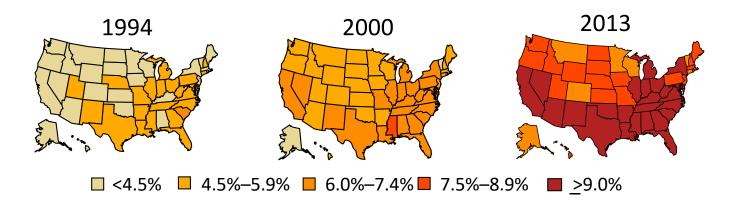
Machine Learning for Healthcare 6.871, HST.956

Lecture 14: Causal Inference Part 1

David Sontag

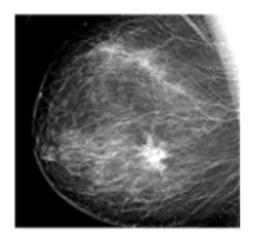
Does gastric bypass surgery prevent onset of diabetes?



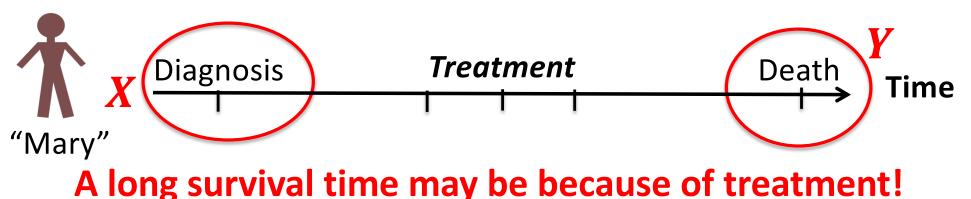
- In Lecture 4 & PS2 we used machine learning for early detection of Type 2 diabetes
- Health system doesn't want to know how to predict diabetes – they want to know how to prevent it
- Gastric bypass surgery is the highest negative weight (9th most predictive feature)

– Does this mean it would be a good intervention?

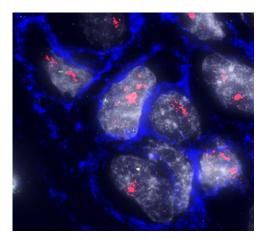
What is the likelihood this patient, with breast cancer, will survive 5 years?



- Such predictive models widely used to stage patients. Should we initiate treatment? How aggressive?
- What could go wrong if we trained to predict survival, and then used to guide patient care?

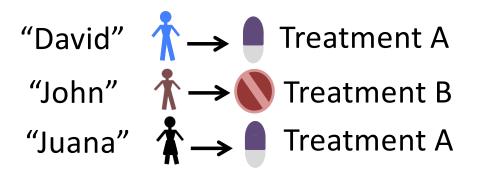


What treatment should we give this patient?



Expansion pathology (image from Andy Beck)

- People respond differently to treatment
- Goal: use data from other patients and their journeys to guide future treatment decisions
- What could go wrong if we trained to predict (past) treatment decisions?

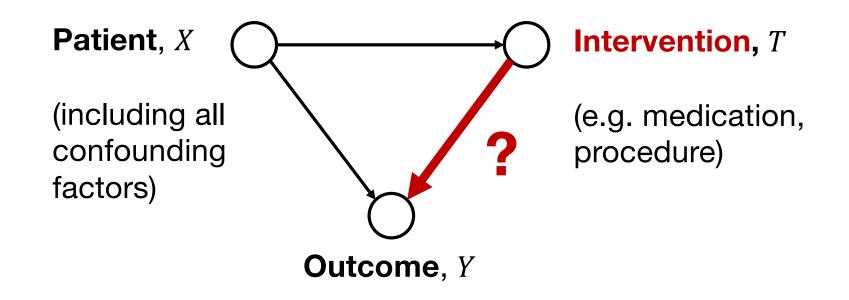


Best this can do is match current medical practice!

Does smoking cause lung cancer?

- Doing a randomized control trial is unethical
- Could we simply answer this question by comparing Pr(lung cancer | smoker) vs Pr(lung cancer | nonsmoker)?
- No! Answering such questions from observational data is difficult because of *confounding*

To properly answer, need to formulate as *causal* questions:



High dimensional

Observational data

Potential Outcomes Framework (Rubin-Neyman Causal Model)

- Each unit (individual) x_i has two potential outcomes:
 - $Y_0(x_i)$ is the potential outcome had the unit not been treated: "control outcome"
 - $Y_1(x_i)$ is the potential outcome had the unit been treated: "treated outcome"
- Conditional average treatment effect for unit *i*: $CATE(x_i) = \mathbb{E}_{Y_1 \sim p(Y_1|x_i)} [Y_1|x_i] - \mathbb{E}_{Y_0 \sim p(Y_0|x_i)} [Y_0|x_i]$
- Average Treatment Effect:

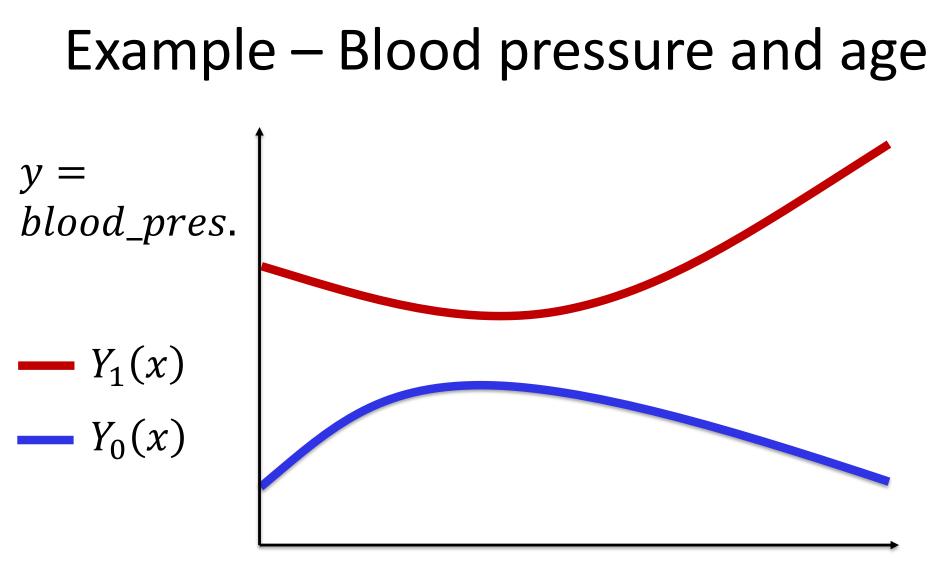
 $ATE := \mathbb{E}[Y_1 - Y_0] = \mathbb{E}_{x \sim p(x)}[CATE(x)]$

Potential Outcomes Framework (Rubin-Neyman Causal Model)

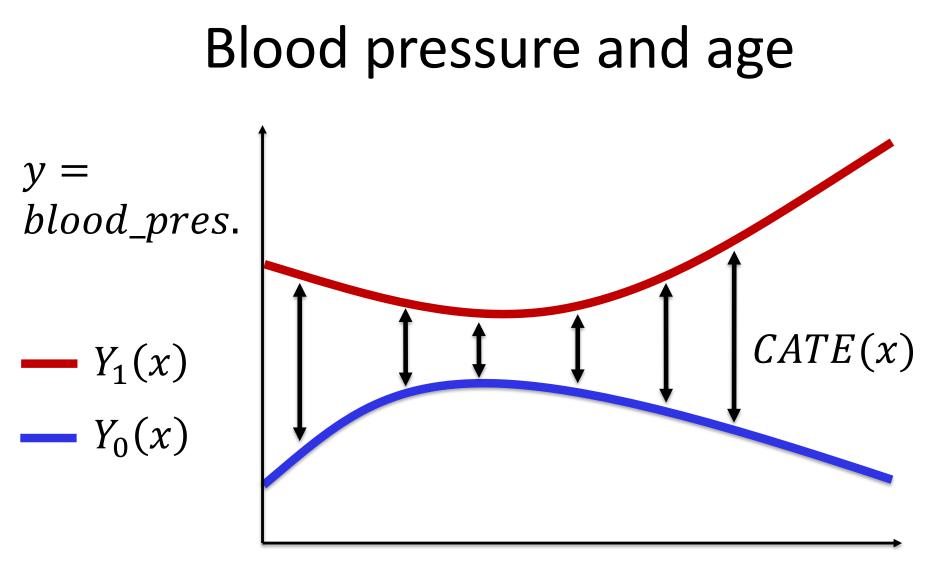
- Each unit (individual) x_i has two potential outcomes:
 - $Y_0(x_i)$ is the potential outcome had the unit not been treated: "control outcome"
 - $Y_1(x_i)$ is the potential outcome had the unit been treated: "treated outcome"
- Observed factual outcome: $y_i = t_i Y_1(x_i) + (1 - t_i) Y_0(x_i)$
- Unobserved counterfactual outcome: $y_i^{CF} = (1 - t_i)Y_1(x_i) + t_iY_0(x_i)$

"The fundamental problem of causal inference"

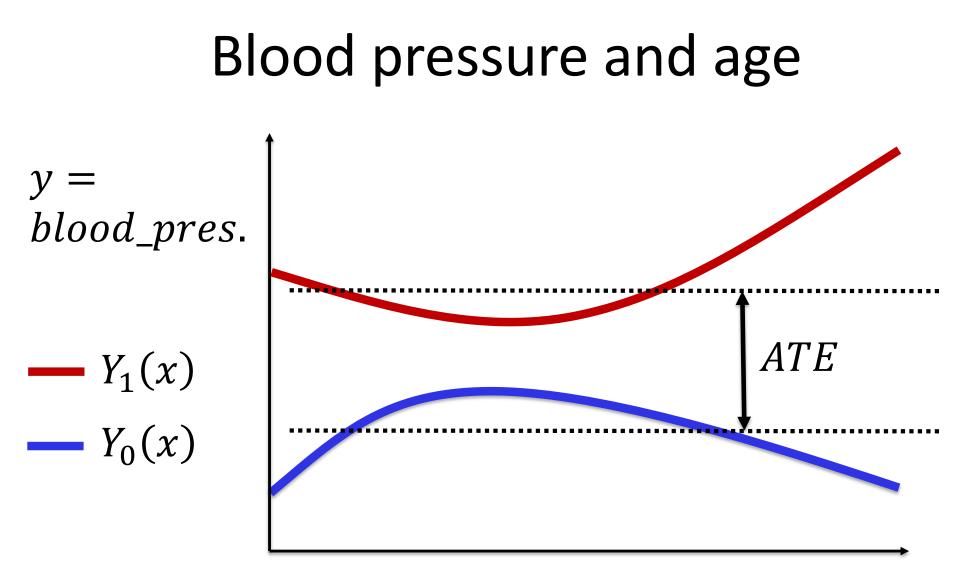
We only ever observe one of the two outcomes



