

st�1 st st+1

xt�1 xt xt+1

yt�1 yt yt+1

Figure 1: Graphical model of the FSLDS (top) and the
DSLDS (bottom). The state-of-health and underlying phys-
iological values of a patient are represented by st and xt

respectively. The shaded nodes correspond to the observed
physiological values, yt. Note that in the case of the
DSLDS the conditional probability p(st|yt�l:t+r) is mod-
elled directly.

The simplest assumption we can make for the DSLDS is
that p(st|yt�l:t+r) factorises, so that

p(st|yt�l:t+r) =
MY

m=1

p(f (m)
t |yt�l:t+r) . (2)

However, one could use a structured output model to pre-
dict the joint distribution of different factors.

State

Observations

Confounding
factors (e.g.
artifactual events)



Learning SLDS models

• Assume some labeled training data {s,y}
• True state x assumed to never be observed
• Learn using expectation maximization

compare its graphical structure and inference methods to
those of the FSLDS, and briefly describe related work. In
Section 2 we describe our experiments and provide results
for the comparison between the DSLDS and the FSLDS.
Finally, in Section 3 we conclude with general remarks
about our proposed model and suggestions for future work.

1 MODEL DESCRIPTION

The graphical model of the FSLDS is depicted in Figure 1
(top). It operates on three different sets of variables: The
observed variables, yt 2 Rdy represent the patient’s vital
signs obtained from the monitoring devices at time t, which
act as the input to our model. The continuous latent vari-
ables, xt 2 Rdx , track the evolution of the dynamics of a
patient’s underlying physiology. The discrete variable, st,
represents the switch setting or regime which the patient is
currently in (e.g. stable, a blood sample is being taken etc.
). The switch variable can be factorised according to the
cross-product of M factors, so that st = f1

t ⌦f2
t ⌦...⌦fM

t .
Each factor variable, fm

t , is usually a binary vector indicat-
ing the presence or absence of a factor, but in general it
can take on L(m) different values and K =

QM
m=1 L(m)

is the total number of possible configurations of the switch
variable, st. Also, st depends explicitly on the previous
time step, so that p(st|st�1) =

QM
m=1 p(fm

t |fm
t�1). Condi-

tioned on a particular regime, the FSLDS is equivalent to an
LDS. The FSLDS can be seen then as a collection of LDS’s,
where each LDS models the dynamics of a patient’s under-
lying physiology under a particular regime, and can also be
used to generate a patient’s observed vital signs. An LDS
provides a generative framework for modelling our belief
over the state space, given observations.

We can alternatively adopt a discriminative view. We start
by modelling p(st|yt�l:t+r) with a discriminative classi-
fier, where (features of) observations from the previous l
and future r time steps affect the belief of the model about
st. The inclusion of r frames of future context is analogous
to fixed-lag smoothing in an FSLDS (see e.g. Särkkä, 2013,
sec. 10.5). We note that inclusion of future observations in
the conditioning set means that the DSLDS will operate
with a delay of r seconds, since an output of the model
at time t can be produced only after time t + r. Provided
that r is small enough (r 10 in experiments), this delay
is negligible compared to the increase in performance. The
LDS can also be regarded from a similarly discriminative
viewpoint which allows us to model p(xt|xt�1,yt). This is
similar to the Maximum Entropy Markov Model (MEMM)
(McCallum et al., 2000) with the difference that the latent
variable is continuous rather than discrete. The main ad-
vantage of this discriminative view is that it allows for a
rich number of (potentially highly correlated) features to
be used without having to explicitly model their distribu-
tion or the interactions between them, as is the case in a
generative model. A combination of these two discrimina-

tive viewpoints gives rise to the DSLDS graphical model in
Figure 1 (bottom). The DSLDS, conditioned on st, can be
seen then as a collection of MEMM’s, where each MEMM
in the DSLDS plays a role equivalent to that of each LDS
in the FSLDS.

The DSLDS can be defined as

p(s,x|y) = p(s1|y1)p(x1|s1,y1)⇥
TY

t=2

p(st|yt�l:t+r)p(xt|xt�1, st,yt) . (1)

st�1 st st+1

xt�1 xt xt+1

yt�1 yt yt+1

st�1 st st+1

xt�1 xt xt+1

yt�1 yt yt+1

Figure 1: Graphical model of the FSLDS (top) and the
DSLDS (bottom). The state-of-health and underlying phys-
iological values of a patient are represented by st and xt

respectively. The shaded nodes correspond to the observed
physiological values, yt. Note that in the case of the
DSLDS the conditional probability p(st|yt�l:t+r) is mod-
elled directly.

The simplest assumption we can make for the DSLDS is
that p(st|yt�l:t+r) factorises, so that

p(st|yt�l:t+r) =
MY

m=1

p(f (m)
t |yt�l:t+r) . (2)

However, one could use a structured output model to pre-
dict the joint distribution of different factors.
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Parameterizing model

• Normal heart rate dynamics are well-modeled 
using an autoregressive process, e.g.

(Quinn et al., TPAMI 2008)
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TABLE I
PHYSIOLOGICAL MEASUREMENT CHANNELS

Channel name Label

Core body temperature (�C) Core temp.
Diastolic blood pressure (mmHg) Dia. Bp

Heart rate (bpm) HR
Peripheral body temperature (�C) Periph. temp.
Saturation of oxygen in pulse (%) SpO2
Systolic blood pressure (mmHg) Sys. Bp

Transcutaneous partial pressure of CO2 (kPa) TcPCO2
Transcutaneous partial pressure of O2 (kPa) TcPO2

C. Learning normal dynamics

In training the FSLDS model for this application, we first learn
the “normal” dynamics for a baby. Much of the time, infants in
intensive care are in a stable condition. Because infants with a low
gestational age are usually asleep and motionless, there tends to be
low variability in their vital signs when in a stable condition. The
physiological systems underlying the observation channels are
too complicated to model explicitly, being governed by complex
interactions between a number of different sub-systems including
the central nervous system. Instead, the approach adopted here
is to try to find relatively simple models that are statistically
compelling.

The approach used here for fitting linear Gaussian state-space
models to each observation channel is first illustrated with heart
rate observations, which are generally the least stable and most
difficult to model of the observed channels. We then go on to
show how this approach is adapted to model the other observed
channels. Our resulting joint model is univariate in each observa-
tion channel, so that A and Q have a block diagonal structure.
This makes it easy to add or remove channels from the overall
model, and to specify the dependence of the state and channel
dynamics on various factors.

1) Normal heart rate dynamics: Looking at examples of
normal heart rate dynamics as in the top left and right panels
of Figure 5, it can be observed first of all that the measurements
tend to fluctuate around a slowly drifting baseline. This motivates
the use of a model with two hidden components: the signal xt, and
the baseline bt. These components are therefore used to represent
the true heart rate, without observation noise. The dynamics can
be formulated using autoregressive (AR) processes, such that an
AR(p1) signal varies around an AR(p2) baseline, as given by the
following equations:

xt � bt ⇠ N
 p1X

k=1

↵k(xt�k � bt�k), ⌘1

!
, (11)

bt ⇠ N
 p2X

k=1

�kbt�k, ⌘2

!
, (12)

where ⌘1, ⌘2 are noise variances. For example, an AR(2) signal
with AR(2) baseline has the following state-space representation:

xt =
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Fig. 5. In these two examples, HR measurements (in the top left and top
right panels) are varying quickly within normal ranges. The estimates of the
underlying signal (bottom left and bottom right panels) are split into a smooth
baseline process and zero-mean high frequency component.

Q =

2

664

⌘1 + ⌘2 0 0 0
0 0 0 0
0 0 ⌘2 0
0 0 0 0

3

775 , C = [1 0 0 0] . (14)

It is straightforward to adjust this construction for different values
of p1 and p2. The measurements are therefore generally taken
to be made up of a baseline with low frequency components
and a signal with high frequency components. We begin training
this model with a heuristic initialisation, in which we take
sequences of training data and remove high frequency components
by applying a symmetric 300-point moving average filter. The
resulting signal is taken to be the low frequency baseline. The
residual between the original sequences and the moving-averaged
sequences are taken to contain both stationary high frequency
hemodynamics as well as measurement noise. These two signals
can be analysed according to standard methods and modelled as
AR or integrated AR processes (specific cases of autoregressive
integrated moving average (ARIMA) processes [37]) of arbitrary
order. Heart rate sequences were found to be well modelled by
an AR(2) signal varying around an ARIMA(1,1,0) baseline. An
ARIMA model is a compelling choice for the baseline, because
with a low noise term it produces a smooth drift2. Having found
this initial setting of the model parameters, EM updates are then
applied [17]. This has been found to be particularly useful for
refining the estimates of the noise terms Q and R.

Examples of the heart rate model being applied as a Kalman
filter to heart rate sequences are shown in Figure 5. The top panels
show sequences of noisy heart rate observations, and the lower
panel shows estimates of the high frequency and low frequency
components of the heart rate.

