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A De-ldentification Anecdote

In 2011, another “whack” at de-identification
Two hypotheses

- Multi: combine the outputs of multiple systems to come to a consensus
judgment about each word in a note

- Mega: use all features from these multiple systems in a single SVM model
Which is better?

- Two of my former postdocs and | had a “gentlemen’s/gentlewoman’s bet”!
How did | bet? How did it turn out?

Multi-Deldentifier's Component Systems

Stat-Deid SVM over many features
Stanford NER CRF over char n-grams, POS, “shape’, ...
MIST Deidentifier CRF over regex, dictionary matches

lllinois Named Entity Tagger | 2-stage CRF over affixes, nearby words, caps, ...

MIMIC Deidentifier Dictionaries + rules




Mixture of Experts Models

+ Define a variety of “experts” and a gating function
« Gating can be

- “hard” if it chooses one expert
(e.q., if different experts are good at different domains)

- “soft” if it combines different experts’ outputs

" Expertk

Image from Milos Hauskrecht, https:// le.cs.pitt.edu/~milos/courses/cs2750-Spring04/lectures/class22.pdf 3
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Hierarchical Mixture of Experts (“soft”)

« Generalized Linear Models for experts & gating

. Expert network (i, j) produces output Wi = f(Uin) [fis
the non-linearity]

- Gating networks compute a linear function and then [aun
softmax
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« Probabilistic interpretation: T" T’ ‘I ‘T
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« Used EM to train; lots of hair, as usual!

Jordan, M. |., & Jacobs, R. A ' 1994)ﬂHierarchicaI Mixtures of Experts and the EM Algorithm. Neural Computation, 6(2), 181-214. http://doi.org/10.1162/neco0.1994.6.2.181 4



Deferring

« Assume two “systems”

- “Model” can either decide (binary choice: 0/1) or PASS

« Decision Maker (DM) may be better, but more costly (e.g., may be human)
- May have additional inputs

- Opaque
Data Model DM Output
X1 0 1 0
X2 PASS 0 0
X3 1 1 1
X4 PASS 0 —> 0

« Uses of first-stage model:
 Flag difficult cases for review

 Cull a large pool of cases
- Audit DM for bias

Madras, D., Pitassi, T., & Zemel, R. S. (2018). Predict Responsibly - Improving Fairness and Accuracy by Learning to Defer. NeurlPS. 5



Model for Deferring

« Usual set-up:
- inputs X, output Y, additional inputs Z available only to DM
- XeR",Ye{0,1},Z€ R"™
- s € {0,1} is another output of the model, 1 = PASS

/ —yy1 d=5;1X)
Pdefer(lea Z) = H [PM(Yz =1 |X1)Yl(1 — PM(YZ — | |Xi))(1 Yz)]

[Pp(Y; = 1]X,Z)(1 — Py(Y; = 1| X, Z)) 171 61%)
- Model prediction: YM fx) =Py (Y=1|X) €[0,1]
- DM prediction: YD h(X Z)=Py(Y=1|X,Z) € [0,1]; his “black box"
. System prediction: ¥ = (1 — S)YM + SYd e [0,1]
- Defer decision: s = g(X) € 0,1

- Learn max likelihood solution to P,,,. so f, g adaot to A



« Minimize negative log-likelihood
Zdefe,,(Y, Y\, Yp,s) = —log Pdefe,,(Y|X, Z)

= 3101 = )Y, D) + 54, D))

where [(Y,p) = Y 1logp + (1 — Y)log(1 — p), the log probability of the label wrt
prediction p

- Like a mixture-of-experts learning problem, except that we cannot learn the
parameters of DM



Contrast with Learning to Reject

 Learning to reject focuses only on the accuracy of the stage 1 model:
3reject(Y’ YM’ §) = — Z [(1 — Si)l(Yi’ YM,i) + Si}/reject]

l
where 7,,.., IS a penalty for each rejection

‘ Z(Yi, f/i) = I[Y,- = IA/Z-] Is the classification accuracy
* Preject(le) — H [?E,z(l o ?M,i)(l_Yi)]l_Si eXp(?/reject)Si
i

