NLP:
Clinical Natural Language Processing

Feb 25, 2020

Massachusetts Institute of Technology

Outline

- Value of the data in clinical text
- Hyper-simplified linguistics
- Term spotting + handling negation, uncertainty
- UMLS resources
- ML to expand terms
- pre-NN ML to identify entities and relations
- language models
- Neural methods

Bulk of Valuable Data are in Narrative Text

Mr. Blind is a 79-year-old white white male with a history of diabetes mellitus, inferior myocardial infarction, who underwent open repair of his increased diverticulum November 13th at Sephsandpot Center.
The patient developed hematemesis November 15th and was intubated for respiratory distress. He was transferred to the Valtawnprinceel Community Memorial Hospital for endoscopy and esophagoscopy on the 16th of November which showed a 2 cm linear tear of the esophagus at 30 to 32 cm . The patient's hematocrit was stable and he was given no further intervention.
The patient attempted a gastrografin swallow on the 21 st, but was unable to cooperate with probable aspiration. The patient also had been receiving generous intravenous hydration during the period for which he was NPO for his esophageal tear and intravenous Lasix for a question of pulmonary congestion.
On the morning of the 22 nd the patient developed tachypnea with a chest X -ray showing a question of congestive heart failure. A medical consult was obtained at the Valtawnprinceel Community Memorial Hospital. The patient was given intravenous Lasix.

Selection of Rheumatoid Arthritis Cohort

Table 4. Comparison of performance characteristics from validation of the complete classification algorithm (narrative and codified) with algorithms containing codified-only and narrative-only data*

