Machine Learning for Healthcare 6.871, HST.956

Lecture 4: Risk stratification

David Sontag

Course announcements

- Recitation Friday at 2pm (1-390) optional
- Office hours Mon 12:30-2pm in 32-G9 lounge
 Except for next week! Weds 4-6pm
- No class Tuesday
- Reflection questions due Tuesday 5pm
- Problem set 1 due Mon Feb 24th 11:59pm
- Sign up for lecture scribing
- All course communication through Piazza

Roadmap

- Module 1: Overview of clinical care & data (3 lectures)
- Module 2: Using ML for risk stratification and diagnosis (9 lectures)
 - Supervised learning with noisy, biased, or censored labels
 - Interpretability; Methods for detecting dataset shift; Fairness; Uncertainty
- Module 3: Suggesting treatments (4 lectures)
 - Causal inference; Off-policy reinforcement learning

QUIZ

- Module 4: Understanding disease and its progression (3 lectures)
 - Unsupervised learning on censored time series with substantial missing data
 - Discovery of disease subtypes; Precision medicine
- Module 5: Human factors (3 lectures)
 - Differential diagnosis; Utility-theoretic trade-offs
 - Automating clinical workflows
 - Translating technology into the clinic

Outline for today's class

- 1. Risk stratification
- Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Deriving labels
 - Evaluating risk stratification algorithms
- 3. Subtleties with ML-based risk stratification

What *is* risk stratification?

- Separate a patient population into high-risk and low-risk of having an outcome
 - Predicting something in the future
 - Goal is different from diagnosis, with distinct performance metrics
- Coupled with interventions that target highrisk patients
- Goal is typically to reduce cost and improve patient outcomes

Examples of risk stratification

Preterm infant's risk of severe morbidity?

(Saria et al., Science Translational Medicine 2010)

Examples of risk stratification

Figure source: https://www.drmani.com/heart-attack/

Does this patient need to be admitted to the coronary-care unit?

(Pozen et al., NEJM 1984)

Source: HCUP Statistical Briefs #153 and #154: http://www.hcup-us.ahrq.gov/reports/statbriefs/statbriefs.jsp

Likelihood of hospital readmission?

Figure source: https://www.air.org/project/revolv ing-door-u-s-hospitalreadmissions-diagnosis-andprocedure

Old vs. New

• Traditionally, risk stratification was based on simple scores using human-entered data

	0 Points	1 Point	2 Points	Points totaled
Activity (muscle tone)	Absent	Arms and legs flexed	Active movement	
Pulse	Absent	Below 100 bpm	Over 100 bpm	
Grimace (reflex irritability)	Flaccid	Some flexion of Extremities	Active motion (sneeze, cough, pull away)	
Appearance (skin color)	Blue, pale	Body pink, Extremities blue	Completely pink	
Respiration	Absent	Slow, irregular	Vigorous cry	
			Severely depresse	d 0-3
		Mo	derately depresse	d 4-6
		E	xcellent conditio	n 7-10

APGAR SCORING SYSTEM

Old vs. New

- Traditionally, risk stratification was based on simple scores using human-entered data
- Now, based on machine learning on highdimensional data
 - Fits more easily into workflow
 - Higher accuracy
 - Quicker to derive (can special case)
- But, ML approach comes with new challenges

 to be discussed

Outline for today's class

- 1. Risk stratification
- 2. Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Deriving labels
 - Evaluating risk stratification algorithms
- 3. Subtleties with ML-based risk stratification

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. '16]

Type 2 Diabetes: A Major public health challenge

\$245 billion: Total costs of diagnosed diabetes in the United States in 2012
 \$831 billion: Total fiscal year federal budget for healthcare in the United
 States in 2014

Type 2 Diabetes Can Be Prevented *

Requirement for successful large scale prevention program

1. Detect/reach truly at risk population

2. Improve the interventions

3. Lower the cost of intervention

* Diabetes Prevention Program Research Group. "Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin." The New England journal of medicine 346.6 (2002): 393.

