Machine Learning for Healthcare 6.871, HST.956

Lecture 10: Dataset Shift

David Sontag

Course announcements

• PS3 due Fri 3/20

- Interpretability, learning to defer, dataset shift

PS4 released Fri 3/20 and due Wed 4/8

- Fairness, causal inference

- Project teams should be formed by 3/17
 - To aid in team creation, by Weds evening, please enter your name/interests into project spreadsheet (sent via Piazza)

Outline for today's class

- Examples & formalization of dataset shift
- Testing for dataset shift
- Mitigating dataset shift
- Case studies

Types of dataset shift

- Pr_{old}(x,y) versus Pr_{new}(x,y), where X are the features / covariates and Y is the label / outcome
- (Simple) covariate shift: $Pr_{old}(x) \neq Pr_{new}(x)$ but $Pr_{old}(y|x) = Pr_{new}(y|x)$

(Quiñonero-Candela et al., Dataset Shift in Machine Learning, MIT Press 2008)

Types of dataset shift

- Pr_{old}(x,y) versus Pr_{new}(x,y), where X are the features / covariates and Y is the label / outcome
- (Simple) covariate shift: $Pr_{old}(x) \neq Pr_{new}(x)$ but $Pr_{old}(y|x) = Pr_{new}(y|x)$
- Domain shift: Pr_{old}(y|x) ≠ Pr_{new}(y|x) due to data transformation

(Quiñonero-Candela et al., Dataset Shift in Machine Learning, MIT Press 2008)

Types of dataset shift

- Pr_{old}(x,y) versus Pr_{new}(x,y), where X are the features / covariates and Y is the label / outcome
- (Simple) covariate shift: $Pr_{old}(x) \neq Pr_{new}(x)$ but $Pr_{old}(y|x) = Pr_{new}(y|x)$
- Domain shift: Pr_{old}(y|x) ≠ Pr_{new}(y|x) due to feature transformation
- Label shift: Pr_{old}(y|x) ≠ Pr_{new}(y|x) due to labels taking on a new meaning

Dataset shift / non-stationarity: *Models often do not generalize*

[Figure adopted from Jen Gong and Tristan Naumann]

Dataset shift / non-stationarity: *Diabetes Onset After 2009*

→ Automatically derived labels may change meaning Label shift

[Geiss LS, Wang J, Cheng YJ, et al. Prevalence and Incidence Trends for Diagnosed Diabetes Among Adults Aged 20 to 79 Years, United States, 1980-2012. JAMA, 2014.]

Dataset shift / non-stationarity: *Top 100 lab measurements over time*

Time (in months, from 1/2005 up to 1/2014)

→ Significance of features may change over time Covariate shift

[Figure credit: Narges Razavian]

Dataset shift / non-stationarity: ICD-9 to ICD-10 shift

→ Significance of features may change over time Covariate shift (domain shift if mapping ICD10 to ICD9)

[Figure credit: Mike Oberst]

Outline for today's class

- Examples & formalization of dataset shift
- Testing for dataset shift
- Mitigating dataset shift
- Case studies

Testing for dataset shift

- Shift in p(y):
 - Plot distributions
- Shift in p(x) or p(x|y):
 - Compare feature means
 - Use kernel two-sample test (Gretton et al., JMLR '12)

Integral probability metric: $\operatorname{IPM}_{\mathcal{L}}(p,q) := \sup_{\ell \in \mathcal{L}} |\mathbb{E}_p[\ell(x)] - \mathbb{E}_q[\ell(x)]|$ (Muller, 1997)

Maximum mean discrepancy (MMD): *L* are functions with norm 1 in a RKHS: (Gretton et al., 2012) samples $x_1, ..., x_m \sim p, x_1', ..., x_n' \sim q$

$$\hat{\text{MMD}}_{k}^{2}(p,q) := \frac{1}{m-1} \sum_{i=1}^{m} \sum_{j=1}^{m} k(x_{i}, x_{j}) - \frac{2}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} k(x_{i}, x_{j}') + \frac{1}{n-1} \sum_{i=1}^{n} \sum_{j=1}^{n} k(x_{i}', x_{j}')$$

