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Course announcements
• Project touchpoints due Wed 4/29
• Good time to re-engage clinical mentors
– Schedule meeting with them late this week / early 

next week
– E-mail them writeup for touchpoint (CC: TA)

• Class this Thu 4/30 will be student-moderated 
project discussions



Recap of past two lectures

• How do we define disease?
• Genomics as a driver of major changes in 

precision medicine
• Clustering with clinical data to discover 

disease subtypes
• Prediction of disease progression from a single 

time-point



Outline of today’s lecture

• Deep dive into data commonly used for 
disease progression modeling

• What can we draw inspiration from, and why
they are not good enough

• Probabilistic models of disease progression
• Simultaneous staging & subtyping



Outline of today’s lecture

• Deep dive into data commonly used for 
disease progression modeling

• What can we draw inspiration from, and why
they are not good enough

• Probabilistic models of disease progression
• Simultaneous staging & subtyping



UK Biobank (from Lecture 19)
Scaling Up Gene-Phene Association Studies

• UK Biobank collects data on ~.5M de-identified individuals

• everyone will have full exome sequencing (50K so far)

• 100K have worn 24-hour activity monitor for a week, 20K have had repeat 

measurements

• on-line questionnaires: diet, cognitive function, work history, digestive health

• 100K will have imaging: brain, heart, abdomen, bones, carotid artery

• linking to EHR: death, cancer, hospital episodes, GP, blood biochemistry

• developing more accurate phenotyping


• Ongoing stream of results

• April 18th, 2019: Genetic variants that protect against obesity and type 2 diabetes 

discovered

• April 17th, 2019: Moderate meat eaters at risk of bowel cancer

• April 8th, 2019: Research identifies genetic causes of poor sleep

53https://www.ukbiobank.ac.uk

We have similar biobanks in the United States, including Partners Healthcare’s 
biobank (>40K patients), Million Veteran’s Program, NIH’s All of Us 



Parkinson’s Progression Marker 
Initiative (from Lecture 20)

[Poewe et al., Parkinson’s disease. Nature Reviews Disease Primers, 2017]



Parkinson’s Progression Marker 
Initiative (from Lecture 20)

ppmi-info.org



Parkinson’s Progression Marker 
Initiative (from Lecture 20)

Questionnaires

[Figures from Christina Ji’s Master’s thesis]



Parkinson’s Progression Marker 
Initiative (from Lecture 20)
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[Figures from Christina Ji’s Master’s thesis]



Parkinson’s Progression Marker 
Initiative (from Lecture 20)

[Figures from Christina Ji’s Master’s thesis]

Treatment



Parkinson’s Progression Marker 
Initiative (from Lecture 20)

[Figures from Christina Ji’s Master’s thesis]

Multi-modal data

Here, e.g., 
including imaging



Multiple myeloma: MMRF CoMMpass

Study population

First treatment line

https://themmrf.org/we-are-curing-multiple-
myeloma/mmrf-commpass-study/

https://themmrf.org/we-are-curing-multiple-myeloma/mmrf-commpass-study/


Multiple myeloma: MMRF CoMMpass
Inductive Biases for Unsupervised, Sequential Models of Cancer Progression

Line	1	
Line	2	
Line	3+	

Bortezomib	
Lenalidomide	

Serum	IgG	

Time	

Treatments	

Lab	results	

Baseline	
Statistics	

Figure 1: Illustration of the type of data our algorithms are designed to model; this example is for multiple myeloma, a blood cancer.
Baseline (static) data typically consists of genomics, demographics, and initial labs. Longitudinal data typically includes laboratory values
(e.g. serum IgG) and treatments. Baseline data is usually complete, but longitudinal measurements are frequently missing at various time
points. The data tells a rich story of a patient’s disease trajectory and the resulting treatment decisions. For example, a deviation of a lab
value from a healthy range (e.g. spike in serum IgG) might prompt a move to the next line of therapy. Data (in red) might be missing, and
in this case are forward filled.

tions of how treatment affects biomarkers) in liquid tumors
like multiple myeloma, designed with inductive biases in-
spired from pharmacokinetic and pharmacodynamic models
of treatment effect for solid tumors and chronic diseases.

Our work suggests a way to use known models of treat-
ment response to construct new treatment effect functions
for a disease where we lack good mechanistic knowledge.
Although our work instantiates this idea in the context of
multiple myeloma, the implications of our work are broader
– it suggest ways to transfer knowledge from diseases that
we do understand to build models for diseases that we do
not.

2. Background
Mechanistic models of disease progressions comprise two
components: the first is a proxy for disease burden, and
the second is the treatment effect, or rather the effect that
treatment has on disease burden. We will denote the latter by
E(t). The way in which disease burden, which we denote
as V (t), is quantified can vary greatly depending on the
disease. Cancer progression models typically aim to capture
the effect of chemotherapy in the progression of solid tumor
growth as a function of treatment. Models of progression
for chronic diseases might track a single clinical biomarker
as a proxy for disease burden. In this section, we outline
three choices for modeling treatment effect drawn from the
rich pharmacokinetic-pharmacodynamic (PK-PD) literature.
Unless otherwise specified, the quantities we describe in this
section are (occasionally time-varying) real-valued scalars,
which may be constrained to be positive.

Linear A linear model is one of the simplest disease pro-
gression models that is used for tracking the dynamics of
tumors(Klein, 2009):

V (t) = V (0) + (↵ + E(t)) · t,

where E(t) is a linear function of the scalar, real-valued
treatment dose. Linear models have also been been used
successfully to describe progression in neurological disor-
ders such as Alzheimer’s disease (Doyle et al. , 2014), and
Huntington’s disease (Warner & Sampaio, 2016).

Log-Cell Kill The log-cell kill hypothesis (Norton, 2014)
states that a given dose of chemotherapy results in killing
a constant fraction of tumor cells rather than a constant
number of cells. The Log Cell Kill model, a popular choice
for modeling the tumor size in solid cell tumors(Lim, 2018;
West & Newton, 2017), can be described by the following
ordinary differential equation (ODE),

dV (t)

dt
= ��cC(t)V (t),

where C(t) is the concentration of a chemotherapeutic
drug over time. C(t) is specified as follows: C(t) =

Cmaxe
� log(2)

half-life t, where Cmax is the maximum concentra-
tion of the drug (i.e. the dose at which the drug was given),
half-life is the half-life of the drug, and �c is a parameter
that represents the drug effect on tumor size .

Variants of the model also incorporate the kinetics of tumor
growth (Evain & Benzekry, 2016; Lim, 2018; Grassberger
& Paganetti, 2016) where the evolution of tumor volume, V ,
is described via an ODE:

dV (t)

dt
= ⇢ log

� K

V (t)

�
,

[Figures from Rahul Krishnan and Zeshan Hussain]

Baseline data 
includes RNA-seq, 
copy number 
variations, and 
gene mutations

At each time step (~3 month intervals), observe blood test results:
• Immunoglobulins and antibodies (IgG, IgA, IgM, kappa chains, light

chains)
• M-protein, creatinine, neutrophil count, hemoglobin, platelet 

count, etc.

