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Interpretabllity Issues

« People understand simple models

« George Miller, 7+2: “There seems to be some limitation built into us either by
learning or by the design of our nervous systems, a limit that keeps our channel
capacities in this general range.”

« “... the number of chunks of information is constant for immediate memory.
The span of immediate memory seems to be almost independent of the
number of bits per chunk ...”

* Not surprising that one cannot “keep in mind” complex models

RUDYARD KIPLING

« What leads to complex models? And what to do about it? UST SO
+ Overfitting o «}v,; STORIES
 Restrict model complexity; e.g., regularization Phe K22 v

%

+ True complexity

- Make up “just-so” stories that give a simplified
explanation of how the complex model applies
to specific cases

« Trade off lower performance for simplicity of model

Miller, G. A. (1956). The magical number seven plus or minus two: some limits on our capacity for processing information. Psychological Review, 63(2), 81-97. 2



Trust

» Critical for adoption of ML models
« Case-specific prediction
» Clinical decision support
« Confidence in model
« Population health

 Recall my critique of randomized controlled trials

« Simplest cases (ho comorbidities), smallest sample needed for significance test,
shortest follow-up time

+ Results applied to very different populations

- Same concerns for ML models
« Train and test samples often drawn from same population
« Are results applicable elsewhere?



Explanation — Not a New Ideal!
Mycin, 1975

- Mycin (1974) used backward-chaining rules to
determine whether a patient had a bacterial
infection that needed to be treated, and how
best to treat

« Collection of several hundred rules, each of
which encoded a relatively independent fact

« Certainty factors encoded a theory of
uncertain reasoning (tantamount to very strong
independence assumptions, leading to
problems)

« Context mechanism to fill in implicit clauses in
rules;
patient—site—infection—culture—organism—
drug

RULEQ92

IF we have identified organisms for
which treatment is indicated

THEN select a treatment that
covers those organisms

RULEO37

IF the organism
|) stains gram positive
2) has a coccus shape
3) grows in chains
THEN
There is suggestive evidence (.7)
that the identify of the organism
is streptococcus



How Mycin Works

Dynamically generates an and/or tree via backward chaining
To find out a fact
* |f there are rules that can conclude it, run them
« Otherwise, ask the user
To run arule
« Find out if the facts in the premises are true (enough)
- If they all are, then assert the conclusion (with suitable certainty factor)

This traces out the equivalent of a flowchart, but by generating it on the fly from
underlying rules

* Knowledge is always applied when relevant
- Can answer questions about how/why it is working



Explanations from a Backward-Chaining Rule Interpreter

* In light of the site from which the culture was obtained, and the method of
collection, do you feel that a significant number of ORGANISM-1 were obtained?
“*WHY

- [1.0] It is important to find out whether there is therapeutically significant disease
associated with this occurrence of ORGANISM-1
It has already been established that:

 [1.1] the site of the culture is not one of those which are normally sterile, and
+ [1.2] the method of collection is sterile

« Therefore, if:
+ [1.3] the organism has been observed in significant numbers

- Then: there is strongly suggestive evidence (.9) that there is therapeutically
significant disease associated with this occurrence of the organism

* [Also : there is strongly suggestive evidence (.8) that the organism is not a
contaminant]

Shortliffe, E. H., Davis, R., Axline, S. G., & Buchanan, B. G. (1975). Computer-based consultations in clinical therapeutics: explanation and rule acquisition
capabilities of the MYCIN system. Computers and Biomedical Research, 8, 303-320.
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**WHY

[2.0] . . . in order to find out a locus of infection in PATIENT-1
It has already been established that:

« [2.1] the site of the culture is known, and

« [2.2] the number of days since the specimen for the culture was obtained
is less than 7

Therefore, if:

- [2.3] there is therapeutically significant disease associated with this occurrence
of the organism

Then: it is definite (1.0) that the site of the culture is a locus of infection in the patient