Testing for dataset shift

- Shift in p(y):
 - Plot distributions
- Shift in p(x) or p(x|y):
 - Compare feature means
 - Use kernel two-sample test such as maximum mean discrepancy/MMD (Gretton et al., JMLR '12)
 - (Attempt to) learn a classifier to distinguish one dataset from the other

samples $x_1, ..., x_m \sim p, x'_1, ..., x'_n \sim q$

Binary classification (0 vs. 1)

 $\mathcal{D} = \{(x_1, 1), \dots, (x_m, 1), (x'_1, 0), \dots, (x'_n, 0)\}$

Testing for dataset shift

• Testing for covariate shift (wound healing):

Distinguish 2013 from pre-2013

Distinguish first 2/3 of 2013 from last 1/3 of 2013

(Slide credit: Ken Jung)

Outline for today's class

- Examples & formalization of dataset shift
- Testing for dataset shift
- Mitigating dataset shift
 - *Covariate shift* Do nothing. Regression just "works"
 - Covariate shift Importance sampling
 - *Domain shift* Causal invariances
- Case studies

Covariate shift: nonparametric regression just "works"

When can we expect training on p(x,y) and testing on q(x,y) to give good results, for $p \neq q$?

<u>Theorem</u>: If p(x) > 0 whenever q(x) > 0 and p(y | x) = q(y | x), then in the limit of infinite data from *p*, can achieve Bayes' error on *q*

But we might not have infinite data!

We may have to use a more restricted model (e.g. a linear model despite true one being non-linear)

Effect of covariate shift when (naively) learning with misspecified models

Training data p(x,y)= and test data q(x,y)=

[Storkey, "When Training and Test Sets are Different", Dataset in Machine Learning, MIT Press 2009]

Effect of covariate shift when (naively) learning with misspecified models

Training data p(x,y)= and test data q(x,y)=

[Storkey, "When Training and Test Sets are Different", Dataset in Machine Learning, MIT Press 2009]

Effect of covariate shift when (naively) learning with misspecified models

Training data p(x,y)= and test data q(x,y)=

[Storkey, "When Training and Test Sets are Different", Dataset in Machine Learning, MIT Press 2009]

Learning using importance reweighting

Training data p(x,y)= and test data q(x,y)=

Learning using importance reweighting

Training data p(x,y)= and test data q(x,y)=

Learning using importance reweighting

Training data p(x,y)= and test data q(x,y)=

We only needed to know q(x) to figure out how to reweight the training data! Example of *unsupervised* domain adaptation

When importance reweighting is not enough

- Importance reweighted estimator can be high variance
- If there is no overlap, then unsupervised domain adaptation is in general impossible – even with infinite data
 - E.g., ICD9 to ICD10

Learning under domain shift

- Must make additional assumptions, e.g.
 - Covariate shift assumption holds for a *subset* of features (Rojas-Carulla '18)
 - Can disentangle factors of variation so as to learn models robust to them (Heinze-Deml & Meinshausen '19):

Figure 2: Motivating example 3: The goal is to predict whether a person is wearing glasses. The distributions are shifted in test data by style interventions where style is the image quality. A 5-layer CNN achieves 0% training error and 2% test error for images that are sampled from the same distribution as the training images (a), but a 65% error rate on images where the confounding between image quality and glasses is changed (b). See §5.3 for more details.

