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Course announcements

• Recitation Friday at 2pm (1-390) – optional
• Office hours Mon 12:30-2pm in 32-G9 lounge

– Except for next week! Weds 4-6pm
• No class Tuesday

• Reflection questions due Tuesday 5pm
• Problem set 1 due Mon Feb 24th 11:59pm
• Sign up for lecture scribing

• All course communication through Piazza



Roadmap
• Module 1: Overview of clinical care & data (3 lectures)

• Module 2: Using ML for risk stratification and diagnosis (9 lectures)
– Supervised learning with noisy, biased, or censored labels
– Interpretability; Methods for detecting dataset shift; Fairness; Uncertainty

• Module 3: Suggesting treatments (4 lectures)
– Causal inference; Off-policy reinforcement learning

QUIZ

• Module 4: Understanding disease and its progression (3 lectures)
– Unsupervised learning on censored time series with substantial missing data
– Discovery of disease subtypes; Precision medicine

• Module 5: Human factors (3 lectures)
– Differential diagnosis; Utility-theoretic trade-offs
– Automating clinical workflows
– Translating technology into the clinic



Outline for today’s class

1. Risk stratification
2. Case study: Early detection of Type 2 

diabetes
– Framing as supervised learning problem
– Deriving labels
– Evaluating risk stratification algorithms

3. Subtleties with ML-based risk stratification



What is risk stratification?

• Separate a patient population into high-risk
and low-risk of having an outcome
– Predicting something in the future
– Goal is different from diagnosis, with distinct 

performance metrics
• Coupled with interventions that target high-

risk patients
• Goal is typically to reduce cost and improve 

patient outcomes



Examples of risk stratification

(Saria et al., Science Translational 
Medicine 2010)

Preterm infant’s 
risk of severe 
morbidity?



Examples of risk stratification

(Pozen et al., NEJM 1984)

Does this patient 
need to be 
admitted to the 
coronary-care 
unit?

Figure source: https://www.drmani.com/heart-attack/



Figure source: 
https://www.air.org/project/revolv
ing-door-u-s-hospital-
readmissions-diagnosis-and-
procedure

Likelihood of 
hospital 
readmission?



Old vs. New

• Traditionally, risk stratification was based on 
simple scores using human-entered data



Old vs. New

• Traditionally, risk stratification was based on 
simple scores using human-entered data

• Now, based on machine learning on high-
dimensional data
– Fits more easily into workflow
– Higher accuracy
– Quicker to derive (can special case)

• But, ML approach comes with new challenges 
– to be discussed



Outline for today’s class

1. Risk stratification
2. Case study: Early detection of Type 2 

diabetes
– Framing as supervised learning problem
– Deriving labels
– Evaluating risk stratification algorithms

3. Subtleties with ML-based risk stratification

[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. ‘16]



Type 2 Diabetes: A Major public health 
challenge

1994 2000

<4.5%         4.5%–5.9%           6.0%–7.4%        7.5%–8.9%            >9.0%

2013

$245 billion: Total costs of diagnosed diabetes in the United States in 2012
$831 billion: Total fiscal year federal budget for healthcare in the United 
States in 2014



Type 2 Diabetes Can Be Prevented *

Requirement for successful large scale 
prevention program
1. Detect/reach truly at risk population

2. Improve the interventions

3. Lower the cost of intervention

* Diabetes Prevention Program Research Group. "Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin." 
The New England journal of medicine 346.6 (2002): 393.