* Rejection learning is a special case of learning to defer
. Add a “defer” penalty to & defer @Nd @assume DM has a constant loss; then

Z jerer( ¥ Yy, Yp,5) = Z [(1 = s)ICY, Y a,) T 5T, Y D)t 5¥defer]

. If (Y, IA/D) = a, a constant, then y,,, a

= Vreject —



Learning a Deferral Model

- The overall model is a mixture of ¥;,and Y,
- Model the probability of deferral as x, i.e., s ~ Ber(x)

. IA/M, 7 are functions of the inputs X, parameterized by &, which we learn
3defer(Y9 YM’ YD’ T, 9) - = IESNBBV(]Z’)‘EZ(Y’ YM’ YD’ s, (9)

- If we can assume that 7 = g(IA/M) alone (and IA/M = f(X)), then use two thresholds

----- | PASS +++++
| |

ty t,

Train an ANN as a binary classifier with output in [0, 1] and output according to its
value compared to the thresholds.

- Ifr = g(IA/M, X); useful if DM depends heterogeneously on data, differently from M

- Train by SGD, sampling s ~ Ber(x) during training; + lots more hair!



Fairness as Use Case vs. Inconsistency

« Many of their experiments study whether one can de-bias a black-box DM such as

Compas
- Today, we focus on the case where the DM does well on some subset of cases but

poorly on others
- Example: Predict the patient’s Charlson Co-morbidity Index (without

discriminating by age).
 Probability of surviving for the next 10 years
« De-biasing by age seems like an odd goal!
- Extra information Z: patient’s primary condition group

- To exacerbate inconsistency, they post-hoc invert predictions Y p on 30% of

males
« Mustuse 7 = g(IA/M, X) model to learn to predict where DM is reliable or not

https://www.mdcalc.com/charlson-comorbidity-index-cci 10


https://www.mdcalc.com/charlson-comorbidity-index-cci
https://www.mdcalc.com/charlson-comorbidity-index-cci

« On subset of cases where DM is reliable, system learns to defer frequently, but not

on unreliable cases!
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Figure 5: Each point is a single run in sweep
OVET Yreject/Vdefer- X-axis is the model’s low-
est accuracy over 4 subgroups, defined by the
cross product of binarized (sensitive attribute,
unreliable attribute), which are (race, age) and
(age, gender) for COMPAS and Health respec-
tively. Y-axis is model accuracy. Only best
Y-value for each X-value shown. Solid line
is learning to defer; dashed line is rejection
learning.
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Second Opinion

In medicine, patients facing a dangerous or expensive intervention often seek a

second opinion

« Not worthwhile for minor decisions, unless very easy/cheap
- What are the relative expertise of the primary and secondary doctors?

- How correlated are their opinions likely to be?
Decision might be mapped to the “learning to defer” approach, except that we know

very little about DM, since it might be almost anyone

- Thus, difficult to train IA/M

Recall that many studies find agreement by world-class experts only about 80% of

the time.

E.g., study of medical referrals; agreement on diagnosis

final = referral 0.12
refined 0.68
different 0.21

Van Such, M., Lohr, R., Beckman, T., & Naessens, J. M. (2017). Extent of diagnostic agreement among medical
referrals. Journal of Evaluation in Clinical Practice, 23(4), 870-874. http://doi.org/10.1111/jep.12747

13



Examples of Referral vs. Final Diagnoses

TABLE1 Examples of the comparison of referral and final diagnosis by category of agreement

Examples of referral and final diagnosis by categories

Referral Diagnosis

Final Diagnosis

Category 1
No change in diagnosis

Category 2
Diagnosis better defined

Category 3
Different diagnosis

Question fibromyalgia
Low-back pain

Feelings of anxiety
Polymyalgia rheumatica
Dizziness

Endocrine abnormalities

Multiple constitutional symptoms over the last year
Syncope

Weakness

Elevated PSA; spinal mass

Anemia

Weight loss

Body aches

Weight loss and abdominal pain
Fatigue

Fibromyalgia

Mechanical low-back pain-chronic
Generalized anxiety

Polymyalgia rheumatica
Imbalance/vertigo

Secondary adrenal insufficiency; suspect opioid endocrinopathy
Acute CMV infection