2) Other channels : Most of the remaining observation chan-
nels are modelled according to the same principle. Heart rate,

2The ARIMA(1,1,0) model has the form (Xt � �Xt�1) = ↵1(Xt�1 �
�Xt�2) + Zt where � = 1 and Zt ⇠ N(0, �2

Z). This can be expressed in
un-differenced form as a non-stationary AR(2) model. In our implementation
we set � = 0.999 and with |↵1| < 1 we obtain a stable AR(2) process, which
helps to avoid problems with numerical instability. This slight damping makes
the baseline mean-reverting, so that the resulting signal is stationary. This has
desirable convergence properties for dropout modelling.
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the “normal” dynamics for a baby. Much of the time, infants in
intensive care are in a stable condition. Because infants with a low
gestational age are usually asleep and motionless, there tends to be
low variability in their vital signs when in a stable condition. The
physiological systems underlying the observation channels are
too complicated to model explicitly, being governed by complex
interactions between a number of different sub-systems including
the central nervous system. Instead, the approach adopted here
is to try to find relatively simple models that are statistically
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The approach used here for fitting linear Gaussian state-space
models to each observation channel is first illustrated with heart
rate observations, which are generally the least stable and most
difficult to model of the observed channels. We then go on to
show how this approach is adapted to model the other observed
channels. Our resulting joint model is univariate in each observa-
tion channel, so that A and Q have a block diagonal structure.
This makes it easy to add or remove channels from the overall
model, and to specify the dependence of the state and channel
dynamics on various factors.

1) Normal heart rate dynamics: Looking at examples of
normal heart rate dynamics as in the top left and right panels
of Figure 5, it can be observed first of all that the measurements
tend to fluctuate around a slowly drifting baseline. This motivates
the use of a model with two hidden components: the signal xt, and
the baseline bt. These components are therefore used to represent
the true heart rate, without observation noise. The dynamics can
be formulated using autoregressive (AR) processes, such that an
AR(p1) signal varies around an AR(p2) baseline, as given by the
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Fig. 5. In these two examples, HR measurements (in the top left and top
right panels) are varying quickly within normal ranges. The estimates of the
underlying signal (bottom left and bottom right panels) are split into a smooth
baseline process and zero-mean high frequency component.
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It is straightforward to adjust this construction for different values
of p1 and p2. The measurements are therefore generally taken
to be made up of a baseline with low frequency components
and a signal with high frequency components. We begin training
this model with a heuristic initialisation, in which we take
sequences of training data and remove high frequency components
by applying a symmetric 300-point moving average filter. The
resulting signal is taken to be the low frequency baseline. The
residual between the original sequences and the moving-averaged
sequences are taken to contain both stationary high frequency
hemodynamics as well as measurement noise. These two signals
can be analysed according to standard methods and modelled as
AR or integrated AR processes (specific cases of autoregressive
integrated moving average (ARIMA) processes [37]) of arbitrary
order. Heart rate sequences were found to be well modelled by
an AR(2) signal varying around an ARIMA(1,1,0) baseline. An
ARIMA model is a compelling choice for the baseline, because
with a low noise term it produces a smooth drift2. Having found
this initial setting of the model parameters, EM updates are then
applied [17]. This has been found to be particularly useful for
refining the estimates of the noise terms Q and R.

Examples of the heart rate model being applied as a Kalman
filter to heart rate sequences are shown in Figure 5. The top panels
show sequences of noisy heart rate observations, and the lower
panel shows estimates of the high frequency and low frequency
components of the heart rate.

2) Other channels : Most of the remaining observation chan-
nels are modelled according to the same principle. Heart rate,

2The ARIMA(1,1,0) model has the form (Xt � �Xt�1) = ↵1(Xt�1 �
�Xt�2) + Zt where � = 1 and Zt ⇠ N(0, �2

Z). This can be expressed in
un-differenced form as a non-stationary AR(2) model. In our implementation
we set � = 0.999 and with |↵1| < 1 we obtain a stable AR(2) process, which
helps to avoid problems with numerical instability. This slight damping makes
the baseline mean-reverting, so that the resulting signal is stationary. This has
desirable convergence properties for dropout modelling.
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Parameterizing model

• One can use domain knowledge to specify 
parts of the artifacts model
– Probe dropouts modeled by removing 

dependence of observation yt on patient state xt
– Temperature probe disconnection: exponential 

decay to room temperature

(Quinn et al., TPAMI 2008)

compare its graphical structure and inference methods to
those of the FSLDS, and briefly describe related work. In
Section 2 we describe our experiments and provide results
for the comparison between the DSLDS and the FSLDS.
Finally, in Section 3 we conclude with general remarks
about our proposed model and suggestions for future work.

1 MODEL DESCRIPTION

The graphical model of the FSLDS is depicted in Figure 1
(top). It operates on three different sets of variables: The
observed variables, yt 2 Rdy represent the patient’s vital
signs obtained from the monitoring devices at time t, which
act as the input to our model. The continuous latent vari-
ables, xt 2 Rdx , track the evolution of the dynamics of a
patient’s underlying physiology. The discrete variable, st,
represents the switch setting or regime which the patient is
currently in (e.g. stable, a blood sample is being taken etc.
). The switch variable can be factorised according to the
cross-product of M factors, so that st = f1

t ⌦f2
t ⌦...⌦fM

t .
Each factor variable, fm

t , is usually a binary vector indicat-
ing the presence or absence of a factor, but in general it
can take on L(m) different values and K =

QM
m=1 L(m)

is the total number of possible configurations of the switch
variable, st. Also, st depends explicitly on the previous
time step, so that p(st|st�1) =

QM
m=1 p(fm

t |fm
t�1). Condi-

tioned on a particular regime, the FSLDS is equivalent to an
LDS. The FSLDS can be seen then as a collection of LDS’s,
where each LDS models the dynamics of a patient’s under-
lying physiology under a particular regime, and can also be
used to generate a patient’s observed vital signs. An LDS
provides a generative framework for modelling our belief
over the state space, given observations.

We can alternatively adopt a discriminative view. We start
by modelling p(st|yt�l:t+r) with a discriminative classi-
fier, where (features of) observations from the previous l
and future r time steps affect the belief of the model about
st. The inclusion of r frames of future context is analogous
to fixed-lag smoothing in an FSLDS (see e.g. Särkkä, 2013,
sec. 10.5). We note that inclusion of future observations in
the conditioning set means that the DSLDS will operate
with a delay of r seconds, since an output of the model
at time t can be produced only after time t + r. Provided
that r is small enough (r 10 in experiments), this delay
is negligible compared to the increase in performance. The
LDS can also be regarded from a similarly discriminative
viewpoint which allows us to model p(xt|xt�1,yt). This is
similar to the Maximum Entropy Markov Model (MEMM)
(McCallum et al., 2000) with the difference that the latent
variable is continuous rather than discrete. The main ad-
vantage of this discriminative view is that it allows for a
rich number of (potentially highly correlated) features to
be used without having to explicitly model their distribu-
tion or the interactions between them, as is the case in a
generative model. A combination of these two discrimina-

tive viewpoints gives rise to the DSLDS graphical model in
Figure 1 (bottom). The DSLDS, conditioned on st, can be
seen then as a collection of MEMM’s, where each MEMM
in the DSLDS plays a role equivalent to that of each LDS
in the FSLDS.

The DSLDS can be defined as

p(s,x|y) = p(s1|y1)p(x1|s1,y1)⇥
TY

t=2

p(st|yt�l:t+r)p(xt|xt�1, st,yt) . (1)

st�1 st st+1

xt�1 xt xt+1

yt�1 yt yt+1

st�1 st st+1

xt�1 xt xt+1

yt�1 yt yt+1

Figure 1: Graphical model of the FSLDS (top) and the
DSLDS (bottom). The state-of-health and underlying phys-
iological values of a patient are represented by st and xt

respectively. The shaded nodes correspond to the observed
physiological values, yt. Note that in the case of the
DSLDS the conditional probability p(st|yt�l:t+r) is mod-
elled directly.

The simplest assumption we can make for the DSLDS is
that p(st|yt�l:t+r) factorises, so that

p(st|yt�l:t+r) =
MY

m=1

p(f (m)
t |yt�l:t+r) . (2)

However, one could use a structured output model to pre-
dict the joint distribution of different factors.

State

Observations

Confounding
factors (e.g.
artifactual events)



Evaluation

• 3-fold cross validation, where for each fold 
train on 10 babies and test on 5

• 24-hours of data for each baby
• Normal dynamics refit for test babies using a 

30-minute section near the start

(Quinn et al., TPAMI 2008)
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For comparison, the same set of factors was inferred with the
FHMM model, in which training was carried out using maximum
likelihood estimation. The performance of the FHMM is a useful
comparison because it has similar structure to the FSKF but with
no hidden continuous dynamics. For all factors, the effect of
adding the continuous latent dynamics is to improve performance,
as can be seen by comparing the FHMM performance to the two
FSKF models. RBPF inferences tend to be less accurate than those
made with the Gaussian-sum approximation. This is at least partly
due to the inability of the model to sample effectively from all
the latent space when there is a high number of switch settings,
and in this case the number of possible switch settings (16) is
significant relative to the number of particles (71). Increasing the
number of particles improves the inferences somewhat, though
even when the number of particles in RBPF is doubled, we find
that AUC only increases by 2-3%, well below the Gaussian sum
results [23, §7.2.2].