Model	RA by algorithm or criteria, no.	$\begin{gathered} \text { PPV } \\ (95 \% \text { CI), \% } \end{gathered}$	$\begin{aligned} & \text { Sensitivity } \\ & \text { (95\% CI), \% } \end{aligned}$	$\begin{aligned} & \text { Difference in PPV } \\ & \text { (95\% CI), \%† } \end{aligned}$
```Algorithms Narrative and codified (complete) Codified only NLP only Published administrative codified criteria \geq3 ICD-9 RA codes \geq1 ICD-9 RA codes plus \geq1 DMARD```		$\begin{aligned} & 94(91-96) \\ & 88(84-92) \\ & 89(86-93) \\ & 56(47-64) \\ & 45(37-53) \end{aligned}$		$\begin{aligned} & \text { Reference } \\ & 6(2-9) \ddagger \\ & 5(1-8) \ddagger \\ & 38(29-47) \ddagger \\ & 49(40-57) \ddagger \end{aligned}$
* The complete classification algorithm was also compared with criteria for RA used in published administrative database studies. RA $=$ rheumatoid arthritis; PPV = positive predictive value; $95 \% \mathrm{CI}=95 \%$ confidence interval; NLP $=$ natural language processing; ICD- $9=$ International Classification of Diseases, Ninth Revision; DMARD = disease-modifying antirheumatic drug.   + Difference in PPV = PPV of complete algorithm - comparison algorithm or criteria.   \# Significant difference in PPV compared with the complete algorithm.				

## Finding a Cohort of Rheumatoid Arthritis Cases



- Coded data:
- ICD-9 codes, including RA and related diseases
- ignore codes within 1 week of previous code
- electronic prescriptions for
- DMARDs: methotrexate, azathioprine, leflunomide, sulfasalazine, hydroxychloroquine, penicillamine, cyclosporine, and gold
- Biologic agents: anti-TNF agents infliximab and etanercept, and abatacept, rituximab, anakinra, etc.
- anti-cyclic citrullinated peptide (anti-CCP) \& rheumatoid factor (RF) labs
- total number of "facts" in the EMR


## Finding a Cohort of Rheumatoid Arthritis Cases



High specificity
Zeng QT, Goryachev S, Weiss S, Sordo M, Murphy SN, Lazarus R. Extracting

- Narrative text data (processed by HITEx) principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system. BMC Med Inform Decis Mak 2006;6:30.
- From health care provider notes, radiology reports, pathology reports, discharge summaries, and operative reports
- Extracted disease diagnoses (RA, SLE, PsA, and JRA)
- medications (same as from prescriptions, with the addition of adalimumab)
- laboratory data (RF, anti-CCP, and the term "seropositive")
- radiology findings of erosions on radiographs
- Hand-made lists of equivalent terms
- Negation detection, including special terms, e.g., "RF-"

Table 3. Variables selected for the complete algorithm (narrative and codified EMR data) from the logistic regression in order of predictive value*

Variable	Standardized   regression   coefficient	Standard   error
Positive predictors		
NLP RA	1.11	0.48
NLP seropositive	0.74	0.26
ICD-9 RA normalizedt	0.71	0.23
ICD-9 RA	0.66	0.44
NLP erosions	0.46	0.29
Codified RF negative	0.36	0.36
NLP methotrexate	0.3	0.34
Codified anti-TNF	0.29	0.3
NLP anti-CCP positive	0.27	0.25
NLP anti-TNF§	0.2	0.36
NLP other DMARDs	0.13	0.34
Negative predictors	-0.98	0.9
ICD-9 JRA	-0.57	1.09
ICD-9 SLE	-0.51	0.74
NLP PsA		

* $\mathrm{EMR}=$ electronic medical record; NLP $=$ natural language processing; RA $=$ rheumatoid arthritis; ICD-9 $=$ International Classification of Diseases, Ninth Revision; RF $=$ rheumatoid factor; antiTNF $=$ anti-tumor necrosis factor; anti-CCP $=$ anti-cyclic citrullinated peptide; DMARDs = disease-modifying antirheumatic drugs; JRA $=$ juvenile rheumatoid arthritis; $\mathrm{SLE}=$ systemic lupus erythematosus; PsA = psoriatic arthritis.
+ ICD-9 RA normalized $=\ln$ (no. of ICD-9 RA codes per subject $\geq 1$ week apart).
$\ddagger$ Codified anti-TNF = etanercept and infliximab (adalimumab was not available in our EMR).
$\S$ NLP anti-TNF = adalimumab, etanercept, and infliximab.


## Algorithm for RA was Portable (!)

## - Study replicated at Vanderbilt and Northwestern

	Partners	Northwestern	Vanderbilt
EHR	Local	Epic (inpatient)   Cerner (outpatient)	Local
\# Patients	4 M	2.2 M	1.7 M
Meds	Structured meds entries   (in- and outpatient) and   text queries	Structured outpatient   meds entries and in-   and outpatient text   queries	NLP (MedEx) for   outpatient medications   and structured inpatient   records
NLP Queries	Custom RegEx	Custom RegEx from   Partners	Generic UMLS   concepts, derived from   KnowledgeMap web   interface

Carroll, R. J., Thompson, W. K., Eyler, A. E., Mandelin, A. M., Cai, T., Zink, R. M., et al. (2012). Portability of an algorithm to identify rheumatoid arthritis in electronic health records. Journal of the American Medical Informatics Association, 19(e1), e162-9. http://doi.org/10.1136/amiajnl-2011-000583

Table 3 Model performance

Algorithm	Testing set											
	Partners			Northwestern			Vanderbilt			Average		
	PPV	Sensitivity	AUC									
Published algorithm	88\%*	79\%*	97\%*	87\%	60\%	92\%	95\%	57\%	95\%	90\%	65\%	95\%
Retrained with												
Northwestern	79\%	47\%	89\%	87\%	73\%	92\%	93\%	43\%	89\%	86\%	54\%	90\%
Vanderbilt	85\%	74\%	97\%	82\%	40\%	88\%	97\%	81\%	97\%	88\%	65\%	94\%
Combined	86\%	71\%	97\%	86\%	65\%	91\%	97\%	82\%	96\%	90\%	72\%	95\%
ICD-9 only $\dagger$												
$\geq 1$ RA code	22\%	97\%	N/A	26\%	100\%	N/A	49\%	100\%	N/A	33\%	99\%	N/A
$\geq 3$ RA code	55\%	81\%	N/A	42\%	87\%	N/A	73\%	98\%	N/A	57\%	89\%	N/A
97\% Specificity	80\%	49\%	88\%	80\%	36\%	84\%	93\%	43\%	93\%	84\%	43\%	88\%
Code count for 97\% specificity	53			29			48			43.3		

The PPV and sensitivity values reported represent model performance with a specificity set at $97 \%$ for logistic regression models.
*These results are from a fivefold cross-validation on the Partners training set. The PPV and sensitivity as published in Liao et al was calculated from a separate Partners validation set (PPV $94 \%$, sensitivity $63 \%$ ).
$\dagger$ ICD-9 cut-off used the count of 714.* codes, excluding codes for juvenile RA (714.3*).
AUC, area under the receiver operating characteristic curve; ICD-9, International Classification of Diseases, version 9 CM; PPV, positive predictive value; RA, rheumatoid arthritis.


Figure 3 Receiver operating characteristic curves for each test set. The vertical line represents the $97 \%$ specificity cut-off used in this study. The test performance at Partners, Northwestern, and Vanderbilt are found in (a), (b), and (c), respectively.

## Warning: Telegraphic Language

$3 / 11 / 98$ IPN	
SOB \& DOE $\downarrow$	
VSS, AF	
CXR $\oplus$ LLL ASD no $\Delta$	
WBC 11 K	
S/B Cx $\oplus$ GPC c/w PC, no   GNR	
D/C Cef $\rightarrow$ PCN IV	

## Telegraphic Language

$3 / 11 / 98$ IPN	(date of) Intern Progress Note,
SOB \& DOE $\downarrow$	the patient's shortness of breath and dyspnea on exertion are   decreased,
VSS, AF	the patient's vital signs are stable and the patient is afebrile,
CXR $\oplus$ LLL ASD no $\Delta$	a recent new chest xray shows a left lower lobe air space density   that is unchanged from the previous radiograph,
WBC 11 K	a recent new white blood cell count is 11,000 cells per cubic   milliliter,
S/B Cx $\oplus$ GPC c/w PC, no   GNR	the patient's sputum and blood cultures are positive for gram   positive cocci consistent with pneumococcus, no gram negative   rods have grown,
D/C Cef $\rightarrow$ PCN IV	so the plan is to discontinue the cefazolin and then begin penicillin   treatment intravenously.

## Typical Goals of MNLP

- for any word or phrase, assign it a meaning (or null) from some taxonomy/ontology/ terminology;
- e.g., "rheumatoid arthritis" ==> 714.0 (ICD9)
- for any word or phrase, determine whether it represents protected health information;
- e.g., "Mr. Huntington suffers from Huntington's Disease"
- determine aspects of each entity: time, location, certainty, ...
- having identified two meaningful phrases in a sentence, determine the relationship (or null) between them;
- e.g., precedes, causes, treats, prevents, indicates, ...
- note: we also need a taxonomy of relationships
- in a larger document, identify the sentences or fragments most relevant to answering a specific medical question;
- e.g., where is the patient's exercise regimen discussed?
- summarization
- as data sets balloon in size, how to provide a meaningful overview


## Two Types of Tasks

- Every word counts
- De-identification
- Extraction of all
- entities
- time
- certainty
- causation and association
- Aggregate judgment
- E.g., "smoking" challenge
- Most text may be irrelevant to specific result
- Cohort selection-does a patient satisfy some set of inclusion and exclusion criteria
- Often definite presence of a disease, complication, ...


## Outline

- Value of the data in clinical text
- Hyper-simplified linguistics
- Term spotting + handling negation, uncertainty
- UMLS resources
- ML to expand terms
- pre-NN ML to identify entities and relations
- language models
- Neural methods


## Historical Thought ...

- Frederick B. Thompson, "English for the Computer." Proceedings of the Fall Joint Computer Conference (1966) pp. 349-356
- Grammar defined by context-sensitive production rules + transformations
- Semantics defined by mappings:
- Each grammar rule matches a semantic function
- Terminal symbols are referents or functions
- An environment is (in modern terms) a semantic network of complex interrelationships
- Meaning is compositional, in terms of the semantic functions
- Minor (3) remaining question: how to represent the "real world"?



## Proposed relationship between syntax and semantics



## Formal language semantics

- SRI's DIAMOND/DIAGRAM system (~1980)
- each passage is expressed as a proposition or a conjunction of propositions:
- a particular procedure for the prevention of hepatitis B could have associated with it the proposition "immunize(GAMMA-GLOBULIN,HEPATITIS-B)"
- a passage concerned with the etiology of the disease could have the proposition "transmit(TRANSFUSION,HEPATITIS-B)"
- synonym and hyponym relations
- ... a language of primitives for the domain
- French Remède system
- "medical documentary language using current medical terms and few syntactic rules"
- taught to doctors to write notes
- ... not popular

Walker, D. E., Hobbs, J. R., 1981. Natural Language Access to Medical Text*. (pp. 269-273). Presented at the Proc Annu Symp Comput Appl Med Care.

## Outline

- Value of the data in clinical text
- Hyper-simplified linguistics
- Term spotting + handling negation, uncertainty
- UMLS resources
- ML to expand terms
- pre-NN ML to identify entities and relations
- language models
- Neural methods


## Term Spotting

- Traditionally, lists of coded items, narrative terms and patterns hand-crafted by researcher