Traditional Risk Prediction Models

ri

0

- Successful Examples
 - ARIC
 - KORA
 - FRAMINGHAM
 - AUSDRISC
 - FINDRISC
 - San Antonio Model
- Easy to ask/measure in the office, or for patients to do online
- Simple model: can calculate scores by hand

	ASSESSMENT FORM
TPE 2 DIADETES RISK	ASSESSMENT FORM
ircle the right alternative and add up your p	points.
Age p. Under 45 years	6. Have you ever taken anti-hypertensive medication regularly?
p. 45–54 years p. 55–64 years p. Over 64 years	0 p. No 2 p. Yes
Body-mass index ee reverse of form) p. Lower than 25kg/m ²	7. Have you ever been found to have high blood glucose (e.g. in a health examination, during an illness, during pregnancy)?
p. Higher than 30 kg/m ²	0 p. No 5 p. Yes
Waist circumference measured below the bs (usually at the level of the navel) MEN WOMEN p. Less than 94cm Less than 80cm p. 94–102cm 80–88cm p. More than 102cm More than 88cm	 8. Have any of the members of your immediate family or other relatives been diagnosed with diabetes (type 1 or type 2)? 0 p. No 3 p. Yes: grandparent, aunt, uncle or first cousin (but no own parent brother sister)
	or child) 5 p. Yes: parent, brother, sister or own child
	Total risk score The risk of developing type 2 diabetes within 10 years is Lower than 7 Low: estimated 1 in 100
Do you usually have daily at least 30 inutes of physical activity at work and/or uring leisure time (including normal daily	will develop disease 7-11 Slightly elevated: estimated 1 in 25 will develop disease
ctivity)? p. Yes	12–14 Moderate: estimated 1 in 6 will develop disease
How often do you eat vegetables, fruit'or	Higher Very high:
erries? p. Every day p. Not every day	than 20 estimated 1 in 2 will develop disease
	Please turn over

🔁 Finnish Diabetes Association

Test designed by Professor Jaakko Tuomilehto, Department of Public Health, University of Helsinki, and Jaana Lindström, MFS, National Public Health Institute

Challenges of Traditional Risk Prediction Models

- A screening step needs to be done for every member in the population
 - Either in the physician's office or as surveys
 - Costly and time-consuming
 - Infeasible for regular screening for millions of individuals
- Models not easy to adapt to multiple surrogates, when a variable is missing
 - Discovery of surrogates not straightforward

Population-Level Risk Stratification

• Key idea: Use readily available administrative, utilization, and clinical data

Source for figure: http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry

Population-Level Risk Stratification

- Key idea: Use readily available administrative, utilization, and clinical data
- Machine learning will find surrogates for risk factors that would otherwise be missing
- Perform risk stratification at the population level – millions of patients

A Data-Driven approach on Longitudinal Data

- Looking at individuals who got diabetes *today*, (compared to those who didn't)
 - Can we infer which variables in their record could have predicted their health outcome?

Administrative & Clinical Data

Top diagnosis codes

				Disease	count
				719.47 Joint pain-ankle	28648
Disease	count	Disease	count	300.4 Dysthymic disorder	28530
401.1 Benign hypertension	447017	530.81 Esophageal reflux	121064	268.9 Vitamin D deficiency	
272.4 Hyperlipidemia NEC/NOS	382030	427.31 Atrial fibrillation	113798	NOS	28455
401.9 Hypertension NOS	372477	729.5 Pain in limb	112449	V72.81 Preop cardiovsclr	
250.00 DMII wo cmp nt st		414.01 Crnry athrscl natve vssl	104478	exam	27897
uncntr	339522	285 9 Anemia NOS	103351	724.3 Sciatica	27604
272.0 Pure hypercholesterolem	232671	786.50 Chest pain NOS	91999	787.91 Diarrhea	27424
272.2 Mixed hyperlipidemia	180015	599.0 Urin tract infection NOS	87982	V2.21 Supervis oth normal	
V72.31 Routine gyn examination	178709	V58 69 Long-term use meds	0,001	preg	27320
244.9 Hypothyroidism NOS	169829	NFC	85544	365.01 Opn angl brderIn lo	
780.79 Malaise and fatigue NEC	1/0707	196 Chrainway obstruct NEC	78585	risk	26033
VOA 91 Vessin for influence	143737	430 Clin all way obstruct NEC	70505	379.21 Vitreous	
	14/858	477.9 Allergic minitis NOS	//903	degeneration	25592
724.2 Lumbago	137345	414.00 Cor ath unsp vsl ntv/gft	75519	424.1 Aortic valve disorder	25425
V76.12 Screen mammogram				616.10 Vaginitis NOS	24736
NEC	129445			702 19 Other shorheic	
V70.0 Routine medical exam	127848			keratosis	24453
Out of 135K patie	ents w	ho had laboratory	data	380.4 Impacted cerumen	24046