It can be seen that core temperature probe disconnection is
in general the most difficult factor to infer, partly because very
long periods of disconnection are eventually misclassified by the
model as being normal.

Specific examples of the operation of these models are now
given. Figures 6-9 show inferences of switch settings made with
the FSKF with Gaussian sum approximation (denoted ‘GS’ in
Table IV). In each case the switch settings have been accurately
inferred. Figure 6 shows examples of transcutaneous probe recal-
ibration, correctly classified in conjunction with a blood sample
and a core temperature probe disconnection. Note that in 6(b) the
recalibration and disconnection begin at around the same time, as
a nurse has handled the baby in order to access the transcutaneous
probe, causing the temperature probe to become detached.

Figure 7 shows inference of bradycardia, blood sampling, and
handling of the baby. Note in 7(a) that it has been possible to
recognise the disturbance of heart rate at t = 800 as being caused
by handling of the baby, distinguished from the bradycardia
earlier where there is no evidence of the incubator having been
entered.

For the blood sample and temperature probe disconnection
factors, the measurement data bears no relation to the actual phys-
iology, and the model should update the estimated distribution
of the true physiology in these situations accordingly. Figure 9
contains examples of the inferred distribution of true physiology
in data periods in which these two artifacts occur. In each case,
once the artifactual pattern has been detected, the physiological
estimates remain constant or decay towards a mean. As time
passes since the last reliable observation, the variance of the
estimates increases towards a steady state.

B. Novelty detection
In practice, neonatal monitoring data exhibits many unusual

patterns. The number of potential unusual patterns is in fact so
great that it would be impractical to explicitly include every
possibility in a model. Examples include rare dynamical regimes
caused by sepsis, neurological problems, or the administration of
drugs, even a change of linen or the flash of a camera. Experi-
ments were done to evaluate the ability of the X-factor to represent
novel physiological and artifactual dynamics. Preliminary trials
(including EM estimation) showed ⇠ = 1.2 to be a suitable setting.

Three-fold cross validation was again used to analyse the
inferences of different models with different sets of factors. The

Fig. 8. ROC curves for classification of four known factors.

first model considered contained only the X-factor, the two switch
settings therefore being ‘normal’ or ‘abnormal’. The intention
with this construction was for it to place probability mass for the
X-factor on any period in which anything non-normal was hap-
pening. As the X-factor here stands in for any known or unknown
pattern, the ground truth for this model is the conjunction of all the
annotated intervals of every type—known factors and ‘abnormal’
periods. Another four models are considered, in which the known
factors are added to the model one by one. So, for the second
model the ‘Incubator Open’ factor is added and the corresponding
intervals are removed from the ground truth for the X-factor. The
factors are added in reverse order of total duration in Table III. In
the fifth set of factors each known factor has ground truth given
by the corresponding annotation, and the X-factor has ground
truth given by the ‘Abnormal (other)’ annotation. Examining the
performance of these different models and particular examples of
operation gives some insight into the operation of the X-factor,
both on its own and in conjunction with the other factors.

Summary statistics are shown in Table V, where the models
above are numbered 1-5. Only approximate Gaussian sum infer-
ence was considered here. The performance in classifying the
presence of known factors is almost the same as for when the
X-factor was not included (model ‘GS’ in Table IV), only minor
variations in AUC and EER being evident. For each of the five
models, the X-factor inferences had a rough correlation to the
annotations.

Examples of the operation of the X-factor are shown in Figures
10-12, beginning with inferences from model 5 in which the full
set of factors is present with the X-factor. Figure 10 shows two
examples of inferred switch settings under this model for periods
in which there are isolated physiological disturbances. Both the
posteriors for the X-factor and the gold standard intervals for
the ‘Abnormal (other)’ category are shown. The physiological
disturbances in both panels are cardiovascular and have clearly
observable effects on the blood pressure and oxygen saturation
measurements.

GS = Gaussian-sum
approximation (used for 
inference)

RBPF = Rao-Blackwellized
particle filtering 
approximation (used for 
inference)

FHMM = Factorial HMM 
(simpler model which 
does not model normal 
physiological dynamics)
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Fig. 6. Inferred distributions of switch settings for two situations involving recalibration of the transcutaneous probe. BS denotes a blood sample, TR denotes
a recalibration, and TD denotes a core temperature probe disconnection. In panel (a) the recalibration is preceeded by a dropout, followed by a blood sample.
Diastolic BP is shown as a dashed line which lies below the systolic BP plot. Transcutaneous readings drop out at around t = 1200 before the recalibration.
In panel (b), the solid line shows the core temperature and the dashed line shows incubator temperature. A core temperature probe disconnection is identified
correctly, as well as the recalibration. Temperature measurements can occasionally drop below the incubator temperature if the probe is near to the portals;
this is accounted for in the model by the system noise term Q.
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Fig. 7. Inferred distributions of switch settings for two further situations in which there are effects due to multiple known factors. In panel (a) there are
incidences of bradycardia, after which the incubator is entered. There is disturbance of heart rate during the period of handling, which is correctly taken to
be associated with the handling and not an example of spontaneous bradycardia. In panel (b), bradycardia and blood samples are correctly inferred. During
the blood sample, heart rate measurements (supplied by the blood pressure sensor) are interrupted.
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Fig. 9. Inferred distributions of the true physiological state during artifactual corruption of measurements. Panel (a) shows correct inference of the duration
of a blood sample, and panel (b) shows correct inference of a temperature probe disconnection. Measurements are plotted as a solid line, and estimates x̂t
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(Quinn et al., TPAMI 2008)

Blood sample draw Temperature probe disconnection
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Fig. 6. Inferred distributions of switch settings for two situations involving recalibration of the transcutaneous probe. BS denotes a blood sample, TR denotes
a recalibration, and TD denotes a core temperature probe disconnection. In panel (a) the recalibration is preceeded by a dropout, followed by a blood sample.
Diastolic BP is shown as a dashed line which lies below the systolic BP plot. Transcutaneous readings drop out at around t = 1200 before the recalibration.
In panel (b), the solid line shows the core temperature and the dashed line shows incubator temperature. A core temperature probe disconnection is identified
correctly, as well as the recalibration. Temperature measurements can occasionally drop below the incubator temperature if the probe is near to the portals;
this is accounted for in the model by the system noise term Q.
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Fig. 7. Inferred distributions of switch settings for two further situations in which there are effects due to multiple known factors. In panel (a) there are
incidences of bradycardia, after which the incubator is entered. There is disturbance of heart rate during the period of handling, which is correctly taken to
be associated with the handling and not an example of spontaneous bradycardia. In panel (b), bradycardia and blood samples are correctly inferred. During
the blood sample, heart rate measurements (supplied by the blood pressure sensor) are interrupted.

Time (s)

BS
0 50 100 150 200 250

Sy
s.

 B
P

(m
m

H
g)

30

40

50

60

D
ia

. B
P

(m
m

H
g)

20

30

40

50

Time (s)

TD
0 200 400 600 800 1000 1200

C
or

e 
te

m
p.

 (°
C

)

35

35.5

36

36.5

37

37.5

38

(a) (b)
Fig. 9. Inferred distributions of the true physiological state during artifactual corruption of measurements. Panel (a) shows correct inference of the duration
of a blood sample, and panel (b) shows correct inference of a temperature probe disconnection. Measurements are plotted as a solid line, and estimates x̂t

relating to true physiology are plotted as a dashed line with the gray shading indicating two standard deviations. In each case, during the period in which
measurements are corrupted the estimates of the true physiology are propagated with increased uncertainty.

TD= core temperature probe disconnection
TR = recalibration



Outline of today’s lecture

• Monitoring babies in neonatal ICUs
• Detecting irregular heart arrythmias 
– Small data approach
– Big data approach



Detecting atrial fibrillation
The AliveCor ECG Device

● 3 generations of a single-channel (LA-RA lead I 
equivalent) ECG

● Transmitted to smartphone or tablet into the 
microphone (over the air) which digitizes at 44.1 
kHz and 24-bit resolution with software 
demodulation in real-time. 

● Frequency modulated with a carrier frequency of 
19 kHz and a 200 Hz/mV modulation index. 

● Stored as 300 Hz, 16-bit data with bandwidth 
0.5-40 Hz  with +/- 5 mV dynamic range. 