- Negation and uncertainty handled by somewhat ad-hoc methods
- NegEx is widely used, $\exists$ many more sophisticated variants
- Generalize terms
- Manually or automatically identify high-certainty "anchors"
- Learn related terms to augment the set of terms
- From knowledge bases such as UMLS
- From co-occurrence in EMR data
- From co-occurrence in publications
- C.f. Sontag's lecture


## Negation

- "Identifying pertinent negatives, then, involves identifying a proposition ascribing a clinical condition to a person and determining whether the proposition is denied or negated in the text."
- Simpler than general problem of negation in NLP because negation applies mostly to noun phrases indicating diseases, tests, drugs, findings, ...
- NegEx
- Find all UMLS terms in each sentence of a discharge summary
- "The patient denied experiencing chest pain on exertion" $\Rightarrow$
"The patient denied experiencing S1459038 on exertion"
- Find patterns
- <negation phrase> * $\{0,5\}$ <UMLS term>
- "no signs of", "ruled out unlikely", "absence of", "not demonstrated", "denies", "no sign of", "no evidence of", "no", "denied", "without", "negative for", "not", "doubt", "versus"
- <UMLS term> * $\{0,5\}$ <negation phrase>
- "declined", "unlikely"
- Pseudo-negation: "no further", "not able to be", "not certain if", "not certain whether", "not necessarily", "not rule out", "without any further", "without difficulty", "without further", "gram negative"

Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG. A simple algorithm for identifying negated findings and diseases in discharge summaries. J Biomed Inform. 2001 Oct;34(5):301-10.

## NegEx results

- Baseline:
- <negation phrase> * <UMLS term>
- "no", "denies", "not", "without", "*n’t", "ruled out", "denied"

	Baseline			NegEx		
	Group 1   sentences (i.e.   containing   NegEx   negation   phrases)	Group 2   sentences (i.e.,   not containing   NegEx   negation   phrases)	All sentences	Group 1   sentences (i.e.   containing   NegEx   negation   phrases)	Group 2   sentences (i.e.,   not containing   NegEx   negation   phrases)	All sentences
$n$	500	500	1000	500	500	1000
Sensitivity	88.27	0.00	$\mathbf{8 8 . 2 7}$	82.31	0.00	77.84
Specificity	52.69	100.00	85.27	82.50	100.00	$\mathbf{9 4 . 5 1}$
PPV	68.42	-	68.42	84.49	-	$\mathbf{8 4 . 4 9}$
NPV	79.46	96.99	$\mathbf{9 3 . 0 1}$	80.21	96.99	91.73

- Extremely simplistic schemes (kind of) work


## Generalize Terms

- Use synonymous terms as well as the starting ones
- Take advantage of others related terms
- hypo- or hypernyms
- other associated terms
- e.g., common symptoms or treatments of a disease
- Recursive ML problem: learn how best to identify cases associated with a term
- "phenotyping"


## Outline

- Value of the data in clinical text
- Hyper-simplified linguistics
- Term spotting + handling negation, uncertainty
- UMLS resources
- ML to expand terms
- pre-NN ML to identify entities and relations
- language models
- Neural methods


## Available Classification Thesauri Most Available through UMLS

- Unified Medical Language Systems project of NLM; since ~1985
- Metathesaurus now (2019ab version) includes 211 source vocabularies
- MeSH, SNOMED, ICD-9, ICD-10, LOINC, RxNORM, CPT, GO, DXPLAIN, OMIM, ...
- Synonym mappings across vocabularies;
- e.g., "heart attack" = "acute myocardial infarct" = "myocardial infarction" ...
- 4,209,309 distinct concepts, represented by concept unique identifier (CUI)
- Jumbled compendium of every hierarchy drawn from every source
-What granularity?
- Semantic Network
- Hierarchy of
- 54 relations
- 127 types
- Every CUI assigned $\geq 1$ semantic type


## Wealth of UMLS Concepts of Various Types

mysql> select tui,sty,count(*) c from mrsty group by sty order by $c$ desc;

tui	sty	c
T061	Therapeutic or Preventive Procedure	260914
T033	Finding	233579
T200	Clinical Drug	1/2069
T109	Organic Chemical	157901
T121	Pharmacologic Substance	124844
T116	Amino Acid, Peptide, or Protein	117508
T009	Invertebrate	111044
T007	Bacterium	110065
T002	Plant	95017
T047	Disease or Syndrome	79370
T023	Body Part, Organ, or Organ Component	73402
T201	Clinical Attribute	60998
T123	Biologically Active Substance	55741
T074	Medical Device	51708
T028	Gene or Genome	49960
T004	Fungus	47291
T060	Diagnostic Procedure	46106
T037	Injury or Poisoning	43924
T191	Neoplastic Process	33539
T044	Molecular Function	31369
T126	Enzyme	25766
T129	Immunologic Factor	25025
T059	Laboratory Procedure	24511
T058	Health Care Activity	19552
T029	Body Location or Region	16470
T013	Fish	16059
T046	Pathologic Function	13562
T184	Sign or Symptom	13299
T130	Indicator, Reagent, or Diagnostic Aid	12809
T170	Intellectual Product	12544
T118	Carbohydrate	10722
T110	Steroid	10363
T012	Bird	9908
T043	Cell Function	9758

select c.cui,c.str from mrconso c join mrsty s on c.cui=s.cui where $c . T S=' P '$ and $c . S T T=' P F '$ and $C . I S P R E F=' Y '$ and c.LAT='ENG' and s.tui='T047';

cui	str
C0000744	Abetalipoproteinemia
C0000774	Gastrin secretion abnormality NOS
C0000786	Spontaneous abortion
C0000809	Abortion, Habitual
C0000814	Missed abortion
C0000821	Threatened abortion
C0000822	Abortion, Tubal
C0000823	Abortion, Veterinary
C0000832	Abruptio Placentae
C0000880	Acanthamoeba Keratitis
C0000889	Acanthosis Nigricans
C0001080	Achondroplasia
C0001083	Achromia parasitica
C0001125	Acidosis, Lactic
C0001126	Renal tubular acidosis
C0001127	Acidosis, Respiratory
C0001139	Acinetobacter Infections
C0001142	Acladiosis
C0001144	Acne Vulgaris
C0001145	Acne Keloid
C0001163	Vestibulocochlear Nerve Diseases
C0001168	Complete obstruction
C0001169	Acquired coagulation factor deficiency NOS
C0001175	Acquired Immunodeficiency Syndrome
C0001197	Acrodermatitis
C0001202	Acrokeratosis
C0001206	Acromegaly
C0001207	Hypersomatotropic gigantism
C0001231	ACTH Syndrome, Ectopic
C0001247	Actinobacillosis

. . .

## Hierarchy of UMLS Semantic Network Types and Relations



## Lexical Variant Generation (LVG) Tools <br> (from National Library of Medicine)

- Normalized words and phrases used as index to UMLS
- Lemmatization of words
- stripping typical prefixes, suffixes
- plurals, in-word negation, gerunds
- Discarding "noise" words, punctuation
- Lower-casing
- Alphabetic order of all remaining words

Mr. Huntington was admitted to Huntington Memorial Hospital for acute chest pain in March.


Copyright | Privacy | Accessibility | Freedom of Information Act | National Institutes of Health | Health \& Human Services
<TOP:Entity or Event>

- [T071:Entity](T071:Entity)
$\nabla$ <T077:Conceptual Entity>[T033:Finding](T033:Finding)
<T034:Laboratory or Test Result>
<T184:Sign or Symptom>
<T102:Group Attribute>
v
[T096:Group](T096:Group)
$\square$ <T100:Age Group>
<T099:Family Group>
<T101:Patient or Disabled Group>
<T098:Population Group>
$\square$ <T097:Professional or Occupational Group>
v <T078:Idea or Concept>
v
<T169:Functional Concept>
$\square$ <T022:Body System>
<T080:Qualitative Concept>
<T081:Quantitative Concept>
- 

<T082:Spatial Concept>
$\square<$ T029:Body Location or Region>
$\square$ <T030:Body Space or Junction>
<T083:Geographic Area>
v
<T085:Molecular Sequence>
<T087:Amino Acid Sequence>
<T088:Carbohydrate Sequence>
<T086:Nucleotide Sequence>
4 <T079:Temporal Concept>

$\checkmark$ UMLS	$\checkmark$ MetaMap
100\%	-100\%
$\checkmark$ Numeric	
- 100\%	
Annotate	

## Admission Date: 2011-10-06 Discharge Date: 2011-10-17

## Date of Birth: 1935-03-29 Sex: M

## Service: Medicine

CHIEF COMPLAINT: Admitted from rehabilitation for hypotension (systolic blood pressure to the 70 s) and decreased urine output.

## HISTORY OF PRESENT ILLNESS: The patient is a 76-year-old

male who had been hospitalized at the Brookside Hospital from 09-27 through 10-0! after undergoing a left femoral-AT bypass graft and was subsequently discharged to a rehabilitation facility.

On 2011-10-06, he presented again to the Brookside Hospital after being found to $h i$ blood pressure in the 70 s and no urine output for 17 hours.
A Foley catheter placed at the rehabilitation facility yielded 100 cc of murky/ brown urine. There may also have been purulent discharge at the penile meatus at this time.

On presentation to the Emergency Department, the patient was without subjective complaints. In the Emergency Department, he was found to have systolic blood pressure of 85 . He was given 6 liters of intravenous fluids and transiently started on dopamine for a systolic blood pressure in the 80.5

## PAST MEDICAL HISTORY:

systolic blood pressure
MetaMap [C0488055,T201] Intravascular systolic:Pressure:Point in time:Arterial syst MetaMap [C0871470,T201] Systolic Pressure (Clinical Attribute) -1000
MetaMap [C1306620,T060] Systolic blood pressure measurement (Diagnostic Procec UMLS [C0488055,T201] Intravascular systolic:Pressure:Point in time:Arterial system UMLS [C0871470,T201] Systolic Pressure (Clinical Attribute)
UMLS [C1306620,T060] Systolic blood pressure measurement (Diagnostic Procedurє
blood
UMLS [C0005767,T024] Blood (Tissue)
UMLS IC0005768.T0311 In Blood (Bodv Substance)

## Outline

- Value of the data in clinical text
- Hyper-simplified linguistics
- Term spotting + handling negation, uncertainty
- UMLS resources
- ML to expand terms
- pre-NN ML to identify entities and relations
- language models
- Neural methods


## The Importance of Context

- "Mr. Huntington was treated for Huntington's Disease at Huntington Hospital, located on Huntington Avenue."
- Huntington
- Huntington's Disease
- Mr. Huntington's Disease
- "Atenalol was administered to Mr. Huntington."
- vs. "Atenalol was considered for control of heart rate."
- vs. "Atenalol was ineffective and therefore discontinued."


## Building Models

- Features of text from which models can be built
- words, parts of speech, capitalization, punctuation
- document section, conventional document structures
- identified patterns and thesaurus terms
- lexical context
$\Rightarrow$ all of the above, for $n$-tuples of words surrounding target
- syntactic context
$\Rightarrow$ all of the above, for words syntactically related to target
- E.g., "The lasix, started yesterday, reduced ascites ..."

(Output from Link Grammar Parser, w/o special medical dictionary)
Uzuner, Ö., Sibanda, T. C., Luo, Y., \& Szolovits, P. (2008). A de-identifier for medical discharge summaries. Artificial Intelligence in Medicine, 42(1), 13-35.
http://doi.org/10.1016/j.artmed.2007.10.001


## Parsing Can be Ambiguous

- Prepositional phrase attachment
- Part of speech
- e.g., white.n vs. white.a
- Hope that there is enough redundancy to overcome such limitations