Syncope secondary to doxazosin

Drug-induced rhabdomyolysis

Metastatic prostate cancer to spine and lung

Autoimmune hepatitis

Malignant lymphoma suggestive of Hodgkin lymphoma
Acute myelogenous leukemia

NSAID-induced gastropathy; irritable bowel syndrome
Heart failure

Abbreviation: PSA, prostate-specific antigen; CMV, cytomegalovirus; NSAID, non-steroidal anti-inflammatory drug.

Van Such, M., Lohr, R., Beckman, T., & Naessens, J. M. (2017). Extent of diagnostic agreement among medical 14
referrals. Journal of Evaluation in Clinical Practice, 23(4), 870—874. http://doi.org/10.1111/jep.12747



Disagreements Vary by Diagnostic Category

* “Findings from autopsies indicate that diagnostic errors contribute to approximately

10% of patient deaths and diagnostic errors account for 6% to 17% of adverse

events in hospitals.”
- Mayo Clinic and its referring practices (!)

TABLE 2 Distribution of diagnostic comparisons within clinical classification system categories

Diagnostic comparisons by clinical classification system categories

Group 1 Group 2 Dx better Group 3 Percent Percent Percent
CCS Categories Same Dx defined Different Dx Total Group 1 Group 2 Group 3
Musculoskeletal 7 42 12 61 11% 69% 20%
Signs and symptoms 8 24 7 39 21% 62% 18%
Nervous 8 19 [ 31 26% 61% 13%
Circulatory 1 19 6 26 4% 73% 23%
Endocrine 1 20 3 24 4% 83% 13%
Respiratory 0 16 8 24 0% 67% 33%
Digestive 2 18 2 22 9% 82% 9%
Other{categories less than n = 20) 7 32 18 57 12% 56% 32%
Total 34 190 60 284 12% 67% 21%

Abbrevialion: CCS, Clinical Classilicalion Sofllware.

Van Such, M., Lohr, R., Beckman, T., & Naessens, J. M. (2017). Extent of diagnostic agreement among medical
referrals. Journal of Evaluation in Clinical Practice, 23(4), 870-874. http://doi.org/10.1111/jep.12747

15



Such Disagreement are Common:
How reliable is smear microscopy (for TB)?

Frequency of agreement or disagreement between four microscopists®

Report Reports of all other microscopists® Total no. of
ofone observations
NCruscopsst Negative Scanty 1+ 2+ 3+
Negative 233 25 8 2 0 268 309
Scanty® 24 1 7 4 4
1+ 8 2 18 4 43
2+ 2 8 16 50 115 335
3+ 0 4 4 49 177
Total 267 44 40 115 178 644

3 333

Frequency of agreement or disagreement between four microscopists on the score
of positive results (data from Table 4 presented in percentages)

All other microscopists Total (%)
Negative Scanty 1+ 2+ 3+
Report of one 1+ 19 5 42 9 100
microscopist 2+ 2 7 14 43 100
3+ 0 2 2 28 100

Daniel, T. M. Toman'’s tuberculosis. Case detection, treatment and monitoring: questions and answers. ASTMH, 2004.
https://tbrieder.org/publications/books_english/toman_2.pdf



Possible Approaches to 2nd Opinion Decision

- Uncertainty via Classification (UVC)

* Train a classification model

« Post-process its output distribution to estimate uncertainty

 Direct Uncertainty Prediction (DUP)

 Train a different prediction model to estimate uncertainty directly from case

Inputs
« Which is better?
« What is your intuition? Why?
- What was mine?

Raghu, M., Blumer, K., Sayres, R., Obermeyer, Z., Kleinberg, R. D.,
Direct Uncertainty Prediction for Medical Second Opinions. lcml.

