
Machine Learning for Healthcare
6.871, HST.956

Lecture 5: Learning with noisy or
censored labels

David Sontag

Course announcements

• No recitation this Friday, but will be an extra
office instead (2pm, 1-390)

• Problem set 1 due Mon Feb 24th 11:59pm

Roadmap
• Module 1: Overview of clinical care & data (3 lectures)

• Module 2: Using ML for risk stratification and diagnosis (9 lectures)
– Supervised learning with noisy and censored labels
– NLP, Time-series
– Interpretability; Methods for detecting dataset shift; Fairness; Uncertainty

• Module 3: Suggesting treatments (4 lectures)
– Causal inference; Off-policy reinforcement learning

QUIZ

• Module 4: Understanding disease and its progression (3 lectures)
– Unsupervised learning on censored time series with substantial missing data
– Discovery of disease subtypes; Precision medicine

• Module 5: Human factors (3 lectures)
– Differential diagnosis; Utility-theoretic trade-offs
– Automating clinical workflows
– Translating technology into the clinic

Outline for today’s class

1. Learning with noisy labels
– Two consistent estimators for class-conditional noise

(Natarajan et al., NeurIPS ‘13)
– Application in health care (Halpern et al., JAMIA ‘16)

2. Learning with right-censored labels

Labels may be noisy

Figure 1: Algorithm for identifying T2DM cases in the EMR.

3

Source: https://phekb.org/sites/phenotype/files/T2DM-algorithm.pdf

If the derived label
is noisy, how does it
affect learning?

5 Experiments
We show the robustness of the proposed algorithms to increasing rates of label noise on synthetic and
real-world datasets. We compare the performance of the two proposed methods with state-of-the-art
methods for dealing with random classification noise. We divide each dataset (randomly) into 3
training and test sets. We use a cross-validation set to tune the parameters specific to the algorithms.
Accuracy of a classification algorithm is defined as the fraction of examples in the test set classified
correctly with respect to the clean distribution. For given noise rates ρ+1 and ρ−1, labels of the
training data are flipped accordingly and average accuracy over 3 train-test splits is computed2. For
evaluation, we choose a representative algorithm based on each of the two proposed methods— ℓ̃log
for the method of unbiased estimators and the widely-used C-SVM [Liu et al., 2003] method (which
applies different costs on positives and negatives) for the method of label-dependent costs.

5.1 Synthetic data
First, we use the synthetic 2D linearly separable dataset shown in Figure 1(a). We observe from
experiments that our methods achieve over 90% accuracy even when ρ+1 = ρ−1 = 0.4. Figure 1
shows the performance of ℓ̃log on the dataset for different noise rates. Next, we use a 2D UCI
benchmark non-separable dataset (‘banana’). The dataset and classification results using C-SVM
(in fact, for uniform noise rates, α∗ = 1/2, so it is just the regular SVM) are shown in Figure 2. The
results for higher noise rates are impressive as observed from Figures 2(d) and 2(e). The ‘banana’
dataset has been used in previous research on classification with noisy labels. In particular, the
Random Projection classifier [Stempfel and Ralaivola, 2007] that learns a kernel perceptron in the
presence of noisy labels achieves about 84% accuracy at ρ+1 = ρ−1 = 0.3 as observed from
our experiments (as well as shown by Stempfel and Ralaivola [2007]), and the random hyperplane
sampling method [Stempfel et al., 2007] gets about the same accuracy at (ρ+1, ρ−1) = (0.2, 0.4) (as
reported by Stempfel et al. [2007]). Contrast these with C-SVM that achieves about 90% accuracy
at ρ+1 = ρ−1 = 0.2 and over 88% accuracy at ρ+1 = ρ−1 = 0.4.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(a)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(b)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(c)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(d)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(e)

Figure 1: Classification of linearly separable synthetic data set using ℓ̃log. The noise-free data is
shown in the leftmost panel. Plots (b) and (c) show training data corrupted with noise rates (ρ+1 =
ρ−1 = ρ) 0.2 and 0.4 respectively. Plots (d) and (e) show the corresponding classification results.
The algorithm achieves 98.5% accuracy even at 0.4 noise rate per class. (Best viewed in color).

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(a)
−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(b)
−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(c)
−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(d)
−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(e)
Figure 2: Classification of ‘banana’ data set using C-SVM. The noise-free data is shown in (a). Plots
(b) and (c) show training data corrupted with noise rates (ρ+1 = ρ−1 = ρ) 0.2 and 0.4 respectively.
Note that for ρ+1 = ρ−1, α∗ = 1/2 (i.e. C-SVM reduces to regular SVM). Plots (d) and (e) show
the corresponding classification results (Accuracies are 90.6% and 88.5% respectively). Even when
40% of the labels are corrupted (ρ+1 = ρ−1 = 0.4), the algorithm recovers the class structures as
observed from plot (e). Note that the accuracy of the method at ρ = 0 is 90.8%.

5.2 Comparison with state-of-the-art methods on UCI benchmark
We compare our methods with three state-of-the-art methods for dealing with random classi-
fication noise: Random Projection (RP) classifier [Stempfel and Ralaivola, 2007]), NHERD

2Note that training and cross-validation are done on the noisy training data in our setting. To account for
randomness in the flips to simulate a given noise rate, we repeat each experiment 3 times — independent
corruptions of the data set for same setting of ρ+1 and ρ−1, and present the mean accuracy over the trials.

