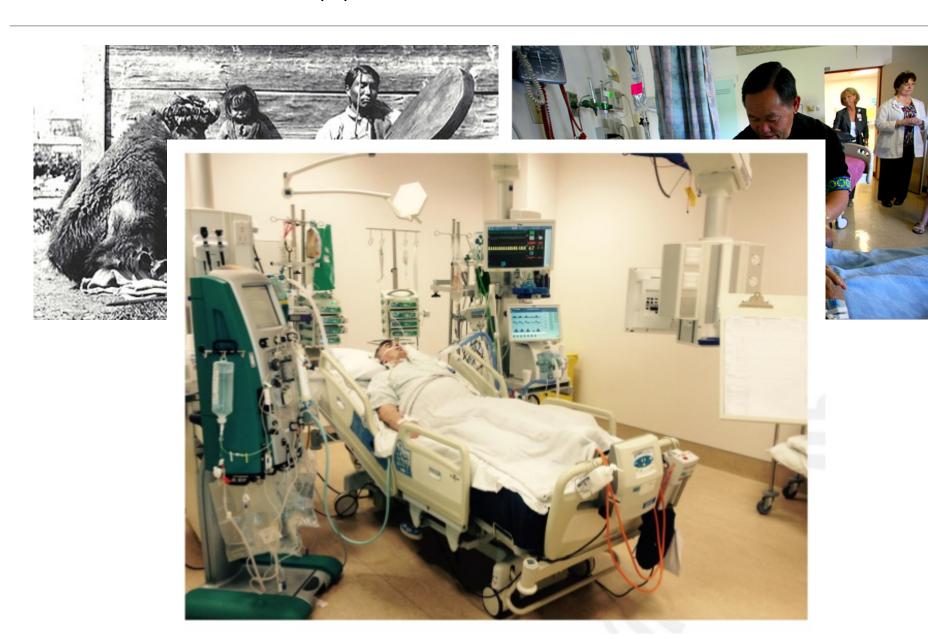


Overview of Clinical Care

6.871/HST.956 Machine Learning for Healthcare February 6, 2020

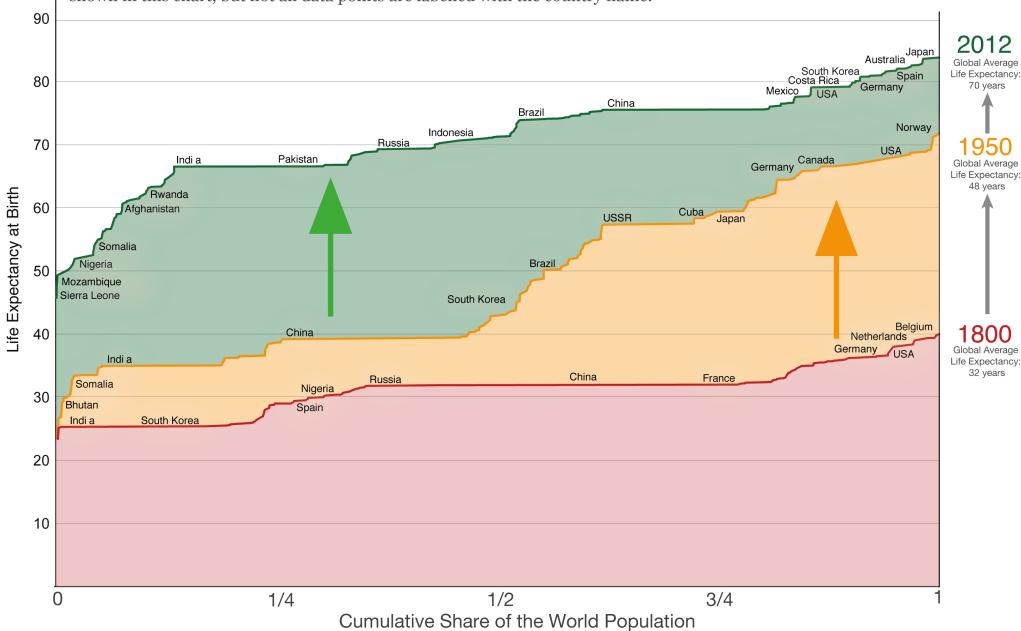
Peter Szolovits (psz@mit.edu)



Outline

- · Goals of Health Care
 - Mortality
 - Disability
 - Morbidity
- Tasks of Health Care
 - Diagnosis
 - Prognosis
 - Treatment
 - Prevention/Public Health
- Paying for Health Care

Goals of Medicine: (1) Cure the sick


WHO Constitution defines "health"

"a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity"

- Physical
- Mental
- Social
 - -very hard to measure

Life Expectancy of the World Population in 1800, 1950 and 2012 Countries are ordered along the x-axis ascending by the life expectancy of the population. Data for almost all countries is

shown in this chart, but not all data points are labelled with the country name.

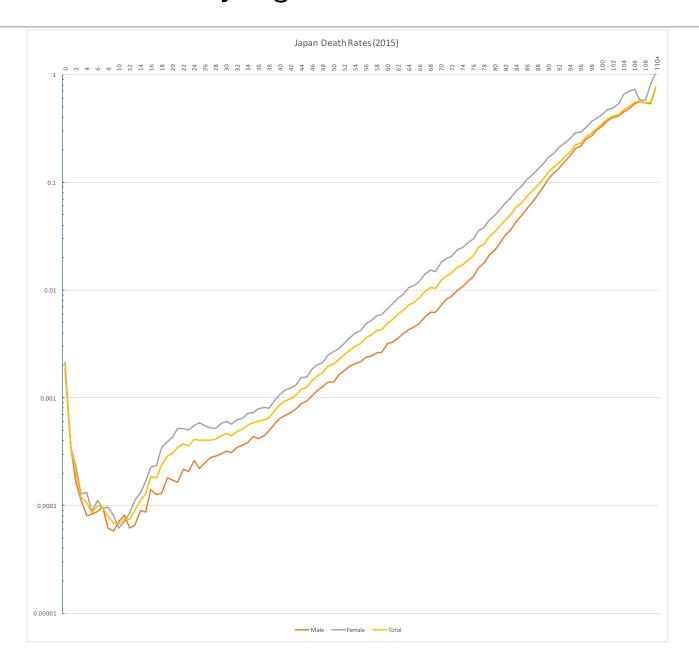
Data source: The data on life expectancy by country and population by country are taken from Gapminder.org.