**WHY [i.e., WHY is it important to find out a locus of infection in PATIENT-17]

[3.0] . . . in order to find out about an organism or class of organisms for which
therapy should cover

It has already been established that:
- [3.1] the site of the culture is blood, and
+ [3.2] the stain of the organism is grampos, and
+ [3.3] the portal of entry of the organism is Gl
Therefore, if:

+ [3.4] [A- abdomen is a locus of infection in the patient, or B- pelvis is a locus of
infection in the patient]

Then : there is strongly suggestive evidence (.9) that enterobacteriaceae is a class of
organisms for which therapy should cover



« *HOW 3.0 [i.e., HOW were you finding out about an organism or class of
organisms for which therapy should cover?]

- [4.0] At that point RULE095 was being used.
In addition :

- [4.1] RULE162 was used to conclude that bacteroides is an organism for which
therapy should cover, and

- [4.2] RULE115 will be tried later, as well.

« *HOW 4.1 [i.e., HOW was RULE162 used?]

- [5.0] We have already established that:
- [5.1] the site of the culture is blood, and
 [5.2] the portal of entry of the organism is Gl, and
+ [5.3] the patient is a compromised host

« Therefore : it is definite (1.0) that bacteroides is an organism for which therapy
should cover (RULE162)



- ** DO YOU EVER PRESCRIBE CARBENICILLIN FOR PSEUDOMONAS
INFECTIONS?

- RELEVANT RULES: RULEO64 RULE119 RULE120

WHICH ONES DO YOU WISH TO SEE?
** RULEOG4
IF: 1) IT IS KNOWN WITH CERTAINTY THAT THE IDENTITY OF THE ORGANISM IS

PSEUDOMONAS, AND

2) THE DRUG UNDER CONSIDERATION IS GENTAMICIN

- THEN: RECORD THE FOLLOWING AS A MORE APPROPRIATE THERAPY:
GENTAMICIN-AND-CARBENICILLIN
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Local Interpretable Model-agnostic Explanations

(LIME)

sneeze | M ‘

@ weight
headache
no fatigue

age

Model Data and Prediction

Explainer
(LIME)

sneeze

headache

no fatique

Explanation

Human makes decision

- A model predicts that a patient has the flu, and LIME highlights:

- Sneeze and headache are portrayed as contributing to the “flu” prediction

* “no fatigue” is evidence against it.

« With these, a doctor can make an informed decision about whether to trust the

model’s prediction.

e Approach helps detect data leakage, data set shift, using human expertise

LIME slides developed from Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should | Trust You?” (pp. 1135-1144). Presented at
the the 22nd ACM SIGKDD International Conference, New York, New York, USA: ACM Press. http://doi.org/10.1145/2939672.2939778
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Explanation of Cases May be Useful to Compare Models

Example #3 of
Algorithm 1
Words that Al considers important:
GO
mecan
anyo
thi
K
through|
Document

From: pauld @ verdix com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge hq.verdix.com
Organization: Verdix Corp

Lines: 8

 Predict whether a post is about “Christianity” or “Atheism”

roe Cus: () Ao OO
Algorithm 2

Predicted: Words that A2 considers important: Predicted

. Atheism Pbﬂlﬂ‘ . Athesm

Prediction correct: Host Prediction correct:

v : v

Document
From: pauld @ verdix.com (Paul Durbin)

Subject: Re: DAVID CORESH IS! GOD!

Nntp-Posting-Host: sarge hq.verdix.com
Organization: Verdix Corp
Lines: 8

+ Algorithm 2 may be overall more accurate, but Algorithm 1 makes more sense, at

least on this example.

e Again, relies on human expertise, which is much broader than any of our models

12



Desiderata for Explanations

* Interpretable — “provide qualitative understanding between the input variables and
the response”

+ depends on audience
* requires sparsity
- features must make sense

* e.g., eigenvectors in principal component analysis are not explainable
features

 Local fidelity — “it must correspond to how the model behaves in the vicinity of the
instance being predicted”

+ Model-agnostic — “treat the original model as a black box”
e /s this really a good idea for all models?