7

5 Experiments
We show the robustness of the proposed algorithms to increasing rates of label noise on synthetic and
real-world datasets. We compare the performance of the two proposed methods with state-of-the-art
methods for dealing with random classification noise. We divide each dataset (randomly) into 3
training and test sets. We use a cross-validation set to tune the parameters specific to the algorithms.
Accuracy of a classification algorithm is defined as the fraction of examples in the test set classified
correctly with respect to the clean distribution. For given noise rates ρ+1 and ρ−1, labels of the
training data are flipped accordingly and average accuracy over 3 train-test splits is computed2. For
evaluation, we choose a representative algorithm based on each of the two proposed methods— ℓ̃log
for the method of unbiased estimators and the widely-used C-SVM [Liu et al., 2003] method (which
applies different costs on positives and negatives) for the method of label-dependent costs.

5.1 Synthetic data
First, we use the synthetic 2D linearly separable dataset shown in Figure 1(a). We observe from
experiments that our methods achieve over 90% accuracy even when ρ+1 = ρ−1 = 0.4. Figure 1
shows the performance of ℓ̃log on the dataset for different noise rates. Next, we use a 2D UCI
benchmark non-separable dataset (‘banana’). The dataset and classification results using C-SVM
(in fact, for uniform noise rates, α∗ = 1/2, so it is just the regular SVM) are shown in Figure 2. The
results for higher noise rates are impressive as observed from Figures 2(d) and 2(e). The ‘banana’
dataset has been used in previous research on classification with noisy labels. In particular, the
Random Projection classifier [Stempfel and Ralaivola, 2007] that learns a kernel perceptron in the
presence of noisy labels achieves about 84% accuracy at ρ+1 = ρ−1 = 0.3 as observed from
our experiments (as well as shown by Stempfel and Ralaivola [2007]), and the random hyperplane
sampling method [Stempfel et al., 2007] gets about the same accuracy at (ρ+1, ρ−1) = (0.2, 0.4) (as
reported by Stempfel et al. [2007]). Contrast these with C-SVM that achieves about 90% accuracy
at ρ+1 = ρ−1 = 0.2 and over 88% accuracy at ρ+1 = ρ−1 = 0.4.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(a)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(b)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(c)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(d)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(e)

Figure 1: Classification of linearly separable synthetic data set using ℓ̃log. The noise-free data is
shown in the leftmost panel. Plots (b) and (c) show training data corrupted with noise rates (ρ+1 =
ρ−1 = ρ) 0.2 and 0.4 respectively. Plots (d) and (e) show the corresponding classification results.
The algorithm achieves 98.5% accuracy even at 0.4 noise rate per class. (Best viewed in color).

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(a)
−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(b)
−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(c)
−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(d)
−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(e)
Figure 2: Classification of ‘banana’ data set using C-SVM. The noise-free data is shown in (a). Plots
(b) and (c) show training data corrupted with noise rates (ρ+1 = ρ−1 = ρ) 0.2 and 0.4 respectively.
Note that for ρ+1 = ρ−1, α∗ = 1/2 (i.e. C-SVM reduces to regular SVM). Plots (d) and (e) show
the corresponding classification results (Accuracies are 90.6% and 88.5% respectively). Even when
40% of the labels are corrupted (ρ+1 = ρ−1 = 0.4), the algorithm recovers the class structures as
observed from plot (e). Note that the accuracy of the method at ρ = 0 is 90.8%.

5.2 Comparison with state-of-the-art methods on UCI benchmark
We compare our methods with three state-of-the-art methods for dealing with random classi-
fication noise: Random Projection (RP) classifier [Stempfel and Ralaivola, 2007]), NHERD

2Note that training and cross-validation are done on the noisy training data in our setting. To account for
randomness in the flips to simulate a given noise rate, we repeat each experiment 3 times — independent
corruptions of the data set for same setting of ρ+1 and ρ−1, and present the mean accuracy over the trials.

7

[Natarajan et al., NeurIPS ’13. Figure 2]

5 Experiments
We show the robustness of the proposed algorithms to increasing rates of label noise on synthetic and
real-world datasets. We compare the performance of the two proposed methods with state-of-the-art
methods for dealing with random classification noise. We divide each dataset (randomly) into 3
training and test sets. We use a cross-validation set to tune the parameters specific to the algorithms.
Accuracy of a classification algorithm is defined as the fraction of examples in the test set classified
correctly with respect to the clean distribution. For given noise rates ρ+1 and ρ−1, labels of the
training data are flipped accordingly and average accuracy over 3 train-test splits is computed2. For
evaluation, we choose a representative algorithm based on each of the two proposed methods— ℓ̃log
for the method of unbiased estimators and the widely-used C-SVM [Liu et al., 2003] method (which
applies different costs on positives and negatives) for the method of label-dependent costs.

5.1 Synthetic data
First, we use the synthetic 2D linearly separable dataset shown in Figure 1(a). We observe from
experiments that our methods achieve over 90% accuracy even when ρ+1 = ρ−1 = 0.4. Figure 1
shows the performance of ℓ̃log on the dataset for different noise rates. Next, we use a 2D UCI
benchmark non-separable dataset (‘banana’). The dataset and classification results using C-SVM
(in fact, for uniform noise rates, α∗ = 1/2, so it is just the regular SVM) are shown in Figure 2. The
results for higher noise rates are impressive as observed from Figures 2(d) and 2(e). The ‘banana’
dataset has been used in previous research on classification with noisy labels. In particular, the
Random Projection classifier [Stempfel and Ralaivola, 2007] that learns a kernel perceptron in the
presence of noisy labels achieves about 84% accuracy at ρ+1 = ρ−1 = 0.3 as observed from
our experiments (as well as shown by Stempfel and Ralaivola [2007]), and the random hyperplane
sampling method [Stempfel et al., 2007] gets about the same accuracy at (ρ+1, ρ−1) = (0.2, 0.4) (as
reported by Stempfel et al. [2007]). Contrast these with C-SVM that achieves about 90% accuracy
at ρ+1 = ρ−1 = 0.2 and over 88% accuracy at ρ+1 = ρ−1 = 0.4.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(a)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(b)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(c)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(d)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(e)

Figure 1: Classification of linearly separable synthetic data set using ℓ̃log. The noise-free data is
shown in the leftmost panel. Plots (b) and (c) show training data corrupted with noise rates (ρ+1 =
ρ−1 = ρ) 0.2 and 0.4 respectively. Plots (d) and (e) show the corresponding classification results.
The algorithm achieves 98.5% accuracy even at 0.4 noise rate per class. (Best viewed in color).

