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Course announcements

* No recitation this Friday, but will be an extra
office instead (2pm, 1-390)

* Problem set 1 due Mon Feb 24t 11:59pm



Roadmap

Module 1: Overview of clinical care & data (3 lectures)

Module 2: Using ML for risk stratification and diagnosis (9 lectures)
— Supervised learning with noisy and censored labels
— NLP, Time-series
— Interpretability; Methods for detecting dataset shift; Fairness; Uncertainty

Module 3: Suggesting treatments (4 lectures)
— Causal inference; Off-policy reinforcement learning

QulzZ

Module 4: Understanding disease and its progression (3 lectures)
— Unsupervised learning on censored time series with substantial missing data
— Discovery of disease subtypes; Precision medicine

Module 5: Human factors (3 lectures)
— Differential diagnosis; Utility-theoretic trade-offs
— Automating clinical workflows
— Translating technology into the clinic



Outline for today’s class

1. Learning with noisy labels

— Two consistent estimators for class-conditional noise
(Natarajan et al., NeurlPS ‘13)

— Application in health care (Halpern et al., JAMIA ‘16)
2. Learning with right-censored labels



Labels may be noisy
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Figure 1: Algorithm for identifying T2DM cases in the EMR.
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Source: https://phekb.org/sites/phenotype/files/T2DM-algorithm.pdf



40% label noise

[Natarajan et al., NeurlPS "13. Figure 2]




Tl;dr of learning with noisy labels

1. If we are in a world with
a) class-conditional label noise and
b) lots of training data,
learning as usual, substituting noisy labels, works!

2. We can modify learning algorithms to make them work
better with label noise.

Two methods from Natarajan et al. ‘13:

a) Re-weight the loss functions
b) Modify (suitably symmetric) loss function

(Natarajan et al., Learning with Noisy Labels. NeurlIPS ‘13)



Comments on learning with noisy
labels

* Cross-validation to choose parameters uses a
separate validation set with noisy labels

 What about instance-dependent noise?

Fibrosis

red = mislabeled
orange = maybe
mislabeled

Figure source: https://lukeoakdenrayner.wordpress.com/2017/12/18/the-chestxrayl4-dataset-problems/



Comments on learning with noisy
labels

* Cross-validation to choose parameters uses a
separate validation set with noisy labels

 What about instance-dependent noise?

— Recent work (Menon et al. “18) shows that in
general impossible

— |If one makes (reasonable) assumptions about

where the noise may be greater, can show that
maximizing AUROC with noisy labels is consistent

(Menon, van Rooyen, Natarajan. Learning from binary labels with instance-dependent
noise. Machine Learning Journal, 2018)



Outline for today’s class

1. Learning with noisy labels

— Two consistent estimators for class-conditional noise
(Natarajan et al., NeurlPS ‘13)

— Application in health care (Halpern et al., JAMIA ‘16)
2. Learning with right-censored labels



Goal: (continuously predicted) electronic phenotype

Hundreds of relevant

0 Patient Detail - o IEN| Nt 1
S atent el clinical variables
Patient Details T Email Addresses T Telephone Numbers T Addresses T Documents & Letters T Referrals T Account History ]
Personal Details Abdominal pain
First Name Jolene M . .
o A Active mallgnancy
Sumame Dearing Altered mental status
. 310871092 Cardiac etiology
Medicare No: .
R Renal failure
Height 139cm Infection
Weight 65kg 1 1 1
o — e — Urinary tract infection
Critical Information | Allergy to penicillinl Remove S h oC k
Smoker
Pregnant
Lower back pain
Apply Save Cancel MOtOr VGhiCle aCCident
Psychosis
Anticoagulated

Type Il diabetes



Simplest approach: rules

 We would like to estimate, for every patient,
which clinical tags apply to them

e Common practice is to derive manual rules:

physician response
(gold standard)

i ?
Need to include: Nursing home?
nursing facility

nursing care T F

facility nursing / text contains:
rehab “nursing home” | T 297 | 129 .

nsg facility
nsg faclty F

1,319 [ 34511

ensitivit
0.18

Slow, expensive, poor sensitivity.