13



How to Make Interpretable Models

- If the original data are = € R%, define a new set of variables, =’ € {0,1}% that can
serve as the interpretable representation of the data

« An explanation is a model g € G where G is the class of interpretable models
* E.g., linear models, additive scores, decision trees, falling rule lists, ...
« The domain of g is {0, 1}d/, i.e., the interpretable representation of the data
« The complexity of a model is Q(g)
* E.g., depth of a decision tree, number of non-zero weights in a linear model
* The full model is f : R = R
« E.qg., for classification, f is probability that x belongs to a certain class
. m:(2)is a proximity measure of how close z is to x, thus defining a locality around x
- Let L(f, g, 7.)be a measure of how unfaithful g if to f in the locality defined by 7,
* Then

5(:6) = arg mingEG’ E(f?.gv ﬂ-x) + Q(g)

is the best explanatory model for x given our choices for {£, 7, {2}

14



Use Sampling to Generate Data in a Local Neighborhood

- Goal is model-agnostic explanation capability
 Thus, cannot rely on knowing anything about the model f
« To explain the model’s result around the interpretable point x’,

- sample in the interpretable representation space to get a set of points 2’ € {0, 1}d'
to create a dataset Z of perturbed samples

- recover sample z € R?and compute f(z) as the label for z € Z
- optimize §(z) = argmin o L(f, 9, 7:) + ©(g), weighting contributions of z by 7, (z)

15



Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f, Number of samples N
Require: Instance z, and its interpretable version z’
Require: Similarity kernel 7., Length of explanation K

. . Z+«{}
Sparse Linear Explanation for i € {1,2,3,... N} do
z; < sample_around(z")
Z+ ZU (2], f(zi), mz(2:))
end for
. . w + K-Lasso(Z, K) > with z; as features, f(z) as target
Choose G to be the class of linear models O

such that g(2') = wy - 2/

. Let mx(2z) = exp(—D(z, 2)*/0?) be an exponential kernel on some distance
function D with width o

* E.g., cosine distance for bag-of-words, L2 distance or DICE for images

£<f7gv77$) — Zz,z’EZ Wm(Z)(f(Z) T g(Z’))Q

! Toy example to present intuition for LIME.
L The black-box model’s complex decision
o | function f (unknown to LIME) is represented
[ by the blue/pink background, which cannot
+ ‘ be approximated well by a linear model. The
— . bold red cross is the instance being
+l ‘ ° N explained. LIME samples instances, gets
predictions using f, and weighs them by the
| @ proximity to the instance being explained
I (represented here by size). The dashed line
| is the learned explanation that is locally (but

] not globally) faithful.
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Apply to Text Classification

- Bag of words, cosine distance for 7z
« Choose K as a limit on the number of words in an explanation

Model

sheeze

Flu

Explainer

weight
headache
no fatigue

age

Data and Prediction

‘ (LIME)

sneeze

headache |

no fatigue

Explanation

»

Human makes decision
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Apply to Image Interpretation

Superpixel is a group of connected pixels with similar colors or gray levels
+ Image is segmented into super pixels
« K is chosen as the number of superpixels to represent

K-LASSO predicts label from superpixels, to select which K of them to use for
explanation

with N=5000, scikit-learn random forests with 1000 trees = 3 sec

explaining Inception network results = ~10 min

¥

A

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar ~ (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top
3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)



Choosing a Suite of Examples to Explain

- Choose a diverse, comprehensive set of B examples to explain

- Given explanations for a set of instances X(| X| = n), consider the n x d’ explanation
matrix VV whose rows are examples and columns are features

« Each entry gives the local importance of that feature for that example
- For linear models, for instance x;, g; = &(x;), set Wi = ]wgij
A LS

» recall that g(2') = wy - 2 4 BB o s
- 1,is a measure of global importance of that feature -

