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Course announcements

• PS3 due Fri 3/20
– Interpretability, learning to defer, dataset shift

• PS4 released Fri 3/20 and due Wed 4/8
– Fairness, causal inference

• Project teams should be formed by 3/17
– To aid in team creation, by Weds evening, please 

enter your name/interests into project 
spreadsheet (sent via Piazza)



Outline for today’s class

• Examples & formalization of dataset shift
• Testing for dataset shift
• Mitigating dataset shift
• Case studies



Types of dataset shift

• Prold(x,y) versus Prnew(x,y), where X are the features / 
covariates and Y is the label / outcome

• (Simple) covariate shift: Prold(x) ≠ Prnew(x) but 
Prold(y|x) = Prnew(y|x) 

(Quiñonero-Candela et al., Dataset Shift in Machine Learning, MIT Press 2008)

8 When Training and Test Sets Are Different: Characterizing Learning Transfer

Figure 1.1 Simple covariate shift. Here the causal model indicated the targets y are
directly dependent on the covariates x. In other words the predictive function and noise
model stay the same, it is just the typical locations x of the points at which the function
needs to be evaluated that change. In this figure and throughout, the causal model is given
on the left with the node that varies between training and test made darker. To the right
is some example data, with the training data in shaded light and the test data shaded
dark.

1.4 Simple Covariate Shift

The most basic form of dataset shift occurs when the data is generated according
to a model P (y|x)P (x) and where the distribution P (x) changes between training
and test scenarios. As only the covariate distribution changes, this has been called
covariate shift [Shimodaira, 2000]. See figure 1.1 for an illustration of the form of
causal model for covariate shift.

A typical example of covariate shift occurs in assessing the risk of future events
given current scenarios. Suppose the problem was to assess the risk of lung cancer
in five years (y) given recent past smoking habits (x). In these situations we can
be sure that the occurrence or otherwise of future lung cancer is not a causal factor
of current habits. So in this case a conditional relationship of the form P (y|x) is
a reasonable causal model to consider.1 Suppose now that changing circumstances
(e.g., a public smoking ban) affect the distribution over habits x. How do we account
for that in our prediction of risk for a new person with habits x∗?

It will perhaps come as little surprise that the fact that the covariate distribution
changes should have no effect on the model P (y|x∗). Intuitively this makes sense.
The smoking habits of some person completely independent of me should not affect
my risk of lung cancer if I make no change at all. From a modeling point of view
we can see that from our earlier observation in the static case this is simply a
conditional model: it gives the same prediction for given x, P (y|x) regardless of

1. Of course there are always possible confounding factors, but for the sake of this
illustration we choose to ignore that for now. It is also possible the samples are not drawn
independently and identically distributed due to population effects (e.g., passive smoking)
but that too is ignored here.



Types of dataset shift

• Prold(x,y) versus Prnew(x,y), where X are the features / 
covariates and Y is the label / outcome

• (Simple) covariate shift: Prold(x) ≠ Prnew(x) but 
Prold(y|x) = Prnew(y|x)

• Domain shift: Prold(y|x) ≠ Prnew(y|x) due to data 
transformation

(Quiñonero-Candela et al., Dataset Shift in Machine Learning, MIT Press 2008)

20 When Training and Test Sets Are Different: Characterizing Learning Transfer

Figure 1.6 Domain shift: The observed covariates x are transformed from some idealized
covariates x0 via some transformation F , which is allowed to vary between datasets. The
target distribution P (y|x0) is unchanged between test and training datasets, but of course
the distribution P (y|x0) does change if F changes.

number of different sources, each with its own characteristics, and the proportions
of those sources can vary between training and test scenarios.

Source component shift is ubiquitous: a particular product is produced in a
number of factories, but the proportions sourced from each factory vary dependent
on a retailer’s supply chain; voting expectations vary depending on type of work,
and different places in a country have different distributions of jobs; a major
furniture store wants to analyze advertising effectiveness among a number of
concurrent advertising streams, but the effectiveness of each is likely to vary with
demographic proportions; the nature of network traffic on a university’s computer
system varies with time of year due to the fact that different student groups are
present or absent at different times.

It would seem likely that most of the prediction problems that are the subject of
study or analysis involve at least one of

samples that could come from one of a number of subpopulations, between which
the quantity to be predicted may vary;

samples chosen are subject to factors that are not fully controlled for, and that
could change in different scenarios; and

targets that are aggregate values averaged over a potentially varying population.