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(a)
−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(b)
−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(c)
−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(d)
−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(e)
Figure 2: Classification of ‘banana’ data set using C-SVM. The noise-free data is shown in (a). Plots
(b) and (c) show training data corrupted with noise rates (ρ+1 = ρ−1 = ρ) 0.2 and 0.4 respectively.
Note that for ρ+1 = ρ−1, α∗ = 1/2 (i.e. C-SVM reduces to regular SVM). Plots (d) and (e) show
the corresponding classification results (Accuracies are 90.6% and 88.5% respectively). Even when
40% of the labels are corrupted (ρ+1 = ρ−1 = 0.4), the algorithm recovers the class structures as
observed from plot (e). Note that the accuracy of the method at ρ = 0 is 90.8%.

5.2 Comparison with state-of-the-art methods on UCI benchmark
We compare our methods with three state-of-the-art methods for dealing with random classi-
fication noise: Random Projection (RP) classifier [Stempfel and Ralaivola, 2007]), NHERD

2Note that training and cross-validation are done on the noisy training data in our setting. To account for
randomness in the flips to simulate a given noise rate, we repeat each experiment 3 times — independent
corruptions of the data set for same setting of ρ+1 and ρ−1, and present the mean accuracy over the trials.

7

Machine learning

40% label noise

Tl;dr of learning with noisy labels

1. If we are in a world with
a) class-conditional label noise and
b) lots of training data,
learning as usual, substituting noisy labels, works!

2. We can modify learning algorithms to make them work
better with label noise.

Two methods from Natarajan et al. ‘13:
a) Re-weight the loss functions
b) Modify (suitably symmetric) loss function

(Natarajan et al., Learning with Noisy Labels. NeurIPS ‘13)

Comments on learning with noisy
labels

• Cross-validation to choose parameters uses a
separate validation set with noisy labels

• What about instance-dependent noise?

Figure source: https://lukeoakdenrayner.wordpress.com/2017/12/18/the-chestxray14-dataset-problems/

Fibrosis

red = mislabeled
orange = maybe
mislabeled

Comments on learning with noisy
labels

• Cross-validation to choose parameters uses a
separate validation set with noisy labels

• What about instance-dependent noise?
– Recent work (Menon et al. ‘18) shows that in

general impossible
– If one makes (reasonable) assumptions about

where the noise may be greater, can show that
maximizing AUROC with noisy labels is consistent

(Menon, van Rooyen, Natarajan. Learning from binary labels with instance-dependent
noise. Machine Learning Journal, 2018)

Outline for today’s class

1. Learning with noisy labels
– Two consistent estimators for class-conditional noise

(Natarajan et al., NeurIPS ‘13)
– Application in health care (Halpern et al., JAMIA ‘16)

2. Learning with right-censored labels

Goal: (continuously predicted) electronic phenotype

Hundreds of relevant
clinical variables

Abdominal pain
Active malignancy

Altered mental status
Cardiac etiology

Renal failure
Infection

Urinary tract infection
Shock

Smoker
Pregnant

Lower back pain
Motor Vehicle accident

Psychosis
Anticoagulated
Type II diabetes

…

Simplest approach: rules
• We would like to estimate, for every patient,

which clinical tags apply to them
• Common practice is to derive manual rules:

T F

T 297 129

F 1,319 34511

text contains:
“nursing home”

physician response
(gold standard)Nursing home?Need to include:

nursing facility
nursing care
facility nursing /
rehab
nsg facility
nsg faclty
…

Sensitivity
0.18

PPV
0.70

Slow, expensive, poor sensitivity.

Often we can find noisy labels
WITHIN the data!

Phenotype Example of noisy label (anchor)
Diabetic (type I) gsn:016313 (insulin) in Medications

Strep Throat Positive strep test in Lab results

Nursing home “from nursing home” in Text

Pneumonia “pna” in Text

Stroke ICD9 434.91 in Billing codes

How can we use these for machine learning?

Learning with anchors

• Formal condition:

Conditional Independence

• Using this, we can do a reduction to learning with
noisy labels, thinking of A as the noisy label

• We may need to modify feature set to (more closely)
satisfy this property

A ? X|Y

Y is the true label
A is the anchor variable
X is all features except for the anchor

[Halpern, Horng, Choi, Sontag, AMIA ’14; Halpern, Horng, Choi, Sontag, JAMIA ‘16]

Anchor & Learn Algorithm

Training
1. Treat the anchors as “true” labels
2. Learn a classifier to predict whether the

anchor appears based on all other features
3. Calibration step:
Test time
1. If the anchor is present: Predict 1
2. Else: Predict using the learned classifier (with

calibration)

1

|P|
X

P
P (A|X)

(special cased for anchors being positive only)

P = data points with A=1

Evaluating phenotypes

• Derived anchors and learned phenotypes using 270,000
patients’ medical records

[Halpern, Horng, Choi, Sontag, AMIA ‘14]
[Halpern, Horng, Choi, Sontag, JAMIA ‘16]

Acute
Abdominal pain
Allergic reaction
Ankle fracture
Back pain
Bicycle accident
Cardiac etiology
Cellulitis
Chest pain
Cholecystitis
Cerebrovascular
accident

