Machine Learning for Healthcare 6.871, HST.956

Lecture 5: Learning with noisy or censored labels

David Sontag

Course announcements

- No recitation this Friday, but will be an extra office instead (2pm, 1-390)
- Problem set 1 due Mon Feb 24th 11:59pm

Roadmap

- Module 1: Overview of clinical care & data (3 lectures)
- Module 2: Using ML for risk stratification and diagnosis (9 lectures)
 - Supervised learning with noisy and censored labels
 - NLP, Time-series
 - Interpretability; Methods for detecting dataset shift; Fairness; Uncertainty
- Module 3: Suggesting treatments (4 lectures)
 - Causal inference; Off-policy reinforcement learning

QUIZ

- Module 4: Understanding disease and its progression (3 lectures)
 - Unsupervised learning on censored time series with substantial missing data
 - Discovery of disease subtypes; Precision medicine
- Module 5: Human factors (3 lectures)
 - Differential diagnosis; Utility-theoretic trade-offs
 - Automating clinical workflows
 - Translating technology into the clinic

Outline for today's class

1. Learning with noisy labels

- Two consistent estimators for class-conditional noise (Natarajan et al., NeurIPS '13)
- Application in health care (Halpern et al., JAMIA '16)
- 2. Learning with right-censored labels

Labels may be noisy

Source: https://phekb.org/sites/phenotype/files/T2DM-algorithm.pdf

YES

CASE

Tl;dr of learning with noisy labels

- 1. If we are in a world with
 - *a) class-conditional* label noise and
 - b) lots of training data,

learning as usual, substituting noisy labels, works!

2. We can modify learning algorithms to make them work better with label noise.

Two methods from Natarajan et al. '13:

- a) Re-weight the loss functions
- b) Modify (suitably symmetric) loss function

Comments on learning with noisy labels

- Cross-validation to choose parameters uses a separate validation set with *noisy* labels
- What about instance-dependent noise?

red = mislabeled orange = maybe mislabeled

Figure source: https://lukeoakdenrayner.wordpress.com/2017/12/18/the-chestxray14-dataset-problems/

Fibrosis

Comments on learning with noisy labels

- Cross-validation to choose parameters uses a separate validation set with *noisy* labels
- What about instance-dependent noise?
 - Recent work (Menon et al. '18) shows that in general impossible
 - If one makes (reasonable) assumptions about where the noise may be greater, can show that maximizing AUROC with noisy labels is consistent

(Menon, van Rooyen, Natarajan. Learning from binary labels with instance-dependent noise. Machine Learning Journal, 2018)

Outline for today's class

- 1. Learning with noisy labels
 - Two consistent estimators for class-conditional noise (Natarajan et al., NeurIPS '13)
 - Application in health care (Halpern et al., JAMIA '16)
- 2. Learning with right-censored labels

Goal: (continuously predicted) electronic phenotype

				Patient D	etails			- 🗆 🗙
ſ	Patient Details E	mail Addresses	Telephone Numbers	Addresses	Documents & Letters	Referrals	Account History	
	Personal Details					_		
	First Name	Jolene				Pi	cture	
	Middle Name							
	Surname	Dearing						
	D.O.B	31/08/1992						
	Medicare No:							
	Male/Female	🔿 Male 🖲 Fe	O Male Female					
	Height	139cm	139cm					
	Weight	65kg						
	Occupation	Hospitality					WebCam	Browse
	Critical Information	Allergy to peni	cillin				Remove	
	Apply Save Cancel							

Hundreds of relevant

clinical variables

Abdominal pain Active malignancy Altered mental status Cardiac etiology Renal failure Infection Urinary tract infection Shock Smoker Pregnant Lower back pain Motor Vehicle accident Psychosis Anticoagulated Type II diabetes

•••

Simplest approach: rules

- We would like to estimate, for every patient, which clinical tags apply to them
- Common practice is to derive manual rules:

Slow, expensive, poor sensitivity.

Often we can find noisy labels WITHIN the data!

Phenotype	Example of noisy label (anchor)	Ļ
Diabetic (type I)	gsn:016313 (insulin) in Medications	
Strep Throat	Positive strep test in Lab results	
Nursing home	"from nursing home" in Text	
Pneumonia	"pna" in Text	
Stroke	ICD9 434.91 in Billing codes	

How can we use these for machine learning?