Longevity at birth (CIA World Fact Book, 2001, 2018)

Country	Male		Female	
	2018	2001	2018	2001
Rwanda	62.6	38.35	66.5	39.65
South Africa	62.7	47.64	65.6	48.56
Kenya	63.1	46.57	66.1	48.44
Cambodia	62.7	54.62	67.9	59.12
Russia	65.6	62.12	77.3	72.83
Brazil	70.7	58.96	78.0	67.73
Turkey	72.9	68.89	77.7	73.71
Albania	76.0	69.01	81.6	74.87
Israel	80.8	76.69	84.7	80.84
USA	77.8	74.37	82.3	80.05
France	78.9	75.01	85.3	83.01
Japan	82.2	77.62	89.0	84.15

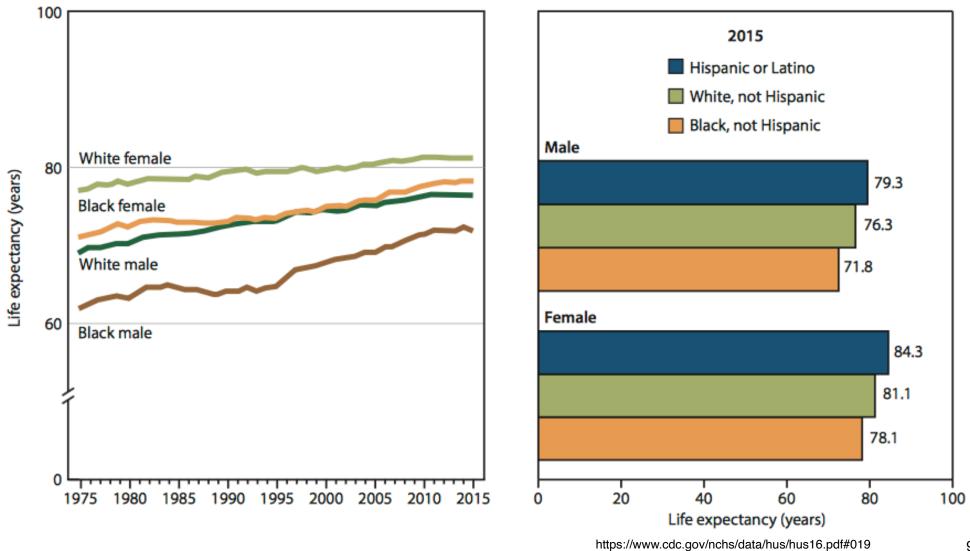
Share of persons surviving to successive ages for persons born 1851 to 2031, England and Wales Our World in Data

according to mortality rates experienced or projected, (on a cohort basis)



Data source: Office for National Statistics (ONS). Note: Life expectancy figures are not available for the UK before 1951; for long historic trends England and Wales data are used The interactive data visualization is available at OurWorldinData.org. There you find the raw data and more visualizations on this topic. Licensed under CC-BY-SA by the author Max Roser.

Distribution of Death Rates by Age


 Life table deaths by year (Japan, 2015)

http://www.ipss.go.jp/p-toukei/ JMD/00/STATS/Mx_1x1.txt

Ethnic Differences

Figure 6. Life expectancy at birth, by sex, race and Hispanic origin: United States, 1975-2015

Causes of death (USA, 2014)

Cause	Deaths/100K	%
Heart disease	192.7	23.4
Cancer	185.6	22.5
Chronic lower respiratory disease	46.1	5.6
Accidents	42.7	5.2
Stroke	41.7	5.1
Alzheimer's disease	29.3	3.6
Diabetes	24.0	2.9
Influenza and pneumonia	17.3	2.1
Kidney disease	15.1	1.8
Suicide	13.4	1.6
OTHER	215.8	26.2
TOTAL	823.7	100.0

Morbidity: Top 10 Chronic Conditions

Persons aged ≥ 65

Condition	Both	Male	Female
Arthritis	49.6	40.7	55.7
Hypertension	39.0	33.0	43.2
Hearing impairment	30.0	35.2	26.3
Heart disease	25.7	26.9	24.9
Orthostatic impairment	16.8	15.7	17.8
Cataracts	15.5	11.3	18.4
Chronic sinusitis	15.2	13.7	16.2
Visual impairment	10.1	12.0	8.8
Genitourinary	9.9	11.3	8.9
Diabetes	8.9	7.8	9.7

U.S. Nat'l Ctr Health Stat, Vital and Health Statistics, 1985 (1982 data)

Next 10 Chronic Conditions Persons aged ≥ 65

Condition	Both	Male	Female
Varicose veins	7.7	3.4	10.8
Hernia	7.6	9.1	6.5
Hemorrhoids	7.6	7.1	8.0
Psoriasis, dermatitis, dry skin	7.4	6.3	8.3
Hardening of arteries	7.4	7.3	7.4
Tinnitus	7.3	7.6	7.1
Corns, calluses & bunions	7.3	4.2	12.7
Constipation	6.5	4.4	8.0
Hay fever	6.4	6.4	6.5
Cerebrovascular	5.7	5.6	5.8

U.S. Nat'l Ctr Health Stat, Vital and Health Statistics, 1985 (1982 data)

Quality of life

Value of a total life depends on

- Length (assume now is N)
- Quality (q) over time
- Discounts (g) for future or past
 - depends very much on what the value is to be used for
 - what is an appropriate discount factor?