AliveCore ECG 
device
ECG = electrocardiogram



Detecting atrial fibrillation

Apple Watch



What type of heart rhythm?
Normal rhythm

AF rhythm

Other rhythm

Noisy recording

Classify short ECG data into:

[Clifford, Liu, Moody, Mark. PhysioNet Computing in Cardiology Challenge 2017]



 

Abstract—ECG Feature Extraction plays a significant role in 
diagnosing most of the cardiac diseases. One cardiac cycle in an 
ECG signal consists of the P-QRS-T waves. This feature 
extraction scheme determines the amplitudes and intervals in the 
ECG signal for subsequent analysis. The amplitudes and 
intervals value of P-QRS-T segment determines the functioning 
of heart of every human. Recently, numerous research and 
techniques have been developed for analyzing the ECG signal. 
The proposed schemes were mostly based on Fuzzy Logic 
Methods, Artificial Neural Networks (ANN), Genetic Algorithm 
(GA), Support Vector Machines (SVM), and other Signal 
Analysis techniques. All these techniques and algorithms have 
their advantages and limitations. This proposed paper discusses 
various techniques and transformations proposed earlier in 
literature for extracting feature from an ECG signal. In addition 
this paper also provides a comparative study of various methods 
proposed by researchers in extracting the feature from ECG 
signal. 
 

Keywords—Artificial Neural Networks (ANN), Cardiac Cycle, 
ECG signal, Feature Extraction, Fuzzy Logic, Genetic Algorithm 
(GA), and Support Vector Machines (SVM). 

I. INTRODUCTION 
The investigation of the ECG has been extensively used for 

diagnosing many cardiac diseases. The ECG is a realistic 
record of the direction and magnitude of the electrical 
commotion that is generated by depolarization and re-
polarization of the atria and ventricles. One cardiac cycle in an 
ECG signal consists of the P-QRS-T waves. Figure 1 shows a 
sample ECG signal. The majority of the clinically useful 
information in the ECG is originated in the intervals and 
amplitudes defined by its features (characteristic wave peaks 
and time durations). The improvement of precise and rapid 
methods for automatic ECG feature extraction is of chief 
importance, particularly for the examination of long 
recordings [1]. 

The ECG feature extraction system provides fundamental 
features (amplitudes and intervals) to be used in subsequent 
automatic analysis. In recent times, a number of techniques 
have been proposed to detect these features [2] [3] [4]. The 
previously proposed method of ECG signal analysis was based 
on time domain method. But this is not always adequate to 
study all the features of ECG signals. Therefore the frequency 
representation of a signal is required. The deviations in the 
normal electrical patterns indicate various cardiac disorders. 
Cardiac cells, in the normal state are electrically polarized [5]. 

 

ECG is essentially responsible for patient monitoring and 
diagnosis. The extracted feature from the ECG signal plays a 
vital in diagnosing the cardiac disease. The development of 
accurate and quick methods for automatic ECG feature 
extraction is of major importance. Therefore it is necessary 
that the feature extraction system performs accurately. The 
purpose of feature extraction is to find as few properties as 
possible within ECG signal that would allow successful 
abnormality detection and efficient prognosis.  

 
 

Figure.1 A Sample ECG Signal showing P-QRS-T Wave 
 

In recent year, several research and algorithm have been 
developed for the exertion of analyzing and classifying the 
ECG signal. The classifying method which have been 
proposed during the last decade and under evaluation includes 
digital signal analysis, Fuzzy Logic methods, Artificial Neural 
Network, Hidden Markov Model, Genetic Algorithm, Support 
Vector Machines, Self-Organizing Map, Bayesian and other 
method with each approach exhibiting its own advantages and 
disadvantages. This paper provides an over view on various 
techniques and transformations used for extracting the feature 
from ECG signal. In addition the future enhancement gives a 
general idea for improvement and development of the feature 
extraction techniques.  

 
The remainder of this paper is structured as follows. Section 

2 discusses the related work that was earlier proposed in 
literature for ECG feature extraction. Section 3 gives a general 
idea of further improvements of the earlier approaches in ECG 

ECG Feature Extraction Techniques - A Survey 
Approach 
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the actual detection in order to attenuate
other signal components and artifacts, such
as P-wave, T-wave, baseline drift, and
incoupling noise. Whereas the attenuation
of the P- and T-wave as well as baseline
drift requires high-pass filtering, the sup-
pression of incoupling noise is usually ac-
complished by a low-pass filter. The
combination of low and high pass means
effectively the application of a bandpass
filter, in this case with cut-off frequencies
at about 10 Hz and 25 Hz.

In many algorithms, high- and low-pass
filtering are carried out separately. Some
algorithms, such as [3, 7, 33, 38, 45, 78,
83], use only the high-pass filter part. The
filtered signals are then used for the gener-
ation of a feature signal in which the occur-
rence of a QRS complex is detected by
comparing the feature against fixed or
adaptive thresholds. Almost all algorithms
use additional decision rules for the reduc-
tion of false-positive detections.

Derivative-Based Algorithms
The high-pass filter is often, in particu-

lar in the older algorithms, realized as a
differentiator. This points out the usage of
the characteristic steep slope of the QRS
complex for its detection. Difference
equations of possible differentiator filters
are [3, 7, 33, 38, 45, 78, 83]

y n x n x n1 1 1( ) ( ) ( )= + − − (1)

y n x n x n

x n x n
1 2 2 1

1 2 2

( ) ( ) ( )

( ) ( )

= + + +
− − − − (2)

y n x n x n1 1( ) ( ) ( )= − − (3)

y n x n x n1 1( ) ~( ) ~( )= − − (4)

where

~( )
| ( )| | ( )|

| ( )| .
x n

x n x n

x n
=

≥
<

⎧
⎨
⎩

Θ
Θ Θ (5)

and Θ is an amplitude threshold deter-
mined from the measured ECG signal
x n( ). In most cases, the differentiator from
Eq. (1) is used. Some algorithms also
compute the second derivative. It can be
estimated by [3, 7]

y n x n x n x n2 2 2 2( ) ( ) ( ) ( )= + − + − . (6)

Typical features z n( ) of such algo-
rithms are the differentiated signal itself
[33, 38, 78]

z n y n( ) ( )= 1 , (7)

a linear combination of the magnitudes of
the first and the second derivative [7]

z n y n y n( ) . | ( )| . | ( )|= +13 111 2 , (8)

or a linear combination of the smoothed
first derivative magnitude and the magni-
tude of the second derivative [3]

z n y n y n( ) ~ ( ) | ( )|= +1 2 (9)

where ~ ( ) { . , . , . }*| ( )|y n y n1 10 25 0 5 0 25= and
*denotes the linear convolution operator.

The detection of a QRS complex is ac-
complished by comparing the feature
against a threshold. Usually the threshold
levels are computed signal dependent
such that an adaption to changing signal
characteristics is possible. For the feature
in Eq. (7), the threshold [33, 38, 78]

Θx x= ⋅0 3 0 4. . max[ ]K (10)

is proposed, where the maximum is deter-
mined online or from the current signal
segment. Most QRS detectors use this or a
similar method to determine the threshold.

The peak detection logic is frequently
completed by further decision rules that
are applied in order to reduce the number
of false-positive detections. Such rules
usually put heuristically found constraints
on the timing and the sign of the features
or introduce secondary thresholds to ex-
clude non-QRS segments of the ECG with

QRS-like feature values [3, 7, 33, 38, 45,
78, 81, 103].

Algorithms Based on Digital Filters
Algorithms based on more sophisti-

cated digital filters were published in [12,
26, 29, 30, 41, 55, 65, 67, 81, 83, 85, 101,
106, 107, 123].

In [83] an algorithm is proposed where
the ECG is filtered in parallel by two dif-
ferent low-pass filters with different
cut-off frequencies. The difference be-
tween the filter outputs is effectively the
bandpass filtered ECG y n1( ), which is af-
terwards further processed by

y n y n y n k
k m

m

2 1 1
2

2

( ) ( ) ( )= +
⎡
⎣⎢

⎤
⎦⎥= −

∑ .
(11)

This nonlinear operation leads to a rel-
ative suppression of small values and a
slight smoothing of the peaks. The feature
signal z n( ) is formed out of y n2( ) by putt-
ing additional sign constraints on the out-
put signal of the low pass with the higher
cut-off frequency. The threshold is com-
puted adaptively by Θ = max[ ( )] /z n 8.