Deep vein thrombosis
Employee exposure
Epistaxis
Gastroenteritis
Gastrointestinal bleed
Geriatric fall
Headache
Hematuria
Intracerebral
hemorrhage
Infection
Kidney stone

Laceration
Motor vehicle accident
Pancreatitis
Pneumonia
Psych
Obstruction
Septic shock
Severe sepsis
Sexual assault
Suicidal ideation
Syncope
Urinary tract infection

History
Alcoholism
Anticoagulated
Asthma/COPD
Cancer
Congestive heart
failure
Diabetes
HIV+
Immunosuppressed
Liver malfunction

Evaluating phenotypes

• Derived anchors and learned phenotypes using 270,000
patients’ medical records

• To obtain ground truth, added a small number of questions to
patient discharge procedure, rotated randomly

[Halpern, Horng, Choi, Sontag, AMIA ‘14]
[Halpern, Horng, Choi, Sontag, JAMIA ‘16]

Deployed in BIDMC Emergency Department

Comparison to supervised learning using labels for
5000 patients

AUC

Time (minutes)

Evaluating phenotypes

cmed

Ages
age=80-90
age=70-80
age=90+

nstemi
stemi

ntg
lasix
nitro

lasix
furosemide

Medications
aspirin

clopidogrel
Heparin Sodium

Metoprolol
Tartrate

Morphine Sulfate
Integrilin
Labetalol

Pyxis

Unstructured text

cp
chest pain

edema
cmed

chf exacerbation
sob

pedal edema

Sex=MICD9 codes
410.* acute MI

411.* other acute …
413.* angina pectoris

785.51 card. shock

Pyxis
coron. vasodilators

loop diuretic

Anchors Highly weighted terms

Evaluating phenotypes – example model
(cardiac etiology)

[Halpern, Horng, Choi, Sontag, AMIA ‘14]
[Halpern, Horng, Choi, Sontag, JAMIA ‘16]

cmed

Ages
age=80-90
age=70-80
age=90+

nstemi
stemi

ntg
lasix
nitro

lasix
furosemide

Medications
aspirin

clopidogrel
Heparin Sodium

Metoprolol
Tartrate

Morphine Sulfate
Integrilin
Labetalol

Pyxis

Unstructured text

cp
chest pain

edema
cmed

chf exacerbation
sob

pedal edema

Sex=MICD9 codes
410.* acute MI

411.* other acute …
413.* angina pectoris

785.51 card. shock

Pyxis
coron. vasodilators

loop diureticcardiac medicine
BIDMC shortform

Anchors Highly weighted terms

Evaluating phenotypes – example model
(cardiac etiology)

[Halpern, Horng, Choi, Sontag, AMIA ‘14]
[Halpern, Horng, Choi, Sontag, JAMIA ‘16]

Instead of reduction to binary classification, let’s
now predict when a patient will develop diabetes

Outline for today’s class

1. Learning with noisy labels
– Two consistent estimators for class-conditional noise

(Natarajan et al., NeurIPS ‘13)
– Application in health care (Halpern et al., JAMIA ‘16)

2. Learning with right-censored labels

Survival modeling

• How do we learn with right-censored data?

1:4 P. Wang et al.

their time to event is greater than the observation time, we can only have the censored
time (C) which may be the time of withdrawn, lost or the end of the observation. They
are considered to be censored instances in the context of survival analysis. In other
words, here, we can only observe either survival time (Ti) or censored time (Ci) but
not both, for any given instance i. If and only if yi = min(Ti, Ci) can be observed during
the study, the dataset is said to be right-censored, which is a common scenario that
arises in many practical problems [Marubini and Valsecchi 2004].

In Figure 1, an illustrative example is given for a better understanding of the def-
inition of censoring and the structure of survival data. Six instances are observed in
this longitudinal study for 12 months and the event occurrence information during this
time period is recorded. From Figure 1, we can find that only subjects S4 and S6 have
experienced the event (marked by ‘X’) during the follow-up time and the observed time
for them is the event time. While the event did not occur within the 12 months period
for subjects S1, S2, S3 and S5, which are considered to be censored and marked by red
dots in the figure. More specifically, subjects S2 and S5 are censored since there was
no event occurred during the study period, while subjects S1 and S3 are censored due
to the withdrawal or being lost to follow-up within the study time period.

Fig. 1: An illustration to demonstrate the survival analysis problem.

Problem Statement: For a given instance i, represented by a triplet (Xi, yi, �i),
where Xi 2 R1⇥P is the feature vector; �i is the binary event indicator, i.e., �i = 1 for
an uncensored instance and �i = 0 for a censored instance; and yi denotes the observed
time and is equal to the survival time Ti for an uncensored instance and Ci otherwise,
i.e.,

yi =

⇢
Ti if �i = 1
Ci if �i = 0

(1)

It should be noted that Ti is a latent value for censored instances since these instances
did not experience any event during the observation time period.

The goal of survival analysis is to estimate the time to the event of interest Tj for
a new instance j with feature predictors denoted by Xj . It should be noted that, in
survival analysis problem, the value of Tj will be both non-negative and continuous.

2.2. Survival and Hazard Function
The survival function, which is used to represent the probability that the time to the
event of interest is not earlier than a specified time t [Lee and Wang 2003; Klein and
Moeschberger 2005], is one of the primary goals in survival analysis. Conventionally,

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: March 2017.

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]

Event occurrence
e.g., death, divorce, college graduation

Censoring

T

Notation and formalization
• f(t) = P(t) be the probability of death at time t
• Survival function:

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]

Machine Learning for Survival Analysis: A Survey 1:5

survival function is represented by S, which is given as follows:

S(t) = Pr(T � t). (2)

The survival function monotonically decreases with t, and the initial value is 1 when
t = 0, which represents the fact that, in the beginning of the observation, 100% of the
observed subjects survive; in other words, none of the events of interest have occurred.