Classification
(trained on (x, p))

Data

Output label
Instance X,

distribution

Uncertainty via

, ) Classification
Direct Uncertainty

Prediction (DUP)
(trained on (x, U(p))
Uncertainty
Score h(x)

Mullainathan, S., & Kleinberg, J. M. (2019).



How to Train

- Setup
- Cases x;

. multiple labels by experts, yl,(l), yi(Z)’ L yi(ni)
- h(x;) represents uncertainty in the prediction of experts

- UVC
- Classifier p;, = f(x;) gives distribution over labels

- In absence of expert judgment, distribution of p; (e.g., variance) can be used as
estimate of uncertainty, /

- DUP
. Assume that the yl.(j) are all drawn from a set of possible grades, ¢, ..., ¢;.
L : SN zj lyi(j):Cl
. Empirical histogram is p;” =
n.

l

- Target uncertainty function U( - ) from this empirical histogram

18



Histogram of Doctor Grades for
Image 1 with Adj Grade 1

Q 1 2 3 4 5 6
Label Value

Histogram of Doctor Grades for

1.0 Image 2 with Ad| Grade 1

0.8
c 06

[ =
a 04

Figure 2. Patient cases have features resulting in higher doc-
tor disagreement. The two rows give example datapoints in our
dataset. The patient images x;, x; are in the left column, and on
the right we have the empirical probability distribution (histogram)
of the multiple individual doctor DR grades. For the top image,
all doctors agreed that the grade should be 1, while there was a
significant spread for the bottom 1mage. When later performing
an adjudication process (Section 5), where doctors discuss their
initial diagnoses with each other and come to a consensus, both
patient cases were given an adjudicated DR grade of 1.

19



Possible Versions of U( - )

k
A A l
. Udisagree(xi) — Udisagree(pi) =1- 2 (pg ))2
=1

U, x)=U,,(p) = Z c (p(l))2 — (Z Agl))Z
=1

- For many versions of U( - ) [entropy, variance, ...], the paper proves that such
estimators are unbiased, whereas UVC has a bias term.

20



* Note that, as in learning to defer, the doctors have access to more information than
the model, which only sees X;

« Doctors also see patient and family medical history, demographics, co-
morbidities, etc.

- Let 0 be all data seen by doctors, and x; = g(0) where g “hides” some of the
information from the model

- Assume k doctor-assigned grades, ¢y, ..., ¢,
- Let O be random variable for patient features, Y be the doctor labels for O

- fis a density function that assigns a probability to (patient features, doctor grade)
(0,y)
cLetY; =1y ,and Y =[Y},.... V]

- Then fis a density over points f(O = 0,Y =)

_ Marginal probability of patient features, f, = J 1(O,y)

y
21



Predict Disagreement

« Doctors have seen O

- Uncertainty of expected value of Y given o

U(J y'f(Y=YI0)) = U(E[Y | O)

y
- For a specific patient, uncertainty is given by U(E[Y | O = o])
- but model sees only x = g(0)
- Assume Y 1 g(0O)| O and g(0) is truly smaller than O

. hagp(x) = E[UE[Y | O]) | 8(0) = x] = I UELY | O = o)) fp(0|8(0) = x)

(0]
- Computes expectation of uncertainties of all posteriors

. () = UELY | g(0) = x) = U(J E[Y | O = o] fp(o|5(0) = X))

o

- Computes uncertainty of the expected posterior
- See proof in the paper’s appendix.

Raghu, M., Blumer, K., Sayres, R., Obermeyer, Z., Kleinberg, R. D., Mullainathan, S., & Kleinberg, J. M. (2019). 29
Direct Uncertainty Prediction for Medical Second Opinions. lcml.



What is the bias of Uncertainty Via Classification”?