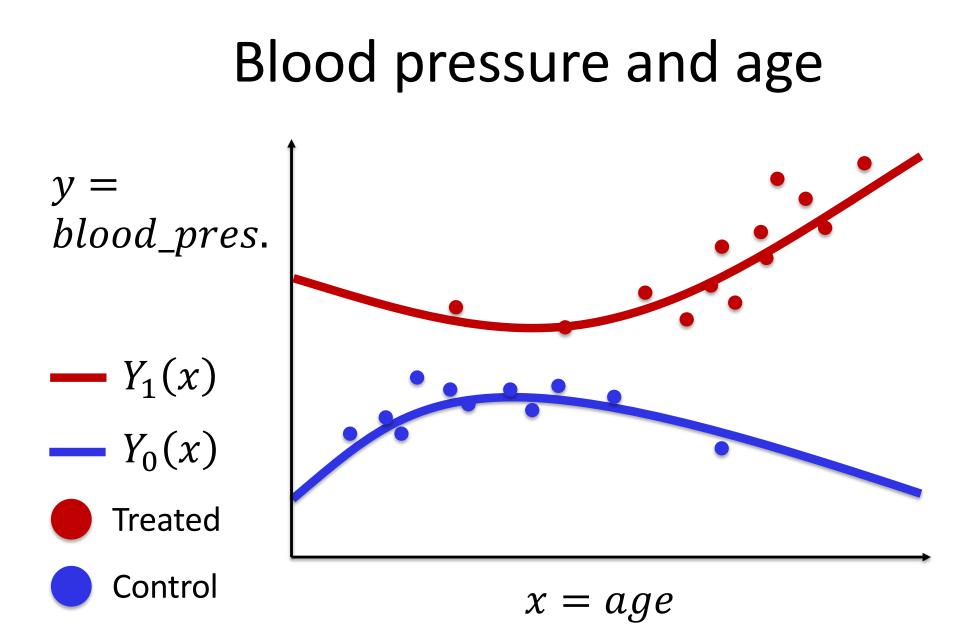
x = age

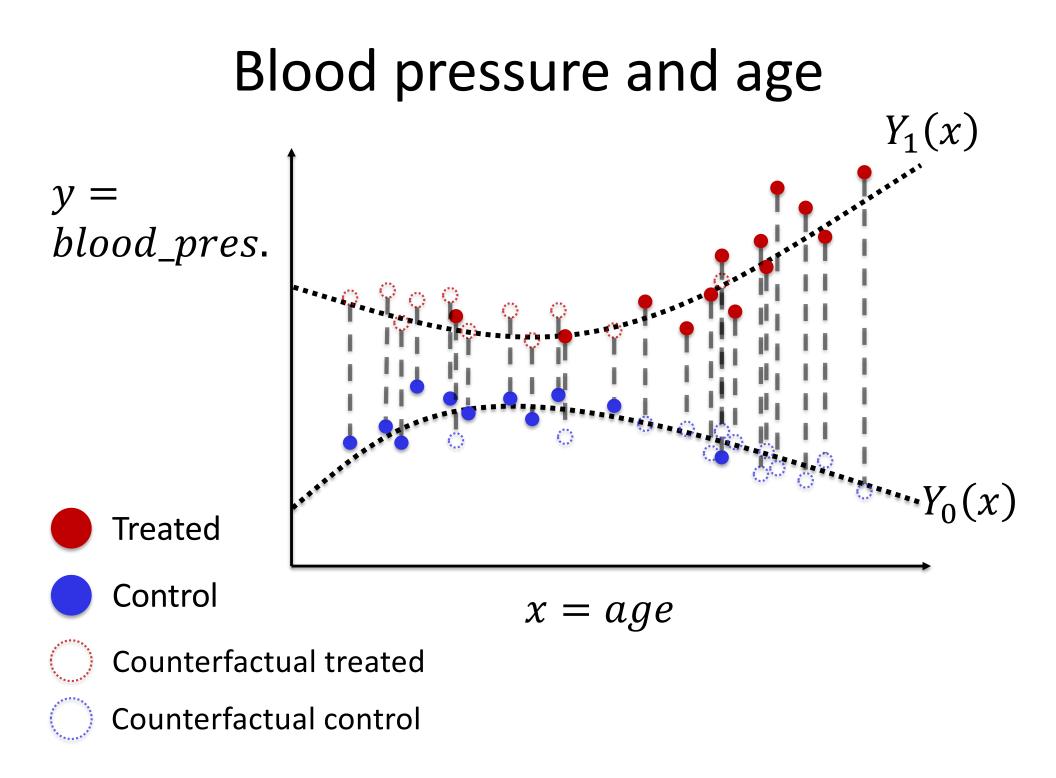


x = age



x = age





(age, gender, exercise,treatment)		Observed sugar levels
(45, F, O, <mark>A</mark>)		6
(45, F, 1, B)		6.5
(55, M, 0, <mark>A</mark>)		7
(55, M, 1, <mark>B</mark>)		8
(65, F, O, <mark>B</mark>)		8
(65,F, 1, <mark>A</mark>)		7.5
(75,M, 0, <mark>B</mark>)		9
(75,M, 1, <mark>A</mark>)		8

(age, gender, exercise)	Observed sugar levels
(45, F, 0)	6
(45, F, 1)	6.5
(55, M, 0)	7
(55, M, 1)	8
(65, F, 0)	8
(65,F, 1)	7.5
(75,M, 0)	9
(75,M, 1)	8