In [106] and [107] the MOBD (multi-
plication of backward difference) algo-
rithm is proposed. It is essentially an
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P-Wave

Q-Wave
S-Wave

T-Wave

R-Wave

QRS Complex

1. The QRS complex within the ECG signal.

Linear
Filtering

Nonlinear
Filtering

ECG
x(n)

Preprocessing Stage

Peak
Detection

Logic
Decision

Decision Stage

2. Common structure of the QRS detectors.

[Kohler, Hennig, Orglmeister. The Principles of Software QRS Detection, IEEE 
Engineering in Medicine & Biology, 2002]

Traditional approach



AND-combination of adjacent magnitude
values of the derivative. The MOBD of
the order N is then defined by

z n x n k x n k
k

N

( ) | ( ) ( )|= − − − −
=

−

∏
0

1

1 .
(12)

In order to avoid a high feature signal
during noisy segments, an additional sign
consistency constraint is imposed; i.e.,

z n

x n k x n k

( )

[ ( )] [ ( )],

=
− ≠ − −

0

1if sign sign
(13)

where k N= −0 1 2, , ,K . A proposed value
for the order of MOBD is N = 4 [107].
The threshold Θ is set to the feature maxi-
mum zmax after the refractory period and
then halved whenever a fixed time period
is elapsed. The threshold is bounded by a
lower limit that is also adaptive.

The algorithms described in [41] and
[85] use basically the same preprocessor.
The ECG is bandpass filtered and after-

wards differentiated. The feature signal z n( )
is computed by squaring and averaging the
output of the differentiator. The bandpass
and differentiator use filter coefficients that
are particularly suited for an implementa-
tion on fixed-point processors with a short
word length. For the peak detection, a vari-
able v is introduced that contains the value
of the most recent feature maximum. Peaks
in the feature signal are detected by compar-
ing the feature againstv. If the feature drops
below v 2 a peak is detected. Then the cur-
rent value of v is taken as the peak height
andv is reset to the current value of the fea-
ture signal; i.e., v z n= ( ). The principle of
the peak detection is shown in Fig. 3. The
fiducial mark is set to the location of the
largest peak in the bandpass-filtered signal
in an interval from 225 ms to 125 ms pre-
ceding a peak detection. The fiducial mark
and the height of the peak are put into an
event vector that is further processed by the
decision stage. In the decision stage, a QRS
peak level LP and a noise level LN are esti-
mated recursively by

L n L n AP P P P P( ) ( ) ( )= ⋅ − + − ⋅λ λ1 1

(14)

L n L n AN N N N P( ) ( ) ( )= ⋅ − + − ⋅λ λ1 1 ,

(15)

where λN and λP are forgetting factors
(e.g., λ ≈ 0 98. ) and AP is the peak ampli-
tude. Depending on whether a peak is
classified as QRS complex or as a noise
peak, either the QRS peak level LP or the
noise level LN is updated using Eq. (14) or
Eq. (15), respectively. Eventually, the de-
tection threshold is determined from

Θ = + ⋅ −L L LN P Nτ ( ), (16)

where the positive threshold coefficient
τ <1 is a design parameter.

In [67] the feature signal z n( ) is com-
puted in a way similar to [41] and [85] but
using different filters. In contrast to [41]
and [85], the feature signal is divided into
segments of 15 points. The maximum of
each segment is compared to an adaptive
noise level and an adaptive peak level esti-
mate and classified depending on the dis-
tance to each of the estimates. The fiducial
point of the QRS complex is set to the loca-
tion within the QRS segment where the
maximum of the ECG and a zero crossing
in its first derivative occur at the same time.

Although [26] describes an ECG
waveform detection by neural networks,
the QRS detection is accomplished using
a feature extractor based on digital filter-
ing. The feature signal z n( ) is generated by
filtering the ECG with two different
bandpass filters and afterwards multiply-
ing the filter outputs w n( ) and f n( ); i.e.,

z n w n f n( ) ( ) ( )= ⋅ . (17)

This procedure is based on the assump-
tion that a QRS complex is characterized
by simultaneously occurring frequency
components within the passbands of the
two bandpass filters. The multiplication
operation performs the AND-combina-
tion. That is, only if both filter outputs are
high then the feature is high and indicates
a QRS complex. The location of the maxi-
mum amplitude in the feature is taken as
the location of the R-wave.

The use of recursive and nonrecursive
median filters, i.e.

y n y n m y n

x n x n x n m

( ) [ ( ), , ( ),

( ), ( ), , ( )]

= − −
+ +
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a

K

K

1

1 nd (18)

y n x n m x n

x n x n x n m

( ) [ ( ), , ( ),

( ), ( ), , ( )],

= − −
+ +

median K

K

1

1 (19)

is proposed, for example, in [123]. The
median operator applied to a vector
x = [ , , ]x xN1 K means sorting the ele-
ments of the vector according to their val-
ues and then taking the midpoint
y N= xsorted ( / )2 as the filter output. In
[123] a combination of two median filters
and one smoothing filter is used to form a
bandpass filter. The additional signal pro-
cessing steps are similar to [41, 85].

Generalized digital filters for ECG
processing with the transfer function

H z z z K LK L( ) ( )( ) ,= − + >− −1 1 01

(20)
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3. Peak detector proposed in [41].

The detection of a

QRS complex is

accomplished by

comparing the feature

against a threshold.

[Kohler, Hennig, Orglmeister. The Principles of Software QRS Detection, IEEE 
Engineering in Medicine & Biology, 2002]



physionet.org/physiobank/database/mitdb). The atrial fibrilla- 
tion database contains 300 atrial fibrillation episodes, sampled at 
250 Hz for 10 h from Holter tapes of  25 subjects. The onset/end 
of atrial fibrillation was annotated by trained observers. The 
timing of each QRS complex was determined by an automatic 
detector. 

The contents of  the MIT-BIH atrial fibrillation database are 
summarised in Table 1. The MIT-BIH arrhythmia database 
includes two categories (the 100 series and the 200 series) and 
contains 48 subjects: The 100 series consists of  23 subjects, 
and the 200 series consists of  25 subjects. The 100 series 
includes normal sinus rhythm, paced rhythm, bigeminy, 
trigeminy and supraventricular tachycardia, but it does not 
have atrial fibrillation. The 200 series includes eight atrial 
fibrillation subjects out of 25. The 200 series also includes 
atrial bigeminy, atrial flutter, supraventricular tachyarrhythmia 
ventricular flutter and ventricular tachycardia. More detailed 
information about the MIT-BIH arrhythmia database can be 
found at http://www.physionet.org/physiobank/database/ 
html/mitdbdir/tables.htm. In the preliminary work (TATENO 
and GLASS, 2000), we used only eight atrial fibrillation subjects 
from the 200 series as test data. Here, we use all the subjects of  
the 200 series and the 100 series. 

Fig. 1 shows a typical time series of RR intervals from a 
patient with atrial fibrillation. The solid line represents the 
duration of atrial fibrillation. This line is set to atrial fibrillation 
when atrial fibrillation occurs; otherwise, it is set to N, which 
signifies a rhythm that is not atrial fibrillation. At the onset of  
atrial fibrillation, the rhythm dramatically changes and becomes 
irregular, with large fluctuations. In paroxysmal atrial fibrilla- 
tion, there is sudden starting and stopping of atrial fibrillation, as 
indicated in Fig. 1. 

ARR is defined as being the difference between two succes- 
sive RR intervals. We prepared standard density histograms as a 
template for atrial fibrillation detection from the MIT-BIH atrial 
fibrillation database. Blocks of  50 successive beats were con- 
sidered during atrial fibrillation in all subjects in the MIT-BIH 
atrial fibrillation database. Each block falls into one of 16 

Table 1 Profile o f  MIT-BIH atrial qbrillation database 

Hours Episodes Beats 

Atrial fibrillation 91.59 299 510293 
Atrial flutter 1.27 13 10640 
Other 156.12 309 700626 

Total 248.98 621 1221559 

different classes, identified by the mean value: 350-399ms, 
400-449 ms, 450-499 ms etc. 

2.1 C V  test 

The coefficient of variation is the standard deviation of the RR 
intervals divided by the mean RR interval. The coefficient of  
variation of ARR is defined to be the standard deviation of the 
ARR intervals divided by the mean RR interval. (As the ARR 
histograms are symmetrical and the mean value in each of the 
ARR histograms is approximately 0, it is not useful to divide the 
standard deviation of the ARR intervals by the mean ARR 
interval.) As the coefficients of  variation of both the RR and 
the ARR intervals are approximately constant during atrial 
fibrillation, we should be able to use the coefficients of  variation 
to detect atrial fibrillation. 

The coefficients of  variation of the RR and ARR intervals in a 
test record are compared with the standard coefficients of  
variation to detect atrial fibrillation. The standard density histo- 
grams give us the standard coefficients of  variation. To test for 
atrial fibrillation, we consider the 100 beat segment centred on 
each beat in the record and obtain the coefficient of  variation of 
the segment. We define an acceptable range of the coefficient of  
variation R~. i f  the coefficient of  variation of the test record is 
within the standard coefficient of  variation -4-R~ %, the rhythm 
is labelled as atrial fibrillation. We call this the CV test. 

2.2 Kolmogorov-Smirnov test 

We compare the N~e v (= 20, 50, 100,200) beat segment 
centred on each beat in the record. For each beat, we determine 
the density histogram of the RR and ARR intervals and compare 
these with the standard density histograms. The differences 
between the density histograms in a given patient and the 
standard histograms are evaluated using the Kolmogorov- 
Smirnov test (see P~ESS et al. (1992), Section 14.3). Fig. 2 
shows an example of  cumulative probability distributions of  the 
standard histogram and a test histogram. 