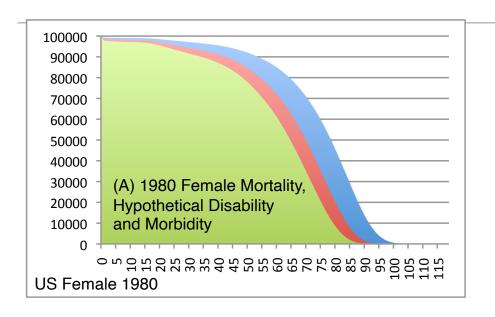
$$V_N = \int_{t=0}^{T} q(t)g(t-N)dt$$

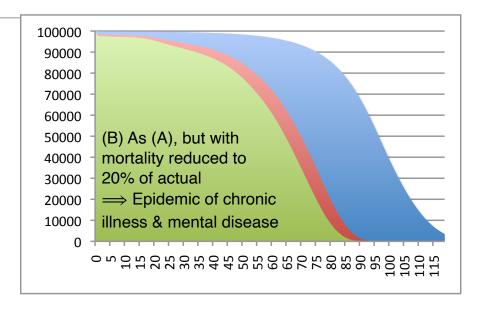
Activities of Daily Living

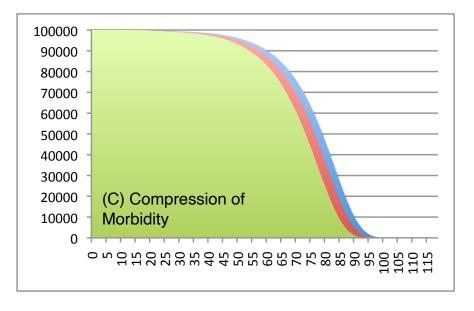
Basic

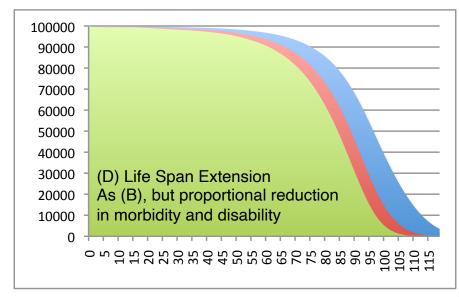
- Bathing and Showering
- Personal hygiene and grooming
 - brushing/combing/styling hair
- Dressing
- Toilet hygiene
- Functional mobility ("transferring")
 - · walk, get in and out of bed
 - get into and out of a chair
- Self-feeding (not including cooking or chewing and swallowing)

Instrumental


- Cleaning and maintaining the house
- Managing money
- Moving within the community
- Preparing meals
- Shopping for groceries and necessities
- Taking prescribed medications
- Using the telephone or other form of communication


Goals of "Occupational Therapy"


- Care of others (including selecting and supervising caregivers)
- Care of pets
- Child rearing
- Communication management
- Community mobility
- Financial management
- Health management and maintenance
- Home establishment and maintenance
- Meal preparation and cleanup
- Religious observances
- Safety procedures and emergency responses
- Shopping


Mortality Disability Morbidity

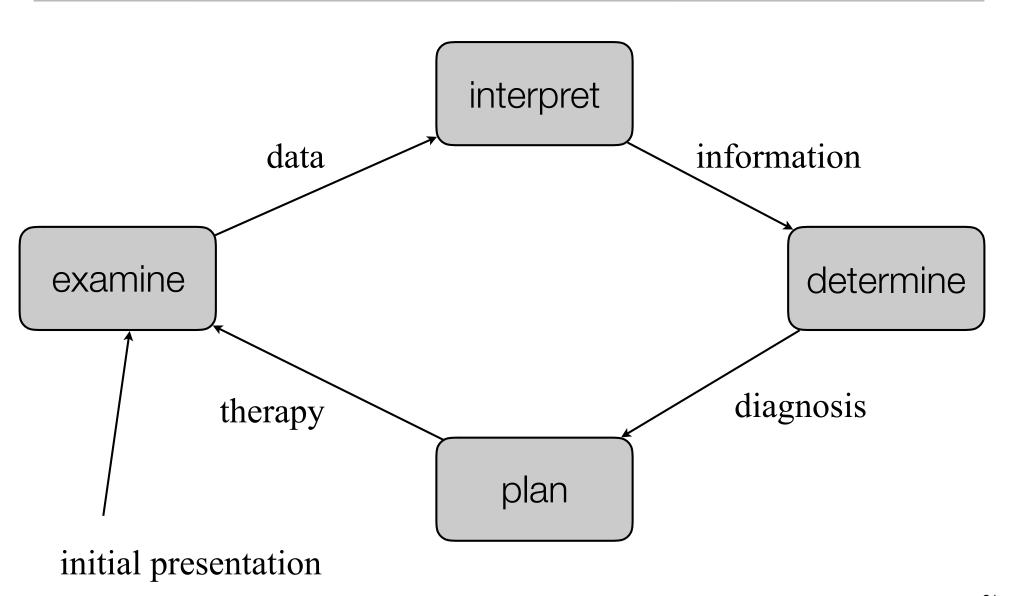
Mortality, Disability, Morbidity

Societal quality of life

- Aggregation of individual qualities
- + Equity (distributions)
- Is more better? (Population control)
- Is less better?
- How much to spend?

Time scale in medicine

- Cure—usually acute illness
- Manage—long-term, chronic illness
- Prevent
- Predict


Outline

- Goals of Health Care
 - Mortality
 - Disability
 - Morbidity
- · Tasks of Health Care
 - Diagnosis
 - Prognosis
 - Treatment
 - Prevention/Public Health
- Paying for Health Care

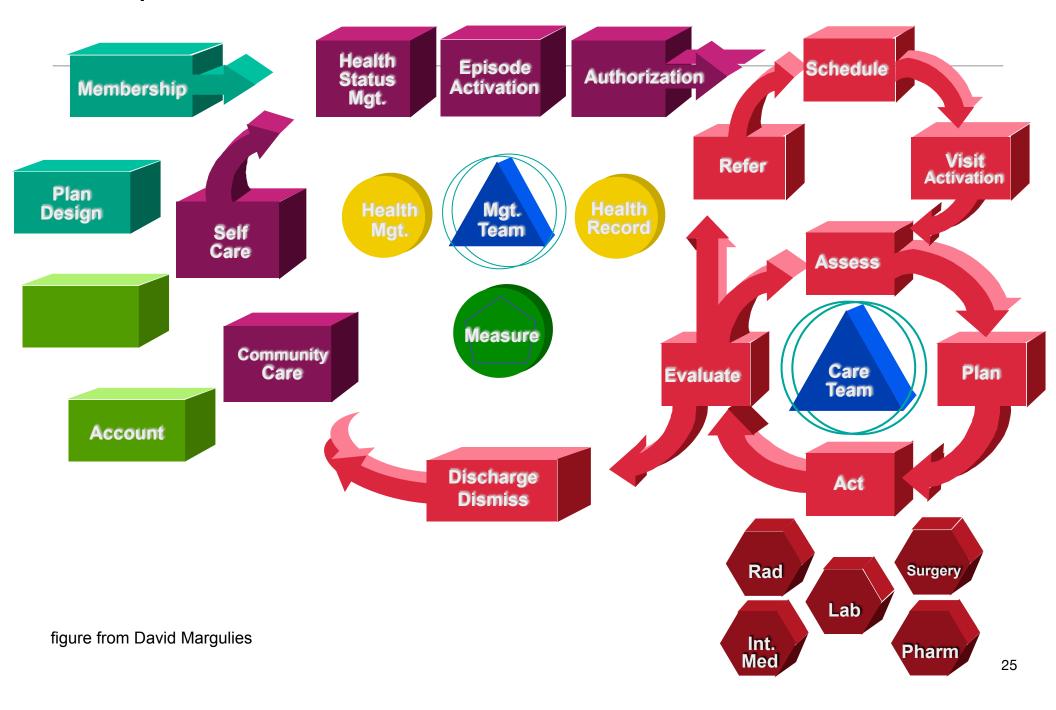
Traditional tasks of medicine

- Diagnosis
 - "the art or act of identifying a disease from its signs and symptoms"
- Prognosis
 - "the prospect of recovery as anticipated from the usual course of disease or peculiarities of the case"
- Therapy
 - "therapeutic medical treatment of impairment, injury, disease, or disorder"