(age, gender, exercise)	Y ₀ : Sugar levels had they received	Y ₁ : Sugar levels had they received	Observed sugar levels
	medication A	medication B	
(45, F, 0)	6	5.5	6
(45, F, 1)	7	6.5	6.5
(55, M, 0)	7	6	7
(55, M, 1)	9	8	8
(65, F, 0)	8.5	8	8
(65,F, 1)	7.5	7	7.5
(75,M, 0)	10	9	9
(75,M, 1)	8	7	8

(age,gender, exercise)	Sugar levels had they received medication A	Sugar levels had they received medication B	Observed sugar levels	r
(45, F, 0)	6	5.5	6	m r
(45, F, 1)	7	6.5	6.5	!
(55, M, 0)	7	6	7	
(55, M, 1)	9	8	8	n
(65, F, 0)	8.5	8	8	n n
(65,F, 1)	7.5	7	7.5	,, ,
(75,M, 0)	10	9	9	·
(75,M, 1)	8	7	8	

mean(sugar|medication B) mean(sugar|medicaton A) =

mean(sugar|had they received B) mean(sugar|had they received A) =

(age,gender, exercise)	Sugar levels had they received medication A	Sugar levels had they received medication B	Observed sugar levels	
(45, F, 0)	6	5.5	6	
(45, F, 1)	7	6.5	6.5	
(55, M, 0)	7	6	7	
(55, M, 1)	9	8	8	
(65, F, 0)	8.5	8	8	
(65,F, 1)	7.5	7	7.5	ŀ
(75,M, 0)	10	9	9	
(75,M, 1)	8	7	8	

mean(sugar|medication B) – mean(sugar|medicaton A) = 7.875 - 7.125 = 0.75

mean(sugar|*had they received* B) – mean(sugar|*had they received* A) = 7.125 - 7.875 = -0.75

Typical assumption – no unmeasured confounders

- Y₀, Y₁: potential outcomes for control and treatedx: unit covariates (features)
- T: treatment assignment

We assume:

$(Y_0, Y_1) \perp T \mid x$

The potential outcomes are independent of treatment assignment, conditioned on covariates *x*

Typical assumption – no unmeasured confounders

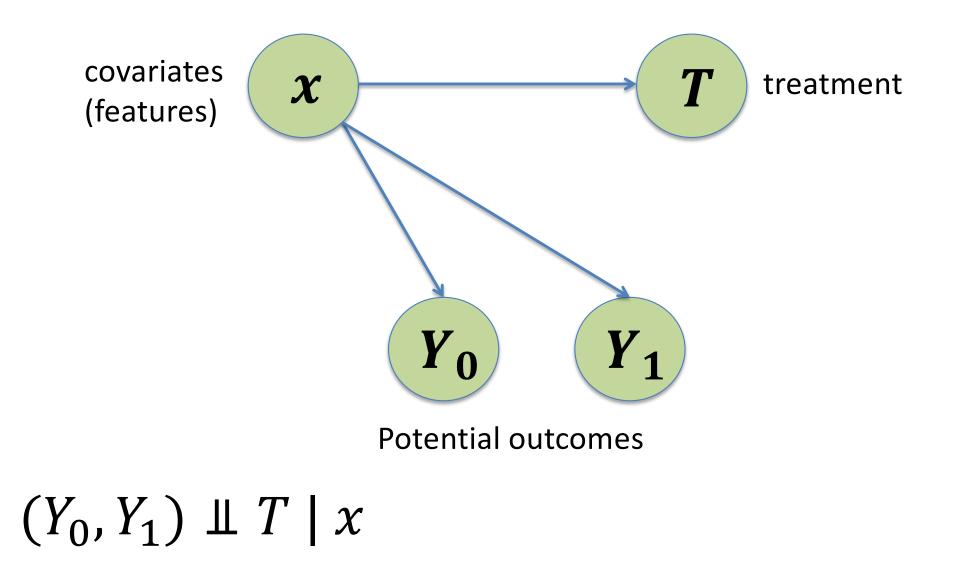
- Y₀, Y₁: potential outcomes for control and treatedx: unit covariates (features)
- T: treatment assignment

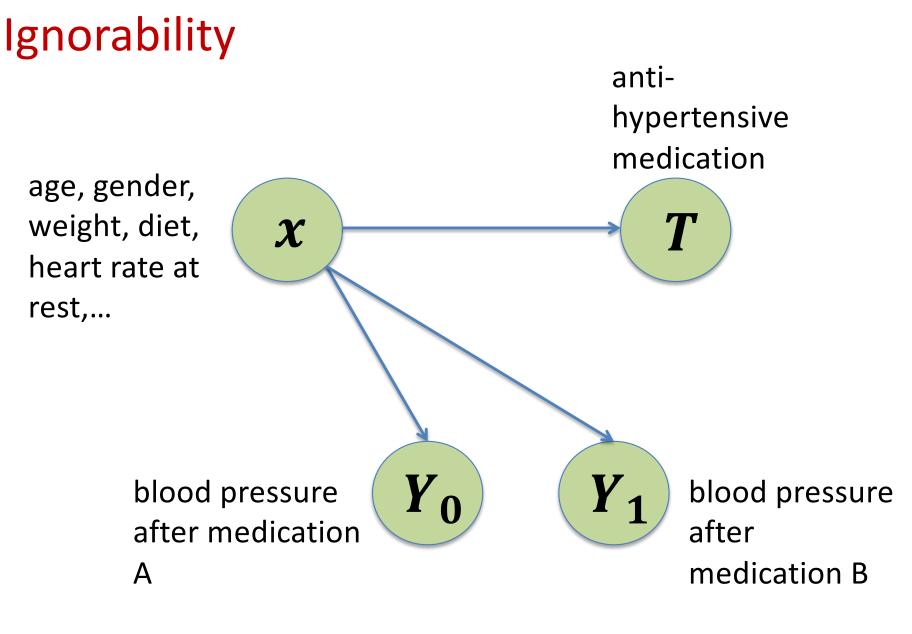
We assume:

 $(Y_0, Y_1) \perp T \mid x$

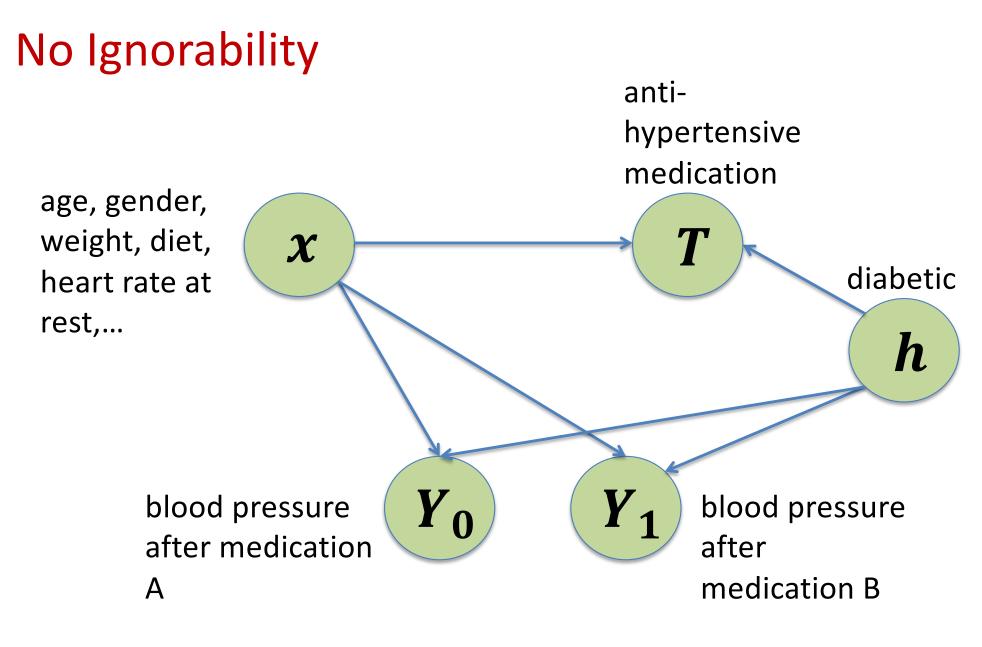
Ignorability

Ignorability





 $(Y_0, Y_1) \perp T \mid x$



 $(Y_0, Y_1) \not\bowtie T \mid x$

Typical assumption – common support

 Y_0, Y_1 : potential outcomes for control and treated x: unit covariates (features)

T: treatment assignment

We assume:

$$p(T = t | X = x) > 0 \forall t, x$$

Framing the question

- 1. Where could we go to for data to answer these questions?
- 2. What should **X**, T, and Y be to satisfy ignorability?
- 3. What is the specific causal inference question that we are interested in?
- 4. Are you worried about common support?

Outline for lecture

- How to recognize a causal inference problem
- Potential outcomes framework
 - Average treatment effect (ATE)
 - Conditional average treatment effect (CATE)
- Algorithms for estimating ATE and CATE

The expected causal effect of T on Y: $ATE := \mathbb{E}[Y_1 - Y_0]$ Average Treatment Effect – the adjustment formula

- Assuming ignorability, we will derive the adjustment formula (Hernán & Robins 2010, Pearl 2009)
- The adjustment formula is extremely useful in causal inference
- Also called *G-formula*

The expected causal effect of T on Y: $ATE := \mathbb{E}[Y_1 - Y_0]$

The expected causal effect of T on Y: $ATE := \mathbb{E} [Y_1 - Y_0]$ $\mathbb{E} [Y_1] =$ $\mathbb{E} [Y_1] =$ $\mathbb{E}_{x \sim p(x)} [\mathbb{E}_{Y_1 \sim p(Y_1|x)} [Y_1|x]] =$

The expected causal effect of T on Y: $ATE := \mathbb{E}[Y_1 - Y_0]$

$$\begin{split} \mathbb{E}\left[Y_{1}\right] &= \qquad \text{ignorability} \\ \mathbb{E}_{x \sim p(x)}\left[\mathbb{E}_{Y_{1} \sim p(Y_{1}|x)}\left[Y_{1}|x\right]\right] &= \qquad (Y_{0}, Y_{1}) \perp T \mid x \\ \mathbb{E}_{x \sim p(x)}\left[\mathbb{E}_{Y_{1} \sim p(Y_{1}|x)}\left[Y_{1}|x, T=1\right]\right] &= \end{split}$$

The expected causal effect of T on Y: $ATE := \mathbb{E}\left[Y_1 - Y_0\right]$ $\mathbb{E}\left[Y_{1}\right] =$ $\mathbb{E}_{x \sim p(x)} \left| \mathbb{E}_{Y_1 \sim p(Y_1|x)} \left[Y_1 | x \right] \right| =$ $\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{Y_1 \sim p(Y_1|x)} \left[Y_1 | x, T = 1 \right] \right] =$ $\mathbb{E}_{x \sim p(x)} \left[\mathbb{E} \left[Y_1 | x, T = 1 \right] \right]$ shorter notation