Traditional Risk Prediction Models
• Successful Examples

• ARIC
• KORA
• FRAMINGHAM
• AUSDRISC
• FINDRISC
• San Antonio Model 

• Easy to ask/measure in the 
office, or for patients to do 
online

• Simple model:
can calculate scores by 
hand



Challenges of Traditional Risk 
Prediction Models

• A screening step needs to be done for every 
member in the population
• Either in the physician’s office or as surveys
• Costly and time-consuming
• Infeasible for regular screening for millions of individuals

• Models not easy to adapt to multiple 
surrogates, when a variable is missing
• Discovery of surrogates not straightforward



Population-Level Risk Stratification 

• Key idea: Use readily available administrative, 
utilization, and clinical data

Source for figure:  http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry



Population-Level Risk Stratification 

• Key idea: Use readily available administrative, 
utilization, and clinical data

• Machine learning will find surrogates for risk 
factors that would otherwise be missing

• Perform risk stratification at the population 
level – millions of patients



A Data-Driven approach on 
Longitudinal Data 

• Looking at individuals who got diabetes today, (compared to 
those who didn’t) 
– Can we infer which variables in their record could have predicted their 

health outcome?

TodayA Few 
Years Ago



Administrative & Clinical Data

Patient:

Eligibility Record:
-Member ID
-Age/gender
-ID of subscriber
-Company code

Medical Claims:
-ICD9 diagnosis codes
-CPT code (procedure)
-Specialty
-Location of service
-Date of Service

Lab Tests:
-LOINC code (urine or 
blood test name)
-Results (actual values)
-Lab ID
-Range high/low-Date

Medications:
-NDC code (drug 
name) 
-Days of supply
-Quantity
-Service Provider ID
-Date of fill

time



Disease count
401.1 Benign hypertension 447017
272.4 Hyperlipidemia NEC/NOS 382030
401.9 Hypertension NOS 372477
250.00 DMII wo cmp nt st
uncntr 339522
272.0 Pure hypercholesterolem 232671
272.2 Mixed hyperlipidemia 180015
V72.31 Routine gyn examination 178709
244.9 Hypothyroidism NOS 169829
780.79 Malaise and fatigue NEC 149797
V04.81 Vaccin for influenza 147858
724.2 Lumbago 137345
V76.12 Screen mammogram 
NEC 129445
V70.0 Routine medical exam 127848

Disease count
719.47 Joint pain-ankle 28648
300.4 Dysthymic disorder 28530
268.9 Vitamin D deficiency 
NOS 28455
V72.81 Preop cardiovsclr
exam 27897
724.3 Sciatica 27604
787.91 Diarrhea 27424
V2.21 Supervis oth normal 
preg 27320
365.01 Opn angl brderln lo 
risk 26033
379.21 Vitreous 
degeneration 25592
424.1 Aortic valve disorder 25425
616.10 Vaginitis NOS 24736
702.19 Other sborheic
keratosis 24453
380.4 Impacted cerumen 24046

Disease count
530.81 Esophageal reflux 121064
427.31 Atrial fibrillation 113798
729.5 Pain in limb 112449
414.01 Crnry athrscl natve vssl 104478
285.9 Anemia NOS 103351
786.50 Chest pain NOS 91999
599.0 Urin tract infection NOS 87982
V58.69 Long-term use meds 
NEC 85544
496 Chr airway obstruct NEC 78585
477.9 Allergic rhinitis NOS 77963
414.00 Cor ath unsp vsl ntv/gft 75519

Out of 135K patients who had laboratory data

Top diagnosis codes



Lab test
2160-0 Creatinine 1284737
3094-0 Urea nitrogen 1282344
2823-3 Potassium 1280812
2345-7 Glucose 1299897
1742-6 Alanine 
aminotransferase 1187809
1920-8 Aspartate 
aminotransferase 1187965
2885-2 Protein 1277338
1751-7 Albumin 1274166
2093-3 Cholesterol 1268269
2571-8 Triglyceride 1257751
13457-7 Cholesterol.in LDL 1241208
17861-6 Calcium 1165370
2951-2 Sodium 1167675

Lab test

2085-9 Cholesterol.in HDL 1155666
718-7 Hemoglobin 1152726
4544-3 Hematocrit 1147893
9830-1 
Cholesterol.total/Cholester
ol.in HDL 1037730
33914-3 Glomerular 
filtration rate/1.73 sq
M.predicted 561309