Each of these provides a different potential form of source component shift. The
three cases correspond to mixture component shift, factor component shift, and
mixing component shift respectively. These three cases will be elaborated further.

The causal graphical model for source component shift is illustrated in figure
1.7. In all cases of source component shift there is some changing environment
that jointly affects the values of the samples that are drawn. This may sound
indistinguishable from sample selection bias, and indeed these two forms of dataset
shift are closely related. However, with source component shift the causal model
states that the change is a change in the causes. In sample selection bias, the change



Types of dataset shift

• Prold(x,y) versus Prnew(x,y), where X are the features / 
covariates and Y is the label / outcome

• (Simple) covariate shift: Prold(x) ≠ Prnew(x) but 
Prold(y|x) = Prnew(y|x)

• Domain shift: Prold(y|x) ≠ Prnew(y|x) due to feature 
transformation

• Label shift: Prold(y|x) ≠ Prnew(y|x) due to labels taking 
on a new meaning

(Quiñonero-Candela et al., Dataset Shift in Machine Learning, MIT Press 2008)



Dataset shift / non-stationarity:
Models often do not generalize

Model

?

[Figure adopted from Jen Gong and Tristan Naumann]

MGH UCSF

What kind of dataset 
shift is this?
Covariate and domain 
shift



Dataset shift / non-stationarity:
Diabetes Onset After 2009

[Geiss LS, Wang J, Cheng YJ, et al. Prevalence and Incidence Trends for Diagnosed 
Diabetes Among Adults Aged 20 to 79 Years, United States, 1980-2012. JAMA, 2014.]

→ Automatically derived labels may change meaning
Label shift



Dataset shift / non-stationarity:
Top 100 lab measurements over time

Time (in months, from 1/2005 up to 1/2014)

La
bs

[Figure credit: Narges Razavian]

→ Significance of features may change over time
Covariate shift
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[Figure credit: Mike Oberst]

Dataset shift / non-stationarity:
ICD-9 to ICD-10 shift

ICD-9

ICD-10

→ Significance of features may change over time
Covariate shift (domain shift if mapping ICD10 to ICD9)



Outline for today’s class

• Examples & formalization of dataset shift
• Testing for dataset shift
• Mitigating dataset shift
• Case studies



Testing for dataset shift

• Shift in p(y):
– Plot distributions

• Shift in p(x) or p(x|y):
– Compare feature means
– Use kernel two-sample test (Gretton et al., JMLR ‘12)

(a) Misspecified hypothesis ft (b) Lipschitz loss `ft (c) Bound on loss di↵erence

Figure 2: Example illustrating assumptions on the pointwise loss `ft . In (a) we see the true
potential outcome µt and a hypothesis ft. The pointwise loss between them is plotted in
(b). In (c), we illustrate the di↵erence between two densities p0 and p1 on {�1, 0, 1}. The
bottom panel shows the worst-case contribution of any loss function in an rbf-kernel RKHS
L to the di↵erence in risk R0(ft) � R1(ft). The more similar p0, p1, or the smoother the
functions in L, the smaller the overall contribution.

the hypothesis class H. However, in many cases we have reason to make assumptions about
the worst-case loss in generalization, as is typical in statistical learning theory. In this
section, we give bounds on R(ft) under such assumptions.

Let L ⇢ {X ! R+} be a space of pointwise loss functions with respect to the covariates
X endowed with a norm k · kL. In this work, we assume that the expected conditional loss
`ft for each potential outcome belongs to such a family, i.e., that `ft 2 L. A simple example
of such a family is the set of loss functions with bounded maximum value, LM = {` :!
R+ ; supx2X `(x)  M}. This assumption is satisfied without loss of generality as long
as the outcome Y is bounded. However, it is not very informative and will lead to loose
bounds in general. Instead, we may make assumptions about the functional properties of
`ft . Such assumptions include that `ft is C-Lipschitz or belongs to a reproducing-kernel
Hilbert space (RKHS). We illustrate the former with an example in Figures 2a–2b.

Now, consider the marginal distribution p and a re-weighted treatment group p
w
t on X .