. Bias of huvc using Udisagree

. B0

. Bias of &

. [Eg(O)

uvce

Y Varojyo) (ELY;| 011 8(0))
[

using U, ,,

Varogo) ( D 1-E[Y,| O] |g<0>>
[

23



llustrative Simple Empirical Examples

Simple Mixture of Gaussians
fi ~ Ny, 01-2), mixture probabilities g,

k
flo,y = i) = g;f(0) and marginal f,(0) = Z q,/(0)
i=1

q,f,(0)
Zi‘c:l QIfl(O)

fiy=1Ilo)=

Image classification
House numbers
Small images = {airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, trucks}

24



Model Type (3d,5G) (5d,4G) (10d,4G)

UVC 69.1% 62.0% 56.0%
DUP 74.6% 71.2% 63.4%

Table 1. DUP and UVC trained to predict disagreement on
mixtures of Gaussians. We train DUP and UVC models on dif-
ferent mixtures of Gaussians, with(nd, mG) denoting a mixture
of 'n Gaussians in m dimensions. Results are in percentage AUC
over 3 repeats. The means of the Gaussians are drawn iid from a
multivariate normal distribution (full setup in Appendix.) We see
that the DUP model performs much better than the UVC model at
identifying datapoints with high disagreement in the labels.

Model SVHN (disagree) CIFAR-10 (disagree)

UvC  75.8% 79.1%
DUP 88.0% 85.3%

Table 2. DUP and UVC trained to predict label disagreement

corresponding to image blurring on SVHN and CIFAR-10.

DUP outperforms UVC on predicting label disagreement on SVHN
and CIFAR-10, where the labels are drawn from a noisy distribu-
tion that varies depending on how much blurring the source image
has been subjected to. Full details in Appendix.

CIFAR-10: 60K 32x32 color images,
10 labels, balanced

SVHN: Google Street View house
number images, 600K, 32x32
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Doctor Disagreement on Diabetic Retinopathy Images

- 587x587 retinal fundus images (back of the eye)

- Can diagnose Diabetic Retinopathy (DR)
« Leading cause of blindness
- Treatable if caught early

* DR graded on scale: {1=no, 2=mild, 3=moderate, 4=severe, 5=proliferative}
- > 3isreferable

- Unclear how many images they used. Gulshan et al. has 2 datasets of

« ~10K images from ~5K patients and

« ~2K images from ~900 patients,
« 7.8%, 14.6% referable in the two datasets

DR photo
h J/Www. web.org/ /fun h raph

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., et al. (2016). Development and Validation of a Deep Learning
Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA : the Journal of the American Medical Association, 1-9.
http://doi.org/10.1001/jama.2016.17216


https://www.opsweb.org/page/fundusphotography

DR Experiment

Train: Test in 80:20 ratio, by patient id
* (avoid correlations from multiple images of same patient)
- focus on cases with more than one doctor-assigned label
Interpreting DR grades:
- Categorical: E.g., grade 2 always means micro aneurysms, grade 5 may refer to

lesions or laser scars. U ;o i the appropriate measure

- Continuous: Patients tend to progress sequentially through the grades. U .. is
the appropriate measure

Train Uyjsporee @nd U, ON their Train data [using pre-trained ImageNet models]

Consider Test and Train data sets specialized t0 (X;, Uy;su0ree(P;) @nd (x;, U, (D))
Binarize uncertainty measures, at 0.3 and 2/9, respectively

Train a classifier, 4., on the Train data pairs (x;, p;)

UVC models trained on U ° A (x;)

DUP models trained directly on pairs (x;, dlsagree(pl)) and (x;, m,,(pl)) where U”

is the binarized version of U o7



Task Model Type Performance (AUC)
Variance Prediction UVC Histogram-E2E 70.6%
Variance Prediction UVC Histogram-PC 70.6%
Variance Prediction DUP Variance-E2E 72.9%
Variance Prediction DUP  Variance-P 74.4%
Variance Prediction DUP  Variance-PR 74.6%
Variance Prediction DUP  Variance-PRC 74.8%
Disagreement Prediction UVC Histogram-E2E 73.4%
Disagreement Prediction UVC Histogram-PC 76.6%
Disagreement Prediction DUP Disagree-P 78.1%
Disagreement Prediction DUP  Disagree-PC 78.1%
Variance Prediction DUP Disagree-PC 73.3%
Disagreement Prediction DUP  Variance-PRC 77.3%