Several of these are less frequently measured, so many missing values



Summary of challenges

• Censored data – patients come in at various 
stages of disease progression, and leave 
studies early

• Irregular time intervals between observations, 
lots of missing data (potentially biased by 
healthcare processes)

• Multi-modal data (labs, symptoms, imaging, 
genomics)

• Limited supervision



Outline of today’s lecture

• Deep dive into data commonly used for 
disease progression modeling

• What can we draw inspiration from, and why 
they are not good enough

• Probabilistic models of disease progression
• Simultaneous staging & subtyping



Gene A’s expression

Gene B’s
expression

Learning “pseudo-time” for single-cell sequencing

[Bendall et al., Cell 2014 (human B cell development)]

Stem cell

Fully developed B
cell

Learn full trajectory from 
cross-sectional data!
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population of cells branched from the trajectory near the transition 
between phases. These cells lacked myogenic markers but expressed 
PDGFRA and SPHK1, suggesting that they are contaminating intersti-
tial mesenchymal cells and did not arise from the myoblasts. Such cells 
were recently shown to stimulate muscle differentiation19. Monocle’s 
estimates of the frequency and proliferative status of these cells  
were consistent with estimates derived from immunofluorescent 
stains against ANPEP (also known as CD13) and nuclear Ser10- 
phosphorylated histone H3 (Supplementary Fig. 4). Monocle thus 
enabled analysis of the myoblast differentiation trajectory without 
subtracting these cells by immunopurification, maintaining in vitro 
differentiation kinetics that resemble physiological cell crosstalk 
occurring in the in vivo niche.

To find genes that were dynamically regulated as the cells pro-
gressed through differentiation, we modeled expression of each gene 
as a nonlinear function of pseudotime. A total of 1,061 genes were 

dynamically regulated during differentiation (false discovery rate 
(FDR) < 5%; Fig. 2c). Cells positive for MEF2C and MYH2, early and 
late markers of differentiation, respectively, were present at expected 
frequencies as assayed by both immunofluorescence and RNA-Seq. 
Moreover, the pseudotime ordering of cells shows an increase in 
MEF2C+ cells before the increase in MYH2+ cells (Fig. 2d). Notably, 
genes that act at the early and late stages of muscle differentiation 
showed pseudotemporal kinetics that were highly consistent with 
expectations, with cell-cycle regulators active early in pseudotime 
and sarcomere components active later, confirming the accuracy of 
the ordering (Supplementary Fig. 5).

We next examined the pseudotemporal kinetics of a set of genes 
whose mouse orthologs are targeted by Myod, Myog or Mef2 pro-
teins in C2C12 myoblasts20 (Supplementary Fig. 6). The kinetics of 
these genes during differentiation were highly consistent with changes 
observed during mouse myogenesis, with nearly all significantly 
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Figure 2 Monocle orders individual cells by progress through differentiation. (a) An overview of the Monocle algorithm. (b) Cell expression profiles 
(points) in a two-dimensional independent component space. Lines connecting points represent edges of the MST constructed by Monocle. Solid 
black line indicates the main diameter path of the MST and provides the backbone of Monocle’s pseudotime ordering of the cells. (c) Expression 
for differentially expressed genes identified by Monocle (rows), with cells (columns) shown in pseudotime order. Interstitial mesenchymal cells are 
excluded. (d) Bar plot showing the proportion of MEF2C- and MYH2-expressing cells measured by immunofluorescence at the time of collection (top), 
RNA-Seq at the time of collection (middle) or RNA-Seq at pseudotime (bottom). MEF2C was considered detectably expressed at or above 100 FPKM, 
MYH2 at 1 FPKM. MEF2C exhibits a bimodal pattern of expression across the cells (not shown), and a threshold of 100 FPKM separates the modes.  
(e) Expression of key regulators of muscle differentiation, ordered by time collected (cyclin-dependent kinase 1, CDK1; inhibitor of DNA binding 1,  
ID1; myogenin, MYOG). (f) Regulators from e, ordered by Monocle in pseudotime. Points in e,f are colored by time collected (0 h, red; 24 h, gold;  
48 h, light blue; 72 h, dark blue). Error bars, 2 s.d.

(ICA)

Look for 
longest 
path in 
the tree

[Magwene et al., Bioinformatics, 2003; Trapnell et al., Nature Biotechnology, 2014]

Learning “pseudo-time” for single-cell sequencing



MST-based approach (Monocle)

[Trapnell et al., Nature Biotechnology, 2014]

NATURE BIOTECHNOLOGY VOLUME 32 NUMBER 4 APRIL 2014 383

L E T T E R S

population of cells branched from the trajectory near the transition 
between phases. These cells lacked myogenic markers but expressed 
PDGFRA and SPHK1, suggesting that they are contaminating intersti-
tial mesenchymal cells and did not arise from the myoblasts. Such cells 
were recently shown to stimulate muscle differentiation19. Monocle’s 
estimates of the frequency and proliferative status of these cells  
were consistent with estimates derived from immunofluorescent 
stains against ANPEP (also known as CD13) and nuclear Ser10- 
phosphorylated histone H3 (Supplementary Fig. 4). Monocle thus 
enabled analysis of the myoblast differentiation trajectory without 
subtracting these cells by immunopurification, maintaining in vitro 
differentiation kinetics that resemble physiological cell crosstalk 
occurring in the in vivo niche.

To find genes that were dynamically regulated as the cells pro-
gressed through differentiation, we modeled expression of each gene 
as a nonlinear function of pseudotime. A total of 1,061 genes were 

dynamically regulated during differentiation (false discovery rate 
(FDR) < 5%; Fig. 2c). Cells positive for MEF2C and MYH2, early and 
late markers of differentiation, respectively, were present at expected 
frequencies as assayed by both immunofluorescence and RNA-Seq. 
Moreover, the pseudotime ordering of cells shows an increase in 
MEF2C+ cells before the increase in MYH2+ cells (Fig. 2d). Notably, 
genes that act at the early and late stages of muscle differentiation 
showed pseudotemporal kinetics that were highly consistent with 
expectations, with cell-cycle regulators active early in pseudotime 
and sarcomere components active later, confirming the accuracy of 
the ordering (Supplementary Fig. 5).