[Rojas-Carulla, Schölkopf, Turner, Peters. Invariant Models for Causal Transfer Learning, JMLR '18] [Heinze-Deml, Meinshausen. Conditional Variance Penalties and Domain Shift Robustness, '19]

Learning under domain shift

- Must make additional assumptions, e.g.
 - Covariate shift assumption holds for a *subset* of features (Rojas-Carulla '18)
 - Can disentangle factors of variation so as to learn models robust to them (Heinze-Deml & Meinshausen '19):

Learning algorithm assumes we have (some) training data with *grouped* observations (e.g. pictures of the same person with different image quality)

[Rojas-Carulla, Schölkopf, Turner, Peters. Invariant Models for Causal Transfer Learning, JMLR '18] [Heinze-Deml, Meinshausen. Conditional Variance Penalties and Domain Shift Robustness, '19]

Outline for today's class

- Examples & formalization of dataset shift
- Testing for dataset shift
- Mitigating dataset shift
- Case studies
 - Framingham risk score
 - Antibiotic resistance

- Many ML models are trained in one place and deployed more broadly
- **Example:** Framingham coronary heart disease (CHD) risk score
 - Model based on 6 major risk factors: age, BP, smoking, diabetes, total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C)

CHD score sheet for men using TC or LDL-C categories.

	۵	ae	
Ye	ars	LDL Pts	Chol Pts
30	-34	-1	[-1]
35	-39	0	[0]
40	-44	1	[1]
45	-49	2	[2]
50	-54	3	[3]
55	-59	4	[4]
60	-64	5	[5]
65	-69	6	[6]
70	-74	7	[7]
2	LDI	- C	
dl)	(mmol/L)	LDL Pts	
0	<2.59	-3	
29	2.60-3.36	0	
9	3.37-4.14	0	
0	4.15-4.92	1	
0	>4.92	2	
	Chole	sterol	Oh al D:
dl)	(mmol/L)	Concerns of the second	Chol Pts
00	<4.14	CONTROL OF	[-3]
1	4.15-5.17		[0]
	5.18-6.21		[1]
1	6.22-7.24	all and a second	[2]
,	≥7.25	and the second of	[3]
4.8	HDL	C	
I)	(mmol/L)	LDL Pts	Chol Pts
	<0.90	2	[2]
4	0.91-1.16	1	[1]
9	1.17-1.29	0	[0]
	1.30-1.55	0	[0]
	≥1.56	-1	[-2]
8004		Blood B	ressure
lic		Diad	stolic (mm k
a)	<80	80-84	85-89
20 1	0 [0] nts	00.04	00-00
9	0 [0] pt5	0 [0] nte	
39		- follbra	1 [1] nte
59	CONTRACTOR OF THE	N-prostoren and	i (i) pis
0			And Colored States
	vetolic and disc	tolic proceurce	provide differe
for	point scores us	o the higher of	provide differe
	Joint 500165, 05	e me myner nu	and et
	Diab	etes	10000
-		LDL Pts	Chol Pts
		0	[0]
	All States of States of	2	[2]
-			(-)
-	Smo	oker	1000
		LDL Pts	Chol Pts
		0	[0]
	ALCONTRACTOR STATES	0	101

(determine CHD risk from point total)

	C	HD Risk	
LDL Pts	10 Yr	Chol Pts	10 Yr
Total	CHD Risk	Total	CHD Risk
<-3	1%		
-2	2%		
-1	2%	[<-1]	[2%]
0	3%	[0]	[3%]
1	4%	[1]	[3%]
2	4%	[2]	[4%]
3	6%	[3]	[5%]
4	7%	[4]	[7%]
5	9%	[5]	[8%]
6	11%	[6]	[10%]
7	14%	[7]	[13%]
8	18%	[8]	[16%]
9	22%	[9]	[20%]
10	27%	[10]	[25%]
11	33%	[11]	[31%]
12	40%	[12]	[37%]
13	47%	[13]	[45%]
≥14	≥56%	[>14]	[>53%]

(compare to average person your age)

Comparative Risk									
Age (years)	Average 10 Yr CHD Risk	Average 10 Yr Hard* CHD Risk	Low** 10 Yr CHD Risk						
30-34	3%	1%	2%						
35-39	5%	4%	3%						
40-44	7%	4%	4%						
45-49	11%	8%	4%						
50-54	14%	10%	6%						
55-59	16%	13%	7%						
60-64	21%	20%	9%						
65-69	25%	22%	11%						
70-74	30%	25%	14%						