The expected causal effect of T on Y: $ATE := \mathbb{E}[Y_1 - Y_0]$

 $\mathbb{E}[Y_0] = \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{Y_0 \sim p(Y_0|x)} \left[Y_0 | x \right] \right] = \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{Y_0 \sim p(Y_0|x)} \left[Y_0 | x, T=0 \right] \right] = \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}\left[Y_0 | x, T=0 \right] \right]$

The adjustment formula

Under the assumption of ignorability, we have that:

 $\begin{aligned} ATE &= \mathbb{E} \left[Y_1 - Y_0 \right] = \\ \mathbb{E}_{x \sim p(x)} \left[\mathbb{E} \left[Y_1 | x, T = 1 \right] - \mathbb{E} \left[Y_0 | x, T = 0 \right] \right] \\ \mathbb{E} \left[Y_1 | x, T = 1 \right] \\ \mathbb{E} \left[Y_0 | x, T = 0 \right] \end{aligned} \end{aligned}$ Quantities we can estimate from data

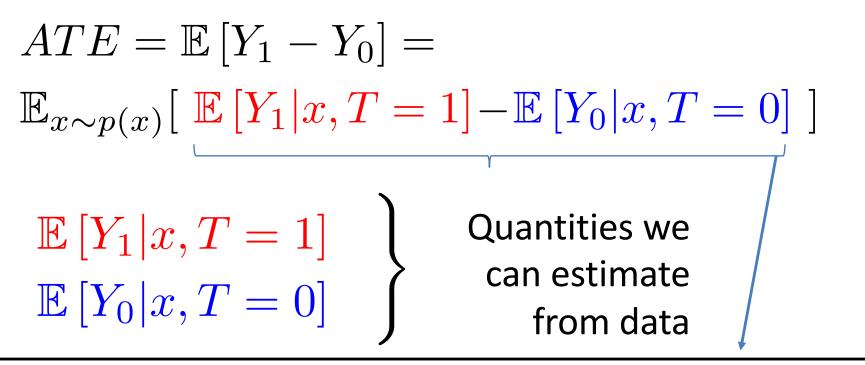
The adjustment formula

Under the assumption of ignorability, we have that:

 $ATE = \mathbb{E}\left[Y_1 - Y_0\right] =$ $\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}\left[Y_1 | x, T = 1\right] - \mathbb{E}\left[Y_0 | x, T = 0\right] \right]$ $\mathbb{E}\left[Y_0|x, T=1\right]$ $\mathbb{E}\left[Y_1|x, T=0\right]$ Quantities we *cannot* directly $\mathbb{E}\left[Y_0|x\right]$ estimate from data $\mathbb{E}\left[Y_1|x\right]$

The adjustment formula

Under the assumption of ignorability, we have that:



Empirically we have samples from p(x|T = 1) or p(x|T = 0). Extrapolate to p(x)

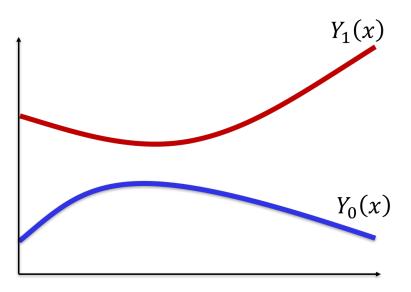
Many methods!

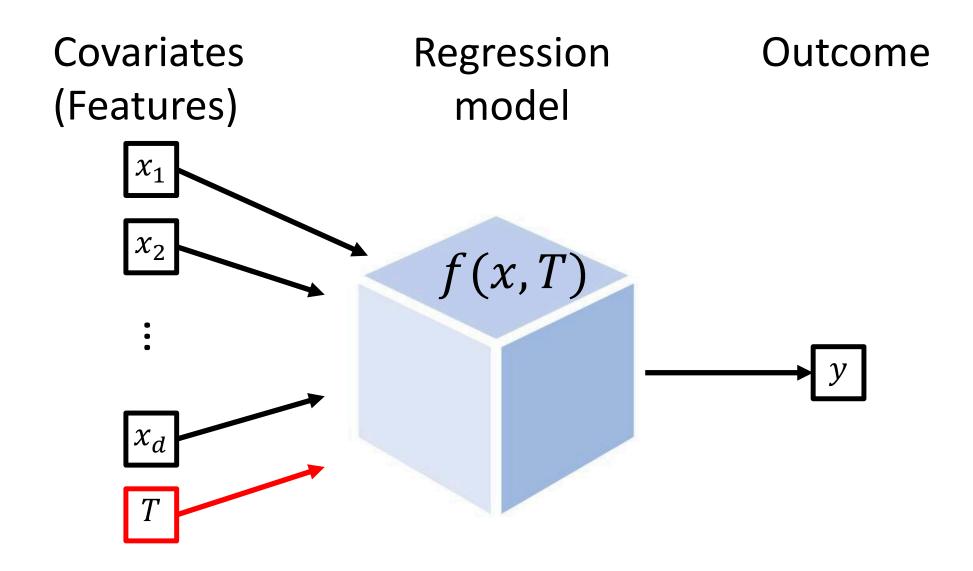
Covariate adjustment Propensity score re-weighting Doubly robust estimators Matching