We next examined the pseudotemporal kinetics of a set of genes 
whose mouse orthologs are targeted by Myod, Myog or Mef2 pro-
teins in C2C12 myoblasts20 (Supplementary Fig. 6). The kinetics of 
these genes during differentiation were highly consistent with changes 
observed during mouse myogenesis, with nearly all significantly 

a

Differentially expressed
genes by cell type

Differentially expressed
genes across pseudotime

Gene expression
clusters and trends

Reduce dimensionality Build MST on cells

Order cells in pseudotime
via MST

Label cells by type

Cells represented as
points in expression space

CDK1

ID1

MYOG

0.01

1

100

0.1

10

0.01

1

100

0 5 10 15 20
Pseudotime

CDK1

ID1

MYOG

0.1

10

1,000

0.1

10

0.1

10

1,000

0 24 48 72
Time in DM (h)

fe

0
5

10
15
20

0 10 20
Pseudotime

C
el

ls

0
25
50
75

100

0 24 48 72
Time in DM (h)

C
el

ls
 (

%
)

0
25
50
75

100

0 24 48 72 96 120
Time in DM (h)

N
uc

le
i (

%
)

MEF2C
MYH2

d

−2

−1

0

−3 −2
Component 2

C
om

po
ne

nt
 1

Proliferating
cell

Differentiating
myoblastb

Beginning of
pseudotime

End of
pseudotime

Interstitial
mesenchymal
cell

−2

−1

0

1

2

Relative
expression

Pseudotime

c

Figure 2 Monocle orders individual cells by progress through differentiation. (a) An overview of the Monocle algorithm. (b) Cell expression profiles 
(points) in a two-dimensional independent component space. Lines connecting points represent edges of the MST constructed by Monocle. Solid 
black line indicates the main diameter path of the MST and provides the backbone of Monocle’s pseudotime ordering of the cells. (c) Expression 
for differentially expressed genes identified by Monocle (rows), with cells (columns) shown in pseudotime order. Interstitial mesenchymal cells are 
excluded. (d) Bar plot showing the proportion of MEF2C- and MYH2-expressing cells measured by immunofluorescence at the time of collection (top), 
RNA-Seq at the time of collection (middle) or RNA-Seq at pseudotime (bottom). MEF2C was considered detectably expressed at or above 100 FPKM, 
MYH2 at 1 FPKM. MEF2C exhibits a bimodal pattern of expression across the cells (not shown), and a threshold of 100 FPKM separates the modes.  
(e) Expression of key regulators of muscle differentiation, ordered by time collected (cyclin-dependent kinase 1, CDK1; inhibitor of DNA binding 1,  
ID1; myogenin, MYOG). (f) Regulators from e, ordered by Monocle in pseudotime. Points in e,f are colored by time collected (0 h, red; 24 h, gold;  
48 h, light blue; 72 h, dark blue). Error bars, 2 s.d.



RNN language models

• Could use a recurrent neural network as an 
autoregressive model of the distribution of observations:

• Observations up to time t-1 summarized by RNN’s hidden 
state ht:

Pr(x1, x2, . . . , xT ) = Pr(x1)
TY

t=2

Pr(xt | x1, . . . xt�1)

# of time steps

Labs, symptoms, etc. 
observed at time 2

<null>

<null>

x1 x2 x4x3

h1 h2 h3 h4 h5

p5 = p(X5 | X1, . . . , X4) = p(X5 | h5)



Why these are insufficient for disease 
progression modeling

• Limitations of (most) pseudo-time methods
– Good that these handle censored data, but we often have

multiple observations
– Needs lots of data, but most disease data sets are small (e.g. 

hundreds of patients)
– Needs simple manifolds embedded in high-dimensions; disease 

data sets features often low dimensional
• Limitations of (naively) using recurrent neural networks to 

model the sequence of observations
– Irregular time intervals between observations*
– Missing data
– Must model treatment effects
– Multi-modal data

*See Che et al., Recurrent Neural Networks for Multivariate Time Series with Missing Values, Scientific Reports ‘18

https://www.nature.com/articles/s41598-018-24271-9


Outline of today’s lecture

• Deep dive into data commonly used for 
disease progression modeling

• What can we draw inspiration from, and why 
they are not good enough

• Probabilistic models of disease progression
• Simultaneous staging & subtyping



Patient state on
Feb. ‘12

Patient state on
Jun. ‘12

Patient state on
Mar. ‘11

Patient state on
Apr. ‘11

Key idea: model patient state as a latent variable

S1 S2 ST-1 ST……

• Use a Markov model to describe the joint distribution of 
patient states over time:

• State space of S could be discrete (e.g. take K states) or 
continuous (e.g. in Rd) – analogous to hidden state of the RNN

• If regular time intervals, we model the transition distribution
Pr(St | St-1)

• Otherwise, model
• Alternatively, use a Gaussian process or neural ODE to model 

the joint distribution of S*

P (St | St�1, ⌧t � ⌧t�1 = �)

*See Schulam & Saria, Reliable Decision Support using Counterfactual Models, NeurIPS 2017
& Chen et al., Neural Ordinary Differential Equations, NeurIPS 2018

https://papers.nips.cc/paper/6767-reliable-decision-support-using-counterfactual-models.pdf
https://papers.nips.cc/paper/7892-neural-ordinary-differential-equations


Deep Markov models (DMMs) of disease 
progression

Actions
(e.g., medication, surgery)

Patient state

Observations
(blood and urine test results,
diagnoses, vital signs, …)

z1 z2 z3 z4

x1 x2 x3 x4

. . .

u1 u2 u3

• Provides an in-silico model for assessing effect of interventions 
(actions), by forward sampling in model 

• Transition & emission distributions given by deep neural networks:

u

x

Input Output

zt
zt�1

g
ut�1

zt ⇠ N (g(zt�1,ut�1), s(zt�1,ut�1))

zt 2 R100

[Krishnan, Shalit, Sontag, AAAI ‘17]



Progression modeling for diabetes

• 8000 diabetic and pre-diabetic 
patients

• 4 years of data, grouped into 3 
month intervals

• Observations: 52 binary 
variables measuring
– Demographics
– Laboratory test results (e.g. 

glucose level)
– Diagnosis codes for conditions 

such as heart failure and obesity

• 200 latent dimensions for zt

Test log-
likelihood

Iterations of learning

Linear model
(typical Kalman filter)

Deep Markov model (DMM)

DMM, linear transition

DMM, linear emission

The non-linearity given by the deep neural 
networks significantly improves ability to 
model the data



• Long-term: which diabetes medications work best for whom?
• Actions: 9 diabetic drugs including Metformin and Insulin (m),

lab test orders (u)

• Here we just do a sanity check

z1 z2 z3

x1 x2 x3

. . .

m1 m2

Lab test
orders

Medications

Observations

Learning the effect of diabetic 
treatments

u1 u2
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Figure 6: (Left Two Plots) Estimating Counterfactuals with DMM:
The x-axis denotes the number of 3-month intervals after prescrip-
tion of Metformin. The y-axis denotes the proportion of patients
(out of a test set size of 800) who, after their first prescription of
Metformin, experienced a high level of A1C. In each tuple of bar
plots at every time step, the left aligned bar plots (green) represent
the population that received diabetes medication while the right
aligned bar plots (red) represent the population that did not receive
diabetes medication. (Rightmost Plot) Upper bound on negative-
log likelihood for different DMMs trained on the medical data. (T)
denotes “transition”, (E) denotes “emission”, (L) denotes “linear”
and (NL) denotes “non-linear”.

variable zt decomposes as log p(mt, ot|zt) = log p(mt|zt)+
log p(ot|zt) since the random variables are conditionally in-
dependent given their parent. If m is missing and marginal-
ized out while ot is observed, then our log-likelihood
is: log

R
m p(mt, ot|zt) = log(

R
m p(mt|zt)p(ot|zt)) =

log p(ot|zt) (since
R
m p(mt|zt) = 1) i.e we effectively

ignore the missing observations when estimating the log-
likelihood of the data.