On the contrary, the cumulative death distribution function F (t), which represents
the probability that the event of interest occurs earlier than t, is defined as F (t) =
1� S(t), and death density function can be obtained as f(t) = d

dtF (t) for continuous
cases, and f(t) = [F (t+�t)� F (t)]/�t, where �t denotes a small time interval, for
discrete cases. Figure 2 shows the relationship among these functions.

Time in years

Fig. 2: Relationship among different entities f(t), F (t) and S(t).

In survival analysis, another commonly used function is the hazard function (h(t)),
which is also called the force of mortality, the instantaneous death rate or the condi-
tional failure rate [Dunn and Clark 2009]. The hazard function does not indicate the
chance or probability of the event of interest, but instead it is the rate of event at time
t given that no event occurred before time t. Mathematically, the hazard function is
defined as:

h(t) = lim
�t!0

Pr(t T < t+�t | T � t)

�t
= lim

�t!0

F (t+�t)� F (t)

�t · S(t) =
f(t)

S(t)
(3)

Similar to S(t), h(t) is also a non-negative function. While all the survival functions,
S(t), decrease over time, the hazard function can have a variety of shapes. Consider
the definition of f(t), which can also be expressed as f(t) = � d

dtS(t), so the hazard
function can be represented as:

h(t) =
f(t)

S(t)
= � d

dt
S(t) · 1

S(t)
= � d

dt
[lnS(t)]. (4)

Thus, the survival function defined in Eq. (2) can be rewritten as

S(t) = exp(�H(t)) (5)

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: March 2017.

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]

2.1 Hazard and Survival Function 9

2.1 Hazard and Survival Function

We first present the basic definitions of survival and hazard function and their rela-
tionships, which are the fundamental quantities for parametric and nonparametric
inference on survival data.

Assume that failure time T is a nonnegative continuous random variable with a
density function f (t) and a corresponding distribution function F(t) = P(T ≤ t).
The survival function of T , the probability of an individual surviving beyond time t
or not experiencing a failure up to time t , is defined by

S(t) = P(T > t) =
∫ ∞

t
f (x)dx .

For a distribution of lifetimes of an industrial item, S(t) is referred to as the reliability
function of T (Crowder et al. 1991). From the definition of F(t), we have that

S(t) = 1 −P(an individual fails before or at t) = 1 −F(t).

Notice that S(t) is a monotonically decreasing continuous function with

S(0) = 1 and S(∞) = limt→∞S(t) = 0 .

The hazard function is defined by

λ(t) = lim△t→0
P(t ≤ T < t + △t |T ≥ t)

△t

= lim△t→0
P(t ≤ T < t + △t)/△t

P(T ≥ t)

= f (t)
S(t)

which is the instantaneous failure rate at time t , given the individual surviving just
prior to t . In particular, λ(t)△t is the approximate probability of dying in [t, t + △t),
given survival just prior to time t . The hazard function is also referred as the hazard
rate, failure rate, the force of mortality, and intensity function. The corresponding
cumulative (or integrated) hazard function is defined as

!(t) =
∫ t

0
λ(x)dx .

From the definition λ(t) = f (t)/S(t), we have the following relationships:

λ(t) = −d
dt

log S(t)

Kaplan-Meier estimator

• Example of a non-parametric method; good for
unconditional density estimation

[Figure credit: Rebecca Peyser]

Time t

Survival
probability,

S(t)

x=0 x=1

12 2 Classical Survival Analysis

are satisfied in the data. In practice, however, when the underlying distributional
assumption is not testable as in the designing stage of a study or the parametric
assumptions are not satisfied in the observed data, nonparametric methods are prefer-
able.

Let Ti (i = 1, . . . , n) be the potential failure time and Ci be the corresponding
potential censoring time for the i th individual. Then, the observable randomvariables
are

Yi = min(Ti ,Ci) and δi = I (Ti ≤ Ci),

where I (·) is the indicator function. The following are the two usual assumptions
under noninformative censoring:

Assumption 1: Ti ’s and Ci ’s are independent, and pairs (Ti ,Ci)’s are also inde-
pendent (i = 1, . . . , n).

Assumption 2: Ci ’s are noninformative of Ti ’s.

Here, the noninformativeness implies that the censoring distribution does not
depend on the parameters of interest from the failure time distribution (Klein and
Moeschberger 2003). Under the noninformative censoring, we have the two well-
known nonparametric estimators in survival analysis; Kaplan and Meier (1958) esti-
mator for the survival function and Nelson (1969, 1972)–Aalen (1978) estimator for
the cumulative hazard function. Note that independence is a probabilistic property,
while noninformativeness depends on the relationship between parameters in the
model.

Let yi be the observed value of Yi . Suppose that there are D (D ≤ n) distinct
observed event times y(1) < y(2) < · · · < y(D) among yi ’s. Let d(k) be the number of
events at y(k) (k = 1, . . . , D). Let n (k) be the number of individuals who are at risk
at y(k), that is, the number of individuals who are alive and uncensored just prior to
y(k). The Kaplan–Meier (K–M) estimator of S(t), is defined by

ŜK−M(t) =
∏

k:y(k)≤t

{
1 − d(k)

n (k)

}
,

which is also called the product-limit estimator. The K–M estimator is a step function
with jumps at the observed event times and reduces to the empirical survival function
estimator under no censoring. The variance of theK–Mestimator is usually estimated
using Greenwood’s formula:

v̂ar(ŜK−M(t)) = Ŝ2K-M(t)
∑

k:y(k)≤t

d(k)
n (k){n (k) − d(k)}

.