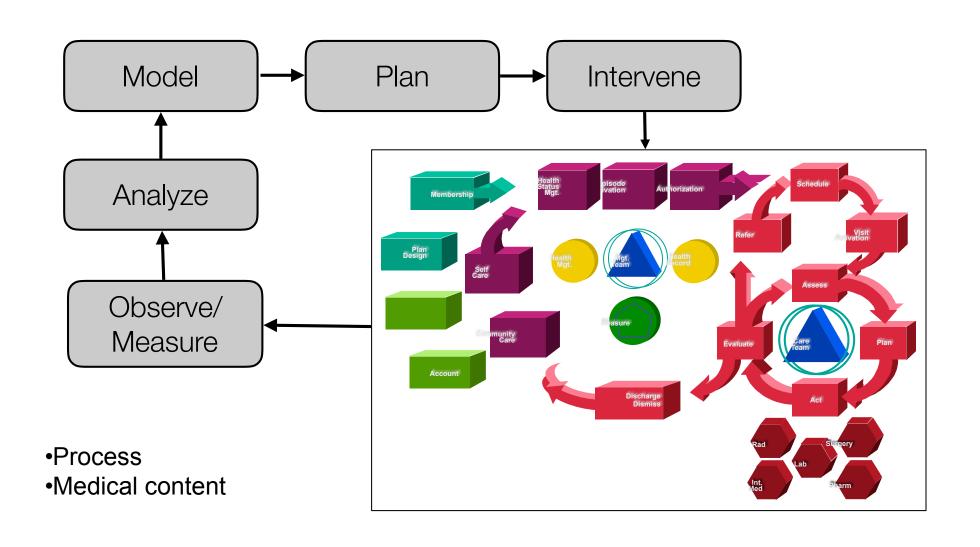
The Medical Cycle

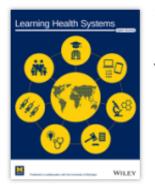
Care Processes

- Data:
 - observation, instrumentation, monitoring, telemetry, lab tests
- Information:
 - interpretation, filtering, sampling, smoothing, clustering
- Diagnosis:
 - inference, model-based reasoning, classification
- Prognosis:
 - prediction, natural course, experience
- Therapy:
 - planning, predicting effects, anticipating


Cognitive Theory of Diagnosis

- From initial complaints, guess suitable hypothesis
- Use current active hypotheses to guide questioning
- Failure to satisfy expectations is the strongest clue to a better hypothesis; differential diagnosis
- Hypotheses are activated, de-activated, confirmed or rejected based on
 - (1) logical criteria
 - (2) probabilities based on:
 - findings local to hypothesis
 - causal relations to other hypotheses (coherence)
- ≈ Scientific Method


Meta-level processes


- Acquisition and application of knowledge
- Education
- Quality control and process improvement
- Cost containment
- Reference (library)

Enterprise-level Clinical Process Automation...



The "Learning Health Care System"

Volume 1, Issue 1
January 2017

COMMENTARY

The science of Learning Health Systems: Foundations for a new journal

Charles P. Friedman¹ | Nancy J. Allee² | Brendan C. Delaney³ | Allen J. Flynn¹ | Jonathan C. Silverstein⁴ | Kevin Sullivan⁵ | Kathleen A. Young¹

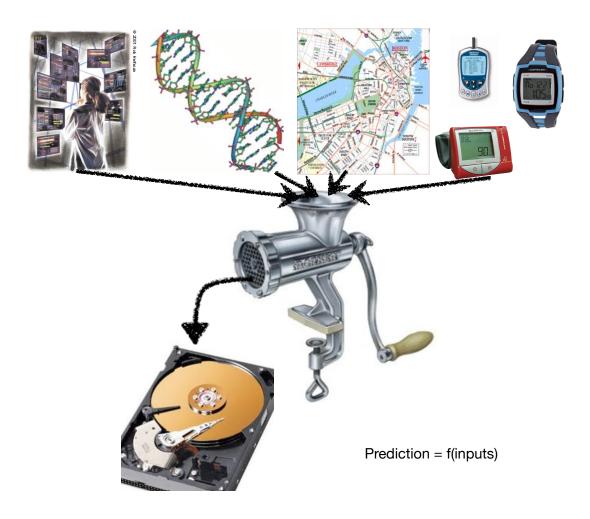
Department of Learning Health Sciences, Medical School, University of Michigan, Ann Arbor, Michigan

²Taubman Health Sciences Library, University Library and Department of Learning Health Sciences, Medical School, University of Michigan, Ann Arbor, Michigan

³ Medical Informatics and Decision Making, Imperial College, London, UK

⁴Medical Informatics, Tempus and Kanter Health Foundation, Chicago, Illinois

⁵ Department of Computer Science, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia


How Does the Health System Learn?

- "Evidence-Based Medicine"
 - Contrast with "Tradition-Based Medicine" Apprenticeship
- Randomized Controlled Clinical Trial (RCT)
 - E.g., is drug A more effective than drug B for condition X?
 - Narrow selection of patient cases and controls
 - Careful collection of systematically organized data
 - Statistical analysis of outcomes
 - => Statistically significant conclusions
- But:
 - Heterogeneity: Most cases to which RCT results are applied do not fit trial criteria
 - Short Follow-Up: Trials run for limited times, but use is longer
 - Small Samples: Some effects are rare but devastating

"The Learning Health Care System"

- "one in which progress in science, informatics, and care culture align to generate new knowledge as an ongoing, natural by-product of the care experience, and seamlessly refine and deliver best practices for continuous improvement in health and health care" —IOM
- Needs not currently met:
 - Comprehensive collation of all clinical, social, demographic, behavioral, ...
 data that are now captured in the health care system
 - Routine capture of novel data sources:
 - genomes, gene expression, etc.
 - environmental factors (e.g., metagenomics)
 - physiological response to life situations
 - (related to fitness and wellness)
 - Technical infrastructure
 - Storage and analysis of truly "big data"
 - Incentives and demonstrations of utility

Use All Possible Data

Goals of Medicine: (2) Keep people healthy

- Public Health
 - Tracking disease prevalence
 - Tracing infections
 - Quarantine