The Effect of Anti-Diabetic Medications: Since our co-
hort comprises diabetic patients, we ask a counterfactual
question: what would have happened to a patient had anti-
diabetic drugs not been prescribed? Specifically we are in-
terested in the patient’s blood-sugar level as measured by
the widely-used A1C blood-test. We perform inference us-
ing held-out patient data leading up to the time k of first
prescription of Metformin. From the posterior mean, we per-
form ancestral sampling tracking two latent trajectories: (1)
the factual: where we sample new latent states conditioned
on the medication ut the patient had actually received and
(2) the counterfactual: where we sample conditioned on not
receiving any drugs for all remaining timesteps (i.e uk set
to the zero-vector). We reconstruct the patient observations
xk, . . . , xT , threshold the predicted values of A1C levels into
high and low and visualize the average number of high A1C
levels we observe among the synthetic patients in both sce-
narios. This is an example of performing do-calculus (Pearl
2009) in order to estimate model-based counterfactual effects.

The results are shown in Fig. 6. We see the model learns
that, on average, patients who were prescribed anti-diabetic
medication had more controlled levels of A1C than patients
who did not receive any medication. Despite being an ag-
gregate effect, this is interesting because it is a phenomenon
that coincides with our intuition but was confirmed by the
model in an entirely unsupervised manner. Note that in our
dataset, most diabetic patients are indeed prescribed anti-
diabetic medications, making the counterfactual prediction
harder. The ability of this model to answer such queries opens

up possibilities into building personalized neural models of
healthcare. Samples from the learned generative model and
implementation details may be found in the supplement.

7 Discussion

We introduce a general algorithm for scalable learning in a
rich family of latent variable models for time-series data. The
underlying methodological principle we propose is to build
the inference network to mimic the posterior distribution
(under the generative model). The space complexity of our
learning algorithm depends neither on the sequence length
T nor on the training set size N , offering massive savings
compared to classical variational inference methods.

Here we propose and evaluate building variational infer-
ence networks to mimic the structure of the true posterior
distribution. Other structured variational approximations are
also possible. For example, one could instead use an RNN
from the past, conditioned on a summary statistic of the fu-
ture, during learning and inference.

Since we use RNNs only in the inference network, it should
be possible to continue to increase their capacity and condi-
tion on different modalities that might be relevant to approxi-
mate posterior inference without worry of overfitting the data.
Furthermore, this confers us the ability to easily model in the
presence of missing data since the semantics of the DMM
render it easy to marginalize out unobserved data. In contrast,
in a (stochastic) RNN (bottom in Fig. 1) it is much more
difficult to marginalize out unobserved data due to the depen-
dence of the intermediate hidden states on the previous input.
Indeed this allowed us to develop a principled application of
the learning algorithm to modeling longitudinal patient data
in EHR data and inferring treatment effect.
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Effect of diabetes treatments on glucose
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Figure 6: (Left Two Plots) Estimating Counterfactuals with DMM:
The x-axis denotes the number of 3-month intervals after prescrip-
tion of Metformin. The y-axis denotes the proportion of patients
(out of a test set size of 800) who, after their first prescription of
Metformin, experienced a high level of A1C. In each tuple of bar
plots at every time step, the left aligned bar plots (green) represent
the population that received diabetes medication while the right
aligned bar plots (red) represent the population that did not receive
diabetes medication. (Rightmost Plot) Upper bound on negative-
log likelihood for different DMMs trained on the medical data. (T)
denotes “transition”, (E) denotes “emission”, (L) denotes “linear”
and (NL) denotes “non-linear”.

variable zt decomposes as log p(mt, ot|zt) = log p(mt|zt)+
log p(ot|zt) since the random variables are conditionally in-
dependent given their parent. If m is missing and marginal-
ized out while ot is observed, then our log-likelihood
is: log

R
m p(mt, ot|zt) = log(

R
m p(mt|zt)p(ot|zt)) =

log p(ot|zt) (since
R
m p(mt|zt) = 1) i.e we effectively

ignore the missing observations when estimating the log-
likelihood of the data.

The Effect of Anti-Diabetic Medications: Since our co-
hort comprises diabetic patients, we ask a counterfactual
question: what would have happened to a patient had anti-
diabetic drugs not been prescribed? Specifically we are in-
terested in the patient’s blood-sugar level as measured by
the widely-used A1C blood-test. We perform inference us-
ing held-out patient data leading up to the time k of first
prescription of Metformin. From the posterior mean, we per-
form ancestral sampling tracking two latent trajectories: (1)
the factual: where we sample new latent states conditioned
on the medication ut the patient had actually received and
(2) the counterfactual: where we sample conditioned on not
receiving any drugs for all remaining timesteps (i.e uk set
to the zero-vector). We reconstruct the patient observations
xk, . . . , xT , threshold the predicted values of A1C levels into
high and low and visualize the average number of high A1C
levels we observe among the synthetic patients in both sce-
narios. This is an example of performing do-calculus (Pearl
2009) in order to estimate model-based counterfactual effects.

The results are shown in Fig. 6. We see the model learns
that, on average, patients who were prescribed anti-diabetic
medication had more controlled levels of A1C than patients
who did not receive any medication. Despite being an ag-
gregate effect, this is interesting because it is a phenomenon
that coincides with our intuition but was confirmed by the
model in an entirely unsupervised manner. Note that in our
dataset, most diabetic patients are indeed prescribed anti-
diabetic medications, making the counterfactual prediction
harder. The ability of this model to answer such queries opens

up possibilities into building personalized neural models of
healthcare. Samples from the learned generative model and
implementation details may be found in the supplement.

7 Discussion

We introduce a general algorithm for scalable learning in a
rich family of latent variable models for time-series data. The
underlying methodological principle we propose is to build
the inference network to mimic the posterior distribution
(under the generative model). The space complexity of our
learning algorithm depends neither on the sequence length
T nor on the training set size N , offering massive savings
compared to classical variational inference methods.

Here we propose and evaluate building variational infer-
ence networks to mimic the structure of the true posterior
distribution. Other structured variational approximations are
also possible. For example, one could instead use an RNN
from the past, conditioned on a summary statistic of the fu-
ture, during learning and inference.