Table 3. Performance (percentage AUC) averaged over three runs for UVC and DUPs on Variance Prediction and Disagreement
Prediction tasks. The UVC baselines, which first train a classifier on the empirical grade histogram, are denoted Histogram-. DUPs are

trained on either 7. ****97®) or T"%") ' and denoted Disagree-, Variance- respectively. The top two sets of rows shows the performance of

train train?

the baseline (and a strengthened baseline Histogram-PC using Prelogit embeddings and Calibration) compared to Variance and Disagree
DUPs on the (1) Variance Prediction task (evaluation on 7}."%") and (2) Disagreement Prediction task (evaluation on 7}=97*)). We
see that in both of these settings, the DUPs perform better than the baselines. Additionally, the third set of rows shows tests a Variance

DUP on the disagreement task, and vice versa for the Disagreement DUP. We see that both of these also perform better than the baselines.

28



Adjudicated Evaluation

* Do high uncertainty scores
correspond to cases where
average doctor grade differs
from adjudicated grade?

Many individual doctor grades
& @_ @ @

W NN

Single adjudicated grade (via discussion)

@*Q

Figure 3. Labels for the adjudicated dataset A. The small, gold
standard adjudicated dataset A has a very different label structure
to the main dataset 7'. Each image has many individual doctor
grades (typically more than 10 grades). These doctors also tend to
be specialists, with higher rates of agreement. Additionally, each
image has a single adjudicated grade, where three doctors first
grade the image individually, and then come together to discuss
the diagnosis and finally give a single, consensus diagnosis.

29



Model Type Majority Median Majority =1 Median =1 Referable
UVC Histogram-E2E-Var 78.1% 78.2% 81.3% 78.1% 85.5%
UVC Histogram-E2E-Disagree 78.5% 78.5% 80.5% 77.0% 84.2%
UVC Histogram-PC-Var 77.9% 78.0% 80.2% 77.7% 85.0%
UVC Histogram-PC-Disagree 79.0% 78.9% 80.8% 79.2% 84.8%
DUP  Variance-PR 80.0% 79.9% 83.1% 80.5% 85.9%
DUP  Variance-PRC 79.8% 79.7% 82.7% 80.2% 85.9%
DUP Disagree-P 81.0% 80.8% 84.6 % 81.9% 86.2%
DUP Disagree-PC 80.9% 80.9% 84.5% 81.8% 86.2%

Table 4. Evaluating models (percentage AUC) on predicting disagreement between an average individual doctor grade and the
adjudicated grade. We evaluate our models’s performance using multiple different aggregation metrics (majority, median, binarized
non-referable/referable median) as well as special cases of interest (no DR according to majority, no DR according to median). We
observe that gll direct uncertainty models (Variance, Disagree’) outperform all classifier-based models (Histogram.) on all tasks,

30



Larger Theme:
Decision Support between Machine and Human

« Explanation
 Trust
« Optimization over entire system

Journal of the American Medical Informatics Association, 0(0), 2020, 1-9

doi: 10.1093/jamia/0cz229 /\ M | /\

MATICS PROFESSIONALS. LEADING THE WAY.

Research and Applications | OXFORD

Research and Applications

Physician understanding, explainability, and trust in a
hypothetical machine learning risk calculator

William K. Diprose (®,"* Nicholas Buist,>* Ning Hua,® Quentin Thurier,?
George Shand,* and Reece Robinson?

'Department of Medicine, University of Auckland, Auckland, New Zealand, 2Department of Emergency Medicine, Whangarei
Hospital, Whangarei, New Zealand, 0rion Health, Auckland, New Zealand, and “Clinical Education and Training Unit, Waitemata
District Health Board, Auckland, New Zealand

*These authors contributed equally.