Often we can find noisy labels
WITHIN the data!

Phenotype Example of noisy label (anchor) N¢

Diabetic (type I) gsn:016313 (insulin) in Medications
Strep Throat Positive strep test in Lab results
Nursing home “from nursing home” in Text
Pneumonia “pna” in Text
Stroke ICD9 434.91 in Billing codes

How can we use these for machine learning?



Learning with anchors

Y is the true label

Formal condition: A is the anchor variable J,
X is all features except for the anchor

Conditional Independence

AL X|Y

Using this, we can do a reduction to learning with
noisy labels, thinking of A as the noisy label

We may need to modify feature set to (more closely)
satisfy this property

[Halpern, Horng, Choi, Sontag, AMIA '14; Halpern, Horng, Choi, Sontag, JAMIA ‘16]



Anchor & Learn Algorithm

(special cased for anchors being positive only)
Training

1. Treat the anchors as “true” labels

2. Learn a classifier to predict whether the
anchor appears based on all other features

. . 1
3. Calibration step: W ZP(A\X) P = data points with A=1
Test time g
1. If the anchor is present: Predict 1

2. Else: Predict using the learned classifier (with
calibration)



Evaluating phenotypes

 Derived anchors and learned phenotypes using 270,000
patients’ medical records

History
Alcoholism

Anticoagulated
Asthma/COPD
Cancer

Congestive heart
failure

Diabetes

HIV+
Immunosuppressed
Liver malfunction

Acute
Abdominal pain
Allergic reaction
Ankle fracture
Back pain
Bicycle accident
Cardiac etiology
Cellulitis
Chest pain
Cholecystitis
Cerebrovascular
accident

Deep vein thrombosis
Employee exposure
Epistaxis
Gastroenteritis
Gastrointestinal bleed
Geriatric fall
Headache

Hematuria
Intracerebral
hemorrhage

Infection

Kidney stone

Laceration

Motor vehicle accident
Pancreatitis
Pneumonia

Psych

Obstruction

Septic shock

Severe sepsis

Sexual assault
Suicidal ideation
Syncope

Urinary tract infection

////4/////%11

[Halpern, Horng, Choi, Sontag, AMIA ‘14]
[Halpern, Horng, Choi, Sontag, JAMIA ‘16]




Evaluating phenotypes

 Derived anchors and learned phenotypes using 270,000
patients’ medical records

 To obtain ground truth, added a small number of questions to
patient discharge procedure, rotated randomly

Does the patient have an active malignancy?®

Unlikely Unsure Likely

<-- Previous Abort | Next >

Deployed in BIDMC Emergency Department

[Halpern, Horng, Choi, Sontag, AMIA ‘14]
® [Halpern, Horng, Choi, Sontag, JAMIA ‘16]
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Evaluating phenotypes

AUC Pneumonia - Acute

F Anchor & Learn

0.95 t--4 Supervised baseline

0.90} r _________ 1/

0.85

0.80;

Arrival  30.0 60.0 120.0 180.0 360.0
Time (minutes)

Comparison to supervised learning using labels for
5000 patients



Evaluating phenotypes — example model
(cardiac etiology)

Anchors Highly weighted terms
Ages
age=80-90
age=70-80
age=90+

[Halpern, Horng, Choi, Sontag, AMIA ‘14]
[Halpern, Horng, Choi, Sontag, JAMIA ‘16]



Evaluating phenotypes — example model
(cardiac etiology)

Anchors Highly weighted terms

cardiac medicine
BIDMC shortform

[Halpern, Horng, Choi, Sontag, AMIA ‘14]
[Halpern, Horng, Choi, Sontag, JAMIA ‘16]



Outline for today’s class

1. Learning with noisy labels

— Two consistent estimators for class-conditional noise
(Natarajan et al., NeurlPS ‘13)

— Application in health care (Halpern et al., JAMIA ‘16)
2. Learning with right-censored labels

Diabetes Onset
T TLW 1a /ezs nse
: _=7

Instead of reduction to binary classification, let’s
now predict when a patient will develop diabetes




Survival modeling

* How do we learn with right-censored data?