Since we use RNNs only in the inference network, it should
be possible to continue to increase their capacity and condi-
tion on different modalities that might be relevant to approxi-
mate posterior inference without worry of overfitting the data.
Furthermore, this confers us the ability to easily model in the
presence of missing data since the semantics of the DMM
render it easy to marginalize out unobserved data. In contrast,
in a (stochastic) RNN (bottom in Fig. 1) it is much more
difficult to marginalize out unobserved data due to the depen-
dence of the intermediate hidden states on the previous input.
Indeed this allowed us to develop a principled application of
the learning algorithm to modeling longitudinal patient data
in EHR data and inferring treatment effect.
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variable zt decomposes as log p(mt, ot|zt) = log p(mt|zt)+
log p(ot|zt) since the random variables are conditionally in-
dependent given their parent. If m is missing and marginal-
ized out while ot is observed, then our log-likelihood
is: log

R
m p(mt, ot|zt) = log(

R
m p(mt|zt)p(ot|zt)) =

log p(ot|zt) (since
R
m p(mt|zt) = 1) i.e we effectively

ignore the missing observations when estimating the log-
likelihood of the data.

The Effect of Anti-Diabetic Medications: Since our co-
hort comprises diabetic patients, we ask a counterfactual
question: what would have happened to a patient had anti-
diabetic drugs not been prescribed? Specifically we are in-
terested in the patient’s blood-sugar level as measured by
the widely-used A1C blood-test. We perform inference us-
ing held-out patient data leading up to the time k of first
prescription of Metformin. From the posterior mean, we per-
form ancestral sampling tracking two latent trajectories: (1)
the factual: where we sample new latent states conditioned
on the medication ut the patient had actually received and
(2) the counterfactual: where we sample conditioned on not
receiving any drugs for all remaining timesteps (i.e uk set
to the zero-vector). We reconstruct the patient observations
xk, . . . , xT , threshold the predicted values of A1C levels into
high and low and visualize the average number of high A1C
levels we observe among the synthetic patients in both sce-
narios. This is an example of performing do-calculus (Pearl
2009) in order to estimate model-based counterfactual effects.

The results are shown in Fig. 6. We see the model learns
that, on average, patients who were prescribed anti-diabetic
medication had more controlled levels of A1C than patients
who did not receive any medication. Despite being an ag-
gregate effect, this is interesting because it is a phenomenon
that coincides with our intuition but was confirmed by the
model in an entirely unsupervised manner. Note that in our
dataset, most diabetic patients are indeed prescribed anti-
diabetic medications, making the counterfactual prediction
harder. The ability of this model to answer such queries opens

up possibilities into building personalized neural models of
healthcare. Samples from the learned generative model and
implementation details may be found in the supplement.

7 Discussion

We introduce a general algorithm for scalable learning in a
rich family of latent variable models for time-series data. The
underlying methodological principle we propose is to build
the inference network to mimic the posterior distribution
(under the generative model). The space complexity of our
learning algorithm depends neither on the sequence length
T nor on the training set size N , offering massive savings
compared to classical variational inference methods.

Here we propose and evaluate building variational infer-
ence networks to mimic the structure of the true posterior
distribution. Other structured variational approximations are
also possible. For example, one could instead use an RNN
from the past, conditioned on a summary statistic of the fu-
ture, during learning and inference.

Since we use RNNs only in the inference network, it should
be possible to continue to increase their capacity and condi-
tion on different modalities that might be relevant to approxi-
mate posterior inference without worry of overfitting the data.
Furthermore, this confers us the ability to easily model in the
presence of missing data since the semantics of the DMM
render it easy to marginalize out unobserved data. In contrast,
in a (stochastic) RNN (bottom in Fig. 1) it is much more
difficult to marginalize out unobserved data due to the depen-
dence of the intermediate hidden states on the previous input.
Indeed this allowed us to develop a principled application of
the learning algorithm to modeling longitudinal patient data
in EHR data and inferring treatment effect.
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variable zt decomposes as log p(mt, ot|zt) = log p(mt|zt)+
log p(ot|zt) since the random variables are conditionally in-
dependent given their parent. If m is missing and marginal-
ized out while ot is observed, then our log-likelihood
is: log

R
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m p(mt|zt)p(ot|zt)) =

log p(ot|zt) (since
R
m p(mt|zt) = 1) i.e we effectively

ignore the missing observations when estimating the log-
likelihood of the data.

The Effect of Anti-Diabetic Medications: Since our co-
hort comprises diabetic patients, we ask a counterfactual
question: what would have happened to a patient had anti-
diabetic drugs not been prescribed? Specifically we are in-
terested in the patient’s blood-sugar level as measured by
the widely-used A1C blood-test. We perform inference us-
ing held-out patient data leading up to the time k of first
prescription of Metformin. From the posterior mean, we per-
form ancestral sampling tracking two latent trajectories: (1)
the factual: where we sample new latent states conditioned
on the medication ut the patient had actually received and
(2) the counterfactual: where we sample conditioned on not
receiving any drugs for all remaining timesteps (i.e uk set
to the zero-vector). We reconstruct the patient observations
xk, . . . , xT , threshold the predicted values of A1C levels into
high and low and visualize the average number of high A1C
levels we observe among the synthetic patients in both sce-
narios. This is an example of performing do-calculus (Pearl
2009) in order to estimate model-based counterfactual effects.

The results are shown in Fig. 6. We see the model learns
that, on average, patients who were prescribed anti-diabetic
medication had more controlled levels of A1C than patients
who did not receive any medication. Despite being an ag-
gregate effect, this is interesting because it is a phenomenon
that coincides with our intuition but was confirmed by the
model in an entirely unsupervised manner. Note that in our
dataset, most diabetic patients are indeed prescribed anti-
diabetic medications, making the counterfactual prediction
harder. The ability of this model to answer such queries opens

up possibilities into building personalized neural models of
healthcare. Samples from the learned generative model and
implementation details may be found in the supplement.

7 Discussion

We introduce a general algorithm for scalable learning in a
rich family of latent variable models for time-series data. The
underlying methodological principle we propose is to build
the inference network to mimic the posterior distribution
(under the generative model). The space complexity of our
learning algorithm depends neither on the sequence length
T nor on the training set size N , offering massive savings
compared to classical variational inference methods.

Here we propose and evaluate building variational infer-
ence networks to mimic the structure of the true posterior
distribution. Other structured variational approximations are
also possible. For example, one could instead use an RNN
from the past, conditioned on a summary statistic of the fu-
ture, during learning and inference.

Since we use RNNs only in the inference network, it should
be possible to continue to increase their capacity and condi-
tion on different modalities that might be relevant to approxi-
mate posterior inference without worry of overfitting the data.
Furthermore, this confers us the ability to easily model in the
presence of missing data since the semantics of the DMM
render it easy to marginalize out unobserved data. In contrast,
in a (stochastic) RNN (bottom in Fig. 1) it is much more
difficult to marginalize out unobserved data due to the depen-
dence of the intermediate hidden states on the previous input.
Indeed this allowed us to develop a principled application of
the learning algorithm to modeling longitudinal patient data
in EHR data and inferring treatment effect.
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where, ⇢, the growth rate, and K, the tumor carrying ca-
pacity, determine the growth curve of the tumor. In Figure
2, we show an example of the dynamics of the log-cell kill
model combined with this form of Gompertzian growth.