Learning with anchors

• Formal condition:

Y is the true label A is the anchor variable $\overset{*}{\downarrow}$ X is all features except for the anchor

Conditional Independence

 $A \perp X | Y$

- Using this, we can do a reduction to learning with noisy labels, thinking of A as the noisy label
- We may need to modify feature set to (more closely) satisfy this property

Anchor & Learn Algorithm

(special cased for anchors being positive only)

Training

- 1. Treat the anchors as "true" labels
- 2. Learn a classifier to predict whether the *anchor* appears based on *all other features*

3. Calibration step: $\frac{1}{|\mathcal{P}|} \sum_{\mathcal{P}} P(A|X)$ P = data points with A=1 **Test time**

- 1. If the anchor is present: Predict 1
- 2. Else: Predict using the learned classifier (with calibration)

Evaluating phenotypes

 Derived anchors and learned phenotypes using 270,000 patients' medical records

History	Acute	Deep vein thrombosis	Laceration
Alcoholism	Abdominal pain	Employee exposure	Motor vehicle accident
Anticoagulated	Allergic reaction	Epistaxis	Pancreatitis
Asthma/COPD	Ankle fracture	Gastroenteritis	Pneumonia
Cancer	Back pain	Gastrointestinal bleed	Psych
Congestive heart	Bicycle accident	Geriatric fall	Obstruction
failure	Cardiac etiology	Headache	Septic shock
Diabetes	Cellulitis	Hematuria	Severe sepsis
HIV+	Chest pain	Intracerebral	Sexual assault
Immunosuppressed	Cholecystitis	hemorrhage	Suicidal ideation
Liver malfunction	Cerebrovascular	Infection	Syncope
	accident	Kidney stone	Urinary tract infection

Evaluating phenotypes

- Derived anchors and learned phenotypes using 270,000 patients' medical records
- To obtain ground truth, added a small number of questions to patient discharge procedure, rotated randomly

Unlikely	Unsure		Likely
0	0 0	0	0
< Previous	Abort	Ne	ext>

Deployed in BIDMC Emergency Department

Evaluating phenotypes

Comparison to supervised learning using labels for 5000 patients

Evaluating phenotypes – example model (cardiac etiology)

Anchors

Highly weighted terms

ICD9 codes	Ages age=80-90	Medications lasix	Sex=M	Pyxis aspirin
410. ^a acute Mi 411 * other acute	age=70-80	furosemide	c	lopidogrel
13.* angina pectoris	age=90+	ср	Нер	arin Sodium
785.51 card. shock	nstemi	chest pain	N	1etoprolol
	stemi	edema		Tartrate
Pyxis	ntg	cmed	Mor	phine Sulfate
coron. vasodilators	lasix	chf exacerbation		Integrilin
loop diuretic	nitro	sob		Labetalol
		pedal edema	structu	red text

[Halpern, Horng, Choi, Sontag, AMIA '14] [Halpern, Horng, Choi, Sontag, JAMIA '16]

Evaluating phenotypes – example model (cardiac etiology)

Anchors

Highly weighted terms

4	ICD9 codes 410.* acute MI 11.* other acute L3.* angina pectoris	Ages age=80-90 age=70-80 age=90+	Medications lasix furosemide cp	Sex=M c Hep	Pyxis aspirin lopidogrel arin Sodium
-	85.51 card. shock	nstemi stemi	chest pain edema	N	1etoprolol Tartrate
Pyxis coron. vasodilators		ntg lasix	cmed chf exacerbation	Morphine Sulfate Integrilin	
	cardiac medicine BIDMC shortform	nitro	pedal edema Uns	structu	Labetalol red text

[Halpern, Horng, Choi, Sontag, AMIA '14] [Halpern, Horng, Choi, Sontag, JAMIA '16]

Outline for today's class

- 1. Learning with noisy labels
 - Two consistent estimators for class-conditional noise (Natarajan et al., NeurIPS '13)
 - Application in health care (Halpern et al., JAMIA '16)
- 2. Learning with right-censored labels

Instead of reduction to binary classification, let's now predict *when* a patient will develop diabetes

Survival modeling

How do we learn with <u>right-censored</u> data?