Out of 135K patients who had laboratory data

Top lab test results

Lab test		Lab test		Lab test	
2160-0 Creatinine	1284737	2085 0 Chalastaral in HDI	1155666	770-8 Neutrophils/100	
3094-0 Urea nitrogen	1282344		1155000	leukocytes	952089
2823-3 Potassium	1280812	/18-/ Hemoglobin	1152726	731-0 Lymphocytes	943918
2345-7 Glucose	1299897	4544-3 Hematocrit	1147893	704-7 Basophils	863448
1742-6 Alanine	1255057	9830-1		711-2 Eosinophils	935710
aminotransferase	1187809	Cholesterol.total/Cholester	1037730	5905-5 Monocytes/100	
1920-8 Aspartate		22014 2 Clomorular	1037730	leukocytes	943764
aminotransferase	1187965	filtration rate /1 72 cg		706-2 Basophils/100	
2885-2 Protein	1277338	M predicted	561309	leukocytes	863435
1751-7 Albumin	1274166		501505	751-8 Neutrophils	943232
2093-3 Cholesterol	1268269	785-6 Erythrocyte mean	1070000	742-7 Monocytes	942978
2571-8 Triglyceride	1257751		10/0832	713-8 Eosinophils/100	
13457-7 Cholesterol in LDL	1241208	6690-2 Leukocytes	1062980	leukocytes	933929
17861-6 Calcium	1165370	789-8 Erythrocytes	1062445	3016-3 Thyrotropin	891807
	1103570	787-2 Erythrocyte mean		4548-4 Hemoglobin	
2921-5 2001nm	110/0/5	corpuscular volume	1063665	A1c/Hemoglobin.total	527062

Count of people who have the test result (ever)

Outline for today's class

- 1. Risk stratification
- 2. Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Deriving labels
 - Evaluating risk stratification algorithms
- 3. Subtleties with ML-based risk stratification

Framing for supervised machine learning

Feature Construction		Prediction W 20	/indow 2010-)12		
20	09 20	10 20	11 20	12 201	3

Framing for supervised machine learning

Problem: Data is censored!

- Patients change health insurers frequently, but data doesn't follow them
- *Left censored*: may not have enough data to derive features
- *Right censored*: may not know label

Reduction to binary classification

Exclude patients that are left- and right-censored.

This is an example of alignment by *absolute time*

Alternative framings

- Align by relative time, e.g.
 - 2 hours into patient stay in ER
 - Every time patient sees PCP
 - When individual turns 40 yrs old
- Align by data availability

NOTE:

• If multiple data points per patient, make sure each patient in *only* train, validate, or test

Features used in models

- Is the value increasing?
- Is the value decreasing?
- Is the value fluctuating?

Features used in models

10s-100s of thousands of features

Logistic regression with L1 regularization

 Penalizing the L1 norm of the weight vector leads to *sparse* (read: many 0's) solutions for *w*.

$$\begin{split} \min_{w} \sum_{i} \ell(x_{i}, y_{i}; w) + \lambda ||w||_{1} & ||\vec{w}||_{1} = \sum_{d} |w_{d}| \\ \text{instead of} \\ \min \sum_{i} \ell(x_{i}, y_{i}; w) + \lambda ||w||_{2}^{2} & ||\vec{w}||_{2}^{2} = \sum_{i} w_{d}^{2} \end{split}$$

$$\min_{w} \sum_{i} \ell(x_{i}, y_{i}; w) + \lambda ||w||_{2}^{2} \qquad ||w||_{2}^{2} = \sum_{d} w_{d}^{2}$$

• Why?

Logistic regression with L1 regularization

• Penalizing the L1 norm of the weight vector leads to *sparse* (read: many 0's) solutions for *w*.