Event occurrence
/ e.g., death, divorce, college graduation
S6 Fﬁ
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[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]



Notation and formalization

e f(t) = P(t) be the probability of death at time t
e Survival function: s¢) = P(T > 1) =/oo f(x)dx

F(t) or proportion dead
0.8

f{t) or death density
0.6

0.4 S(t) or proportion surviving to ¢

Density Function

0.2

0.8

Time in years

Fig. 2: Relationship among different entities f(¢), F'(¢) and S(¢).
[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]
[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]



Kaplan-Meier estimator

 Example of a non-parametric method; good for
unconditional density estimation

| x=0 x=1 Observed event times
s Yy < Yoy < < YD)
Survival d) = # events at this time
probability, o= Nk = # of individuals alive
S(t)
and uncensored
: 5 dk)
0.00 SK_M(Z') — H { _
0 500 1000 1500 2000 k:y(k)ft n(k)
Time t

[Figure credit: Rebecca Peyser]



Maximum likelihood estimation

« Common parametric densities for f(t):

Table 2.1 Useful parametric distributions for survival analysis

Distribution Survival function Density function f ()
S(1)

Exponential (A > 0) exp(—Ar) Aexp(—At)

Weibull (\, ¢ > 0) exp(—A?) Apt?~ L exp(—\t?)

Log-normal (parameters I —®{(nt — p)/o} | o{(nt — ,u)/a}(at)_1

(>0, €R) can be a

Log-logistic functionofx) | 1/(1+Ar?) Aot~ 1 /(1 + Xt?)?

(A>0,0>0)

Gamma (), ¢ > 0) 1 — I\, &) N/ T ()% exp(—\t)

Gompertz exp{%(l — e?)) Ae?!t exp{%(l — e?)}

(A, ¢ > 0)

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]



Maximum likelihood estimation

e Data are (x, T, b)=(features, time, censoring), where
b=0,1 denotes whether time is of censoring or event
occurrence



Maximum likelihood estimation

e Two kinds of observations: censored and uncensored

Uncensored likelihood
pe(T=t|x) = f(t)

Censored likelihood
p™ored(t|x) = po(T > t|x) = S(t)
e Putting the two together, we get:
> b logpéensored(¢] x) + (1 —b;) logpy (¢ x)
i=1

Optimize via gradient or stochastic gradient ascent!



Evaluation for survival modeling

* Concordance-index (also called C-statistic): look at
model’s ability to predict relative survival times:

A 1 A A
6= —— g E I1S(9;|X5) > S(9:]X5)]
num ,
1:0;, = 07:y; <y,
* |llustration — blue lines denote pairwise comparisons:

Vi ‘y2 .y:s

V4 Vs
O ®
Black = uncensored

Red = censored

e Equivalent to AUC for binary variables and no censoring

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]



Comments on survival modeling

* Could also evaluate:
— Mean-squared error for uncensored individuals
— Held-out (censored) likelihood

— Derive binary classifier from learned model and
check calibration

 Partial likelihood estimators (e.g. for cox-
proportional hazards models) can be much
more data efficient



Conclusion

* We tackled two challenges that commonly arise in
supervised learning in health care
1. Classification with noisy labels
2. Regression with censored labels

e Strong assumptions allowed us to develop simple
solutions

— x 1 Y|Y (noise rate constant for all examples)

— C L T | x (censoring time independent of survival time)

e Can we relax these assumptions? Can we do survival
modeling with noisy labels?