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]

Notation and formalization

- f(t) = P(t) be the probability of death at time t
- Survival function: $S(t) = P(T > t) = \int_{t}^{\infty} f(x) dx$

Fig. 2: Relationship among different entities f(t), F(t) and S(t).

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]

Kaplan-Meier estimator

 Example of a non-parametric method; good for unconditional density estimation

Observed event times $y_{(1)} < y_{(2)} < \cdots < y_{(D)}$

- $d_{(k)}$ = # events at this time
- $n_{(k)} = #$ of individuals alive and uncensored

$$\widehat{S}_{K-M}(t) = \prod_{k:y_{(k)} \le t} \left\{ 1 - \frac{d_{(k)}}{n_{(k)}} \right\}$$

[Figure credit: Rebecca Peyser]

Maximum likelihood estimation

• Common parametric densities for f(t):

Table 2.1 Useful parametric distributions for survival and	alysis
--	--------

Distribution		Survival function $S(t)$	Density function $f(t)$
Exponential ($\lambda > 0$)		$\exp(-\lambda t)$	$\lambda \exp(-\lambda t)$
Weibull $(\lambda, \phi > 0)$		$\exp(-\lambda t^{\phi})$	$\lambda \phi t^{\phi-1} \exp(-\lambda t^{\phi})$
Log-normal $(\sigma > 0, \mu \in R)$	(parameters can be a	$1 - \Phi\{(\ln t - \mu)/\sigma\}$	$\varphi\{(\ln t - \mu)/\sigma\}(\sigma t)^{-1}$
Log-logistic $(\lambda > 0, \phi > 0)$	function of x)	$1/(1+\lambda t^{\phi})$	$(\lambda\phi t^{\phi-1})/(1+\lambda t^{\phi})^2$
Gamma ($\lambda, \phi > 0$)		$1 - I(\lambda t, \phi)$	$\{\lambda^{\phi}/\Gamma(\phi)\}t^{\phi-1}\exp(-\lambda t)$
$\begin{array}{l} \text{Gompertz} \\ (\lambda, \phi > 0) \end{array}$		$\exp\{\frac{\lambda}{\phi}(1-e^{\phi t})\}$	$\lambda e^{\phi t} \exp\{\frac{\lambda}{\phi}(1-e^{\phi t})\}$

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]

Maximum likelihood estimation

 Data are (x, T, b)=(features, time, censoring), where b=0,1 denotes whether time is of censoring or event occurrence

Maximum likelihood estimation

• Two kinds of observations: censored and uncensored

Uncensored likelihood

$$p_{\theta}(T=t \,|\, \mathbf{x}) = f(t)$$

Censored likelihood

$$p_{\theta}^{\text{censored}}(t \mid \mathbf{x}) = p_{\theta}(T > t \mid \mathbf{x}) = S(t)$$

• Putting the two together, we get:

$$\sum_{i=1}^{n} b_i \log p_{\theta}^{\text{censored}}(t | \mathbf{x}) + (1 - b_i) \log p_{\theta}(t | \mathbf{x})$$

Optimize via gradient or stochastic gradient ascent!

Evaluation for survival modeling

 Concordance-index (also called C-statistic): look at model's ability to predict *relative* survival times:

$$\hat{c} = \frac{1}{num} \sum_{i:b_i = 0} \sum_{j:y_i < y_j} I[S(\hat{y}_j | X_j) > S(\hat{y}_i | X_i)]$$

• Illustration – blue lines denote pairwise comparisons:

• Equivalent to AUC for binary variables and no censoring

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]

Comments on survival modeling

- Could also evaluate:
 - Mean-squared error for uncensored individuals
 - Held-out (censored) likelihood
 - Derive binary classifier from learned model and check calibration
- Partial likelihood estimators (e.g. for coxproportional hazards models) can be much more data efficient

Conclusion

- We tackled two challenges that commonly arise in supervised learning in health care
 - 1. Classification with noisy labels
 - 2. Regression with censored labels
- Strong assumptions allowed us to develop simple solutions
 - $-x \perp \tilde{Y} \mid Y$ (noise rate constant for all examples)

 $-C \perp T \mid x$ (censoring time independent of survival time)

 Can we relax these assumptions? Can we do survival modeling with noisy labels?