Using the estimated survival function such as ŜK−M(t), tp is estimated by the
smallest observed survival time such that S(ti) ≤ 1 − p . That is,

12 2 Classical Survival Analysis

are satisfied in the data. In practice, however, when the underlying distributional
assumption is not testable as in the designing stage of a study or the parametric
assumptions are not satisfied in the observed data, nonparametric methods are prefer-
able.

Let Ti (i = 1, . . . , n) be the potential failure time and Ci be the corresponding
potential censoring time for the i th individual. Then, the observable randomvariables
are

Yi = min(Ti ,Ci) and δi = I (Ti ≤ Ci),

where I (·) is the indicator function. The following are the two usual assumptions
under noninformative censoring:

Assumption 1: Ti ’s and Ci ’s are independent, and pairs (Ti ,Ci)’s are also inde-
pendent (i = 1, . . . , n).

Assumption 2: Ci ’s are noninformative of Ti ’s.

Here, the noninformativeness implies that the censoring distribution does not
depend on the parameters of interest from the failure time distribution (Klein and
Moeschberger 2003). Under the noninformative censoring, we have the two well-
known nonparametric estimators in survival analysis; Kaplan and Meier (1958) esti-
mator for the survival function and Nelson (1969, 1972)–Aalen (1978) estimator for
the cumulative hazard function. Note that independence is a probabilistic property,
while noninformativeness depends on the relationship between parameters in the
model.

Let yi be the observed value of Yi . Suppose that there are D (D ≤ n) distinct
observed event times y(1) < y(2) < · · · < y(D) among yi ’s. Let d(k) be the number of
events at y(k) (k = 1, . . . , D). Let n (k) be the number of individuals who are at risk
at y(k), that is, the number of individuals who are alive and uncensored just prior to
y(k). The Kaplan–Meier (K–M) estimator of S(t), is defined by

ŜK−M(t) =
∏

k:y(k)≤t

{
1 − d(k)

n (k)

}
,

which is also called the product-limit estimator. The K–M estimator is a step function
with jumps at the observed event times and reduces to the empirical survival function
estimator under no censoring. The variance of theK–Mestimator is usually estimated
using Greenwood’s formula:

v̂ar(ŜK−M(t)) = Ŝ2K-M(t)
∑

k:y(k)≤t

d(k)
n (k){n (k) − d(k)}

.

Using the estimated survival function such as ŜK−M(t), tp is estimated by the
smallest observed survival time such that S(ti) ≤ 1 − p . That is,

Observed event times

12 2 Classical Survival Analysis

are satisfied in the data. In practice, however, when the underlying distributional
assumption is not testable as in the designing stage of a study or the parametric
assumptions are not satisfied in the observed data, nonparametric methods are prefer-
able.

Let Ti (i = 1, . . . , n) be the potential failure time and Ci be the corresponding
potential censoring time for the i th individual. Then, the observable randomvariables
are

Yi = min(Ti ,Ci) and δi = I (Ti ≤ Ci),

where I (·) is the indicator function. The following are the two usual assumptions
under noninformative censoring:

Assumption 1: Ti ’s and Ci ’s are independent, and pairs (Ti ,Ci)’s are also inde-
pendent (i = 1, . . . , n).

Assumption 2: Ci ’s are noninformative of Ti ’s.

Here, the noninformativeness implies that the censoring distribution does not
depend on the parameters of interest from the failure time distribution (Klein and
Moeschberger 2003). Under the noninformative censoring, we have the two well-
known nonparametric estimators in survival analysis; Kaplan and Meier (1958) esti-
mator for the survival function and Nelson (1969, 1972)–Aalen (1978) estimator for
the cumulative hazard function. Note that independence is a probabilistic property,
while noninformativeness depends on the relationship between parameters in the
model.

Let yi be the observed value of Yi . Suppose that there are D (D ≤ n) distinct
observed event times y(1) < y(2) < · · · < y(D) among yi ’s. Let d(k) be the number of
events at y(k) (k = 1, . . . , D). Let n (k) be the number of individuals who are at risk
at y(k), that is, the number of individuals who are alive and uncensored just prior to
y(k). The Kaplan–Meier (K–M) estimator of S(t), is defined by

ŜK−M(t) =
∏

k:y(k)≤t

{
1 − d(k)

n (k)

}
,

which is also called the product-limit estimator. The K–M estimator is a step function
with jumps at the observed event times and reduces to the empirical survival function
estimator under no censoring. The variance of theK–Mestimator is usually estimated
using Greenwood’s formula:

v̂ar(ŜK−M(t)) = Ŝ2K-M(t)
∑

k:y(k)≤t

d(k)
n (k){n (k) − d(k)}

.

Using the estimated survival function such as ŜK−M(t), tp is estimated by the
smallest observed survival time such that S(ti) ≤ 1 − p . That is,

12 2 Classical Survival Analysis

are satisfied in the data. In practice, however, when the underlying distributional
assumption is not testable as in the designing stage of a study or the parametric
assumptions are not satisfied in the observed data, nonparametric methods are prefer-
able.

Let Ti (i = 1, . . . , n) be the potential failure time and Ci be the corresponding
potential censoring time for the i th individual. Then, the observable randomvariables
are

Yi = min(Ti ,Ci) and δi = I (Ti ≤ Ci),

where I (·) is the indicator function. The following are the two usual assumptions
under noninformative censoring:

Assumption 1: Ti ’s and Ci ’s are independent, and pairs (Ti ,Ci)’s are also inde-
pendent (i = 1, . . . , n).

Assumption 2: Ci ’s are noninformative of Ti ’s.

Here, the noninformativeness implies that the censoring distribution does not
depend on the parameters of interest from the failure time distribution (Klein and
Moeschberger 2003). Under the noninformative censoring, we have the two well-
known nonparametric estimators in survival analysis; Kaplan and Meier (1958) esti-
mator for the survival function and Nelson (1969, 1972)–Aalen (1978) estimator for
the cumulative hazard function. Note that independence is a probabilistic property,
while noninformativeness depends on the relationship between parameters in the
model.