```
Found 111 linkages (24 with no P.P. violations)
 Linkage 1, cost vector = (UNUSED=0 DIS=0 AND=0 LEN=22)
```



```
Constituent tree:
(S (NP Mr . Blind)
 (VP is
 (NP a 79-year-old white
 (ADJP male
 (PP with
 (NP (NP a history)
 (PP of
 (NP diabetes mellitus)))))))
 .)
```

```
O-
\(\langle\leftrightarrow \leftrightarrow \rightarrow\) NLP nlp.stanford.edu:8080/parser/index.jsp

\section*{Stanford Parser}
```

Please enter a sentence to be parsed:
The patient experienced weakness of the upper extremities.
Language: English $\hat{\text { A }}$ Sample Sentence $P$

```

\section*{Your query}
```

The patient experienced weakness of the upper extremities.

```

\section*{Tagging}
```

The/DT patient/NN experienced/VBD weakness/NN of/IN the/DT upper/JJ extremities/NNS ./.
Parse
(ROOT
(S
(NP (DT The) (NN patient))
(VP (VBD experienced)
(NP
(NP (NN weakness))
(PP (IN of)
(NP (DT the) (JJ upper) (NNS extremities)))))
(. .) ))
Typed dependencies
det(patient-2, The-1)
nsubj(experienced-3, patient-2)
root(ROOT-0, experienced-3)
dobj(experienced-3, weakness-4)
prep(weakness-4, of-5)
$\operatorname{det}($ extremities-8, the-6)
amod(extremities-8, upper-7)
pobj(of-5, extremities-8)

```

Display a menu

\section*{Example of Features Available for Model} Mr. Blind is a 79-year-old white white male with a history of diabetes mellitus, inferior myocardial infarction, who underwent open repair of his increased diverticulum
```

263266 "Mr."
TUI: T060,T083,T047,T048,T116,T192,T081,T028,T078,T077; SP-POS: noun; SEM: _modifier,_disease,_procparam;
CUI: C0024487,C0024943,C0025235,C0025362,C0026266,C0066563,C0311284,C0475209,C1384671,
C1413973,C1417835,C1996908,C2347167,C2349188; lptok: 6;
MeSH: C07.465.466,C10.292.300.800,C10.597.606.643,C14.280.484.461,C23.888.592.604.646,D12.776.826.750.530,
D12.776.930.682.530,E05.196.867.519,F01.700.687,F03.550.600,Z01.058.290.190.520;
267468 "Blind is a 79-year-old white white...hsandpot Center." sent: nil;
267272 "Blind"
TUI: T062,T047,T170; SP-POS: verb,adj,noun; SEM: _disease; CUI: C0150108,C0456909,C1561605,C1561606;
Iptok: 1; MeSH: C10.597.751.941.162,C11.966.075,C23.888.592.763.941.162;
273277 "is a" TUI: T185,T169,T078; SEM: _modifier; CUI: C1278569,C1292718,C1705423;
273275 "is" SP-POS: aux,noun,adj; Iptok: 2;
276277 "a" SP-POS: det,noun,adj; lptok: 3;
278289 "79-year-old" Iptok: 4;
290 295 "white" TUI: T098,T080; SP-POS: noun,adj; SEM: _modifier; CUI: C0007457,C0043157,C0220938; Iptok: 5;
296 301 "white" TUI: T098,T080; SP-POS: noun,adj; SEM: _modifier; CUI: C0007457,C0043157,C0220938; Iptok: 6;
3 0 2 3 0 6 ~ " m a l e " ~
TUI: T032,T098,T080; SP-POS: adj,_noun; SEM: _modifier,_bodyparam;
CUI: C0024554,C0086582,C1706180,C1706428,C1706429; Iptok: 7;
307311 "with" SP-POS: prep,conj; Iptok: 8;
312313 "a" SP-POS: det,noun,adj; lptok: 9;
314342 "history of diabetes mellitus" TUI: T033; SEM: _finding; CUI: C0455488;

```

\section*{Learning Models}
- Given a target classification, build a machine learning model predicting that class
- support vector machines (SVM)
- classification trees
- naive Bayes or Bayesian networks
- artificial neural networks
- ...
- class(word) \(=\) function (feature \({ }_{1}\), feature \({ }_{2}\), feature \(_{3}, \ldots\))
- sometimes, astronomically large (binary) feature set; SVM can deal with it
- \(\mathrm{f}_{1}\)... \(\mathrm{f}_{100,000}\) : whether the word is "a", "aback", "abacus", ..., "zymotic"
- \(\mathrm{f}_{100,001}\)...: whether word's POS is "noun", "verb", "adj", ...
- \(\mathrm{f}_{100,100}\)...: whether the word maps to CUI "C0000001", "C0000002", ...
- \(\mathrm{f}_{3,000,000} \ldots\) : same as above, but for \(1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}\) word to right/left
- \(f_{6,000,000} \ldots\) : \(\{1 p-l i n k\), word \(\}\) for \(1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}\) link in parse to right/left
- ...

\section*{Using this model for de-identification}

Uzuner, Ö., Sibanda, T. C., Luo, Y., \& Szolovits, P. (2008). A de-identifier for medical discharge summaries. Artificial Intelligence in Medicine, 42(1), 13-35. http://doi.org/10.1016/ j.artmed.2007.10.001
\begin{tabular}{lllll}
Table 6 & \multicolumn{4}{c}{ Evaluation on authentic discharge summaries } \\
\hline Method & Class & \begin{tabular}{l}
Precision \\
\((\%)\)
\end{tabular} & \begin{tabular}{l}
Recall \\
\((\%)\)
\end{tabular} & \begin{tabular}{l}
\(F\)-measure \\
\((\%)\)
\end{tabular} \\
\hline Stat De-id & PHI & 98.46 & 95.24 & 96.82 \\
IFinder & PHI & 26.17 & 61.98 & \(36.80^{*}\) \\
H + D & PHI & 82.67 & 87.30 & \(84.92^{*}\) \\
CRFD & PHI & 91.16 & 84.75 & \(87.83^{*}\) \\
Stat De-id & Non-PHI & 99.84 & 99.95 & 99.90 \\
IFinder & Non-PHI & 98.68 & 94.19 & \(96.38^{*}\) \\
H + D & Non-PHI & 99.58 & 99.39 & \(99.48^{*}\) \\
CRFD & Non-PHI & 99.62 & 99.86 & \(99.74^{*}\) \\
\hline
\end{tabular}

The \(F\)-measure differences from Stat De-id in PHI and in nonPHI are significant at \(\alpha=0.05\).

Table 7 Evaluation of SNoW and Stat De-id on authentic discharge summaries
\begin{tabular}{lllll}
\hline Method & Class & \begin{tabular}{l}
Precision \\
(\%)
\end{tabular} & \begin{tabular}{l}
Recall \\
(\%)
\end{tabular} & \begin{tabular}{l}
\(F\)-measure \\
\((\%)\)
\end{tabular} \\
\hline Stat De-id & PHI & 98.40 & 93.75 & 96.02 \\
SNoW & PHI & 96.36 & 91.03 & \(93.62^{*}\) \\
Stat De-id & Non-PHI & 99.90 & 99.98 & 99.94 \\
SNoW & Non-PHI & 99.86 & 99.95 & \(99.90^{*}\) \\
\hline
\end{tabular}

The \(F\)-measure differences from Stat De-id in PHI and in nonPHI are significant at \(\alpha=0.05\).

\section*{Predicting early psychiatric readmission by LDA}
- Can we predict 30-day psych readmission?
- Cohort: patients admitted to a psych inpatient ward between 1994-2012 with a principal diagnosis of major depression
- 470 of 4687 were readmitted within 30 days with a psych diagnosis; 2977 additionally were readmitted in 30 days with other diagnoses; 1240 not readmitted
- Compare predictive models built using SVM from
- baseline clinical features
- age, gender, public health insurance, Charlson comorbidity index
- + common words from notes
- 1-1000 most informative words per patient, by TF-IDF
- top-1 used 3013 unique words, top-10 used 18 173, top-1000 use almost entire vocabulary (66 429/66 451 words)
- + 75 topics from LDA on notes
- AUCs range from 0.62 to 0.78 ; difficult to reproduce on larger, more heterogeneous data sets

\footnotetext{
Rumshisky, A., Ghassemi, M., Naumann, T., Szolovits, P., Castro, V. M., McCoy, T. H., \& Perlis, R. H. (2016). Predicting early psychiatric readmission with natural language processing of narrative discharge summaries. Translational Psychiatry, 6(10), e921-5. http://doi.org/10.1038/tp.2015.182
}

\section*{Intuition: Documents are made of Topics}
- Every document is a mixture of topics
- Every topic is a distribution over words
- Every word is a draw from a topic

Topics

Documents
Topic proportions and assignments

\section*{LDA - Latent Dirichlet Allocation}
- We observe words, we infer everything else, with our assumed structure
\begin{tabular}{cc}
Proportions & \begin{tabular}{c}
Per-word \\
parameter \\
topic assignment
\end{tabular}
\end{tabular}
\begin{tabular}{l}
\(\alpha\) is the number \\
of times a topic \\
is sampled in a \\
document \\
(prior)
\end{tabular}