-« I; = /> Wi for text

- more difficult to superpixels because they don’t

recur over different instances

) (n) (u) (W) (w)

el B T O B

. B T




Algorithm 2 Submodular pick (SP) algorithm

Require: Instances X, Budget B
for all z; € X do
Wi <« explain(z;, x}) > Using Algorithm
end for
for je {l...d"} do
I; « />, [Wij| > Compute feature importances
end for

1

=

Ve {)
while |V| < B do > Greedy optimization of Eq (4)
V « V Uargmax, c(V U {i}, W,I)
end while
return V
d/
(VW I) = Lgicviw, >0l
j=1
Pick(W, I) = argmax c¢(V, W, I)
VIIVI<B

Choosing i that maximizes marginal coverage c(V U {i}, W, I) — ¢(V, W, I)
approximates optimum

20



LIME Experiments

- Two sentiment analysis datasets (2000 instances, each; used 1600/400 test/train)
- Bag-of-words as features
« Models:
* Decision Trees
+ Logistic Regression with L2 regularization
* Nearest Neighbors
« Support Vector Machines with RBF kernels
« Random Forest (1000 trees) with word2vec embeddings
e K=10

21
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(a) Sparse LR (b) Decision Tree

Figure 6: Recall on truly important features for two
interpretable classifiers on the books dataset.
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2 &

® 50 ® 50
@ @

25 25

0 0

random parzen greedy LIME random parzen greedy LIME
(a) Sparse LR (b) Decision Tree

Figure 7: Recall on truly important features for two
interpretable classifiers on the DVDs dataset.
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Human Experiments

Questions:
« Can users choose which of two classifiers generalizes better

- Based on the explanations, can users perform feature engineering to improve the
model

 Are users able to identify and describe classifier irregularities by looking at
explanations

“Christianity” vs. “Atheism” from 20-newsgroups dataset
- known problems of data leakage from headers, ...
« trained original and “cleaned” classifiers for comparison
- test set accuracy favors the “wrong” classifier!!!
Separate test set of 819 web pages about these topics from http://dmoz-odp.org
SVM with RBF kernels, trained on the 20-newsgroup data
Mechanical Turk, 100 users, K=6 words, B=6 documents/Turk

* in 2nd experiment, they are asked to remove word features they believe
inappropriate

23



100
[ Random Pick (RP)
8 [ Submodular Pick (RP) 89I.0
S 80.0
S 80 I 75%.0
g sdl.o
S 60
X
40
greedy LIME

Figure 9: Average accuracy of human subject (with
standard errors) in choosing between two classifiers.

0.8

—— SP-LIME
—— RP-LIME
— No cleaning

o
\'

o
o
\

Real world accuracy

o
o

1 2 3
Rounds of interaction

Figure 10: Feature engineering experiment. Each
shaded line represents the average accuracy of sub-
jects in a path starting from one of the initial 10 sub-
jects. Each solid line represents the average across
all paths per round of interaction.
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Can People Gain Insight from these Explanations”

 Trained a deliberately bad classifier
between Wolf and Husky

 All wolves in training set had snow
in the picture, no huskies did

* Presented cases to graduate students
with ML background

* 10 balanced test predictions, with
one husky in snow, one wolf not in
snow

- Comparison between pre- and post-
experiment trust and understanding

(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad
model’s prediction in the “Husky vs Wolf” task.

Before After

Trusted the bad model 10 out of 27 3 out of 27
Snow as a potential feature 12 out of 27 25 out of 27

Table 2: “Husky vs Wolf” experiment results.
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Critigue of LIME

« Choice of cis arbitrary and can lead to bad sampling
* in implementation, often set to 0.75v/d

« it is important to tune the size of the neighbourhood according to how far z is to the

closest decision boundary

0.90

2
075
0.60 1
045 0
030

’
015
0.00

15
Weight

Sigma equal to 15

.