Let yi be the observed value of Yi . Suppose that there are D (D ≤ n) distinct
observed event times y(1) < y(2) < · · · < y(D) among yi ’s. Let d(k) be the number of
events at y(k) (k = 1, . . . , D). Let n (k) be the number of individuals who are at risk
at y(k), that is, the number of individuals who are alive and uncensored just prior to
y(k). The Kaplan–Meier (K–M) estimator of S(t), is defined by

ŜK−M(t) =
∏

k:y(k)≤t

{
1 − d(k)

n (k)

}
,

which is also called the product-limit estimator. The K–M estimator is a step function
with jumps at the observed event times and reduces to the empirical survival function
estimator under no censoring. The variance of theK–Mestimator is usually estimated
using Greenwood’s formula:

v̂ar(ŜK−M(t)) = Ŝ2K-M(t)
∑

k:y(k)≤t

d(k)
n (k){n (k) − d(k)}

.

Using the estimated survival function such as ŜK−M(t), tp is estimated by the
smallest observed survival time such that S(ti) ≤ 1 − p . That is,

= # events at this time

= # of individuals alive
and uncensored

Maximum likelihood estimation

• Common parametric densities for f(t):2.1 Hazard and Survival Function 11

Table 2.1 Useful parametric distributions for survival analysis
Distribution Hazard rate λ(t) Survival function

S(t)
Density function f (t)

Exponential (λ > 0) λ exp(−λt) λ exp(−λt)

Weibull (λ,φ > 0) λφtφ−1 exp(−λtφ) λφtφ−1 exp(−λtφ)

Log-normal
(σ > 0,µ ∈ R)

f (t)/S(t) 1 − !{(lnt − µ)/σ} ϕ{(lnt − µ)/σ}(σt)−1

Log-logistic
(λ > 0,φ > 0)

(λφtφ−1)/(1+ λtφ) 1/(1+ λtφ) (λφtφ−1)/(1+ λtφ)2

Gamma (λ,φ > 0) f (t)/S(t) 1 − I (λt,φ) {λφ/"(φ)}tφ−1 exp(−λt)

Gompertz
(λ,φ > 0)

λeφt exp{ λ
φ (1 − eφt)} λeφt exp{ λ

φ (1 − eφt)}

!(·) [ϕ(·)], c.d.f [p.d.f.] of N(0,1); I (x,φ) = 1
"(φ)

∫ x
0 u φ−1e−u du , incomplete gamma function

we have
f (t) = λφtφ−1 exp(−λtφ) t ≥ 0.

Note that
log{− log S(t)} = logλ + φ log t,

which is used for checking the Weibull model.
Table2.1 summarizes useful parametric distributions including exponential,

Weibull, log-normal, log-logistic, gamma, and Gompertz. These parametric distribu-
tions have been implemented in the survreg() function in the R package survival
as we see in Sect. 2.4.

Percentile of Distribution

Inmany applications, the percentile of a failure time distribution is of interest, e.g., the
median survival time. The 100 p th percentile (or the p th quantile) of the distribution
of T is the value t p satisfying

P(T ≤ t p) = p ∈ (0, 1),

which is equivalent to S(t p) = 1 − p . That is, t p = F−1(p) indicates the time point
to which the 100 p % of population will fail; in particular, the median survival time
t0.5 is the median of distribution of T . For example, t p = − log(1 − p)/λ for an
exponential distribution and t p = {− log(1 − p)/λ}1/φ for a Weibull distribution.

2.1.2 Nonparametric Estimation of Basic Quantities

In survival analysis, parametricmethods based on distributions in Table2.1 have been
well developed and would provide efficient results when the parametric assumptions

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]

(parameters
can be a
function of x)

Maximum likelihood estimation
• Data are (x, T, b)=(features, time, censoring), where

b=0,1 denotes whether time is of censoring or event
occurrence

Maximum likelihood estimation

• Two kinds of observations: censored and uncensored

• Putting the two together, we get:

Optimize via gradient or stochastic gradient ascent!

Parametric Maximum Likelihood
Two kinds of observations: uncensored and censored

Uncensored likelihood

p✓ (T = t |x)

Censored likelihood

p
censored
✓ (t |x) = p✓ (T > t |x) =

Z 1

t

p✓ (a |x)da

For all observations take the Monte-Carlo estimate of expectation
under F

nX

i=1

bi log p
censored
✓ (t |x) + (1� bi) log p✓ (t |x)

Optimize via gradient or stochastic gradient ascent!

S(t)

= f(t)

Parametric Maximum Likelihood
Two kinds of observations: uncensored and censored

Uncensored likelihood

p✓ (T = t |x)

Censored likelihood

p
censored
✓ (t |x) = p✓ (T > t |x) =

Z 1

t

p✓ (a |x)da

For all observations take the Monte-Carlo estimate of expectation
under F

nX

i=1

bi log p
censored
✓ (t |x) + (1� bi) log p✓ (t |x)

Optimize via gradient or stochastic gradient ascent!

Evaluation for survival modeling
• Concordance-index (also called C-statistic): look at

model’s ability to predict relative survival times:

• Illustration – blue lines denote pairwise comparisons:

• Equivalent to AUC for binary variables and no censoring

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]

1:22 P. Wang et al.

tion performance in survival analysis needs to be measured using more specialized
evaluation metrics.