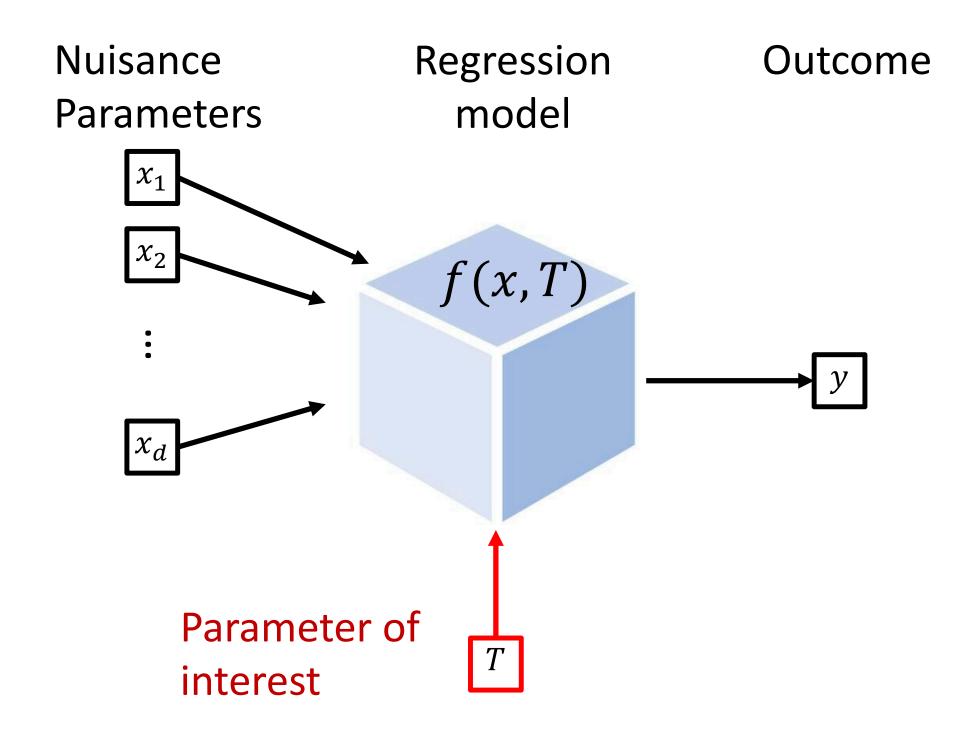
...

Covariate adjustment

- Explicitly model the relationship between treatment, confounders, and outcome
- Also called "Response Surface Modeling"
- Used for both CATE and ATE
- A regression problem







Covariate adjustment (parametric g-formula)

- Explicitly model the relationship between treatment, confounders, and outcome
- Under ignorability, the expected causal effect of *T* on *Y*:

 $\mathbb{E}_{x \sim p(x)} \Big[\mathbb{E}[Y_1 | T = 1, x] - \mathbb{E}[Y_0 | T = 0, x] \Big]$

• Fit a model $f(x,t) \approx \mathbb{E}[Y_t | T = t, x]$

$$\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} f(x_i, 1) - f(x_i, 0)$$

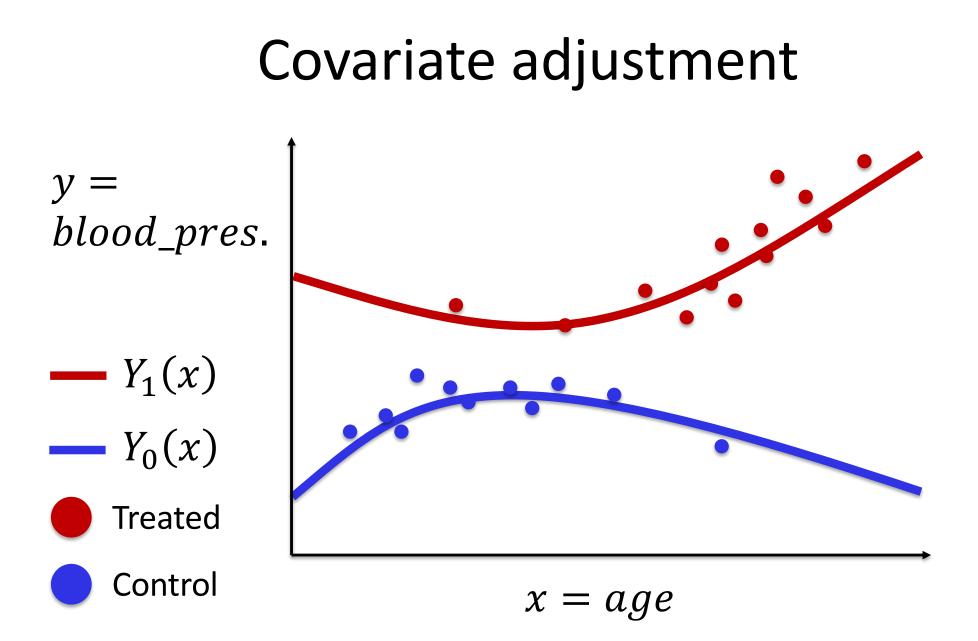
Covariate adjustment (parametric g-formula)