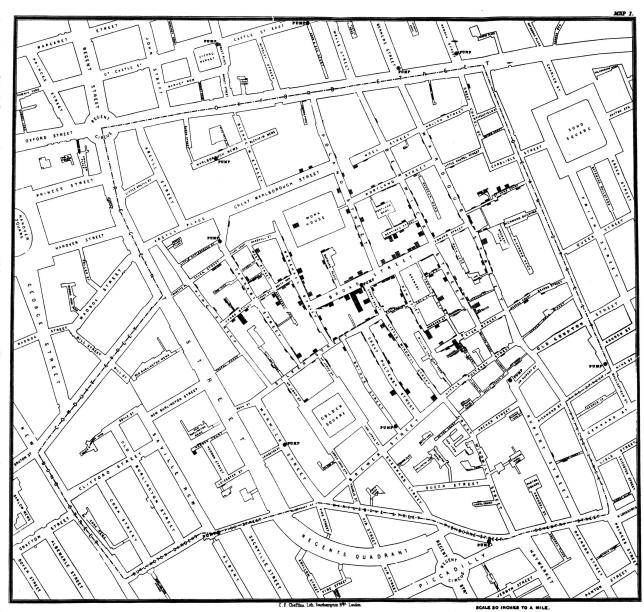
Tracking disease prevalence by systematic classification

- 17th century: John Graunt on the London Bills of Mortality estimated mortality before age 6 at 36%
- 18th century: Sauvage, Linnaeus, Cullen made first attempts at systemic classification
- 1853—first International Statistical Congress led to Wm. Farr's system:
 - · epidemic diseases
 - · constitutional (general) diseases
 - local diseases arranged according to anatomical site
 - developmental diseases
 - · diseases that are the direct result of violence

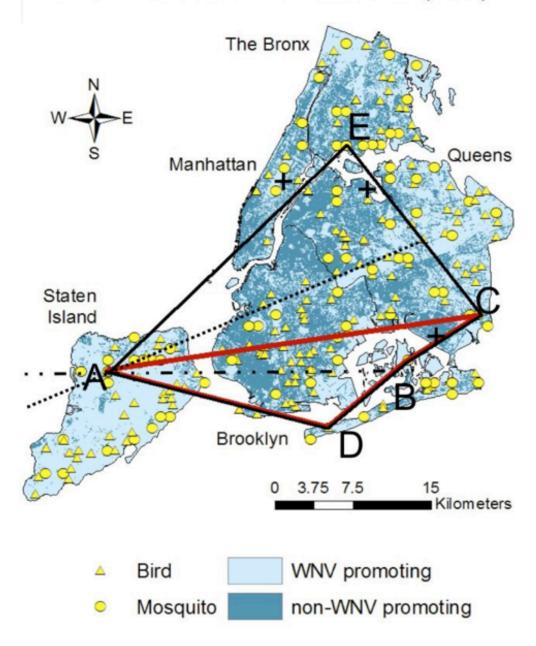
(Note: pre-Pasteur)

1890s—Bertillon (Paris) classification:
 161 titles, abstracted to 99, and 44

- 1920 International List of Causes of Death
- 1920s-40s—Manual of the International Statistical Classification of Diseases, Injuries, and Causes of Death
- 1975—ICD-9
- · 2015-ICD-10
- ICD-n are under control of the World Health Organization (WHO)
- ICD-9CM, ICD-10CM are US "Clinical Modifications", mainly to support billing


Centers for Disease Control and Prevention (CDC)

- Today, we collect death certificates that record direct & indirect causes of death
- Insurance payments are based on classifications of disease, severity, tests, intervention, ...


32. PART I. Enter the <u>chain or</u> respiratory arrest, or ventri necessary.	CAUSE OF DEATH (See instructions and examples) f eventsdiseases, injuries, or complicationsthat directly caused the death. DO NOT enter terminal events such as cardiac arrest, cular fibrillation without showing the etiology. DO NOT ABBREVIATE. Enter only one cause on a line. Add additional lines if	Approximate interval: Onset to death
IMMEDIATE CAUSE (Final disease or condition> resulting in death) Sequentially list conditions, if any, leading to the cause listed on line a. Enter the UNDERLYING CAUSE (disease or injury that initiated the events resulting in death) LAST	a. Cerebral hemorrhage b. Nephritis Due to (or as a consequence of): Cirrhosis of liver Due to (or as a consequence of): Due to (or as a consequence of):	1 month 6 months 2 years
PART II. Enter other significant	conditions contributing to death but not resulting in the underlying cause given in PART I. 33. WAS AN AUTOPSY PERFORM • • Yes • • No 34. WERE AUTOPSY FINDING	S AVAILABLE TO

Cholera, John Snow, and the Broad Street Pump (1854)

- "germ-contaminated water was the source of cholera"
- Localization via mapping
- Led to sanitation improvements
- Snow also used:
 - Double-blind experimental technique
 - Voronoi diagrams to outline neighborhoods closest to each pump

Locations of WNV detections in NYC (2003)

Quarantine

- Isolation separates sick people with a contagious disease from people who are not sick.
- Quarantine separates and restricts the movement of people who were exposed to a contagious disease to see if they become sick.
- Mostly used at ports of entry, but sometimes to try to prevent epidemics
 - Ellis Island
 - "Typhoid Mary"
 - AIDS
 - Ebola
 - Coronavirus (very current!)

authorities got their hands on her, wa of twenty-six cases of typhoid fever others. So far as is known, the we had the disease, and is not now sick of the call duct, there is a never fal typhoid fever germs. To the pos Board of Health Mary has been go typhoid becilli for seven years. This

and Dis

The Official I

others were attended by capable physicians at Oyster Bay. None of the subsequent cases apparently resulted from the first, although the interval from the first to the last might permit of this assumption. But whether the disease was transmitted from one person to another after the fret case occurred was not a matter of great consequence. The most important question was how the first case occurred.

Germ Source a Mystery.

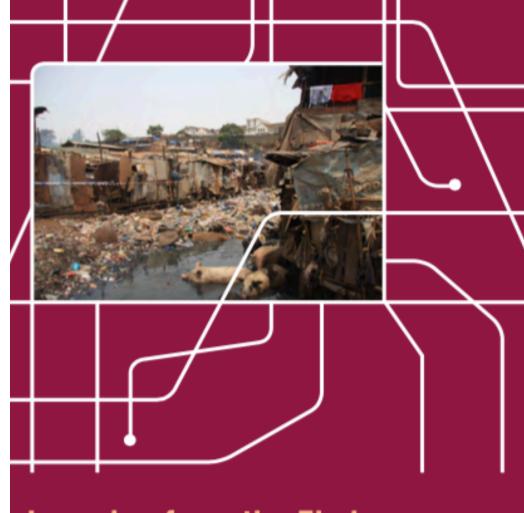
Typhoid fever is an unusual disease in Oypton Bay, according to the three physicians who share the medical practice there. At the time of the extbreak no other case was known. None fel-

The milk supply of this house was the same as used by most of the other persons in the village, all of whom remained well. The cream about was from a source which empolled several other families in the vicinity.