* Hard CHD events exclude angina pectoris

** Low risk was calculated for a person the same age, optimal blood pressure, LDL-C 100-129 mg/dL or cholesterol 160-199 mg/dl, HDL-C 45 mg/dL for men or 55 mg/dL for women, non-smoker, no diabetes

Risk estimates were derived from the experience of the Framingham Heart Study, a predominantly Caucasian population in Massachusetts, USA

Copyright © American Heart Association, Inc. All rights reserved.

- Many ML models are trained in one place and deployed more broadly
- Example: Framingham coronary heart disease (CHD) risk score

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

- Many ML models are trained in one place and deployed more broadly
- **Example:** Framingham coronary heart disease (CHD) risk score
 - 99% of Framingham participants are of European descent
 - How well does it generalize to a Chinese population?
- C-statistic (=AUC on censored data) on Chinese population is 0.705/0.742 (M/F)
- What else should we look at?

[Liu et al., JAMA '04]

• **Example:** Framingham coronary heart disease (CHD) risk score (directly applied to Chinese population)

Figure 2. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the Original Framingham Functions

[Liu et al., JAMA '04]

- Many ML models are trained in one place and deployed more broadly
- **Example:** Framingham coronary heart disease (CHD) risk score
 - 99% of Framingham participants are of European descent
 - How well does it generalize to a Chinese population?
- C-statistic (=AUC on censored data) 0.705/0.742 (M/F)
- Re-fit using local data only slightly improves C-statistic (=AUC on censored data), to 0.736/0.759 (M/F)

• **Example:** Framingham coronary heart disease (CHD) risk score (re-fit to Chinese population)

	CMCS		Framingham*	
Risk Factors	β		β	
Age	0.07	_	0.05	
Age squared	NA	_	NA	
Blood pressure Optimal	-0.51	_	0.09	
Normal				
High normal	0.21	_	0.42	
Stage 1 hypertension	0.33	_	0.66	
Stage 2-4 hypertension	0.77		0.90	
TC, mg/dL <160	-0.51		-0.38	
160-199		_		
200-239	0.07		0.57	
240-279	0.32	_	0.74	
≥280	0.52		0.83	
HDL-C, mg/dL <35	-0.25		0.61	
35-44	0.01		0.37	
45-49				
50-59	-0.07		0.00	
≥60	-0.40	_	-0.46	
Diabetes	0.09	_	0.53	
Smoking	0.62		0.73	

[Liu et al., JAMA '04]

• **Example:** Framingham coronary heart disease (CHD) risk score (re-fit to Chinese population)

Figure 1. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the CMCS Functions

[Oberst, Boominathan, Zhou, Kanjilal, Sontag]

 Guide choice of antibiotic, even before culture results come back

- Data from MGH & BWH hospitals in Boston
- We show that we can nearly eliminate 2nd line antibiotic usage while decreasing the rate of inappropriate antibiotics prescribed
- Key tool: *predicting antibiotic resistance*

- In our early investigations, we included features derived from clinical notes
- We noticed that top predictors were '2010', '2009', '2014', etc.
- We knew there was non-stationarity due to levels of resistance changing, but this was *much* more than we expected

What happened in 2006?

A new card was introduced to MIC testing with a lower range dilutions (more dynamic range)

As a result, cut points to decide difference between resistant/susceptible were moved down

S R

This resulted in many more "positives" for pre-2006 years, but which were simply because these were the lowest possible values that could be recorded

Label shift detected by model introspection

[Figure from Helen Zhou]

Conclusion

- Dataset shift happens all the time with healthcare data
- It doesn't always hurt performance
- Interpretability methods can help with detecting and mitigating dataset shift
- Safe deployments should include automated checks for dataset shift
- Active area of research in ML