\(\prod_{i=1}^{K} p\left(\beta_{i} \mid \eta\right) \prod_{d=1}^{D} p\left(\theta_{d} \mid \alpha\right)\left(\prod_{n=1}^{N} p\left(z_{d, n} \mid \theta_{d}\right) p\left(w_{d, n} \mid \beta_{1: K}, z_{d, n}\right)\right)\)

Table 2. Example topics for MDD patients readmitted with a psychiatric diagnosis within 30 days
\begin{tabular}{|c|c|}
\hline Terms & Topic annotation \\
\hline *patient alcohol withdrawal depression drinking end ativan etoh drinks medications clinic inpatient diagnosis days hospital < substance use treatment program name> use abuse problem number & Alcohol \\
\hline *mg daily discharge anxiety klonopin seroquel clonazepam admission wellbutrin given md lexapro date b signed night low admitted sustained hospitalization & Anxiety \\
\hline *ideation suicidal mood decreased hallucinations history depressed depression thought psychiatric energy denied sleep auditory appetite homicidal symptoms increased speech thoughts & Suicidality \\
\hline *ect depression treatment treatments dr mg course <ECT physician name> symptoms received medications prior improved decreased medication md trials tsh continued qhs & ECT \\
\hline \({ }^{*}\) weight eating admission discharge hospital intake loss date hospitalization day dr week physical months prozac food increased md did anorexia & Anorexia \\
\hline *seizure seizures intact eeg neurology normal temporal dilantin head bilaterally events activity weakness sensation disorder tongue neurologist brain loss tegretol & Seizure \\
\hline *therapist mother program father disorder age school parents brother abuse treatment relationship outpatient college behavior partial plan currently group personality & Psychotherapy \\
\hline *psychiatry suicide overdose attempt transferred depression transfer level tylenol hospital service unit normal floor screen tox room admission medical general & Overdose \\
\hline *baby delivery bleeding vaginal breast feeding cesarean weight ibuprofen maternal newborn available p fever pregnancy sex estimated danger gp & Postpartum \\
\hline *psychotic thought features paranoid psychosis paranoia symptoms psychiatric dose continued treatment mental cognitive memory risperidone people th somewhat interview affect & Psychosis \\
\hline Abbreviation: MDD, major depressive disorder; ECT, electroconvulsive therapy. & \\
\hline
\end{tabular}
\begin{tabular}{|lccc|}
\hline \begin{tabular}{l}
Table 3. Comparison of models with and without inclusion of LDA \\
topics
\end{tabular} & & \\
\hline Configuration & AUC & Sensitivity & Specificity \\
\hline \begin{tabular}{l}
Baseline =age/gender/insurance/ \\
Charlson
\end{tabular} & 0.618 & 0.979 & 0.104 \\
Baseline+top-1 words & 0.654 & - & - \\
Baselinetop-10 words & 0.676 & - & - \\
Baselinetop-100 words & 0.682 & - & - \\
Baselinetop-1000 words & 0.682 & 0.213 & 0.945 \\
Baseline+75 topics (no words) & 0.784 & 0.752 & 0.634 \\
\hline Abbreviations: AUC, area under the curve; LDA, Latent Dirichlet Allocation. \\
\hline
\end{tabular}

Figure 1. Kaplan-Meier survival curve for time to psychiatric hospital readmission, for a model built using baseline sociodemographic and clinical variables only. Patients are plotted separately for two groups identified by the support vector machine model as: (1) likely psychiatric readmissions in red; and (2) unlikely psychiatric readmissions in blue.

Figure 2. Kaplan-Meier survival curve for time to psychiatric hospital readmission, for a model built using the baseline variables and 75 topics. Patients are plotted separately for two groups identified by the support vector machine model as: (1) likely psychiatric readmissions in red; and (2) unlikely psychiatric readmissions in blue.

\section*{Prediction of Suicide and Accidental Death After Discharge}
- Very large cohort: 845417 discharges from two medical centers, 2005-2013
- 458053 unique individuals
- Imbalanced: 235 suicides, but all-cause mortality was 18\% during 9 years
- Censoring: median follow-up was 5.2 years
- "Positive Valence" assessed using curated list of 3000 terms found in discharge summaries
- "Valence, as used in psychology, especially in discussing emotions, means the intrinsic attractiveness/"good"-ness (positive valence) or averseness/"bad"-ness (negative valence) of an event, object, or situation.[1] The term also characterizes and categorizes specific emotions. For example, emotions popularly referred to as "negative", such as anger and fear, have negative valence. Joy has positive valence." -Wikipedia

\footnotetext{
McCoy, T. H., Jr, Castro, V. M., Roberson, A. M., Snapper, L. A., \& Perlis, R. H. (2016). Improving Prediction of Suicide and Accidental Death After Discharge From General Hospitals With Natural Language Processing. JAMA Psychiatry, 73(10), 1064-8. http://doi.org/10.1001/jamapsychiatry.2016.2172
}

Figure 1. Kaplan-Meier Curves for Time to Death by Suicide Among 458053 Individuals With at Least 1 Hospital Discharge by Predicted Risk Quartile

The axes are rescaled inside the figure to improve interpretability.

Figure 2. Kaplan-Meier Curves for Time to Death by Suicide or Accidental Death Among 458053 Individuals With at Least 1 Hospital Discharge by Predicted Risk Quartile

The axes are rescaled inside the figure to improve interpretability.

\section*{Tensor Factorization for Unsupervised Exploitation of Text}
- Goals:
- Identify patients with subtypes of lymphoma by analysis of their pathology notes
- Unsupervised approach
- Do the core "clusters" of patient descriptions correspond to known lymphoma types?
- Can we use these to help refine out understanding of the types?

\section*{Generalizing Matrix to Tensor}
- \(N\)-dimensional data structure \((\mathrm{N} \geq 3)\)
- Example: patient and timed physiological measurements

\section*{Non-Negative Matrix and Tensor Factorization}
- NMF extension to tensors of arbitrary order
- Tucker model, a generalized form of spectral modeling

\section*{Multi-Mode Learning \\ SANTF schematic view}

\section*{Unsupervised Learning - Clustering Results}
- Non-negative matrix factorization as baseline
- Traditional two-dimensional view
- Three matrix formulation baselines
- Patient by word
- Patient by subgraph
- Patient by subgraph and word
- SANTF as target (Luo et al. 2014b)
- Patient by subgraph by word
\begin{tabular}{|l|l|r|r|}
\hline \multicolumn{4}{|c|}{ Clinical Narrative Text } \\
\hline Lymphoma & All & Train & Test \\
\hline \hline DLBCL & 589 & 305 & 284 \\
\hline Follicular & 184 & 101 & 83 \\
\hline Hodgkin & 124 & 65 & 59 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Metrics \\
Methods
\end{tabular}} & \multicolumn{3}{|c|}{ Macro Average } & \multicolumn{3}{c|}{ Micro Average } \\
\cline { 2 - 7 } & Precision & Recall & F-measure & Precision & Recall & F-measure \\
\hline (1) NMF pt \(\times \mathrm{wd}\) & 0.492 & 0.495 & 0.428 & 0.626 & 0.626 & 0.626 \\
\hline (2) NMF pt \(\times \mathrm{sg}\) & 0.621 & 0.765 & 0.601 & 0.605 & 0.605 & 0.605 \\
\hline (3) NMF pt \(\times[\mathrm{sg} \mathrm{wd}]\) & 0.637 & 0.787 & 0.615 & 0.614 & 0.614 & 0.614 \\
\hline (4) SANTF pt \(\times \mathrm{sg} \times \mathrm{wd}^{2}\) & \(\mathbf{0 . 7 2 1}^{1,2,3}\) & \(\mathbf{0 . 8 4 9}^{1,2,3}\) & \(\mathbf{0 . 7 4 3}^{1,2,3}\) & \(\mathbf{0 . 7 5 1}^{1,2,3}\) & \(\mathbf{0 . 7 5 1}^{1,2,3}\) & \(\mathbf{0 . 7 5 1}^{1,2,3}\) \\
\hline
\end{tabular}

\section*{Outline}
- Value of the data in clinical text
- Hyper-simplified linguistics
- Term spotting + handling negation, uncertainty
- UMLS resources
- ML to expand terms
- pre-NN ML to identify entities and relations
- Language models
- Neural methods

\section*{Language Modeling}
- Predict the next token given the ones before it (autoregressive model)
- In unigram model, P (token) is just estimated from frequency in corpus
- Markov assumption simplifies model so
- \(P\) (token | stuff before) \(=P\) (token | previous token) [bigram model]
- \(P\left(t_{k} \mid\right.\) stuff before \()=P\left(t k \mid t_{k-1}, \ldots, t_{k-n}\right)\) [n-gram models]
- Perplexity is an aggregate measure of the complexity of a corpus
- \(2^{H(p)}\) where \(\mathrm{H}(\mathrm{p})\) is the entropy of the probability distribution
- intuitively, the number of likely ways to continue a text
- a perplexity of \(k\) means that you are as surprised on average as you would have been if you had to guess between \(k\) equiprobable choices at each step
- For example, we compared perplexity of dictated doctors' notes (8.8) vs. that of doctor-patient conversations (73.1)
- What does that tell you about the difficulty of accurately transcribing speech for these applications?