Corresponding Author: William K. Diprose, Research Fellow, Department of Medicine, Faculty of Medical and Health Sci-
ences, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand; william.diprose@auckland.ac.nz
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Empirical Evaluation of Understanding and Trust

- GDPR requires patients to be able to receive “meaningful information about the
logic involved” in an automated tool.

« Hypothetical ML risk calculator for pulmonary embolism

« “You are a GP [general practitioner] who has reviewed a 50-year-old woman
presenting with shortness of breath. After a history, examination, laboratory tests,
ECG [electrocardiogram], and a chest x-ray, you are comfortable you have
excluded the most concerning diagnoses. However, you are still considering
pulmonary embolism. The practice has installed a piece of software that uses
artificial intelligence to assist with ruling out pulmonary embolism. It can stratify
patients as either; (1) low risk of pulmonary embolism: reassurance and
discharge recommended; or (2) not low risk of pulmonary embolism: computed
tomography pulmonary angio- gram recommended. The software automatically
analyses the electronic record, including your documented history, examination,
and laboratory tests, and provides its recommendation.”

« Control: “Your patient has a low risk (<1% chance) of pulmonary embolism. They
should be reassured and followed up in the community as you deem appropriate.
This recommendation is based on a cohort of 10 000 patients who were
investigated for pulmonary embolism, of whom 1000 had a similar risk profile.

The software has been externally validated.” 32



Four Possible Explanations (Control + one of these)

(a) D-dimer (ng/mL) _ (C) D-dimer .
Symptoms/signs of deep vein thrombosis (yes/no) _ No symptom/sign of deep vein thrombosis -
Previous venous thromboembolism (yes/no) _ -
Heart rate (bpm) _

No previous venous thromboembolism

Heart rate M

Surgery/immobility in the past 4 weeks (yes/no) _
Malignancy (yes/no) _
Haemoptysis (yes/no) -

Age (years) -

Contribution to predictive power

(b)
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Figure 1. Graphical visualizations shown to participants with the following complementary explanation. (A) For variable importance (VI), the visualization shows
the relative importance of each clinical factor used by the model. This is general information about the software’s logic. (B) For individual conditional expectation
plots (ICE), the visualizations show the average and standard deviation of the software’s predictions for different values of the most influential clinical factors
used by the model. This is general information about the software’s logic. (C) For local interpretable model-agnostic explanations (LIME), the visualization shows
the positive or negative relative impact of the most influential clinical factors used by the software to estimate your patient’s risk of pulmonary embolism (PE).
This profile is specific to your patient. (D) For Shapely values (SVs), the visualization shows the positive or negative contribution of each clinical factor to the risk
estimated by the software. The sum of the bars is equal to your patient’s PE risk. This profile is specific to your patient.
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Survey

« Weak experiment. Only
249/1315 subjects
responded, and only 170
completed survey.

No
explanation

Global
explanation

Local
explanation

1315 (100%)

Respcl)nded

v

249 (18.9%)

|
Completed survey

170 (12.9%)
Randomized
J I L T ]

37 (21.8%) 33 (19.4%) 54 (31.8%) 46 (27.0%)
Control Control Control Control
VI VI ICE ICE

LIME SV LIME SV
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Results

* Physicians who reported “Yes” to the question “Would you be able to explain the
software’s decision to the patient” were more likely to respond “Yes” to the question
“Would you follow the software recommendation?” ... No particular ML
explainability method had a greater influence on intended physician behavior

87.8% of physicians preferred an ML output which contained a model-agnostic
explanation, compared with 12.2% who preferred the control output (no model-
agnostic explanation)

Local explanations (LIME [32.1%] and SVs [29.9%]) were preferred over global
explanations (VI [18.2%] and ICE [19.7%)])

( Would you follow the

hlnlal

Wou tdyoube able to explain the Wouldyoub able to explain the Wo Idy u be able to explain the
softwares decision to the patient? softwares decision to the patient? softwares decision to the patient?

Figure 5. Relationship between explainability and trust. (A) Control condition. (B) Global explanation. (C) Local explanation.
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