Feature a

25

20

15

10

Feature b
Feature 1

10
Feature 0

(a) A bad sampling scenario of (b) Limitation of LIME spotted by
LIME. Laugel et al. [14]

Adhikari, A., Tax, D. M. J., Satta, R., & Fath, M. (2018, December 21). Example and Feature importance-based Explanations for Black-box Machine Learning Models. arXiv. 26



LEAFAGE - Local Example and Feature importance-
based model AGnostic Explanations

Experts often reason by analogy from previous cases
* In law, this is formally enshrined as precedent
* In medicine, we see it in the behavior of experts
Case-based reasoning: retrieve, adapt, learn
Contrastive justification
* Not “why did you choose x?7,
+ but “why did you choose x rather than y?”
Assume that a black-box model f : X — ) solves a classification problem where
« X=R% and Y= {ci,c}
- training set X = [z1,...,2,] and Youe = (Y15 -+, Yn), Ypredicted = 1f(7) | 5 € X}
To explain f(z2) = c., use
« allies={z € X | f(z) =c,}, enemies={x € X | f(x) # c.}

Adhikari, A., Tax, D. M. J., Satta, R., & Fath, M. (2018, December 21). Example and Feature importance-based Explanations for Black-box Machine Learning Models. arXiv. 27



Choose a subset of training examples in the neighborhood of z

Build a linear model from that subset

Compute importance of each feature in that model

Define a similarity measure based on features weighted by their importance

* g(x) = w,x + ¢ defines the decision boundary

- b(t) =Vd- |Jwlt -

Explanation gives

« Most important features

« Most similar examples that give the same answer

e (details in paper)

0

(a) Contour-lines of the first term
of the similarity measure.

w! z|| + ||t — z|| is the distance function, w, = (w,1,...,w.q)"
:: T Hm. Lm“’:f‘:c:.“(\vo"
(b) Contour-lines of the second (¢) Contour-lines of the black-box

term of the similarity measure. similarity measure.

Figure 5: An example to illustrate the black-box similarity measure.



184 m? (1982 ft?)

1989 7

Figure 7: Example of a house that is predicted as value low by the machine learning model.

Prediction: High

The importance of each feature for the prediction

Importance

Living Area

Most similar houses with value Low

135 m? (1456 ft?)
137 m? (1479 ft9)
133 m? (1441 ft)
135 m? (1456 ft?)

113m? (1218 ftd)

Year Built Overall Quality(1-10) Bathroom Amount Bedroom Amount
1978 6 2 3
1976 6 2 3
1978 6 2 <
1976 6 2 3
2009 6 2 2

Living Area

171 m? (1850 ft?)

194 m? (2093 ft?)
181 m? (1950 ft?)
194 m? (2097 ft?)
149 m? (1614 ft?)
& ¥ o, 8, 8,
v, €op e (73 €.
8, oy, ”
4, ', 4 %, on,
(N % 900,’, ) 4,"%
%77 Y, ”,
’0/ e ¢
Features

See user study in paper

1994 2 2 3
1986 7 2 3
1997 7 2 3
1993 7 2 3
2005 u 2 3

Figure 8: Example of a LEAFAGE explanation.



Can Attention Models in Deep Learning Serve
as Explanations?

Sentence
De°°de"_ Word Decoder Generated Report

heart size is normal.

there is no focal consolidation,
effusion or pneumothorax.

the lungs are clear.

there is no acute osseous
abnormalities.

.
.
.
o,

Reinforcement Leaming

-

b ] -

| - Ours (NLG);‘ Ours (full)
e atE ' NLGReward
Image Embedding ; l ‘\ilil E Ours (CCR)
i L._‘_;_\‘;-__- — p
‘\‘;'

Figure 2: The model for our proposed Clinically Coherent Reward. Images are first en-
coded into image embedding maps, and a sentence decoder takes the pooled embedding to
recurrently generate topics for sentences. The word decoder then generates the sequence
from the topic with attention on the original images. NLG reward, clinically coherent
reward, or combined, can then be applied as the reward for reinforcement policy learning.