An analytic expression for the tumor dynamics of the log
cell kill model that incorporates tumor growth is:

V (t) = V (t�1) · (1+⇢ log(K/V (t�1))��cC(t)), (1)

Treatment Exponential The third treatment effect model
is loosely inspired by disease progression models for chronic
diseases. This model was used by Xu et al. to estimate indi-
vidualized treatment-effect curves in patients with Chronic
Kidney Disease (CKD) (Xu et al. , 2016). Given a treat-
ment, a⌧ , let E(t � ⌧) be the response curve for t � ⌧
of administering this treatment regimen at time ⌧ . E(t) is
parametrized as

E(t) =

(
b0 + ↵1/[1 + exp(�↵2(t � �l

2 ))], if 0  t < �l
bl + ↵0/[1 + exp(↵3(t � 3�l

2 ))], if t � �l
(2)

with six free parameters: {↵1, ↵2, ↵3, �l, b0, bl}. ↵1 2 R
represents the maximum value and its sign determines
whether there is an increase or decrease of lab markers
in response to treatment. ↵2 2 (0, 1) and ↵3 2 (0, 1) model
the steepness of the curves. Finally, �l 2 R denotes the
switching point.

The motivation behind using this functional form of g(t)
is that it admits a flexible "U"-shaped curve, as shown in
Figure 2, by concatenating two sigmoid curves. Allowing
the parameters of the function to vary alters the switching
point between the two sigmoid curves as well as the slope of
ascent or descent. Thus, this function can capture whether a
treatment causes a patient’s lab value to increase or decrease
over time as well as the rate at which it does so before
converging to a stable value.

3. Methodology
Section 2 details three treatment effect functions that de-
scribe how a single (positive) scalar quantity V (t) varies
over time as a function of a single (positive) scalar treatment
effect E(t). However, for typical clinical data, as in Figure
1, the first challenge we must deal with are how to transform
the formulae in Section 2 to work with high-dimensional
treatments and high-dimensional observations (which may
be positive or negative). Each observation in time is af-
fected by one or more of the previous observations as well
as any and all of the treatments prescribed in the past. This
section details our methodology in how to generalize and
combine the previous three treatment effect functions for
use in modeling high-dimensional clinical biomarkers.

Figure 2: Pharmacodynamic-Pharmacokinetic Treatment Ef-
fect Functions: Visualizing tumor burden under two treatment
response models. Curves denote tumor volume and vertical lines
denote treatment. Top: Log Cell Kill tumor volume. The different
curves represent separate parameterizations of the function. The
shaded regions from left to right represent different lines of therapy.
For each line, a sharp decline is followed by a rise in tumor volume,
prompting a change in therapy line. Each curve corresponds to dis-
tinct rates of tumor growth, parametrized by ⇢. Bottom: Biomarker
value under the Treatment Exponential model. After maintaining
the response with treatments, a regression towards baseline (in
blue; depicting what would have happened had no treatment been
prescribed) occurs when treatment is stopped.

3.1. Setup

We assume that longitudinal, time-varying data are observed
at discrete intervals in time. Let Ui = [U1,i, . . . , UT�1,i]
be a sequence of multivariate interventions for individual i,
and let Xi = [X1,i, . . . , XT,i] be a sequence of multivariate
biomarkers for time T > 0. These will be used to derive
the effect of treatment E(t). In many clinical datasets of
patients suffering from cancer, we may never observe V (t)
(the true tumor volume). Here, we will treat V (t) as an
abstraction, and assume that the longitudinal biomarkers X
serve as an effective proxy for it.

Let Bi = [Bi;X0,i;U0,i] be the baseline data for individual
i, where Bi represents individual-specific covariates (e.g.
demographics, genetics, co-morbidities) and X0,i and U0,i

denote the biomarkers and intervention regimen for indi-
vidual i at time t = 0. Moving forward, we will omit the
subscript i for notational simplicity.

Inductive Biases for Unsupervised, Sequential Models of Cancer Progression

We use a bidirectional RNN over the input sequence
([B;X1;U1], [B;X2;U2], . . . , [B;XT ;UT ]) to parameter-
ize representations of the past and future. To predict the
variational parameters for a latent variable at each point
in time, we merge the hidden state of the bi-directional
RNN with a sample from the previous latent state using the
product-of-Gaussian pdf approximation as in (Tan et al. ,
2019).

Recurrent Neural Network: As black-box a baseline to
evaluate our methodology, we use a Gated Recurrent Neural
Network (RNN) (Chung et al. , 2014) as an auto-regressive
model of the sequential observations (see Figure 3 (middle),

p(X|U,B) =
TY

t=1

p(Xt|X<t, U<t, B). (8)

We learn the model by maximum likelihood estimation.

3.3. Ensemble Pharmacokinetic-Pharmacodynamic
(PK-PD) Treatment Effect Function

In order to learn the FOMM and the SSM as described
above, we need to specify parameterizations for the condi-
tional probability distributions that describe the likelihood
under both models. We generalize, and parameterize the
PK-PD models in Section 2 within the function µ✓ used
in Eqs. 3 and 5. In this section, we will use the nota-
tion |Zt| = Z, |Ut| = U, |B| = B. For simplicity our
discussion will instantiate the treatment effect function for
µ✓ : RZ+U+B ! RZ as described in Equation 5 for the
State Space Models. When considering the FOMM, Zt may
be replaced with Xt in what follows.

We lack a mechanistic understanding of how chemothera-
peutic drugs affect biomarkers for a liquid tumor like multi-
ple myeloma i.e. we do not apriori have mathematical forms
for how the variables, or the biomarkers should behave as a
function of the prescribed medication. In the absence of this
knowledge, we the mechanism of treatment effect via an
ensemble of treatment effect functions from other diseases.
In this case, we design a function that adaptively selects
between using linear, log-cell kill, and treatment exponen-
tial treatment response functions to model variation in the
latent state over time. Doing so allows the data and learning
algorithm to select one treatment effect model over the other
two depending on what biomarker or dimension of the latent
variable is being modelled.

The key challenge however is that as defined in Section 2,
each of the treatment effect functions describes how a scalar
number corresponding to the disease burden behaves as a
function of the scalar valued dosage of the drug. Our work
here generalizes each of the three treatment effect functions
to a parametric, vector valued form: functions that map
from a set of drugs onto their effect on a set of biomarkers

that act as a proxy for disease burden.

Log Cell Treatment Effect: We generalize the Log Cell
Kill treatment effect model as follows:

LC(Zt, Ut, B, t) = Zt · (1� ⇢ log(Z2
t )

� � exp(��t)), (9)

where � = tanh(Wlc · [Ut, B]+blc). For this model, Wlc 2
R(U+B)⇥Z , blc 2 RZ , � 2 RZ and ⇢ 2 RZ are learned
parameters. For the multiple myeloma data, we did not
find Gompertzian growth (middle term in Eq. 1 and Eq. 9)
to help and consequently we set ⇢ = 0. We remove the
carrying capacity, K, since this parameter is more suitable
for solid tumors, which Multiple Myeloma is not.