Outline for today's class

- 1. Risk stratification
- 2. Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Deriving labels
 - Evaluating risk stratification algorithms
- 3. Subtleties with ML-based risk stratification

Where do the labels come from?

Typical pipeline:

- 1. Manually label several patients' data by "chart review"
- 2. A) Come up with a simple rule to automatically derive label for all patients, **or**

B) Use machine learning to get the labels themselves

Step 1:

Visualization of individual patient data is an important part of chart review

https://github.com/nyuvis/patient-viz

Figure 1: Algorithm for identifying T2DM cases in the EMR.

Source: https://phekb.org/sites/phenotype/files/T2DM-algorithm.pdf

Step 2: Example of a rule-based phenotype

> If the derived label is noisy, how does it affect learning?

		or discovering pho	notypes		Login Red	quest Accour
rne K	from electronic me	dical records	notypes			Search
lome Phenotypes	Resources Contact U	ls				
_						
<u>ک</u>						
🔄 Public Phe	enotypes					
Dublic Ocilich energi	J 1					
Public Collaborati	on					
Public phenotypes are beli	eved to be complete and final b	y their authors. When	you are logged in	you can view an	d edit phenotypes	in your
groups that are non public	and in various stages of develop	pment.	,			
Login To View Private Grou	p Phenotypes					
nstitution	Type of Phenotype	Owne	r Phenotyping Gro	oups View Phe	notyping Groups	
•	Disease or Syndrome	•		•		
Data Model						
- Any - 👻 Apply						
Title	Institution	Data Modalities and Methods	Owner Phenotyping	View Groups	Has new Status	Туре
		Used	Groups	AMERGE	content	
			eMERGE	Geisinger		Disease
Abdominal Aortic	Geisinger	CPT Codes, ICD 9 Codes, Vital Signs	Geisinger	Group,	Final	or
		ooddo, maroigno	Group	Phenotype		Syndrome
				WG		
R ADHD phenotype	CHOR	ICD 9 Codes, Medications,	eMERGE	eMERGE	Final	Disease
algorithm	CHOP	Natural Language Processing	CHOP Group	WG	Filla	Syndrome
		CPT Codes, ICD 9	INFROS	NEROE		Disector
B Appendicitis	Cincinnati Children's Hospital	Codes, Medications,	CCHMC/BCH	eMERGE Phenotype	Final	Disease
	Medical Center	Natural Language Processing	Group	WG		Syndrome
		CPT Codes, ICD 9		Vanderbilt -		Disease
Atrial Fibrillation - Demonstration Project	t Vanderbilt University	Codes, Natural Language	Vanderbilt - SD/BD Group	SD/RD	Final	or
		Processing	ob/nb Group	Group		Syndrome
	Cincinnati Children's Hospital	ICD 9 Codes, Medications.	eMERGE	eMERGE		Disease
🔠 Autism	Medical Center	Natural Language	CCHMC/BCH Group	Phenotype WG	Final	or Syndrome
		CPT Codes, ICD 9				,
B Cataracte	Marshfield Clinic Research	Codes, Medications	eMERGE	eMERGE	Final	Disease
Dataraot5	Foundation	Natural Language	Group	WG	Find	Syndrome
		Processing				-
Crohn's Disease		ICD 9 Codes, Medications	Vanderhilt -	Vanderbilt -		Disease

Outline for today's class

- 1. Risk stratification
- Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Deriving labels
 - Evaluating risk stratification algorithms
- 3. Subtleties with ML-based risk stratification

What are the Discovered Risk Factors?

- 769 variables have non-zero weight
- Highly weighted diagnosis codes:

History of Disease	Additional Disease Risk Factors Include:
Impaired Fasting Glucose (Code 790.21)	Pituitary dwarfism (253.3),
Abnormal Glucose NEC (790.29)	Hepatomegaly(789.1), Chronic Hepatitis C
Hypertension (401)	(070.54), Hepatitis (573.3), Calcaneal
Obstructive Sleep Apnea (327.23)	Spur(726.73), Thyrotoxicosis without
Obesity (278)	mention of goiter(242.90), Sinoatrial Node
Abnormal Blood Chemistry (790.6)	dysfunction(427.81), Acute frontal sinusitis
Hyperlipidemia (272.4)	(461.1), Hypertrophic and atrophic
Shortness Of Breath (786.05)	conditions of skin(701.9), Irregular
Esophageal Reflux (530.81)	menstruation(626.4),

Diabetes 1-year gap

What are the Discovered Risk Factors?