In the Kolmogorov-Smirnov test, the greatest distance D 
between the cumulative probability distributions is measured. In 
other words, we assess whether two given distributions are 
different from each other. The Kolmogorov-Smirnov test 
returns ap-value as follows: 

o o  • 

p =  Q(2)= 2 Z ( - 1 ) J  2j222 

j = l  

where 2 = ( d ~ e  + 0.12 + 0 . 1 1 / d ~ e  ) * D. N e = N t N 2 / ( N t +  
N2). N t is the number of data points in the standard distribution. 
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Fig. 1 Time series showing RR intervals from subject 202 from 
MIT-BIH arrhythmia database. ( ) Assessment o f  atrial 
fibrillation (AF) or non-atrial fibrillation (N) as reported in 
database 

Fig. 2 
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compared with standard distribution. Cumulative probability 
distribution is derived from density histogram. D = greatest 
distance between two cumulative distributions 

Medical & Biological Engineering & Computing 2001, Vol. 39 665 [Tateno & Glass, Automatic detection of atrial fibrillation using the coefficient of variation and density 
histograms of RR and ΔRR intervals. MBEC, 2001]
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Card iac  Ar rh~hm ia  Classi~c at ion:
A  Hear t -Beat  In t e rva l -Mark ov  Cha in  Approac h  *
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Division  of Cardiov~~~~r  Surgery, Depurrmeur  of Surgery, Stanford University
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A sequence of heart-beat intervals (R-R wave intervals) is automatically trans-
formed into a  three-symbol  Markov chain sequence.  For  convenience the symbols
used may be thought of as S-R-L for short, regular, and long heart-beat intervals,
respectively. The probabihty  that the observed sequence was generated by each of a
set  of  prototype models  character is t ic  of  different  cardiac disorders  is  computed.
That prototype corresponding to the largest probability of observed sequence gener-
ation is designated as the disorder. This procedure is the equivalent of Kullback’s
classification by the minimization of directed divergence procedure.

In a p~Iimina~  experiment p~marily using data  sequences  of  100 hear t -beat
intervals ,  35 dif ferent  known cases  were  automat ical ly  c lass i f ied into  s ix  cardiac
disorders without error. The disorders considered were atrial obviation,  APC  and
VPC,  b igeminy,  s inus  tachycardia  wi th  occas ional  b igeminy.  s inus  tachycardia ,
and ventricular tachycardia.

An automatic procedure to classify cardiac arrhythmjas using a Markov chain
interpretation of heart-beat interval data is reported. A sequence of heart-beat
intervals (R-R wave intervaIs)  is automatically transformed into a three-symbol
Markov chain sequence.’ For convenience the symbols used may be thought of
as S-R-L for short, regular and long heart-beat intervals, respectively. A measure
of the probability  that the observed sequence was generated by each of a set of
prototypic models characteristic of different cardiac disorders is computed. That
prototype corresponding to the largest probability of observed sequence genera-

* The work was supported in part by grant $5  ROl  HE 11022-03 SGYA, “Arrhythmia Recog-
nition After Cardiac Surgery,” National Heart Institute, National Institutes of Health. Computa-
t ions were performed at  the ACME facil i ty of  the Stanford Unive~ity  Medical  Center.

t Wil l  Gersch is  on leave f rom Purdue Univers i ty ,  Center  of  Appl ied  Storhastics,  School  of
Aero, Astro, and Engineering Science, Lafayette, Indiana.

$ David M. Eddy,  M.D. is  a  Postdoctoral  Research Fellow, Bay Area Heart  Research Com-
mittee.

$ Eugene Dong, Jr., M.D. is an Established Investigator of the American Heart Association.
1 Accomplished by a computing algorithm that operates on the derivative of the EKG data to

select the onset of successive QRS  compiexes.
385



Detection of Atrial Fibrillation Using Artificial Neural Networks 

SG Artis, RG Mark, GB Moody 

H-d-MIT 
Division of Health Sciences and Technology, Cambridge, MA 

Abstract 

Artificial neural network8 (ANN#) were used a8 pat- 
tern detectors to  detect atrial fibrillation (AF) in the 
MIT-BIH Arrhythmia Database. ECG data war repre- 
rented uring generalized interval tranrition matrices, an 
in Markov model AF detectors[l]. A training file war 
developed, uring there transition matricer, for a back- 
propagation ANN. Thir file conrirted of approzimately 
15 minuter each of AF and non-AF data. The ANN 
was ruccerfully trained uring thir data. Three rtandard 
databases were ured to  test network performance. Port- 
processing of the ANN output yielded an AF renaitivity 
of 92.86% and an AF positive predictive accuracy of 
92.34%. 

1 Introduction 

Cardiac arrhythmias may be classified using both mor- 
phology analysis, which classifies beats by shape, and 
timing analysis, which classifies beats by their arrival 
rates. Timing analysis is used to classify a subset of 
rhythms that includes premature beats, rapid heart 
rate, slow heart rate, and more generally, beats with ir- 
regular arrival times. Atrial fibrillation (AF) is a heart 
rhythm which is usually characterized by beats with 
normal morphology and with irregular arrival times. 
AF detection is most often based upon timing analy- 
sis. 

Atrial fibrillation detection is important because it is 
a common arrhythmia which often indicates underlying 
heart disease. AF can also complicate automated de- 
tection of other arrhythmias. This happens because it 
becomes impossible to define the prematurity of a beat 
in relation to its surrounding beats in AF. Because of 
this, atrial fibrillation detectors are usually included 
in automated arrhythmia analyzers. AF detection is 
difficult, however, because beat intervals in AF form 
no recognizable pattern, unlike other cardiac arrhyth- 
mias. Attempts have been made to detect AF based 

on R-R interval sequences using a variety of statistical 
methods [I] but there is room for improvement in these 
techniques. 

Pattern classifiers exist in many forms, and artificial 
neural networks ( ANNs) represent an important sub- 
set of these classifiers. ANNs are attractive for solving 
pattern recognition problems because few assumptions 
about the underlying data need to be made. The task 
of the operator of an ANN is to separate the data into 
subsets. The network wil l  be able classify these sub- 
sets according to type as long as they are distinct. Neu- 
ral network training requires appropriate training data, 
pre-processing and post-processing algorithms, an a p  
propriate network topology, and a training algorithm, 
as well as evaluation databases. This document will 
present the design and evaluation of a technique which 
detects AF in the presence of other cardiac arrhythmias 
using a backpropagation artificial neural network. 

2 Databases 

Three databases were used throughout this study. 
The first consisted of a subset of the MIT-BIH ECG 
database, summarized in table 1, which was used as a 
development database. A subset of this database was 
used for training of the ANN. The second database, 
used as an evaluation database and summarized in 
table 2, has been collected from Holter recordings 
specifically to test R-R interval-basedAF detectors. 
This database, called the MIT-BIH Atrial Fibrilla- 
tion/Flutter Database [2] contains 25 ten-hour records, 
each from a unique subject, and including over 300 
episodes of AF. The database consists of two anno- 
tation files for each recording - one containing QRS 
complex arrival times (for R-R interval measurements) 
and the other containing accurate rhythm change an- 
notations. In this database, beat labels indicate the 
time, but not the type, of each beat so the quantities 
of APBs, PVCs, Normal beats, and other beats are un- 
known. The third database was the AHA Database for 

17 3 
0-81 86-’U85-X/92 $3.00 Q 1992 IEEE 

Proceedings Computers in Cardiology (1991)



Winning approach

• Training data in 2017 Physionet challenge: ~8500 ECGs
• Best algorithms use a combination of expert-derived 

features and machine learning

[Teijeiro, Garcia, Castro, Felix. arXiv:1802.05998, 2018]
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Table 1: Set of features used to train the global classifier

tSR: Proportion of the record length interpreted as

a regular rhythm (Normal rhythm, tachycardia or

bradycardia).

t1b: Number of milliseconds from the beginning of the

record to the first interpreted heartbeat.

tOR: Number of milliseconds interpreted as a non-regular

rhythm.

longTch: Longest period of time with heart rate over

100bpm.

RR: Median RR interval of regular rhythms. RRd_std: Standard deviation of the instant RR variation.

RRd: Median Absolute Deviation (MAD) of the RR

interval in regular rhythms.

MRRd: Max. absolute variation of the RR interval in

regular rhythms.

RR_MIrr: Max. RR irregularity measure. RR_Irr: Median RR irregularity measure.

PNN{10,50,100}: Global PNNx measures. o_PNN50: PNN50 of non-regular rhythms.

mRR: Min. RR interval of regular rhythms. o_mRR: Min. RR interval of non-regular rhythms.

n_nP: Proportion of heartbeats with detected P-wave

inside regular rhythms.

n_aT: Median of the amplitude of the T waves inside

regular rhythms.

n_PR: Median PR duration inside regular rhythms. Psmooth: Median of the ratio between the standard

deviation and the mean value of P-waves’ derivative

signal.