Exponential Treatment Effect: We have six parameters,
{↵1, ↵2, ↵3, �l, b0, bl}, to define E(t) as in Eq. 2.

Let L = [L1, . . . , LT ] be a sequence over time, where Lt is
a one-hot encoding that denotes if the treatment assigned to
an individual at time t is in line one, two, or greater than or
equal to line three. Then, we parameterize: [↵2, ↵3, �]t =
�(We ·Lt + be), where � is the sigmoid function and We 2
R3⇥3, be 2 R3. These three parameters remain fixed within
a line of therapy.

We define ↵1t = W 0
e · [Ut, B] + b0e which allows it to

change with therapy and ↵0t = (↵1t + 2b0 � bl)/(1 +
exp(�↵3t�/2)) to ensure that the treatment effect peaks at
t = �. Here, W 0

e 2 R(U+B)⇥Z , b0e 2 RZ and the biases,
b0 2 RZ and bl 2 RZ , are learned parameters.

PK-PD Treatment Effect: Putting these components to-
gether gives us the following parametrization for µ✓: given
inputs Zt and Ut, B and parameters � = [�1, �2, �3],

lint = Zt � tanh(Wn · [Ut;B] + bn)

logcellt = LC(Zt, Ut, t � ts)

tet = E(t � ts;↵1t, ↵2t, ↵3t, �t, b0, bl) (10)
ot = �(�)1 � lint + �(�)2 � logcellt (11)

+ �(�)3 � tet
µ✓(Zt, Ut, B) = (Wr · Zt + br) + ot (12)

Note that in Eq (10), ts refers to the start time of the line
of therapy at time t. Notationally, �(�)i in Eq (11) refers
to taking the softmax of � and then selecting the ith ele-
ment of the resulting vector. In the remaining sections, a
FOMM whose µ✓ is specified by a linear function or Eq (12)
will be referred to as FOMMlinear and FOMMPK-PD, respec-
tively. The same applies for the SMMlinear and SMMPK-PD
models. By varying �(�), the model can adaptively select
between the various treatment effect functions and decide
what proportions work best for the problem at hand.

[Recent work by Rahul Krishnan and Zeshan Hussain]
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Figure 4: Visualizations of samples from learned SSM models: We visualize ancestral samples from SSMPK-PD and SSMlinear
conditioned on a patient’s baseline data. Each row represents a single patient, and each column are the samples for the immunoglobulin
for each patient. The blue circles denote ground truth and the markers above the trajectories represent medications given across time.

7. Discussion
Our work showcases how ideas from fields such as phar-
macokinetics and pharmacodynamics can be used to design
inductive biases for disease progression models. We show-
cased how the use of an ensembled PK-PD treatment effect
function can allow the data to decide what kind of treatment
effect model is relevant for a biomarker, which is particu-
larly useful when jointly modeling multiple biomarkers for
which we lack sound biological knowledge. The use of the
PK-PD function in both first order Markov models and State
Space Models led to improvements in held-out likelihood

across all folds. Visually, we find that the gains play out in a
model of disease progression that captures dynamics more
smoothly even when there are gaps in treatment information.
A limitation of the current work is that it is only evaluated
on a cohort of patients suffering from multiple myeloma. As
more clinical datasets of cancer become publicly available,
a fruitful direction of future work would be to study the
model on a diverse set of diseases.

PK/PD DMM Linear State Space ModelGround truth

Inductive Biases for Treatment effect

PK/PD DMM better at forecasting patient biomarkers

Held-out likelihood:

[Recent work by Rahul Krishnan and Zeshan Hussain]



Disease stage on
Feb. ‘12?

Disease stage on
Jun. ‘12?

Disease stage on
Mar. ‘11?

Disease stage on
Apr. ‘11?

Alternative approach: continuous-time Markov model

• A continuous-time Markov process with irregular discrete-time 
observations

• The transition probability is defined by an intensity matrix and the time 
interval:

Matrix Q:   Parameters to learn

S1 S2 ST-1 ST……

S(τ)Underlying
disease state

� = 34 days

[Wang, Sontag, Wang, “Unsupervised learning of Disease Progression Models”, KDD 2014]



Generative model for patient data

Markov Jump Process

Progression Stages

K phenotypes, each 
with its own Markov 

chain

Observations

[Wang, Sontag, Wang, “Unsupervised learning of Disease Progression Models”, KDD 2014]

Diabetes

Depression

Lung cancer



Has diabetes
Feb. ‘12?

Has diabetes
Jun. 7, ‘12?

Has diabetes
Mar. ‘11?

Has diabetes
Apr. ‘11?

Model of comorbidities across time

S1 S2 ST-1 ST
……

S(τ)

X1,1 X1,2 X1,T-1 X1,T
……

• Presence of comorbidities depends on value at previous time 
step and on disease stage

• Later stages of disease = more likely to develop comorbidities

• Make the assumption that once patient has a comorbidity, 
likely to always have it



COPD diagnosis & progression

• COPD diagnosis made using a breath test – fraction of air 
expelled in first second of exhalation < 70%

• Most doctors use GOLD criteria to stage the disease and 
measure its progression:

Chronic obstructive pulmonary disease. The Lancet, Volume 379, Issue 9823, Pages 1341 - 1351, 7 April 2012



Experimental evaluation

• We create a COPD cohort of 3,705 patients:
– At least one COPD-related diagnosis code

– At least one COPD-related drug

• Removed patients with too few records

• Clinical findings derived from 264 diagnosis codes
– Removed ICD-9 codes that only occurred to a small number of patients

• Combined visits into 3-month time windows

• 34,976 visits, 189,815 positive findings



Inferred progression of a single patient

2010 2013
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Prevalence of comorbidities across stages
(Cardiovascular disease)
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Prevalence of comorbidities across stages
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Outline of today’s lecture

• Deep dive into data commonly used for 
disease progression modeling

• What can we draw inspiration from, and why
they are not good enough

• Probabilistic models of disease progression
• Simultaneous staging & subtyping



Temporal heterogeneity
Patients show various disease stages through which patterns of pathology 
evolve

Braak and Braak 1991 

Alzheimer’s disease Frontotemporal dementia

Brettschneider et al. 2014



Individuals have different disease subtypes with distinct patterns of 
pathology  

Typical
Hippocampal-

sparing
Limbic-

predominant

Murray et al. 2011, Whitwell et al. 2012 

Alzheimer’s disease Frontotemporal dementia

Whitwell et al. 2012 

Phenotypic heterogeneity



Subtype and Stage Inference (SuStaIn) 

Synthetic data. A simulation study (see Supplementary Methods,
Supplementary Results, Supplementary Discussion and Supple-
mentary Figures 1–12) verifies the ability of the SuStaIn algorithm
to recover predefined subtypes and their progression patterns
from heterogeneous data sets with comparable numbers of sub-
jects, biomarkers and clusters (subtypes) to those used in this
study.