Liu, G., Hsu, T.-M. H., McDermott, M., Boag, W., Weng, W.-H., Szolovits, P., & Ghassemi, M. (2019, April 4). Clinically Accurate Chest X-Ray Report Generation. arXiv. = 30



Generated Report

Medical Imag

« Image encoder (CNN)
- Spacial image features V = {v}{,

A
[N
N

- computed by fully connected layer on pre-global-pooling iayer of CNN
- Sentence decoder (RNN/LSTM) uses image features
o hi, m; — LSTM(’l—), hi—l; mz-_l)

. topic vector and stop signal 7; = ReLU(W ' h; +b,), u; = o(w, h; +by,)
« Word decoder (RNN/LSTM)

- Uses v, 7, and embedding of previous word generated

Ours (NLG) Ours (full)
NLG Reward

Ours (CCR)
Clinical Coherent Reward

« Word is sampled from either conditional probability or overall corpus probability

« Reinforcement learning to favor most readable and clinically correct output

« Use CheXpert annotations for 12 diagnoses: pos, neg, uncertain, absent
- Hack: remove duplicate generated sentences
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Ground Truth

cardiomegaly is moderate. bibasilar atelectasis is
mild. there is no pneumothorax. a lower cervical
spinal fusion is partially visualized. healed right
rib fractures are incidentally noted.

TieNet Ours (full)
ap portable upright view of the chest. pa and lateral views of the chest.
there is no focal consolidation, effusion, or  there is mild enlargement of the
pneumothorax. the cardiomediastinal cardiac silhouette. there is no pleural
silhouette is normal. imaged osseous effusion or pneumothorax. there is no

structures are intact.

acute osseous abnormalities.

32



Attention Map |dentified Relevant Parts of the Image

ap upright and lateral views of the chest. there is as compared to the previous radiograph, there is no
moderate cardiomegalyv. there is no pleural effusion relevant change. tracheostomyv tube is in place.
or pneumothorax. there is no acute osseous there is a layering pleural effusions. NAME
abnormalities. bilateral pleural effusion and compressive atelectasis
at the right base. there is no ppeumothorax.
(a) (b)

Figure 3: Visualization of the generated report and image attention maps. Different
words are underlined with its corresponding attention map shown in the same color.
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Attention is not Explanation

But

Sarthak Jain Byron C. Wallace
Northeastern University Northeastern University

jain.sar@husky.neu.edu b.wallacef@northeastern.edu

- “assumption that the input units (e.g., words) accorded high attention weights are
responsible for model outputs”

- Desiderata if attention actually is to give insight into how a DNN operates

« Attention weights should correlate with feature importance measures (e.g.,
gradient-based measures)

+ Alternative (or counterfactual) attention weight configurations ought to yield
corresponding changes in prediction

« Mixed results, though the study has been criticized for methodology

+ “evidence that correlation between intuitive feature importance measures
(including gradient and feature erasure approaches) and learned attention
weights is weak”

 counterfactual attention distributions — which would tell a different story about
why a model made the prediction that it did — often have no effect on model
output

Jain, S., & Wallace, B. C. (2019, February 26). Attention is not Explanation. arXiv. =~ 34
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0.15 0.3
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Figure 2: Histogram of Kendall 7 between attention and gradients. Encoder variants are denoted parenthetically;
colors indicate predicted classes. Exhaustive results are available for perusal online.



Building Simple Models
Falling Rule Lists

Willing to sacrifice (some) performance for simplicity of model
Falling Rule List is a form of Decision List, a one-sided Decision Tree

* the order of rules determines which example should be classified by each rule
+ the estimated probability of success decreases monotonically down the list

Rank rules to form a predictive model
Stratify patients into decreasing risk sets

Conditions Probability  Support
IF IrregularShape AND Age > 60 THEN malignancy risk is 85.22% 230
ELSE IF  SpiculatedMargin AND Age > 45 THEN malignancy risk is 78.13% 64
ELSE IF INlIDefinedMargin AND Age > 60 THEN malignancy risk is  69.23% 39
ELSE IF  IrregularShape THEN malignancy risk is  63.40% 153
ELSE IF  LobularShape AND Density > 2 THEN malignancy risk is  39.68% 63
ELSE IF  RoundShape AND Age > 60 THEN malignancy risk is  26.09% 16
ELSE THEN malignancy risk is  10.38% 366

Table 1: Falling rule list for mammographic mass dataset.