785-6 Erythrocyte mean 
corpuscular hemoglobin 1070832
6690-2 Leukocytes 1062980
789-8 Erythrocytes 1062445

787-2 Erythrocyte mean 
corpuscular volume 1063665

Lab test
770-8 Neutrophils/100 
leukocytes 952089
731-0 Lymphocytes 943918
704-7 Basophils 863448
711-2 Eosinophils 935710
5905-5 Monocytes/100 
leukocytes 943764
706-2 Basophils/100 
leukocytes 863435
751-8 Neutrophils 943232
742-7 Monocytes 942978
713-8 Eosinophils/100 
leukocytes 933929
3016-3 Thyrotropin 891807
4548-4 Hemoglobin 
A1c/Hemoglobin.total 527062

Count of people who have the test result (ever)

Top lab test results



Outline for today’s class

1. Risk stratification
2. Case study: Early detection of Type 2 

diabetes
– Framing as supervised learning problem
– Deriving labels
– Evaluating risk stratification algorithms

3. Subtleties with ML-based risk stratification



Framing for supervised machine 
learning

2009 2010 2011 2012 2013

Feature 
Construction

Prediction Window 2011-
2013

2009 2010 2011 2012 2013

Feature 
Construction

Prediction Window 2010-
2012

2009 2010 2011 2012 2013

Feature 
Construction Prediction Window 2009-2011

Gap is important to prevent label leakage



Framing for supervised machine 
learning

Problem: Data is censored!
• Patients change health insurers frequently, but data 

doesn’t follow them
• Left censored: may not have enough data to derive 

features
• Right censored: may not know label

2009 2010 2011 2012 2013

Feature 
Construction Prediction Window 2009-2011



Data Collection Period:
Patient variables built 

from data in this period

Gap period 
between 

data collection 
and outcome 
evaluation

T T+W
Diabetes Onset

Patient C *
Patient B -
Patient A +

Patient D -
Patient E *
Patient F *
Patient G *

Patient 
outcome 

evaluated in 
this period

This is an example of alignment by absolute time

Reduction to binary classification
Exclude patients that are left- and right-censored.



Alternative framings

• Align by relative time, e.g.
– 2 hours into patient stay in ER
– Every time patient sees PCP
– When individual turns 40 yrs old

• Align by data availability

NOTE:
• If multiple data points per patient, make sure 

each patient in only train, validate, or test



Demographics (age, sex, etc.)

Health insurance coverage

Procedures performed 
(457 features)

Specialty of doctors seen
(cardiology, rheumatology, …)

Features used in models
Service place
(urgent care, inpatient, 
outpatient, …)

Laboratory indicators 
(7000 features)

For the 1000 most frequent lab tests:
• Was the test ever administered?
• Was the result ever low?
• Was the result ever high?
• Was the result ever normal?
• Is the value increasing?
• Is the value decreasing?
• Is the value fluctuating?

Medications taken (999 features)
(laxatives, metformin, anti-
arthritics, …)

16,000 ICD-9 
diagnosis codes
(all history)



Demographics (age, sex, etc.)

Health insurance coverage

Procedures performed 
(457 features)

Specialty of doctors seen
(cardiology, rheumatology, …)

Features used in models
Service place
(urgent care, inpatient, 
outpatient, …)

Laboratory indicators 
(7000 features)

Medications taken (999 features)
(laxatives, metformin, anti-
arthritics, …)

16,000 ICD-9 
diagnosis codes
(all history)

All history 24 month 
history

6 month 
history

10s-100s of thousands of features



Logistic regression with L1 regularization

• Penalizing the L1 norm of the weight vector 
leads to sparse (read: many 0’s) solutions for w.