\section*{Statistical Models of Language Zipf's law}
- There are very few very frequent words
- Most words have very low frequencies
- The frequency of a word is inversely proportional to its rank \(-f(k) \propto 1 / k\)
- In the Brown corpus, the 10 top-ranked words make up 23\% of total corpus size (Baroni, 2007)

\section*{N-gram models}
- Shakespeare as a Corpus
- N=884,647 tokens, V=29,066
- Shakespeare produced 300,000 bigram types out of \(\mathrm{V}^{2}=844\) million possible bigrams...
- So, \(99.96 \%\) of the possible bigrams were never seen
- Google released corpus of 1,024,980,267,229 (i.e., ~1T) words in 2006
- 13.6M unique words occurring at least 200 times
- 1.2B five-word sequences that occur at least 40 times
\begin{tabular}{|r|r|}
\hline Number of tokens: & \(1,024,908,267,229\) \\
\hline Number of sentences: & \(95,119,665,584\) \\
\hline Number of unigrams: & \(13,588,391\) \\
\hline Number of bigrams: & \(314,843,401\) \\
\hline Number of trigrams: & \(977,069,902\) \\
\hline Number of fourgrams: & \(1,313,818,354\) \\
\hline Number of fivegrams: & \(1,176,470,663\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{23}{*}{} & ceramics & collectables & collectibles & 55 \\
\hline & ceramics & collectables & fine & 130 \\
\hline & ceramics & collected & by & 52 \\
\hline & ceramics & collectible & pottery & 50 \\
\hline & ceramics & collectibles & cooking & 45 \\
\hline & ceramics & collection & , & 144 \\
\hline & ceramics & collection & . & 247 \\
\hline & ceramics & collection & </S> & 120 \\
\hline & ceramics & collection & and & 43 \\
\hline & ceramics & collection & at & 52 \\
\hline & ceramics & collection & is & 68 \\
\hline & ceramics & collection & of & 76 \\
\hline & ceramics & collection & & 59 \\
\hline & ceramics & collections & , & 66 \\
\hline & ceramics & collections & . & 60 \\
\hline & ceramics & combined & with & 46 \\
\hline & ceramics & come & from & 69 \\
\hline & ceramics & comes & from & 660 \\
\hline & ceramics & community & , & 109 \\
\hline & ceramics & community & . & 210 \\
\hline & ceramics & community & for & 61 \\
\hline & ceramics & companies & . & 53 \\
\hline & ceramics & companies & cpnsultants & 173 \\
\hline
\end{tabular}

\section*{Generating Sequences}
- This model can be turned around to generate random sentences that are like the sentences from which the model was derived.
- Generally attributed to Claude Shannon.
- Sample a random bigram (<S>, w) according to its probability
- Now sample a random bigram (\(\mathrm{w}, \mathrm{x}\)) according to its probability
- Where the prefix w matches the suffix of the first.
- And so on until we randomly choose a (\(\mathrm{y},</ \mathrm{s}>\))
- Then string the words together
```

<s> I
I want
want to
to get
get Chinese
Chinese food
food </s>

```

\section*{Generating Shakespeare}
- To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
- Every enter now severally so, let
- Hill he late speaks; or! a more to leg less first you enter
- Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like
- What means, sir. I confess she? then all sorts, he is trim, captain.
-Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
-What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman?
- Enter Menenius, if it so many good direction found'st thou art a strong upon command of fear not a liberal largess given away, Falstaff! Exeunt
- Sweet prince, Falstaff shall die. Harry of Monmouth's grave.
- This shall forbid it should be branded, if renown made it empty.
- Indeed the duke; and had a very good friend.
- Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
- King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;
- Will you not tell me who I am?
- It cannot be but so.
- Indeed the short and the long. Marry, 'tis a noble Lepidus.

\section*{Generating the Wall Street Journal}
unigram: Months the my and issue of year foreign new exchange's september were recession exchange new endorsed a acquire to six executives
bigram: Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor would seem to complete the major central planners one point five percent of U. S. E. has already old M. X. corporation of living on information such as more frequently fishing to keep her
trigram: They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions

\section*{Outline}
- Value of the data in clinical text
- Hyper-simplified linguistics
- Term spotting + handling negation, uncertainty
- UMLS resources
- ML to expand terms
- Pre-NN ML to identify entities and relations
- Language models
- Neural methods

\section*{Distributional Semantics}
- Terms that appear in the same context of other words are (probably) semantically related
- Every term is mapped to a high-dimensional vector (the embedding space)
- Ever more sophisticated versions of embeddings, equivalent to matrix factorization
- Word2Vec

INPUT
PROJECTION
OUTPUT

CBOW

INPUT PROJECTION OUTPUT

Skip-gram

Plausibility of semantic claims
vec("man") - vec("king") + vec("woman") = vec("queen")

\section*{t-Distributed Stochastic Neighbor Embedding}

van der Maaten, L., Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 2579-2605.

\section*{Feature extraction for phenotyping from semantic and knowledge resources (SEDFE)}
- Goal: "fully automated and robust unsupervised feature selection method that leverages only publicly available medical knowledge sources, instead of EHR data"
- Surrogate features derived from knowledge sources
- Method:
- Build a word2vec skipgram model from .5M Springer articles (2006-08) to yield 500-D vectors for each word
- Sum vectors for each word in the defining strings for UMLS Concepts, weighted by IDF
- For each disease in Wikipedia, Medscape eMedicine, Merck Manuals Professional Edition, Mayo Clinic Diseases and Conditions, and MedlinePlus Medical Encyclopedia use NER to find all concepts related to the phenotype
- Retain only concepts that occur in at least 3 of 5 knowledge sources
- Choose top \(k\) concepts whose embedding vectors are closest (by cos distance) to the embedding of the phenotype
- Define the phenotype as a linear combination of its related concepts, learn weights by least squares, and choose \(k\) to minimize BIC

Fig. 1. Generating concept vector representations from word vectors in the paraphrase.

\section*{Evaluating SEDFE}

Number of features from various methods.
\begin{tabular}{lllllll}
\hline & \multicolumn{2}{l}{ Phenotype } & & & \\
\cline { 3 - 7 } & CAD & RA & CD & UC & PAH \\
\hline \begin{tabular}{llllll}
Number of concepts extracted from source & 805 & 1067 & 1057 & 700 & 58 \\
\(\quad\) articles & & & & & \\
Number of expert-curated features \({ }^{\text {a }}\) & 34 & 21 & 47 & 48 & 24 \\
Number of features from SAFE & 19 & 15 & 16 & 17 & 28 \\
Number of features from SEDFE & 36 & 26 & 18 & 27 & 35 \\
\hline
\end{tabular} & & & & & & \\
\hline
\end{tabular}
\({ }^{\text {a }}\) The source of PAH features in the original study includes both expert curation and algorithm selection.
- Used to create phenotypes for coronary artery disease (CAD), rheumatoid arthritis (RA), Crohn's disease (CD), ulcerative colitis (UC), and pediatric pulmonary arterial hypertension (PAH)
\begin{tabular}{|c|l|l|l|}
\hline & \multicolumn{1}{|c|}{ AFEP } & \multicolumn{1}{c|}{ SAFE } & \multicolumn{1}{c|}{ SEDFE } \\
\hline Commonality & Applies NER to online articles about the target phenotype to find an initial list of clinical concepts as candidate features \\
\hline \begin{tabular}{c}
Feature \\
selection \\
method
\end{tabular} & \begin{tabular}{l}
Frequency control, then \\
threshold by rank \\
correlation with the NLP \\
feature representing the \\
target phenotype
\end{tabular} & \begin{tabular}{l}
Frequency control, majority voting, then use sparse \\
regression to predict the silver-standard labels derived \\
from surrogate features
\end{tabular} & \begin{tabular}{l}
Majority voting; Use concept \\
embedding to determine feature \\
relatedness; Use semantic \\
combination and the BIC to \\
determine the number of needed \\
features
\end{tabular} \\
\hline \begin{tabular}{c}
Data \\
requirement
\end{tabular} & \begin{tabular}{l}
EHR data (hospital \\
dependent and not \\
sharable)
\end{tabular} & \begin{tabular}{l}
EHR data (hospital dependent and not sharable) \\
Threshold for the rank \\
correlation
\end{tabular} & \begin{tabular}{l}
(1) Upper and lower thresholds of the surrogate features \\
for creating the silver standard labels, which are affected \\
by the distribution of the features, and therefore \\
phenotype dependent; (2) The number of patients to \\
pample, which affects the number of selected features
\end{tabular}
\end{tabular} \begin{tabular}{l}
The word embedding parameters, \\
which are not overly sensitive. The \\
embembedding is done only once for all \\
phenotypes for training
\end{tabular}