Pdistd: MAD of the measure given by the P wave

delineation method.

MPdist: Max. of the measure given by the P wave

delineation method.

prof: Profile of the full signal. pw_profd: MAD of pw_prof.

xcorr: Median of the maximum cross-correlation

between QRS complexes interpreted in regular rhythms.

o_xcorr: Median of the maximum cross-correlation

between QRS complexes interpreted in non-regular

rhythms.

PRd: Global MAD of the PR durations. QT: Median of the corrected QT measure.

TP: Median of the prevailing frequency in the TP

intervals.

TPfreq: Median of the frequency entropy in the TP

intervals.

pw_prof: Profile measure of the signal in the P-wave area. nT: Proportion of QRS complexes with detected T waves.

n_Txcorr: Median of the maximum cross-correlation

between T-waves inside regular rhythms.

n_Pxcorr: Median of the maximum cross-correlation

between P-waves inside regular rhythms.

baseline: Profile of the baseline in regular rhythms. o_baseline: Profile of the baseline in non-regular

rhythms.

wQRS: Proportion of wide QRS complexes (duration

longer than 110ms).

wQRS_xc: Median of the maximum cross-correlation

between wide QRS complexes.

wQRS_prof: Median of the signal profile in the 300ms

before each wide QRS complex.

w_PR: Proportion of heartbeats with long PR interval

(longer than 210 ms).

x_xc: Median of the maximum cross-correlation between

ectopic beats.

x_rrel: Median of the ratio between the previous and

next RR intervals for each ectopic beat.

such an algorithm. Probably, the most labor-intensive task of our proposal was the
elucidation of the expert criteria underlying the training and test sets, and the ensuing
data relabeling to make these criteria as consistent as possible along the dataset.

Certainly, the most difficult class to define an appropriate discrimination knowledge
is the O class, inasmuch as the only provided information (the class name) is excessively
vague and it may include a range of pathophysiological processes showing very different
morphologies and rhythms. Hence, since this class is opposed to atrial fibrillation and
normal sinus rhythm, one expert may consider that only rhythm alterations should be
included in this class, while another expert may contemplate any event that is out of
normality, such as conduction delays or chamber enlargements, among others.

Thanks to the physiological meaning of the features provided by the interpretation,
it has been possible to throw light on some well-known ECG alterations that seem to
be considered as O representatives in the training set. A simple but valuable tool is the
per-class distribution of each feature. Figure 4 shows the distributions of three features

[Teijeiro, Garcia, Castro, Felix. arXiv:1802.05998, 2018]



Not enough data for deep learning? 
Wrong architectures?

“However, the fact that a standard random 
forest with well chosen features performed as 
well as more complex approaches, indicates 
that perhaps a set of 8,528 training patterns 
was not enough to give the more complex 
approaches an advantage. With so many 
parameters and hyperparameters to tune, the 
search space can be enormous and significant 
overtraining was seen…”

[Clifford et al. AF Classification from a Short Single Lead ECG Recording: the 
PhysioNet/Computing in Cardiology Challenge, Computing in Cardiology 2017]



[Rajpurkar et al., arXiv:1707.01836, 2017; Nature Medicine ‘19]



Differences with previous work

• Sensor is a Zio patch – conceivably much less 
noisy:

• ~90K ECG records annotated (from ~50K patients)
• Identify 12 heart arrhythmias, sinus rhythm and 

noise for a total of 14 output classes
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Appendix

Train + Val Test
Class Description Example Patients Patients

AFIB Atrial Fibrilla-
tion 4638 44

AFL Atrial Flutter 3805 20

AVB TYPE2
Second degree
AV Block Type
2 (Mobitz II)

1905 28

BIGEMINY Ventricular
Bigeminy 2855 22

CHB Complete Heart
Block 843 26

EAR Ectopic Atrial
Rhythm 2623 22

IVR Idioventricular
Rhythm 1962 34
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Train + Val Test
Class Description Example Patients Patients

JUNCTIONAL Junctional
Rhythm 2030 36

NOISE Noise 9940 41

SINUS Sinus Rhythm 22156 215

SVT Supraventricular
Tachycardia 6301 34

TRIGEMINY Ventricular
Trigeminy 2864 21

VT Ventricular
Tachycardia 4827 17

WENCKEBACH Wenckebach
(Mobitz I) 2051 29

Table 2. A list of all of the rhythm types which the model classifies. For each rhythm we give the label name, a more descriptive name
and an example chosen from the training set. We also give the total number of patients with each rhythm for both the training and test
sets.
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to-end on a single-lead ECG signal sampled at 200Hz and
a sequence of annotations for every second of the ECG
as supervision. To make the optimization of such a deep
model tractable, we use residual connections and batch-
normalization (He et al., 2016b; Ioffe & Szegedy, 2015).
The depth increases both the non-linearity of the compu-
tation as well as the size of the context window for each
classification decision.

We construct a dataset 500 times larger than other datasets
of its kind (Moody & Mark, 2001; Goldberger et al., 2000).
One of the most popular previous datasets, the MIT-BIH
corpus contains ECG recordings from 47 unique patients.
In contrast, we collect and annotate a dataset of about
30,000 unique patients from a pool of nearly 300,000 pa-
tients who have used the Zio Patch monitor1 (Turakhia
et al., 2013). We intentionally select patients exhibiting ab-
normal rhythms in order to make the class balance of the
dataset more even and thus the likelihood of observing un-
usual heart-activity high.

We test our model against board-certified cardiologists. A
committee of three cardiologists serve as gold-standard an-
notators for the 336 examples in the test set. Our model
exceeds the individual expert performance on both recall
(sensitivity), and precision (positive predictive value) on
this test set.

2. Model

Problem Formulation

The ECG arrhythmia detection task is a sequence-to-
sequence task which takes as input an ECG signal X =
[x1, ..xk], and outputs a sequence of labels r = [r1, ...rn],
such that each ri can take on one of m different rhythm
classes. Each output label corresponds to a segment of the
input. Together the output labels cover the full sequence.

For a single example in the training set, we optimize the
cross-entropy objective function

L(X, r) =
1

n

nX

i=1

log p(R = ri | X)

where p(·) is the probability the network assigns to the i-th
output taking on the value ri.

Model Architecture and Training

We use a convolutional neural network for the sequence-to-
sequence learning task. The high-level architecture of the
network is shown in Figure 2. The network takes as input
a time-series of raw ECG signal, and outputs a sequence
of label predictions. The 30 second long ECG signal is

1iRhythm Technologies, San Francisco, California
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Figure 2. The architecture of the network. The first and last layer
are special-cased due to the pre-activation residual blocks. Over-
all, the network contains 33 layers of convolution followed by a
fully-connected layer and a softmax.

sampled at 200Hz, and the model outputs a new prediction
once every second. We arrive at an architecture which is 33
layers of convolution followed by a fully connected layer
and a softmax.

In order to make the optimization of such a network
tractable, we employ shortcut connections in a similar man-
ner to those found in the Residual Network architecture (He
et al., 2015b). The shortcut connections between neural-
network layers optimize training by allowing information
to propagate well in very deep neural networks. Before
the input is fed into the network, it is normalized using a
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Train + Val Test
Class Description Example Patients Patients

JUNCTIONAL Junctional
Rhythm 2030 36

NOISE Noise 9940 41

SINUS Sinus Rhythm 22156 215

SVT Supraventricular
Tachycardia 6301 34

TRIGEMINY Ventricular
Trigeminy 2864 21

VT Ventricular
Tachycardia 4827 17

WENCKEBACH Wenckebach
(Mobitz I) 2051 29

Table 2. A list of all of the rhythm types which the model classifies. For each rhythm we give the label name, a more descriptive name
and an example chosen from the training set. We also give the total number of patients with each rhythm for both the training and test
sets.

Input

[Rajpurkar et al., arXiv:1707.01836, 2017; Nature Medicine ‘19] Output

• 1-D signal sampled at 200Hz, 
labeled at 1 sec intervals

• 34 layers
• Shortcut connections (ala 

residual networks) with max-
pooling

• Subsampled every other layer 
(28 in total)



Example of 1D convolution

1 0 1 1 0 1 1 0 1 1
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Train + Val Test
Class Description Example Patients Patients

JUNCTIONAL Junctional
Rhythm 2030 36

NOISE Noise 9940 41

SINUS Sinus Rhythm 22156 215

SVT Supraventricular
Tachycardia 6301 34

TRIGEMINY Ventricular
Trigeminy 2864 21

VT Ventricular
Tachycardia 4827 17

WENCKEBACH Wenckebach
(Mobitz I) 2051 29

Table 2. A list of all of the rhythm types which the model classifies. For each rhythm we give the label name, a more descriptive name
and an example chosen from the training set. We also give the total number of patients with each rhythm for both the training and test
sets.