• Why? 

min
w

X

i

`(xi, yi;w) + �||w||1 ||~w||1 =
X

d

|wd|

min
w

X

i

`(xi, yi;w) + �||w||22 ||~w||22 =
X

d

w2
d

instead of



• Penalizing the L1 norm of the weight vector 
leads to sparse (read: many 0’s) solutions for w.

• Why? min
w

`(w · x, y) + �|w|Minimize this:

Subject to
Constant L1 norm

Subject to
Constant L2 norm

Logistic regression with L1 regularization



Outline for today’s class

1. Risk stratification
2. Case study: Early detection of Type 2 

diabetes
– Framing as supervised learning problem
– Deriving labels
– Evaluating risk stratification algorithms

3. Subtleties with ML-based risk stratification



Where do the labels come from?

Typical pipeline:
1. Manually label several patients’ data by “chart 

review”
2. A) Come up with a simple rule to automatically 

derive label for all patients, or

B) Use machine learning to get the labels 
themselves



Step 1:
Visualization of individual patient data is 

an important part of chart review

Demographic information
Patient events list

Events, as they occur for the first time in patient history 

https://github.com/nyuvis/patient-viz



Figure 1: Algorithm for identifying T2DM cases in the EMR.

3

Source: https://phekb.org/sites/phenotype/files/T2DM-algorithm.pdf

Step 2:
Example of a 
rule-based
phenotype



Step 2:
Example of a 
rule-based
phenotype

If the derived label is
noisy, how does it 
affect learning?



Outline for today’s class

1. Risk stratification
2. Case study: Early detection of Type 2 

diabetes
– Framing as supervised learning problem
– Deriving labels
– Evaluating risk stratification algorithms

3. Subtleties with ML-based risk stratification



What are the Discovered Risk Factors? 
• 769 variables have non-zero weight
• Highly weighted diagnosis codes:

History of Disease
Impaired Fasting Glucose (Code 790.21)

Abnormal Glucose NEC (790.29)

Hypertension (401)

Obstructive Sleep Apnea (327.23)

Obesity (278)

Abnormal Blood Chemistry (790.6)

Hyperlipidemia (272.4)

Shortness Of Breath (786.05)

Esophageal Reflux (530.81)

Diabetes
1-year gap

Additional Disease Risk Factors Include:
Pituitary dwarfism (253.3), 
Hepatomegaly(789.1), Chronic Hepatitis C 
(070.54), Hepatitis (573.3), Calcaneal 
Spur(726.73), Thyrotoxicosis without 
mention of goiter(242.90), Sinoatrial Node 
dysfunction(427.81), Acute frontal sinusitis 
(461.1 ), Hypertrophic and atrophic 
conditions of skin(701.9), Irregular 
menstruation(626.4), …



Top Lab Factors
Hemoglobin A1c /Hemoglobin.Total (High - past 2 years)

Glucose (High- Past 6 months)

Cholesterol.In VLDL (Increasing - Past 2 years)  

Potassium (Low  - Entire History)

Cholesterol.Total/Cholesterol.In HDL (High  - Entire History)
Erythrocyte mean corpuscular hemoglobin concentration -(Low - Entire 
History) 
Eosinophils (High  - Entire History)

Glomerular filtration rate/1.73 sq M.Predicted (Low -Entire History)

Alanine aminotransferase (High  Entire History)

What are the Discovered Risk Factors?
• 769 variables have non-zero weight
• Highly weighted laboratory features:

Diabetes
1-year gap

Additional Lab Test Risk Factors Include:
Albumin/Globulin (Increasing -Entire 
history), Urea nitrogen/Creatinine -(high -
Entire History), Specific gravity (Increasing, 
Past 2 years), Bilirubin (high -Past 2 years),… 



Receiver-operator characteristic curve

Full model
Traditional risk factors

False positive rate

True 
positive 
rate

Want to be here Obtained by 
varying 
prediction 
threshold

Diabetes
1-year gap



Receiver-operator characteristic curve

Full model
Traditional risk factors

False positive rate

True 
positive 
rate

Area 
under the 
ROC curve 
(AUC)