- 769 variables have non-zero weight
- Highly weighted laboratory features:

Top Lab Factors	Additional Lab Test Risk Factors Include:
Hemoglobin A1c /Hemoglobin.Total (H	Albumin/Globulin (Increasing -Entire
Glucose (High- Past 6 months)	history), Urea nitrogen/Creatinine -(high -
Cholesterol.In VLDL (Increasing - Pas	Entire History), Specific gravity (Increasing,
Potassium (Low - Entire History)	Past 2 years), Bilirubin (high -Past 2 years),
Cholesterol.Total/Cholesterol.In HDL (
Erythrocyte mean corpuscular hemog ⊣istory)	Iobin concentration -(Low - Entire

Eosinophils (High - Entire History)

Glomerular filtration rate/1.73 sq M.Predicted (Low -Entire History)

Alanine aminotransferase (High Entire History)

Diabetes 1-year gap

Receiver-operator characteristic curve

Receiver-operator characteristic curve

Receiver-operator characteristic curve

Positive predictive value (PPV)

Top 100 PredictionsTop 1000 PredictionsTop 10000 Predictions

Diabetes 1-year gap

Calibration (note: different dataset)

Outline for today's class

- 1. Risk stratification
- Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Deriving labels
 - Evaluating risk stratification algorithms
- 3. Subtleties with ML-based risk stratification

No big wins from deep models on structured data/text

1

2

Health systems collect and store electronic health records in various formats in databases.

All available data for each patient is converted to events recorded in containers based on the Fast Healthcare Interoperability Resource (FHIR) specification.

3

The FHIR resources are placed in temporal order, depicting all events recorded in the EHR (i.e. timeline). The deep learning model uses this full history to make each prediction.

Rajkomar et al., Scalable and accurate deep learning with electronic health records. *Nature Digital Medicine*, 2018

Recurrent neural network & attentionbased models trained on 200K hospitalized patients

No big wins from deep models on structured data/text

	Hospital A	Hospital B
Inpatient Mortality, AUROC ¹ (95% CI)		
Deep learning 24 hours after admission	0.95(0.94-0.96)	0.93 (0.92-0.94)
Full feature enhanced baseline at 24 hours after admission (<i>Razavian et al. '15</i>)	0.93 (0.92-0.95)	0.91 (0.89-0.92)
30-day Readmission, AUROC (95% CI)		
Deep learning at discharge	0.77 (0.75-0.78)	0.76 (0.75-0.77)
Full feature enhanced baseline at discharge	0.75(0.73-0.76)	0.75 (0.74-0.76)
Length of Stay at least 7 days AUROC (95% CI)		
Deep learning 24 hours after admission	0.86 (0.86-0.87)	0.85(0.85-0.86)
Full feature enhanced baseline at 24 hours after admission	0.85(0.84-0.85)	0.83(0.83-0.84)

[Rajkomar et al., Scalable and accurate deep learning with electronic health records. *Nature Digital Medicine*, 2018. **electronic supplementary material**: https://static-content.springer.com/esm/art%3A10.1038%2Fs41746-018-0029-1/MediaObjects/41746_2018_29_MOESM1_ESM.pdf]

No big wins from deep models on structured data/text

	Hospital A	Hospital B
Inpatient Mortality, AUROC ¹ (95% CI)		
Deep learning 24 hours after admission Full feature enhanced baseline at 24 hours after admission (Razavian et al. '15)	0.95 (0.94-0.96) 0.93 (0.92-0.95)	0.93 (0.92-0.94) 0.91 (0.89-0.92)
Keep in mind: Small wins with deep models ma Fu altogether with dataset shift or n (Jung & Shah, JBI '15) Length of Stay at least 7 days Active (5070 Cf)	y disappea ion-stationa	r 77) arity
Deep learning 24 hours after admission	0.86(0.86-0.87)	0.85(0.85-0.86)

Full feature enhanced baseline at 24 hours after admission 0.85(0.84-0.85) = 0.83(0.83-0.84)

[Rajkomar et al., Scalable and accurate deep learning with electronic health records. *Nature Digital Medicine*, 2018. electronic supplementary material: https://static-content.springer.com/esm/art%3A10.1038%2Fs41746-018-0029-1/MediaObjects/41746_2018_29_MOESM1_ESM.pdf] No big wins from deep models on structured data/text – why?