To the first investigators it seemed that the water must have been contaminated. They were

HELMS CALLS FOR AIDS QUARANTINE ON POSITIVE TESTS

By United Press International


CHICAGO TRIBUNE

JUNE 16, 1987 | WASHINGTON

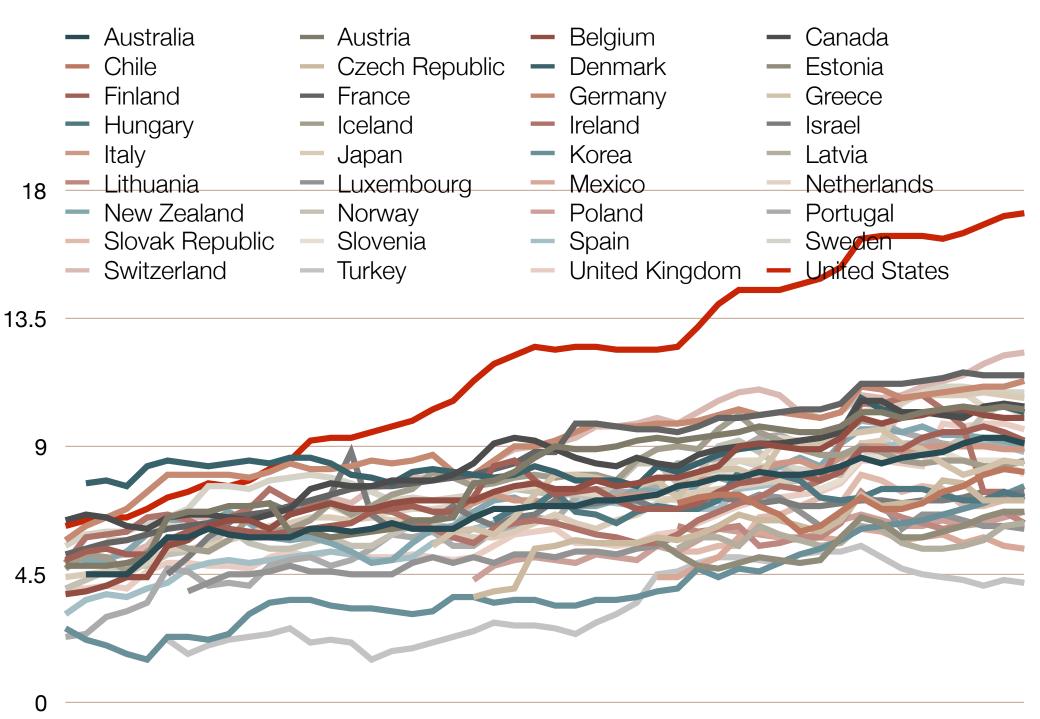
quarantine of people who test positive for AIDS infection is the way to halt the spread of the deadly disease, Sen. Jesse Helms (R., N.C) said Sunday. Helms appeared on the CBS "Face The Nation" program after Education Secretary William Bennett, who suggested that prison inmates infected with the AIDS virus should be kept in custody after serving their sentences if they threaten to spread the disease to the general population to take "revenge on society."

Quarantine

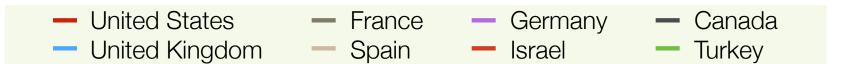
- Quarantine is a controversial and debated issue. ... significant risks related to human rights, creating fear and confusion...
- Quarantine should be used as a last resort
- Quarantines in urban areas are complicated by the size and density of their populations
- Highly mobile populations make managing and enforcing quarantine more complex
- Large-scale quarantines result in equally large waste disposal needs and other water, sanitation and hygiene vulnerabilities