AUC =
Probability that 
algorithm ranks 
a positive 
patient over a 
negative patient

Invariant to 
amount of class 
imbalance

Diabetes
1-year gap



Receiver-operator characteristic curve

Full model  AUC=0.78
Traditional risk factors
AUC = 0.74

False positive rate

True 
positive 
rate

Risk 
stratification
usually focuses 
on just this 
region

(because of the 
cost of 
interventions)

Random AUC = 0.5

Diabetes
1-year gap



Positive predictive value (PPV)

0.06
0.07

0.06

0.15

0.17

0.1

Top	100	Predictions Top	1000	Predictions Top	10000	Predictions

Traditional	risk	factors Full	model	

Diabetes 1-year gap



Calibration (note: different dataset)

Predicted Probability

Actual 
Probability

0

1

0.5

1

fraction of patients the 
model predicts to have this 

probability of infection

Model

Predicting 
infection in the ER



Outline for today’s class

1. Risk stratification
2. Case study: Early detection of Type 2 

diabetes
– Framing as supervised learning problem
– Deriving labels
– Evaluating risk stratification algorithms

3. Subtleties with ML-based risk stratification



No big wins from deep models on 
structured data/text

standard definition of “unplanned”76 percentage, so we used a modified
form of the Centers for Medicare and Medicaid Services definition,77 which
we detail in the supplement. Billing diagnoses and procedures from the
index hospitalization were not used for the prediction because they are
typically generated after discharge. We included only readmissions to the
same institution.

Long length of stay. We predicted a length of stay at least 7 days, which
was approximately the 75th percentile of hospital stays for most services
across the datasets. The length of stay was defined as the time between
hospital admission and discharge.

Diagnoses. We predicted the entire set of primary and secondary ICD-9
billing diagnoses from a universe of 14,025 codes.

Prediction timing
This was a retrospective study. To predict inpatient mortality, we stepped
forward through each patient’s time course, and made predictions every
12 h starting 24 h before admission until 24 h after admission. Since many
clinical prediction models, such as APACHE,78 are rendered 24 h after
admission, our primary outcome prediction for inpatient mortality was at
that time-point. Unplanned readmission and the set of diagnosis codes
were predicted at admission, 24 h after admission, and at discharge. The
primary endpoints for those predictions were at discharge, when most
readmission prediction scores are computed79 and when all information
necessary to assign billing diagnoses is available. Long length of stay was
predicted at admission and 24 h after admission. For every prediction we
used all information available in the EHR up to the time at which the
prediction was made.

Fig. 4 Data from each health system were mapped to an appropriate FHIR (Fast Healthcare Interoperability Resources) resource and placed in
temporal order. This conversion did not harmonize or standardize the data from each health system other than map them to the appropriate
resource. The deep learning model could use all data available prior to the point when the prediction was made. Therefore, each prediction,
regardless of the task, used the same data

Scalable and accurate deep learning with electronic health
A Rajkomar et al.

7

Published in partnership with the Scripps Translational Science Institute npj Digital Medicine (2018) �18�

Rajkomar et al., 
Scalable and accurate 
deep learning with 
electronic health 
records. Nature Digital 
Medicine, 2018

Recurrent neural 
network & attention-
based models trained 
on 200K hospitalized 
patients



No big wins from deep models on 
structured data/text

Supplemental Table 1: Prediction accuracy of each task of deep learning model compared to baselines

Hospital A Hospital B
Inpatient Mortality, AUROC

1
(95% CI)

Deep learning 24 hours after admission 0.95(0.94-0.96) 0.93(0.92-0.94)
Full feature enhanced baseline at 24 hours after admission 0.93 (0.92-0.95) 0.91 (0.89-0.92)
Full feature simple baseline at 24 hours after admission 0.93 (0.91-0.94) 0.90 (0.88-0.92)
Baseline (aEWS2) at 24 hours after admission 0.85 (0.81-0.89) 0.86 (0.83-0.88)
30-day Readmission, AUROC (95% CI)