- Sequential data in medicine is very different from language modeling
 - Many time scales, significant missing data, and multi-variate observations
 - Likely *do exist* predictive nonlinear interactions, but subtle
 - Not enough data to naively deal with the above two
- Medical community has already come up with some very good features

Dataset shift / non-stationarity: *Models often do not generalize*

[Figure adopted from Jen Gong and Tristan Naumann]

Dataset shift / non-stationarity: Diabetes Onset After 2009

→ Automatically derived labels may change meaning

[Geiss LS, Wang J, Cheng YJ, et al. Prevalence and Incidence Trends for Diagnosed Diabetes Among Adults Aged 20 to 79 Years, United States, 1980-2012. JAMA, 2014.]

Dataset shift / non-stationarity: *Top 100 lab measurements over time*

Time (in months, from 1/2005 up to 1/2014)

→ Significance of features may change over time

[Figure credit: Narges Razavian]

Dataset shift / non-stationarity: ICD-9 to ICD-10 shift

→ Significance of features may change over time

[Figure credit: Mike Oberst]

Re-thinking evaluation in the face of non-stationarity

- How was our diabetes model evaluation flawed?
- Good practice: use test data from a future year:

- Example from Caruana et al.:
 - Patients with pneumonia who have a history of asthma have lower risk of dying from pneumonia
 - Thus, we learn: HasAsthma(x) => LowerRisk(x)
- What's wrong with the learned model?
 - Risk stratification drives interventions
 - If low risk, might not admit to ICU. But this was precisely what prevented patients from dying!

[Caruana et al., Intelligible Models for Healthcare: Predicting Pneumonia Risk and Hospital 30day Readmission. KDD 2015.]

• Formally, this is what's happening:

- How do we address this problem?
- First and foremost, must recognize it is happening

 interpretable models help with this

- Hacks:
 - Modify model, e.g. by removing the HasAsthma(x) => LowerRisk(x) rule
 I do not expect this to work with highdimensional data
 - 2. Re-define outcome by finding a pre-treatment surrogate (e.g., lactate levels)
 - 3. Consider treated patients as **right-censored** by treatment

Example:

Henry, Hager, Pronovost, Saria. A targeted real-time early warning score (TREWScore) for septic shock. *Science Translation Medicine*, 2015

• The rigorous way to address this problem is through the language of **causality**:

Will admission to ICU lower likelihood of death for patient?

• We return to this in Lecture 14

Example commercial product

Optum Whitepaper, "Predictive analytics: Poised to drive population health"

Example commercial product

High-risk diabetes patients missing tests	# of A1c tests	# of LDL tests	Last A1c	Date of last A1c	Last LDL	Date of last LDL
Patient 1	2	0	9.2	5/3/13	N/A	N/A
Patient 2	2	0	8	1/30/13	N/A	N/A
Patient 3	0	0	N/A	N/A	N/A	N/A
Patient 4	0	2	N/A	N/A	133	8/9/13
Patient 5	0	0	N/A	N/A	N/A	N/A
Patient 6	0	1	N/A	N/A	115	7/16/13
Patient 7	1	0	10.8	9/18/13	N/A	N/A
Patient 8	0	0	N/A	N/A	N/A	N/A
Patient 9	0	0	N/A	N/A	N/A	N/A
Patient 10	0	0	N/A	N/A	N/A	N/A

Optum Whitepaper, "Predictive analytics: Poised to drive population health"

Summary and next steps

- Risk stratification is being used to drive clinical decisions and resource allocation
 - Are the models fair?
- It can be very difficult to derive high-quality labels for supervised ML in healthcare
 - Can one learn from noisy, biased, or censored labels?
- Interpretability of models important for assessing whether retrospective evaluation is representative of future deployment
 - Identifying errors in label/outcome derivation
 - Assessing robustness to dataset shift
- To achieve scalability, we need ML algorithms that can detect and be robust to dataset shift
- Often the right question is not one of prediction but causal inference (counterfactual estimation)