Subtype progression patterns. We demonstrate SuStaIn in two
neurodegenerative diseases, genetic FTD and sporadic AD, using
cross-sectional regional brain volumes from MRI data in the
GENetic Frontotemporal dementia Initiative (GENFI) and the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). GENFI
investigates biomarker changes in carriers of mutations in GRN,
MAPT and C9orf72 genes, which cause FTD. GRN and MAPT
mutations are known to be associated with distinct phenotypes,
whereas C9orf72 is a heterogeneous group30. Here, GENFI serves
as a test data set with a partially known ground truth for vali-
dation, as we expect SuStaIn to identify genetic groups as distinct
phenotypic subtypes. However, it further supports investigation
of the phenotypic and temporal heterogeneity within genotypes.
Specifically, we ran SuStaIn on the combined data set from all 172
mutation carriers in GENFI (Fig. 2a), without genotypes, and
compared the resulting subtype assignments and progression
patterns with (a) participant’s genotype labels (Fig. 2b), and (b)
subtype progression patterns obtained from each genotype
separately (Supplementary Figure 13; 76 GRN carriers, 63 C9orf72
carriers, 33 MAPT carriers). Next, we used SuStaIn to identify
sporadic AD subtypes from ADNI (793 subjects, including 524
with mild cognitive impairment (MCI) or AD) and characterise
their progression from early to late disease stages (Fig. 3). We
tested consistency of the SuStaIn subtypes in a largely indepen-
dent data set—ADNI 1.5T MRI (576 subjects, including 396 with
MCI or AD) scans (Fig. 4) rather than the main 3T data set used
for Fig. 3. In each disease, cross-validation tests the reproduci-
bility of the subtypes and estimated progression patterns (Sup-
plementary Figure 14).

SuStaIn reveals within-genotype phenotypes in FTD. Figure 2
shows that SuStaIn successfully identifies the progression patterns
of the different genetic groups in GENFI, without prior knowl-
edge of genotype, and further suggests that phenotypic hetero-
geneity of the C9orf72 group results from two neuroanatomical
subtypes. Figure 2a shows the four subtypes that SuStaIn finds
from the full set of all mutation carriers in GENFI. We refer to
them as the asymmetric frontal lobe subtype, temporal lobe
subtype, frontotemporal lobe subtype and subcortical subtype.
Figure 2b reveals that GRN mutation carriers are the main con-
tributors to the asymmetric frontal lobe subtype, MAPT mutation
carriers are the main contributors to the temporal lobe subtype,
and C9orf72 mutation carriers are the main contributors to both
the frontotemporal lobe subtype and the subcortical subtype. This
suggests that there are two distinct subtypes in the C9orf72 group.
Application of SuStaIn to each genetic group separately supports
this finding by demonstrating that the GRN mutation carriers are
best described as a single asymmetric frontal lobe subtype, the
MAPT mutation carriers are best described as a temporal lobe
subtype and the C9orf72 mutation carriers are best described as
two distinct disease subtypes: a frontotemporal lobe subtype and
a subcortical subtype. SuStaIn additionally finds a subsidiary
cluster in the MAPT group for which the progression pattern has
high uncertainty. This high uncertainty likely prevents the cluster
from being detected when applying SuStaIn to all mutation car-
riers in Fig. 2 as this small number of subjects can be sufficiently
modelled by the three alternative subtype progression patterns.
Supplementary Figure 13 shows that the subtype progression
patterns for each genetic group are in good agreement with those
found in the full set of all mutation carriers (Fig. 2a). Supple-
mentary Figure 14A shows that the four subtypes estimated in
Fig. 2a are reproducible under cross-validation, with a high
average similarity between cross-validation folds of >93% for each
subtype. Altogether these results provide strong validation of
SuStaIn’s ability to recover distinct subtypes and their progression
patterns from a heterogeneous data set, while simultaneously
disentangling the heterogeneity of the C9orf72 group into two
distinct subtypes.
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Fig. 1 Conceptual overview of SuStaIn. The Underlying model panel (a) considers a patient cohort to consist of an unknown set of disease subtypes. The
input data (Input data panel, b), which can be entirely cross-sectional, contains snapshots of biomarker measurements from each subject with unknown
subtype and unknown temporal stage. SuStaIn recovers the set of disease subtypes and their temporal progression (as shown in the Output panel,
c) via simultaneous clustering and disease progression modelling. Given a new snapshot, SuStaIn can estimate the probability the subject belongs to each
subtype and stage, by comparing the snapshot with the reconstruction (as shown in the Application panel, d). This figure depicts two hypothetical disease
subtypes, labelled I and II, and the biomarkers are regional brain volumes, but SuStaIn is readily applicable to any scalar disease biomarker and any number
of subtypes. The colour of each region indicates the amount of pathology in that region, ranging from white (no pathology) to red to magenta to blue
(maximum pathology)
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Conclusion
• Many open questions

– What data is sufficient? When is it theoretically possible to
disentangle subtype and stage?

– What are sample efficient learning algorithms, good 
architectures for multi-modal data, …?

• Next few years, there will be an explosion of patient 
data from genomics, proteomics, and metabolomics
– Will help differentiate subtypes where otherwise

impossible or very difficult
– Small sample sizes. Infrequent measurements. Modified by 

treatment. Confounded by comorbidities. Outcomes must
still be derived from clinical data.

– Incredible opportunity



Returning to “The Vision” from Lecture 
19…

The Vision 
(Isaac Kohane)

A 13 year old boy presented with a recurrence of abdominal pain, hourly diarrhea and 
blood per rectum. 

10 years earlier, he had been diagnosed with ulcerative colitis. At 3 years of age he was 
treated with a mild anti-inflammatory drug and had been doing very well until this most 
recent presentation. 

On this occasion, despite the use of the full armamentarium of therapies: antimetabolites, 
antibiotics, glucocorticoids, immunosuppressants, first and second generation 
monoclonal antibody-based therapies, he continued to have pain and bloody diarrhea and 
was scheduled to have his colon removed. This is often but not always curative but has 
its own risks and consequences. After the fact, he and his parents had their exomes 
sequenced, which revealed rare mutations affecting specific cytokines (inflammation 
mediators/signalling mechanisms). 

If we had plotted his position in PMMS by his proximity in clinical presentation at age 3, 
he would have been well within the cloud of points (each patient is a point in the above 
diagram) like the yellow point. If we had included the mutational profile of his cytokines he 
would have been identified as an outlier, like the green point. Also, if we had included his 
later course, where he was refractory to all therapies, he would have also been an outlier. 
But only if we had included the short duration (< 6 months) over which he was refractory 
because for a large minority of ulcerative colitis patients they become refractory to 
multiple medical treatments but of many years. 11

How do we 
achieve this for 
rare 
presentations 
and when we 
must learn from 
disparate, 
sparse, and 
messy data?