Deep learning at discharge 0.77(0.75-0.78) 0.76(0.75-0.77)
Full feature enhanced baseline at discharge 0.75 (0.73-0.76) 0.75 (0.74-0.76)
Full feature simple baseline at discharge 0.74 (0.73-0.76) 0.73 (0.72-0.74)
Baseline (mHOSPITAL3) at discharge 0.70 (0.68-0.72) 0.68 (0.67-0.69)
Length of Stay at least 7 days AUROC (95% CI)

Deep learning 24 hours after admission 0.86(0.86-0.87) 0.85(0.85-0.86)
Full feature enhanced baseline at 24 hours after admission 0.85 (0.84-0.85) 0.83 (0.83-0.84)
Full feature simple baseline at 24 hours after admission 0.83 (0.82-0.84) 0.81 (0.80-0.82)
Baseline (mLiu4) at 24 hours after admission 0.76 (0.75-0.77) 0.74 (0.73-0.75)
1 Area under the receiver operator curve
2 Augmented early warning score
3 Modified HOSPITAL score
4 Modified Liu score

12

[Rajkomar et al., Scalable and accurate deep learning with electronic health records. Nature Digital Medicine, 2018. 
electronic supplementary material: https://static-content.springer.com/esm/art%3A10.1038%2Fs41746-018-0029-
1/MediaObjects/41746_2018_29_MOESM1_ESM.pdf]

(Razavian et al. ’15)



No big wins from deep models on 
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12

[Rajkomar et al., Scalable and accurate deep learning with electronic health records. Nature Digital Medicine, 2018. 
electronic supplementary material: https://static-content.springer.com/esm/art%3A10.1038%2Fs41746-018-0029-
1/MediaObjects/41746_2018_29_MOESM1_ESM.pdf]

(Razavian et al. ’15)

Keep in mind:
Small wins with deep models may disappear 
altogether with dataset shift or non-stationarity 
(Jung & Shah, JBI ‘15)



No big wins from deep models on 
structured data/text – why?

• Sequential data in medicine is very different 
from language modeling
– Many time scales, significant missing data, and 

multi-variate observations
– Likely do exist predictive nonlinear interactions, but 

subtle
– Not enough data to naively deal with the above two

• Medical community has already come up with 
some very good features



Dataset shift / non-stationarity:
Models often do not generalize

Model

?

[Figure adopted from Jen Gong and Tristan Naumann]

MGH UCSF



Dataset shift / non-stationarity:
Diabetes Onset After 2009

[Geiss LS, Wang J, Cheng YJ, et al. Prevalence and Incidence Trends for Diagnosed 
Diabetes Among Adults Aged 20 to 79 Years, United States, 1980-2012. JAMA, 2014.]

→ Automatically derived labels may change meaning



Dataset shift / non-stationarity:
Top 100 lab measurements over time

Time (in months, from 1/2005 up to 1/2014)

La
bs

[Figure credit: Narges Razavian]

→ Significance of features may change over time
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[Figure credit: Mike Oberst]

Dataset shift / non-stationarity:
ICD-9 to ICD-10 shift

ICD-9

ICD-10

→ Significance of features may change over time



Re-thinking evaluation in the face of 
non-stationarity

• How was our diabetes model evaluation flawed?
• Good practice: use test data from a future year:

5.2 Train and Test Splits

Data is partitioned into four disjoint sets of microbiology samples. As shown in Figure

5-1, distinct patient IDs are first split into disjoint sets, with 80% of patient IDs for

training/development (train/dev), and 20% for testing. Then, to evaluate how well

our models might generalize to the future, the data is split according to a train/dev

time range of 2007-2013, and a test time range of 2014-2016.