Input

2 3 1Filter

Output3 4 5 3 4 5 3

= <1,0,1>*<2,3,1> = 1*2 + 0*3 + 1*1 = 3.

?
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Seq Set

Model Cardiol. Model Cardiol.

Class-level F1 Score

AFIB 0.604 0.515 0.667 0.544
AFL 0.687 0.635 0.679 0.646
AVB TYPE2 0.689 0.535 0.656 0.529
BIGEMINY 0.897 0.837 0.870 0.849
CHB 0.843 0.701 0.852 0.685
EAR 0.519 0.476 0.571 0.529
IVR 0.761 0.632 0.774 0.720
JUNCTIONAL 0.670 0.684 0.783 0.674
NOISE 0.823 0.768 0.704 0.689
SINUS 0.879 0.847 0.939 0.907
SVT 0.477 0.449 0.658 0.556
TRIGEMINY 0.908 0.843 0.870 0.816
VT 0.506 0.566 0.694 0.769

WENCKEBACH 0.709 0.593 0.806 0.736

Aggregate Results

Precision (PPV) 0.800 0.723 0.809 0.763
Recall (Sensitivity) 0.784 0.724 0.827 0.744
F1 0.776 0.719 0.809 0.751

Table 1. The top part of the table gives a class-level comparison of
the expert to the model F1 score for both the Sequence and the Set
metrics. The bottom part of the table shows aggregate results over
the full test set for precision, recall and F1 for both the Sequence
and Set metrics.

ical, requiring immediate attention (Dubin, 1996).

Table 2 in the Appendix also shows the number of unique
patients in the training (including validation) set and test
set for each rhythm type.

4. Results

Evaluation Metrics

We use two metrics to measure model accuracy, using the
cardiologist committee annotations as the ground truth.

Sequence Level Accuracy (F1): We measure the aver-
age overlap between the prediction and the ground truth
sequence labels. For every record, a model is required to
make a prediction approximately once per second (every
256 samples). These predictions are compared against the
ground truth annotation.

Set Level Accuracy (F1): Instead of treating the labels for
a record as a sequence, we consider the set of unique ar-
rhythmias present in each 30 second record as the ground
truth annotation. Set Level Accuracy, unlike Sequence
Level Accuracy, does not penalize for time-misalignment
within a record. We report the F1 score between the unique
class labels from the ground truth and those from the model
prediction.

In both the Sequence and the Set case, we compute the
F1 score for each class separately. We then compute the
overall F1 (and precision and recall) as the class-frequency
weighted mean.

Model vs. Cardiologist Performance

We assess the cardiologist performance on the test set. Re-
call that each of the records in the test set has a ground
truth label from a committee of three cardiologists as well
as individual labels from a disjoint set of 6 other cardiolo-
gists. To assess cardiologist performance for each class, we
take the average of all the individual cardiologist F1 scores
using the group label as the ground truth annotation.

Table 1 shows the breakdown of both cardiologist and
model scores across the different rhythm classes. The
model outperforms the average cardiologist performance
on most rhythms, noticeably outperforming the cardiolo-
gists in the AV Block set of arrhythmias which includes
Mobitz I (Wenckebach), Mobitz II (AVB Type2) and com-
plete heart block (CHB). This is especially useful given
the severity of Mobitz II and complete heart block and the
importance of distinguishing these two from Wenckebach
which is usually considered benign.

Table 1 also compares the aggregate precision, recall and
F1 for both model and cardiologist compared to the ground
truth annotations. The aggregate scores for the cardiolo-
gist are computed by taking the mean of the individual car-
diologist scores. The model outperforms the cardiologist
average in both precision and recall.

5. Analysis

The model outperforms the average cardiologist score on
both the sequence and the set F1 metrics. Figure 4 shows
a confusion matrix of the model predictions on the test set.
Many arrhythmias are confused with the sinus rhythm. We
expect that part of this is due to the sometimes ambiguous
location of the exact onset and offset of the arrhythmia in
the ECG record.

Often the mistakes made by the model are understand-
able. For example, confusing Wenckebach and AVB Type2
makes sense given that the two rhythms in general have
very similar ECG morphologies. Similarly, Supraventric-
ular Tachycardia (SVT) and Atrial Fibrillation (AFIB) are
often confused with Atrial Flutter (AFL) which is under-
standable given that they are all atrial arrhythmias. We also
note that Idioventricular Rhythm (IVR) is sometimes mis-
taken as Ventricular Tachycardia (VT), which again makes
sense given that the two only differ in heart-rate and are
difficult to distinguish close to the 100 beats per minute de-
lineation.
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Figure 4. A confusion matrix for the model predictions on the test
set. Many of the mistakes the model makes are not surprising.
For example, confusing second degree AV Block (Type 2) with
Wenckebach makes sense given the often similar expression of
the two arrhythmias in the ECG record.

One of the most common confusions is between Ectopic
Atrial Rhythm (EAR) and sinus rhythm. The main distin-
guishing criteria for this rhythm is an irregular P wave. This
can be subtle to detect especially when the P wave has a
small amplitude or when noise is present in the signal.

6. Related Work

Automatic high-accuracy methods for R-peak extraction
have existed at least since the mid 1980’s (Pan & Tomp-
kins, 1985). Current algorithms for R-peak extraction tend
to use wavelet transformations to compute features from
the raw ECG followed by finely-tuned threshold based clas-
sifiers (Li et al., 1995; Martı́nez et al., 2004). Because ac-
curate estimates of heart rate and heart rate variability can
be extracted from R-peak features, feature-engineered al-
gorithms are often used for coarse-grained heart rhythm
classification, including detecting tachycardias (fast heart
rate), bradycardias (slow heart rate), and irregular rhythms.
However, such features alone are not sufficient to distin-
guish between most heart arrhythmias since features based
on the atrial activity of the heart as well as other features
pertaining to the QRS morphology are needed.

Much work has been done to automate the extraction of
other features from the ECG. For example, beat classifica-
tion is a common sub-problem of heart-arrhythmia classifi-
cation. Drawing inspiration from automatic speech recog-
nition, Hidden Markov models with Gaussian observation
probability distributions have been applied to the task of

beat detection (Coast et al., 1990). Artificial neural net-
works have also been used for the task of beat detection
(Melo et al., 2000). While these models have achieved
high-accuracy for some beat types, they are not yet suffi-
cient for high-accuracy heart arrhythmia classification and
segmentation. For example, (Artis et al., 1991) train a
neural network to distinguish between Atrial Fibrillation
and Sinus Rhythm on the MIT-BIH dataset. While the
network can distinguish between these two classes with
high-accuracy, it does not generalize to noisier single-lead
recordings or classify among the full range of 15 rhythms
available in MIT-BIH. This is in part due to insufficient
training data, and because the model also discards critical
information in the feature extraction stage.

The most common dataset used to design and evaluate ECG
algorithms is the MIT-BIH arrhythmia database (Moody
& Mark, 2001) which consists of 48 half-hour strips of
ECG data. Other commonly used datasets include the
MIT-BIH Atrial Fibrillation dataset (Moody & Mark, 1983)
and the QT dataset (Laguna et al., 1997). While useful
benchmarks for R-peak extraction and beat-level annota-
tions, these datasets are too small for fine-grained arrhyth-
mia classification. The number of unique patients is in the
single digit hundreds or fewer for these benchmarks. A
recently released dataset captured from the AliveCor ECG
monitor contains about 7000 records (Clifford et al., 2017).
These records only have annotations for Atrial Fibrillation;
all other arrhythmias are grouped into a single bucket. The
dataset we develop contains 29,163 unique patients and 14
classes with hundreds of unique examples for the rarest ar-
rhythmias.

Machine learning models based on deep neural networks
have consistently been able to approach and often exceed
human agreement rates when large annotated datasets are
available (Amodei et al., 2016; Xiong et al., 2016; He et al.,
2015c). These approaches have also proven to be effective
in healthcare applications, particularly in medical imaging
where pretrained ImageNet models can be applied (Esteva
et al., 2017; Gulshan et al., 2016). We draw on work in au-
tomatic speech recognition for processing time-series with
deep convolutional neural networks and recurrent neural
networks (Hannun et al., 2014; Sainath et al., 2013), and
techniques in deep learning to make the optimization of
these models tractable (He et al., 2016b;c; Ioffe & Szegedy,
2015).

7. Conclusion

We develop a model which exceeds the cardiologist perfor-
mance in detecting a wide range of heart arrhythmias from
single-lead ECG records. Key to the performance of the
model is a large annotated dataset and a very deep convolu-
tional network which can map a sequence of ECG samples



Summary

• We are nearly always in realm of “not enough 
data”

• Modeling and incorporating prior knowledge 
is critical to good performance

• Design principles
–Model the distribution of physiological dynamics
– Derive features using existing clinical knowledge
– Start from the simplest possible model
– Share statistical strength across tasks