Wang, F., & Rudin, C. (2015). Falling Rule Lists. Aistats. 36



Learning Falling Rule Lists

» Data: D = {(n,yn)}n=1,..n, xn€X, yn€{0,1}
« Bayesian approach:
« Hyperparameters H
« Falling Rule List parameters 6 with prior pg(-; H)
+ Likelihood py ({yn} | 0;{zn})
- Size of rule list L € Z+
-+ Space of possible IF clauses (Boolean functions on X) Bx(-)
« Clauses ¢;(-) € Bx(-) 2 ¢; = 1iff x satisfies a set of conditions, forl =1,..., L — 1
« Riskscores r € R, for [ =0,...,L > 711 <1y
« These will be scaled by logistic function to yield a probability
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Given L, let Z(L‘ {a() }L:_()l) : X = {0,...,L} be the

mapping from feature x to the index of the length L
rule list it “belongs” to (equals L for default patients):

Z(@i{a() b)) = (5)
L if ¢j(x)=0 for 1 =0,...,L—1
min(l : ¢;(x) =1, 1 =0,...,L —1) otherwise.

- Lots of details (see the paper)

Then, the likelihood is:

yn|L, {ci() IL:_()lv {ri}icos an ~

Bernoulli(logistic(r, )), where (6)
Zn = Z(-rn:, {C[(') [L:_()l)' (7)

* use a “frequent itemset mining” algorithm to find clauses with enough support
« choose r; to be log of products of real numbers

e | is drawn from a Poisson distribution

® use can express preference over lengths of clauses
e MAP decision list is computed by simulated annealing: {swap, replace, add,

delete} a clause

e Gibbs sampling to estimate posteriors

38



Empirical Test: 30-Day Hospital Readmission

+ 8,000 patients

« Features: “impaired mental status,” “difficult behavior,
unsafe” and over 30 other features

« Mined rules with support 5%, no more than two conditions
« Expected length of decision list = 8

« Compared to SVM, Random Forest, Logistic Regression, CART, Inductive Logic
Programming

chronic pain,” “feels

1.0

Method | Mean AUROC (STD) 08 /
wi | ooy o [
- 75 (.02) . Wy z — NF_FRL
NF_GRD 75 (02) 8- /' / NF_GRD
SVM .62 (.06) — SUM
Logreg .82 (.02) 0.2 — Logreg
Cart 52 (.01) — Cart
0'8.0 0.2 0.4 0.6 0.8 1.0
fpr

Figure 2: ROC curves for readmissions prediction.
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Readmission Rule List

Conditions

Probability  Support

IF

ELSE IF
ELSE IF
ELSE IF
ELSE IF
ELSE IF
ELSE IF
ELSE IF
ELSE

BedSores AND Noshow

BedSores THEN readmissions risk is:
Negativeldeation AND Noshow THEN readmissions risk is:
MaxCare THEN readmissions risk is:
Noshow THEN readmissions risk is:
MoodProblems THEN readmissions risk is:

Readmissions risk is:

THEN readmissions risk is:
PoorPrognosis AND MaxCare  THEN readmissions risk is:
PoorCondition AND Noshow THEN readmissions risk is:

33.25%
28.42%
24.63%
19.81%
18.21%
13.84%
6.00%
4.45%
0.88%

770
278
337
308
291
477
1127
1325
3031

Table 2: Falling rule list for patients with no multiple readmissions history.
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Test on Various UCI Data Sets