\section*{ANN model for de-identification}
- Label-sequence optimization layer \(s\left(y_{1: n}\right)=\sum_{i=1}^{n} \mathbf{a}_{i}\left[y_{i}\right]+\sum_{i=2}^{n} T\left[y_{i-1}, y_{i}\right]\)
- Label prediction layer
- Characterenhanced tokenembedding layer

Figure 1. Architecture of the artificial neural network (ANN) model. (RNN, recurrent neural network.) The type of RNN used in this model is long short-term memory (LSTM). \(n\) is the number of tokens, and \(x_{i}\) is the \(i^{\text {th }}\) token. \(\mathcal{V}_{T}\) is the mapping from tokens to token embeddings. \(\ell(i)\) is the number of characters and \(x_{i, j}\) is the \(j^{\text {th }}\) character in the \(i^{\text {th }}\) token. \(\mathcal{V}_{C}\) is the mapping from characters to character embeddings. \(e_{i}\) is the character-enhanced token embeddings of the \(i^{\text {th }}\) token. \(\widetilde{\mathrm{d}}_{i}\) is the output of the LSTM of the label prediction layer, \(a_{i}\) is the probability vector over labels, \(y_{i}\) is the predicted label of the \(i^{\text {th }}\) token.

\section*{De-Identifier performance}
\begin{tabular}{|l|ccc|ccc|}
\hline & \multicolumn{2}{|c|}{ Binary HIPAA (optimized by F1-score) } & \multicolumn{3}{c|}{ Binary HIPAA (optimized by recall) } \\
& Precision & Recall & F1-score & Precision & Recall & F1-score \\
\hline No feature & 99.103 & 99.197 & 99.150 & 98.557 & 99.376 & 98.965 \\
EHR features & 99.100 & 99.304 & 99.202 & 98.771 & \(\mathbf{9 9 . 4 4 1}\) & 99.105 \\
All features & \(\mathbf{9 9 . 2 1 3}\) & \(\mathbf{9 9 . 3 0 6}\) & \(\mathbf{9 9 . 2 5 9}\) & \(\mathbf{9 8 . 8 8 0}\) & 99.420 & \(\mathbf{9 9 . 1 4 9}\) \\
\hline
\end{tabular}

Table 2: Binary HIPAA token-based results (\%) for the ANN model, averaged over 5 runs. The metric refers to the detection of PHI tokens versus non-PHI tokens, amongst PHI types that are defined by HIPAA. "No feature" is the model utilizing only character and word embeddings, without any feature. "EHR features" uses only 4 features derived from EHR database: patient first name, patient last name, doctor first name, and doctor last name. "All features" makes use of all features, including the EHR features as well as other engineered features listed in Table 1. "Optimized by F1-score" and "optimized by recall" means that the epochs for which the results are reported are optimized based on the highest F1-score or the highest recall on the validation set, respectively.

\section*{"Revolutionary Advances" in Embeddings}
- The year 2018 has been an inflection point for machine learning models handling text (or more accurately, Natural Language Processing or NLP for short). Our conceptual understanding of how best to represent words and sentences in a way that best captures underlying meanings and relationships is rapidly evolving. - Jay Alammar (http://jalammar.github.io/illustrated-bert/ - good tutorial)
- Bidirectional LSTM applied to learn context-specific embeddings (ELMo)
- Transformer architecture - focus on attention mechanism
- Bidirectional Encoder Representations from Transformers (BERT)
- Generative Pre-Training (GPT-2) - transformer with multi-task training, huge corpus, huge model

\section*{Sequence-to-Sequence models}
- Natural application: machine translation
- But also usable for question-answer problems
- Equivalence and natural implication problems
- Conversion from text to some formal representation
- One of a variety of RNN models

- For translation, odd to encode entire meaning of source into one state!

\section*{Attention tells where in the source to focus}
- Each decoder output word yt now depends on a weighted combination of all the input states, not just the last state.
- The a's are weights that define how much of each input state should be considered for each output.
- Application: Automatic "alignment" of source and target languages in MT

\section*{Transformer architecture}
- Details well explained at https://jalammar.github.io/illustrated-transformer/
- Self-attention - vaguely reminiscent of CNNs
- Multi-headed attention - like multiple convolution kernels in CNN
- Key-value pairs passed from encoder to decoder
- Positional encoding
- Only look to left in decoder
- Scaling

\section*{Multi-headed attention}

Layer: 5 - Attention: Input - Input \(\hat{\boldsymbol{v}}\)

\section*{ELMo-Embeddings from Language Models}
- Bidirectional LSTM
- Builds models for every token, not just for every type
- i.e., different embeddings for the same word in different contexts
- basis for word-sense disambiguation
- Significantly improves performance on nearly all NLP tasks
\begin{tabular}{ll|l}
\multicolumn{1}{c|}{ Source } & Nearest Neighbors \\
\hline \hline GloVe & play & \begin{tabular}{l}
playing, game, games, played, players, plays, player, \\
Play, football, multiplayer
\end{tabular} \\
\hline \multirow{3}{*}{\begin{tabular}{l}
Chico Ruiz made a spec- \\
tacular play on Alusik s s \\
grounder \(\{\ldots\}\)
\end{tabular}} & \begin{tabular}{l}
Kieffer, the only junior in the group, was commended \\
for his ability to hit in the clutch, as well as his all-round \\
excellent play.
\end{tabular} \\
\cline { 3 - 3 } \begin{tabular}{l}
Olivia De Havilland \\
signed to do a Broadway \\
play for Garson \(\{\ldots\}\)
\end{tabular} & \begin{tabular}{l}
\(\{\ldots\}\) they were actors who had been handed fat roles in \\
a successful play, and had talent enough to fill the roles \\
competently, with nice understatement.
\end{tabular}
\end{tabular}

Table 4: Nearest neighbors to "play" using GloVe and the context embeddings from a biLM.

\section*{BERT}

\section*{Bidirectional Encoder Representations from Transformers}

Figure 1: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAI GPT uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-left LSTM to generate features for downstream tasks. Among three, only BERT representations are jointly conditioned on both left and right context in all layers.
- Word-piece tokens
- Predict masked tokens (~15\%)
- Predict next sentence
- Trained on 800 M word Books, \(2,500 \mathrm{M}\) word Wikipedia corpus

\section*{BERT Performance Improvements}
\begin{tabular}{lccccccccc|c}
\hline System & \multicolumn{9}{c}{ MNLI-(m/mm) } & \multicolumn{2}{c}{ QQP } & QNLI & SST-2 & CoLA & \multicolumn{2}{c}{ STS-B } & MRPC & RTE & Average \\
& 392 k & 363 k & 108 k & 67 k & 8.5 k & 5.7 k & 3.5 k & 2.5 k & - \\
\hline Pre-OpenAI SOTA & \(80.6 / 80.1\) & 66.1 & 82.3 & 93.2 & 35.0 & 81.0 & 86.0 & 61.7 & 74.0 \\
BiLSTM+ELMo+Attn & \(76.4 / 76.1\) & 64.8 & 79.9 & 90.4 & 36.0 & 73.3 & 84.9 & 56.8 & 71.0 \\
OpenAI GPT & \(82.1 / 81.4\) & 70.3 & 88.1 & 91.3 & 45.4 & 80.0 & 82.3 & 56.0 & 75.2 \\
\hline BERT \(_{\text {BASE }}\) & \(84.6 / 83.4\) & 71.2 & 90.1 & 93.5 & 52.1 & 85.8 & 88.9 & 66.4 & 79.6 \\
BERT \(_{\text {LARGE }}\) & \(\mathbf{8 6 . 7 / 8 5 . 9}\) & \(\mathbf{7 2 . 1}\) & \(\mathbf{9 1 . 1}\) & \(\mathbf{9 4 . 9}\) & \(\mathbf{6 0 . 5}\) & \(\mathbf{8 6 . 5}\) & \(\mathbf{8 9 . 3}\) & \(\mathbf{7 0 . 1}\) & \(\mathbf{8 1 . 9}\) \\
\hline
\end{tabular}