Let ` 2 L be a pointwise loss on X . Recall that R(ft) and R
w
t (ft) denote the marginal and

re-weighted factual risks respectively. By definition,

R(`) = R
w
t (`) +

Z

x2X
`(x)(p(x) � p

w
t (x))dx

 R
w
t (`) + sup

`02L

����
Z

x2X
`
0(x)(p(x) � p

w
t (x))dx

���� . (11)

The second term on the right-hand side in (11) is known as the integral probability metric
distance (IPM) between p and p

w
t w.r.t. L, defined as follows (Müller, 1997) :

IPML(p, q) := sup
`2L

|Ep[`(x)] � Eq[`(x)]| . (12)

Particular choices of L make the IPM equivalent to di↵erent well-known distances on distri-
butions: With L the family of functions in the norm-1 ball in a reproducing kernel Hilbert

12

Integral probability metric:
(Muller, 1997)

Maximum mean discrepancy (MMD): 𝐿 are functions with norm 1 in a RKHS:
(Gretton et al., 2012)
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Figure 4: Illustration of the Counterfactual Regression (CFR) estimator. Here, d represents
a distributional distance such as an IPM. The visual elements are described in Figure 3.

f -divergences are often ill-suited for comparing two empirical densities as they are based on
the density ratio which is undefined in any point outside of the support of either density. In
contrast, IPMs are based on the density di↵erence which is defined everywhere. Adversar-
ial methods are based on the metric implied by a learned discriminator function which is
trained to distinguish samples from the two densities. The flexibility of this approach—that
it tailors the metric to observed data—is also its weakness since optimization of adversarial
discriminators is fraught with di�culty.

The TARNet architecture described above is well-suited for incorporating regularization
on the distributional distance in � according to Objective (19). In particular, we use the
empirical kernel MMD (Gretton et al., 2012) and the Wasserstein distance (Villani, 2008)
for this purpose. We dubbed the resulting estimator Counterfactual Regression (CFR) in
Shalit et al. (2017) (see Figure 4). In Johansson et al. (2018), we derived a further extension,
incorporating a learned sample re-weighting function minimizing (20), called Re-weighted
CFR (RCFR) and illustrated in Appendix C

Minimizing the maximum mean discrepancy. The maximum mean discrepancy
(MMD) was popularized in machine learning through its kernel-based incarnation in which
the associated function family is a reproducing kernel Hilberg space (RKHS) (Gretton et al.,
2012). We restrict our attention to this family here. An unbiased estimator of the MMD
distance between densities p, q on X , with respect to a kernel k, may be obtained from
samples x1, ..., xm ⇠ p, x

0
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By choosing a di↵erentiable kernel k, such as the Gaussian RBF-kernel, we can ensure that
the MMD is amenable to gradient-based learning. In applications where the quadratic time
complexity w.r.t. sample size is prohibitively large, another unbiased estimator (but with
larger variance) may be obtained by sampling pairs of points (x1, x

0
1
), ..., (x2n, x

0
2n) ⇠ p ⇥ q
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ial methods are based on the metric implied by a learned discriminator function which is
trained to distinguish samples from the two densities. The flexibility of this approach—that
it tailors the metric to observed data—is also its weakness since optimization of adversarial
discriminators is fraught with di�culty.

The TARNet architecture described above is well-suited for incorporating regularization
on the distributional distance in � according to Objective (19). In particular, we use the
empirical kernel MMD (Gretton et al., 2012) and the Wasserstein distance (Villani, 2008)
for this purpose. We dubbed the resulting estimator Counterfactual Regression (CFR) in
Shalit et al. (2017) (see Figure 4). In Johansson et al. (2018), we derived a further extension,
incorporating a learned sample re-weighting function minimizing (20), called Re-weighted
CFR (RCFR) and illustrated in Appendix C
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(MMD) was popularized in machine learning through its kernel-based incarnation in which
the associated function family is a reproducing kernel Hilberg space (RKHS) (Gretton et al.,
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Testing for dataset shift

• Shift in p(y):
– Plot distributions

• Shift in p(x) or p(x|y):
– Compare feature means
– Use kernel two-sample test such as maximum mean 

discrepancy/MMD (Gretton et al., JMLR ‘12)
– (Attempt to) learn a classifier to distinguish one dataset 

from the other
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D = {(x1, 1), . . . , (xm, 1), (x0
1, 0), . . . , (x

0
n, 0)}

Binary classification (0 vs. 1)



Testing for dataset shift

• Testing for covariate shift (wound healing):
Testing for covariate shift

❖ Fit a model to 
distinguish 2013 vs 
pre-2013 samples

❖ 0.98 AUC on test set
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ROC − 2013 vs pre−2013