Method Spam Mamm | Breast Cars
FRL 91(.01) | .82(.02) | .95(.04) | .89(.08)
NF_FRL | .90(.03) | .67(.03) | .70(.11) | .60(.21)
NF_GRD | .91(.03) | .72(.04) | .82(.12) | .62(.20)
SVM 97(.03) | .83(.01) | .99(.01) | .94(.08)
Logreg 97(.03) | .85(.02) | .99(.01) | .92(.09)
CART 88(.05) | .82(.02) | .93(.04) | .72(.17)
RF 97(.03) | .83(.01) | .98(.01) | .92(.05)

Table 4: AUROC value comparisons over datasets
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Self-Explaining Al

- What counts as an explanation?
+ understandable and relevant to user
- mechanistic, but at a level relevant to user (not “nuts and bolts”)
« Requirements on Al model
« a measure of mutual information between the explanation and the decision
* an uncertainty on both the explanation and decision
+ a “warning system” which warns the user when the decision falls outside the

domain of applicability of the system
- e.g., warn if test data fall outside convex hull of the latent layer’s training data

data Ground
N neural netwﬂ-o Predicted d@gnosns : truth abels
I % uncertainty g_),\ -
neura & - " post hoc |
c - 1
o "1 model
network = Predicted explanation |« -==-r--!
- neural network R
+ uncertainty ;
_| final explanation

Applicability [ <= = = = == = = == ; and credence
domain I mutual information I(’
1

analysis

Fig. 1. Sketch of a simple self-explaining Al system. Optional components are shown
with dashed lines.

Elton, D. C. (2020, February 12). Self-explaining Al as an alternative to interpretable Al. Iclr 2020.
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Extrapolation vs. Interpolation

« Recent evidence is that ANN models interpolate among training data points rather
than learning general principles about the domain

« Improving performance of models with vast numbers ( > 109) of parameters

under-fitting over-fitting under-parameterized over-parameterized
. Test risk Test risk
'_-f; . —\f “classical” “modern™
;_"E :'“ regime interpolating regime
~ o Training risk Training risk:
sweet spot o~ ™ - . interpolation threshold
T B e &<
Capacity of H Capacity of H

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias-variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation

threshold have zero training risk. Zero-one loss
88

- Simplicity (smoothness) of the model class . b o cusons

seems important 3
- Ex: Random Fourier Feature model on MNIST  ©

 X-axis is number of features
0 10 20 30 40 50 60
Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proceedings 43

of the National Academy of Sciences of the United States of America, 116(32), 15849-15854. http://doi.org/10.1073/pnas.1903070116



Zero-one loss (%)

Squared loss

0.0- 1

T I T T I
10 40 100 300 800

Number of parameters/weights (x1073)

L) =

Fig. 3. Double-descent risk curve for a fully connected neural network
on MNIST. Shown are training and test risks of a network with a single
layer of H hidden units, learned on a subset of MNIST (n=4 - 103, d =784,
K =10 classes). The number of parameters is (d 4+ 1)-H+ (H+1)-K. The
interpolation threshold (black dashed line) is observed at n - K.
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Achieving Interpretabillity for Humans

« Why: Incompleteness in problem formalization
 Scientific understanding
- Safety
 Ethics
* Indirect objectives
« Competing objectives
« How: Methods
 Application-grounded; in the context of its end-task
- Compare to value of human-generated explanation to help other people
« Human-grounded; simplified tasks

- Choose better explanation; predict model outcome based on inputs and
explanation; counterfactual (what input must change to change output)

* Functionally-grounded; formal definition of interpretability
 Posit certain classes of models to be interpretable; e.g., decision lists

Doshi-Velez, F., & Kim, B. (2017, February 27). Towards A Rigorous Science of Interpretable Machine Learning. Iclr 2020. 45



Useful source

* https://christophm.github.io/
interpretable-ml-book/

Interpretable
Machine Learning

A Guide for Making
Black Box Models Explainable
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