5.1. C-index
In survival analysis, a common way to evaluate a model is to consider the relative risk
of an event for different instance instead of the absolute survival times for each in-
stance. This can be done by computing the concordance probability or the concordance
index (C-index) [Harrell et al. 1984; Harrell et al. 1982; Pencina and D’Agostino 2004].
The survival times of two instances can be ordered for two scenarios: (1) both of them
are uncensored; (2) the observed event time of the uncensored instance is smaller than
the censoring time of the censored instance [Steck et al. 2008]. This can be visualized
by the ordered graph given in Figure 4. Figure 4(a) and Figure 4(b) are used to illus-

 (a) (b)

1y 2y 3y 4y 5y 1y 2y 3y 4y 5y

Fig. 4: Illustration of the ranking constraints in survival data for C-index calculations
(y1 < y2 < y3 < y4 < y5). Here, black circles indicate the observed events and red
circles indicate the censored observations. (a) No censored data and (b) with censored
data.

trate the possible ranking comparisons (denoted by edges between instances) for the
survival data without and with censored instances, respectively. There are

�5
2

�
= 10

possible pairwise comparisons for the five instances in the survival data without cen-
sored cases shown in Figure 4(a). Due to the presence of censored instances (repre-
sented by red circles) in Figure 4(b), only 6 out of the 10 comparisons are feasible.
It should be noted that, for a censored instance, only an earlier uncensored instance
(for example y2&y1) can be compared with. However, any censored instance cannot be
compared with both censored and uncensored instances after its censored time (for
example, y2&y3 and y2&y4) since its actual event time is unknown.

Consider both the observations and prediction values of two instances, (y1, ŷ1) and
(y2, ŷ2), where yi and ŷi represent the actual observation time and the predicted value,
respectively. The concordance probability between them can be computed as

c = Pr(ŷ1 > ŷ2|y1 � y2) (20)
By this definition, for the binary prediction problem, C-index will have a similar mean-
ing to the regular area under the ROC curve (AUC), and if yi is binary, then the C-index
is the AUC [Li et al. 2016d]. As the definition above is not straightforward, in practice,
there are multiple ways of calculating the C-index.
(1) When the output of the model is a hazard ratio (such as the outcome obtained by

Cox based models), C-index can be computed using

ĉ =
1

num

X

i:�i=1

X

j:yi<yj

I[Xi�̂ > Xj �̂] (21)

where i, j 2 {1, · · · , N}, num denotes the number of all comparable pairs, I[·] is the
indicator function and �̂ is the estimated parameters from the Cox based models.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: March 2017.

Black = uncensored
Red = censored

Machine Learning for Survival Analysis: A Survey 1:23

(2) For the survival methods which aim at directly learning the survival time, the
C-index should be calculated as:

ĉ =
1

num

X

i:�i=1

X

j:yi<yj

I[S(ŷj |Xj) > S(ŷi|Xi)] (22)

where S(·) is the estimated survival probabilities.

In order to evaluate the performance during a follow-up period, Heagerty and Zheng
defined the C-index for a fixed follow-up time period (0, t⇤) as the weighted average of
AUC values at all possible observation time points [Heagerty and Zheng 2005]. The
time-dependent AUC for any specific survival time t can be calculated as

AUC(t) = P (ŷi < ŷj |yi < t, yj > t) =
1

num(t)

X

i:yi<t

X

j:yj>t

I(ŷi < ŷj) (23)

where t 2 Ts which is the set of all possible survival times and num(t) represents the
number of comparable pairs for the time point t. Then the C-index during the time
period (0, t⇤), which is the weighted average of the time-dependent AUC obtained by
Eq. (23), is computed as

ct⇤ =
1

num

X

i:�i=1

X

j:yi<yj

I(ŷi < ŷj) =
X

t2Ts

AUC(t) · num(t)

num
(24)

Thus ct⇤ is the probability that the predictions are concordant with their outcomes for
a given data during the time period (0, t⇤).

5.2. Brier Score
Named after the inventor Glenn W. Brier, the Brier score (BS) [Brier 1950] is developed
to predict the inaccuracy of probabilistic weather forecasts. It can only evaluate the
prediction models which have probabilistic outcomes; that is, the outcome must remain
within the range [0,1], and the sum of all the possible outcomes for a certain individual
should be 1. When we consider the binary outcome prediction with a sample of N

instances and for each Xi (i = 1, 2, ..., N), the predicted outcome at t is ŷi(t), and the
actual outcome is yi(t); then, the empirical definition of the Brier score at the specific
time t can be given by

BS(t) =
1

N

NX

i=1

[ŷi(t)� yi(t)]
2 (25)

where the actual outcome yi(t) for each instance can only be 1 or 0.
Brier score was extended in [Graf et al. 1999] to be a performance measure for sur-

vival problems with censored information to evaluate the prediction models where the
outcome to be predicted is either binary or categorical in nature. When incorporating
the censoring information in the dataset, the individual contributions to the empiri-
cal Brier score are reweighted according to the censored information. Then, the Brier
score can be updated as follows:

BS(t) =
1

N

NX

i=1

wi(t)[ŷi(t)� yi(t)]
2 (26)

In Eq.(26), wi(t), given in Eq. (27), denotes the weight for the i
th instance and it is

estimated by incorporating the Kaplan-Meier estimator of the censoring distribution

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: March 2017.

bi = 0

Comments on survival modeling

• Could also evaluate:
–Mean-squared error for uncensored individuals
– Held-out (censored) likelihood
– Derive binary classifier from learned model and

check calibration

• Partial likelihood estimators (e.g. for cox-
proportional hazards models) can be much
more data efficient

Conclusion

• We tackled two challenges that commonly arise in
supervised learning in health care
1. Classification with noisy labels
2. Regression with censored labels

• Strong assumptions allowed us to develop simple
solutions
– 𝑥 ⊥ #𝑌| 𝑌 (noise rate constant for all examples)
– 𝐶 ⊥ 𝑇 | 𝑥 (censoring time independent of survival time)

• Can we relax these assumptions? Can we do survival
modeling with noisy labels?