Learning from the Ebola Response in cities

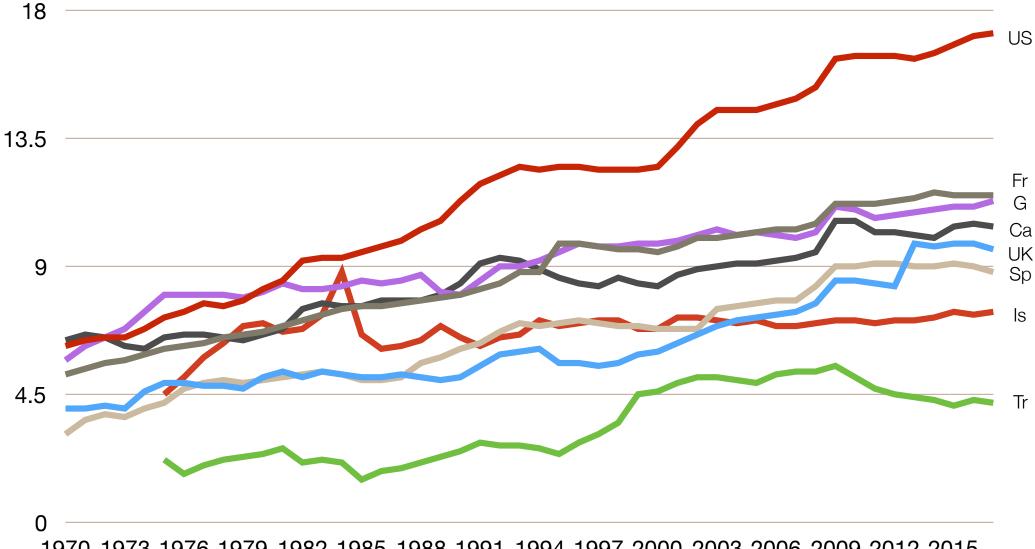
Responding in the context of quarantine



Outline

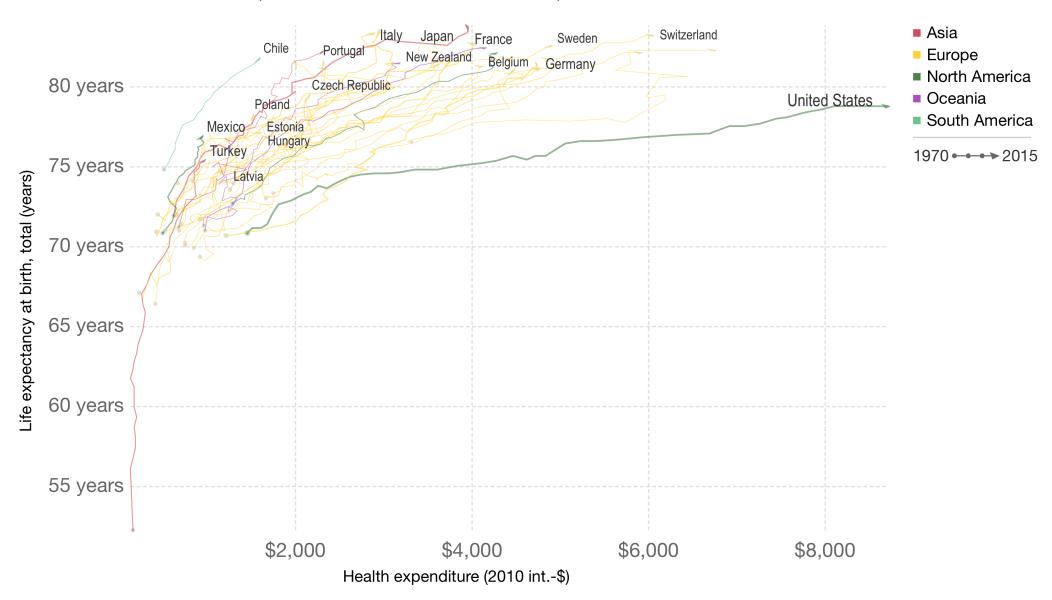

- Goals of Health Care
 - Mortality
 - Disability
 - Morbidity
- Tasks of Health Care
 - Diagnosis
 - Prognosis
 - Treatment
 - Prevention/Public Health
- Paying for Health Care

Paying for Health Care

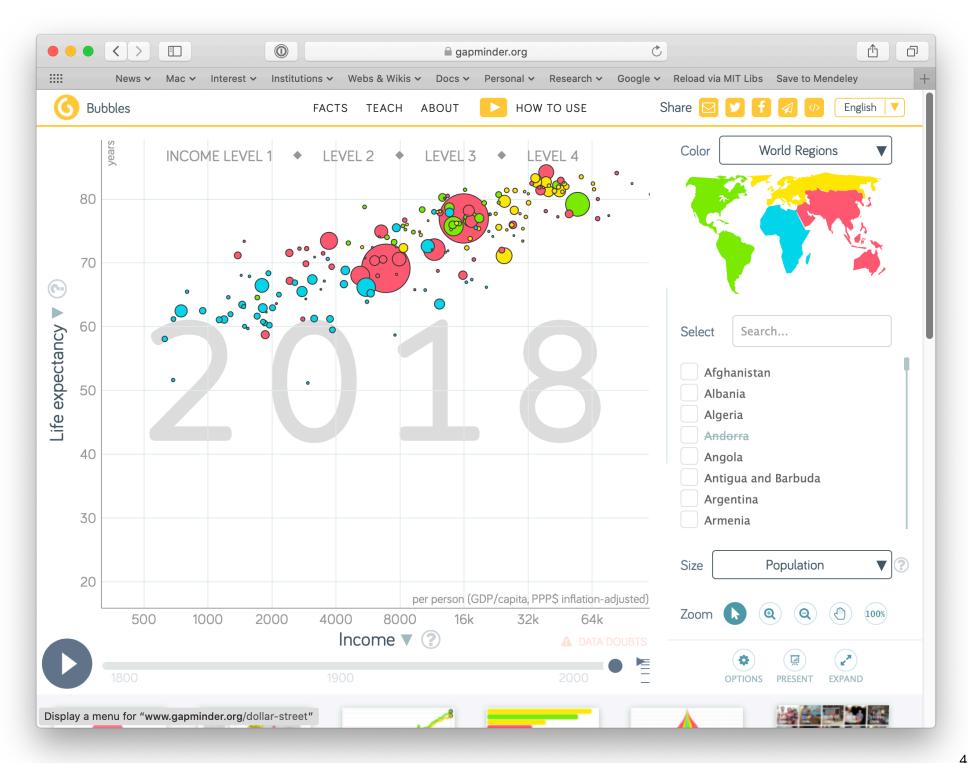

- More healthcare than steel in GM cars
- Increased demand
 - Much more possible
 - Better tests, therapies
 - High human motivation
- No pushback
- Waste
 - Unnecessary procedures
 - ½ of health expenses in last year of life
 - Marginally useful procedures
 - Defensive medicine
 - Bad Medicine
 - IOM: 48-98K "unnecessary" deaths/year

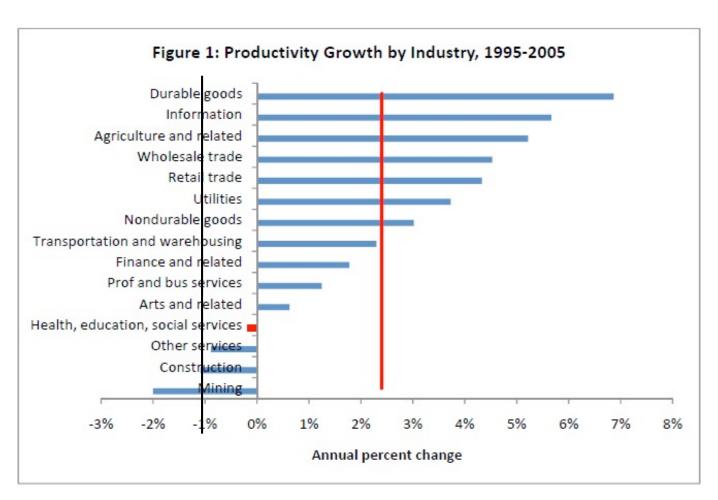
1970 1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 2015

1970–2017 % GDP spent on health care in various OECD countries



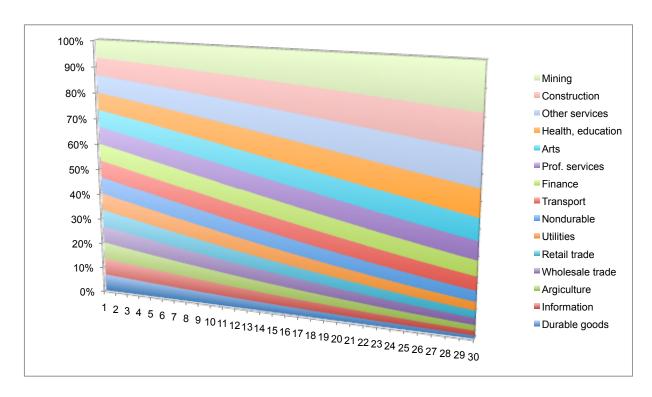
1970 1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 2015


Life expectancy vs. health expenditure, 1970 to 2015


Health financing is reported as the annual per capita health expenditure and is adjusted for inflation and price level differences between countries (measured in 2010 international dollars).