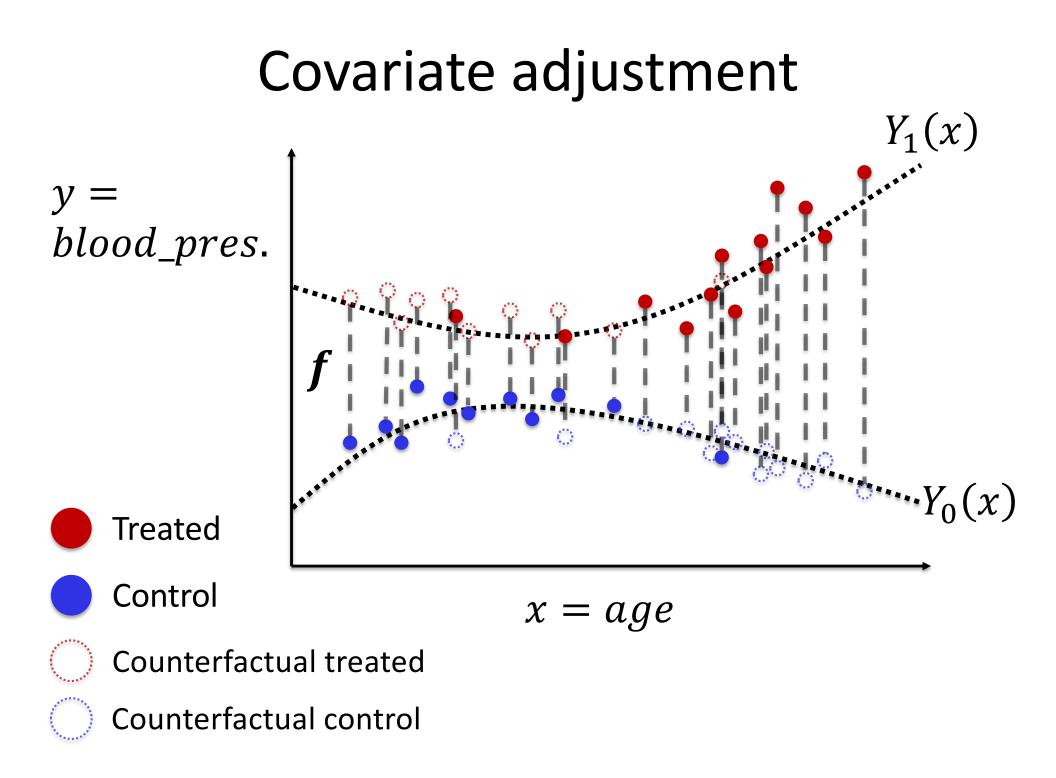
- Explicitly model the relationship between treatment, confounders, and outcome
- Under ignorability, the expected causal effect of *T* on *Y*:

 $\mathbb{E}_{x \sim p(x)} \Big[\mathbb{E}[Y_1 | T = 1, x] - \mathbb{E}[Y_0 | T = 0, x] \Big]$

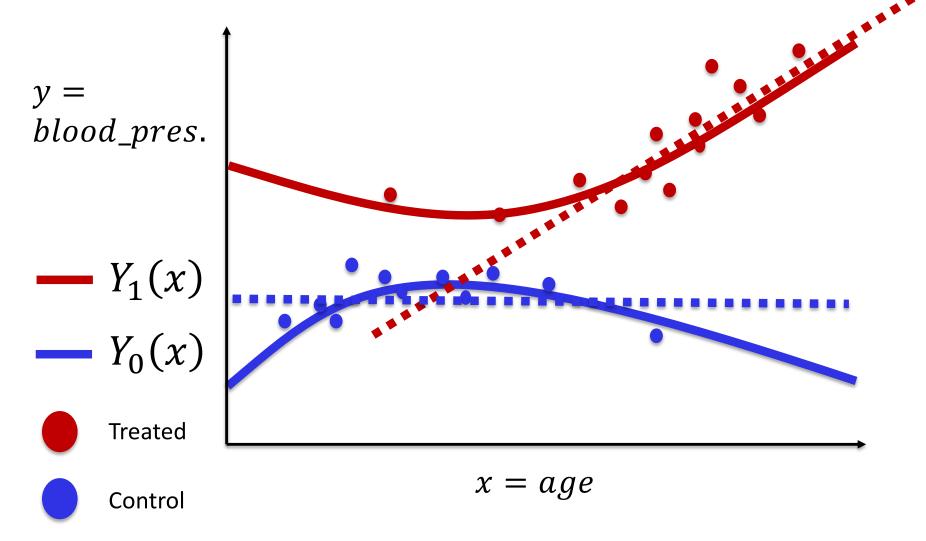
• Fit a model $f(x,t) \approx \mathbb{E}[Y_t | T = t, x]$

$$\widehat{CATE}(x_i) = f(x_i, 1) - f(x_i, 0)$$





Example of how covariate adjustment fails when there is no overlap



Summary

- One approaches to use machine learning for causal inference
 - Predict outcome given features and treatment, then use resulting model to impute counterfactuals (*covariate adjustment*)
- Consistency of estimates depend on:
 - Causal graph being correct (i.e., no unobserved confounding)
 - Identifiability of causal effect (i.e., overlap)
 - Nonparametric regression is used (or correctly specified model); more on this in Thursday's lecture

References

- Recent work from ML community: <u>https://sites.google.com/view/nips2018causallearning/</u> and <u>http://tripods.cis.cornell.edu/neurips19_causalml/</u>
- Recent book on causal inference by Miguel Hernan and Jamie Robins: <u>https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/</u> Recent book on causal inference by Jonas Peters, Dominik Janzing and Bernhard Schölkopf: <u>https://mitpress.mit.edu/books/elements-causal-inference</u> (download PDF for free on left: "Open Access Title")
- Examples of recent papers in this research field: <u>https://arxiv.org/abs/1906.02120</u> <u>https://arxiv.org/abs/1705.08821</u> <u>https://arxiv.org/abs/1510.04342</u> <u>https://arxiv.org/abs/1810.02894</u>