Table 1: GLUE Test results, scored by the GLUE evaluation server. The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set. OpenAI GPT \(=(\mathrm{L}=12, \mathrm{H}=768, \mathrm{~A}=12) ; \mathrm{BERT}_{\mathrm{BASE}}=(\mathrm{L}=12, \mathrm{H}=768\), \(\mathrm{A}=12) ; \mathrm{BERT}_{\text {LARGE }}=(\mathrm{L}=24, \mathrm{H}=1024, \mathrm{~A}=16)\). BERT and OpenAI GPT are single-model, single task. All results obtained from https://gluebenchmark.com/leaderboard and https://blog.openai. com/language-unsupervised/.
- MNLI Multi-Genre Natural Language Inference
- QQP Quora Question Pairs
- QNLI Question Natural Language Inference
- SST-2 The Stanford Sentiment Treebank
- CoLA The Corpus of Linguistic Acceptability
- STS-B The Semantic Textual Similarity Benchmark
- MRPC Microsoft Research Paraphrase Corpus
- RTE Recognizing Textual Entailment

\section*{GPT-2 (Generative Pre-Training)}

\section*{see https://blog.openai.com/better-language-models/}
\begin{tabular}{lcc}
\hline Parameters & Layers & \(d_{\text {model }}\) \\
\hline 117 M & 12 & 768 \\
345 M & 24 & 1024 \\
762 M & 36 & 1280 \\
1542 M & 48 & 1600 \\
\hline
\end{tabular}
- Unified transformer-based architecture for many tasks
- Task is itself given as a sequence of tokens, e.g.,
- (translate to french, english text, french text)
- (answer the question, document, question, answer)
\begin{tabular}{lcccccccccc}
\hline & \begin{tabular}{c}
LAMBADA \\
(PPL)
\end{tabular} & \begin{tabular}{c}
LAMBADA \\
(ACC)
\end{tabular} & \begin{tabular}{c}
CBT-CN \\
(ACC)
\end{tabular} & \begin{tabular}{c}
CBT-NE \\
(ACC)
\end{tabular} & \begin{tabular}{c}
WikiText2 \\
(PPL)
\end{tabular} & \begin{tabular}{c}
PTB \\
(PPL)
\end{tabular} & \begin{tabular}{c}
enwik8 \\
(BPB)
\end{tabular} & \begin{tabular}{c}
text8 \\
(BPC)
\end{tabular} & \begin{tabular}{c}
WikiText103 \\
(PPL)
\end{tabular} & \begin{tabular}{c}
1BW \\
(PPL)
\end{tabular} \\
\hline SOTA & 99.8 & 59.23 & 85.7 & 82.3 & 39.14 & 46.54 & 0.99 & 1.08 & 18.3 \\
\hline \(117 M\) & \(\mathbf{3 5 . 1 3}\) & 45.99 & \(\mathbf{8 7 . 6 5}\) & \(\mathbf{8 3 . 4}\) & \(\mathbf{2 9 . 4 1}\) & 65.85 & 1.16 & 1.17 & 37.50 & 75.20 \\
345M & \(\mathbf{1 5 . 6 0}\) & 55.48 & \(\mathbf{9 2 . 3 5}\) & \(\mathbf{8 7 . 1}\) & \(\mathbf{2 2 . 7 6}\) & 47.33 & 1.01 & \(\mathbf{1 . 0 6}\) & 26.37 & 55.72 \\
\(762 M\) & \(\mathbf{1 0 . 8 7}\) & \(\mathbf{6 0 . 1 2}\) & \(\mathbf{9 3 . 4 5}\) & \(\mathbf{8 8 . 0}\) & \(\mathbf{1 9 . 9 3}\) & \(\mathbf{4 0 . 3 1}\) & \(\mathbf{0 . 9 7}\) & \(\mathbf{1 . 0 2}\) & 22.05 & 44.575 \\
\(1542 M\) & \(\mathbf{8 . 6 3}\) & \(\mathbf{6 3 . 2 4}\) & \(\mathbf{9 3 . 3 0}\) & \(\mathbf{8 9 . 0 5}\) & \(\mathbf{1 8 . 3 4}\) & \(\mathbf{3 5 . 7 6}\) & \(\mathbf{0 . 9 3}\) & \(\mathbf{0 . 9 8}\) & \(\mathbf{1 7 . 4 8}\) & 42.16 \\
\hline
\end{tabular}

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2 results are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang et al., 2018) and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).

\footnotetext{
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., \& Sutskever, I. (2019, February 14). Language Models are
}

\section*{Open-Al's GPT-2 model \\ Generative Pre-trained Transformer; ~1.5B parameters}

\section*{prompt completion}
- A train carriage containg controlled nuclear materials was stolen in Cincinnati today. Its ereabouts are unknown.
- The incident occurred on the downtown train line, which runs from Covington and Ashland stations.
In an email to Ohio news outlets, the U.S. Department of Energy said it is working with the Federal Railroad Administration to find the thief.
"The theft of this nuclear material will have significant negative consequences on public and environmental health, our workforce and the economy of our nation," said Tom Hicks, the U.S. Energy Secretary, in a statement. "Our top priority is to secure the theft and ensure it doesn't happen again."
The stolen material was taken from the University of Cincinnati's Research Triangle Park nuclear research site, according to a news release from Department officials.
The Nuclear Regulatory Commission did not immediately release any information.
According to the release, the U.S. Department of Energy's Office of Nuclear Material Safety and Security is leading that team's investigation.
"The safety of people, the environment and the nation's nuclear stockpile is our highest priority," Hicks said. "We will get to the bottom of this and make no

\section*{Evolving Ideas and Systems XLNet}
- Autoregressive models learn
\[
\max _{\theta} \log p_{\theta}\left(x_{t} \mid x_{<t}\right)=\sum_{t=1}^{T} \log \frac{\exp \left(h_{\theta}\left(x_{1: t-1}\right)^{\top} e\left(x_{t}\right)\right.}{\sum_{x^{\prime}} \exp \left(h_{\theta}\left(x_{1: t-1}\right)^{\top} e\left(x^{\prime}\right)\right.}
\]
- where \(e(x)\) is the embedding of \(x\) and \(h_{\theta}\left(x_{1: t-1}\right)\) is the context representation produced by some neural model (RNN, Transformer, ...)
- Learns dependency on only left (or right) context
- BERT (de-noising autoencoder) learns
\[
\max _{\theta} \log p_{\theta}(\bar{x} \mid \hat{x}) \approx \sum_{t=1}^{T} m_{t} \log p_{\theta}\left(x_{t} \mid \hat{x}\right)=\sum_{t=1}^{T} m_{t} \log \frac{\exp \left(H_{\theta}(\hat{x})_{t}^{\top} e\left(x_{t}\right)\right)}{\sum_{x^{\prime}} \exp \left(H_{\theta}(\hat{x})_{t}^{\top} e\left(x^{\prime}\right)\right)}
\]
- where \(m_{t}=1\) iff \(x_{t}\) is masked, and \(H_{\theta}\) is a Transformer that maps a text sequence to a sequence of hidden vectors \(H_{\theta}(x)=\left[H_{\theta}(x)_{1}, \ldots, H_{\theta}(x)_{T}\right]\)
- \(\bar{x}\) are the masked tokens, \(\hat{x}\) is the corrupted sequence of the original tokens
- Assumes all masked tokens are independent and [MASK] doesn't appear naturally

\section*{XLNet}
- Permutation language modeling
\(\left.\max _{\theta} \mathbb{E}_{z \sim Z_{T}}\left[\sum_{t=1}^{T} \log p_{\theta}\left(x_{z_{t}}\right) \mid x_{z_{<1}}\right)\right]\)
- where \(Z_{T}\) is the set of all permutations of of the index sequence \([1, \ldots, T]\)
- Plus many other details
- Overall, better performance```