Source: World Bank – WDI, Health Expenditure and Financing - OECDstat (2017) OurWorldInData.org/the-link-between-life-expectancy-and-health-spending-us-focus • CC BY-SA

Standing Still is Not Good Enough



Chris Dede, Harvard Ed

http://theincidentaleconomist.com/wordpress/the-health-care-productivity-problem/

Less Efficient Sectors Come to Dominate

 Hypothetical sector growth over 30 years, assuming constant demand for each sector

Hypothetical sector growth over 30 years, assuming constant demand for each sector. Productivity rates from OECD 2009.

Controlling Healthcare Costs

- Who pays?
 - You
 - Employer, School, Union, ...
 - Government: Medicare & Medicaid (~50%)
- How to reduce costs
 - Eliminate bureaucracy (~15%)
 - Eliminate unnecessary procedures
 - E.g., lower back surgery, drugs for ear infections, frequent mammography
 - Half of lifetime healthcare expenses in last year of life
 - Cost-benefit analysis: e.g., Oregon
 - but ... "death panels"?
 - † co-pays to make patients shop for lower prices
 - Keep people healthy
 - Health Maintenance Organizations (HMOs) combine care + insurance

How is care managed?

- Active case management:
 - Preadmission review
 - Continued-stay review
 - Second surgical opinion
- Selective case management—high-cost cohorts
 - Post-care management
- Institutional
 - Capitation
 - Institutional arrangements (referrals, hospitals, pharmacies, ...)
 - Control "leakage"

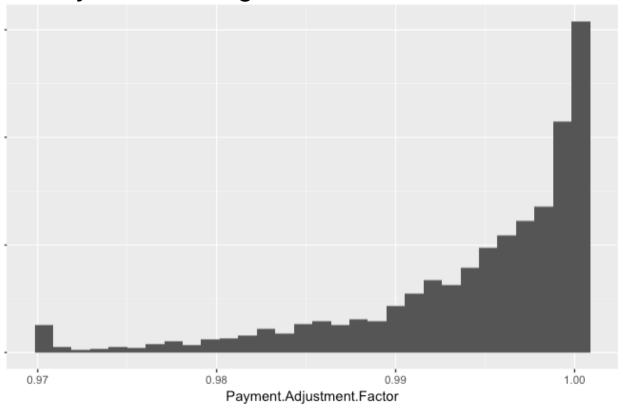
Managed Care Scorecard

- "U.M. has helped to reduce inpatient hospital use and to limit inpatient costs..."
- "The impact of U.M. on net benefit costs is less clear. Savings on inpatient care have been partially offset by increased spending for outpatient care and program administration."
- "U.M. ... does not appear to have altered the long-term rate of increase in health care costs."
- "Decisions that were once the exclusive province of the doctor and patient now may be examined in advance by an external reviewer someone accountable to an employer, insurer, health maintenance organization (HMO), or other entity responsible for all or most of the cost of care. Depending upon the circumstances, this outside party may be involved in discussions about where care will occur, how treatment will be provided, and even whether some treatments are appropriate at all."

Managed Care Opposition

"In those days there was no bureaucratic regimentation, there were few forms to fill out, malpractice premiums were affordable, and the overhead costs of running a practice were reasonable. Our bills were simple, spelled out so anybody could understand them without the use of codes. Patients usually paid their own bills, promptly too, for which an ordinary receipt was given. Hospital charges were set by the day, not by the aspirin. Medical care was affordable to the average person with rates set by the laws of the marketplace, and care was made available to all who requested it regardless of ability to pay. Doctors were well respected; rarely were we denigrated by a hostile press for political reasons. Yes, in the days before government intervention into the practice of medicine, doctor's fees were low, but the rewards were rich; those were truly the 'golden years' for medicine."

Edward Annis, past President of AMA *Code Blue*, 1993


ObamaCare

- Universal coverage: everyone must get insurance
 - Employer
 - Insurance collaborative
 - Government (?) rejected
- Insurance companies cannot deny insurance, cancel coverage, impose reimbursement limits based on illness, past or present
- Government assistance to poor people, small companies
- Health Information Technology (HIT) to smooth info flow
- Cost savings from avoiding billing disputes, ceasing to reimburse only procedures, evidence-based medicine
- Accountable Care Organizations

Hospital Readmissions Reduction Program

Excess readmission: within 30 days of discharge

- CMS uses excess readmission ratios (ERR) for:
 - Acute Myocardial Infarction (AMI)
 - Chronic Obstructive Pulmonary Disease (COPD)
 - Heart Failure (HF)
 - Pneumonia
 - Coronary Artery Bypass Graft (CABG) Surgery
 - Elective Primary Total Hip Arthroplasty and/or Total Knee Arthroplasty (THA/TKA)

Quality Improvement

- IOM Study: 96,000 US deaths/year from medical error (perhaps half preventable?)
- Information intervention at the point of decision making can improve decisions
- DPOE: Direct Physician Order Entry allows such intervention
- Leapfrog Group: Large employers (\$\$\$) require DPOE from providers
- Patient Involvement: Indivo Health, Google Health, Microsoft Healthvault
 - So far, all commercial failures

Implications of Health Care Organization for Informatics

- Money determines much
 - Historically, medicine spends 1-2% on IT, vs. 6-7% for business overall, vs. 10-12% for banking
 - "Bottom line" rules, therefore emphasis on
 - Billing
 - Cost control
 - Quality control, especially if demonstrable cost savings
 - Retention and satisfaction (maybe)
 - Management by accountants
 - Slowly changing

Quo Vadis?

- Anticipated improvements in health care should give us better information
 - Genomic medicine
 - Genome, transcriptome, proteome, epigenome, metabolome, meta genome,
 ...
 - Improved instrumentation, e.g.,
 - non-invasive examination of the body: ultrasound, MRI, CT, swallowable capsules, ...
 - continuous recording: MEMS implantable devices, ...
- Improved methods of data analysis, causal discovery, biology research, ... should give us better understanding
- New interventions can improve therapy
 - Gene editing: CRISPR-CAS9, ...
 - Targeted delivery of drugs to specific tissues

"Oh, the future's so bright, we'll have to wear sunglasses!"

-- Barbara Kooyman, Timbuk 3 -- with thanks to Phil Greenspun

https://hst.mit.edu/academic-programs/ graduate-education-medical-sciences-gemscertificate-program