All model tuning and design decisions are made based on dataset 1 in Figure

5-1, which comprises approximately 56% of all filtered microbiological samples from

2007-2016. Dataset 1 corresponds to the train/dev set for both patient IDs and time

ranges, while dataset 2 corresponds to test patient IDs and train/dev time ranges,

dataset 3 corresponds to train/dev patient IDs and test time ranges, and dataset 4

corresponds to test patient IDs and test time ranges. This thesis only reports test

values for dataset 3, but future work will report values on the remaining test datasets

as well.

Figure 5-1: Partitioning of data into training/development and test sets, based on an
80-20 split of patient IDs and time intervals of 2007-2013 and 2014-2016.

52

Train

Validate

[Figure credit: 
Helen Zhou]

Test



Intervention-tainted outcomes

• Example from Caruana et al.:
– Patients with pneumonia who have a history of 
asthma have lower risk of dying from pneumonia
– Thus, we learn: HasAsthma(x) => LowerRisk(x)

• What’s wrong with the learned model?
– Risk stratification drives interventions
– If low risk, might not admit to ICU. But this was 
precisely what prevented patients from dying!

[Caruana et al., Intelligible Models for Healthcare: Predicting Pneumonia Risk and Hospital 30-
day Readmission. KDD 2015.]



Intervention-tainted outcomes

𝑿
𝒀

ED triage Death Time

“Mary”

Treatment

A long survival time may be because of treatment!

• Formally, this is what’s happening:

• How do we address this problem?
• First and foremost, must recognize it is happening 

– interpretable models help with this



Intervention-tainted outcomes
• Hacks:

1. Modify model, e.g. by removing the 
HasAsthma(x) => LowerRisk(x) rule
I do not expect this to work with high-
dimensional data

2. Re-define outcome by finding a pre-treatment 
surrogate (e.g., lactate levels)

3. Consider treated patients as right-censored by 
treatment

Example:
Henry, Hager, Pronovost, Saria. A targeted real-time early warning 
score (TREWScore) for septic shock. Science Translation Medicine, 2015



Intervention-tainted outcomes
• The rigorous way to address this problem is through 

the language of causality:

• We return to this in Lecture 14

Intervention, 𝑇

(admit to the ICU?)

Outcome, 𝑌 (death)

Patient, 𝑋

(everything we
know at triage) ?

Will admission to ICU lower likelihood of death for patient?



Optum Whitepaper, “Predictive analytics: Poised to drive population health"

Likelihood of COPD-related hospitalizations

Example commercial product



Optum Whitepaper, “Predictive analytics: Poised to drive population health"

High-risk diabetes  
patients missing tests

# of A1c 
tests

# of LDL 
tests Last A1c Date of 

last A1c Last LDL Date of 
last LDL

Patient 1 2 0 9.2 5/3/13 N/A N/A

Patient 2 2 0 8 1/30/13 N/A N/A

Patient 3 0 0 N/A N/A N/A N/A

Patient 4 0 2 N/A N/A 133 8/9/13

Patient 5 0 0 N/A N/A N/A N/A

Patient 6 0 1 N/A N/A 115 7/16/13

Patient 7 1 0 10.8 9/18/13 N/A N/A

Patient 8 0 0 N/A N/A N/A N/A

Patient 9 0 0 N/A N/A N/A N/A

Patient 10 0 0 N/A N/A N/A N/A

Example commercial product

What data was this model trained on? For whom is it accurate?



Summary and next steps
• Risk stratification is being used to drive clinical decisions and resource 

allocation
– Are the models fair?

• It can be very difficult to derive high-quality labels for supervised ML in 
healthcare
– Can one learn from noisy, biased, or censored labels?

• Interpretability of models important for assessing whether retrospective 
evaluation is representative of future deployment
– Identifying errors in label/outcome derivation
– Assessing robustness to dataset shift

• To achieve scalability, we need ML algorithms that can detect and be 
robust to dataset shift

• Often the right question is not one of prediction but causal inference 
(counterfactual estimation)