Using just data from 2013

❖ Train a model from first 
two-thirds of 2013 to 
predict on last third

❖ 29k train, 14k test (1/3 
data)

❖ AUC of 0.863
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ROC − delayed wound healing w/2013 data only

Distinguish 2013 from pre-2013 Distinguish first 2/3 of 2013 from
last 1/3 of 2013

(Slide credit: Ken Jung)



Outline for today’s class

• Examples & formalization of dataset shift
• Testing for dataset shift
• Mitigating dataset shift
– Covariate shift Do nothing. Regression just “works”
– Covariate shift Importance sampling
– Domain shift Causal invariances

• Case studies



Covariate shift: nonparametric 
regression just “works”

When can we expect training on p(x,y) and testing on
q(x,y) to give good results, for p ≠ 𝑞?

Theorem: If p x > 0 whenever q x > 0 and 
𝑝 𝑦 𝑥 = 𝑞 𝑦 𝑥 , then in the limit of infinite data 
from p, can achieve Bayes’ error on q

But we might not have infinite data!

We may have to use a more restricted model (e.g. a linear model 
despite true one being non-linear) 



Effect of covariate shift when (naively) 
learning with misspecified models

• Training data p(x,y)=      and test data q(x,y)=

y

x

[Storkey, “When Training and Test Sets are Different”, Dataset in Machine Learning, 
MIT Press 2009]



Effect of covariate shift when (naively) 
learning with misspecified models

• Training data p(x,y)=      and test data q(x,y)=

y

x

[Storkey, “When Training and Test Sets are Different”, Dataset in Machine Learning, 
MIT Press 2009]

Ideal linear 
model



Effect of covariate shift when (naively) 
learning with misspecified models

• Training data p(x,y)=      and test data q(x,y)=

y

x

[Storkey, “When Training and Test Sets are Different”, Dataset in Machine Learning, 
MIT Press 2009]

Linear model
learned on
training data



Learning using importance reweighting

• Training data p(x,y)=      and test data q(x,y)=

y

x



Learning using importance reweighting

• Training data p(x,y)=      and test data q(x,y)=

y

x

Learned using 
importance 
reweighted 
objective



Learning using importance reweighting

• Training data p(x,y)=      and test data q(x,y)=

y

x
We only needed to know q(x) to figure out how to reweight the 
training data! Example of unsupervised domain adaptation



When importance reweighting is not 
enough

• Importance reweighted estimator can be high 
variance 

• If there is no overlap, then unsupervised 
domain adaptation is in general impossible –
even with infinite data
– E.g., ICD9 to ICD10 



Learning under domain shift

• Must make additional assumptions, e.g.
– Covariate shift assumption holds for a subset of features 

(Rojas-Carulla ‘18)
– Can disentangle factors of variation so as to learn models

robust to them (Heinze-Deml & Meinshausen ‘19):

[Rojas-Carulla, Schölkopf, Turner, Peters. Invariant Models for Causal Transfer Learning, JMLR ‘18]
[Heinze-Deml, Meinshausen. Conditional Variance Penalties and Domain Shift Robustness, ‘19]

(a) Example 3, training set. (b) Example 3, test set.

Figure 2: Motivating example 3: The goal is to predict whether a person is wearing glasses. The

distributions are shifted in test data by style interventions where style is the image quality.

A 5-layer CNN achieves 0% training error and 2% test error for images that are sampled

from the same distribution as the training images (a), but a 65% error rate on images

where the confounding between image quality and glasses is changed (b). See §5.3 for

more details.

1.2 Related work

For general distributional robustness, the aim is to learn

argmin✓ sup
F2F

EF (`(Y, f✓(X))) (1)

for a given set F of distributions, twice di↵erentiable and convex loss `, and prediction
f✓(x). The set F is the set of distributions on which one would like the estimator to achieve
a guaranteed performance bound.

Causal inference can be seen to be a specific instance of distributional robustness, where
we take F to be the class of all distributions generated under do-interventions on X (Mein-
shausen, 2018; Rothenhäusler et al., 2018). Causal models thus have the defining advantage
that the predictions will be valid even under arbitrarily large interventions on all predictor
variables (Haavelmo, 1944; Aldrich, 1989; Pearl, 2009; Schölkopf et al., 2012; Peters et al.,
2016; Zhang et al., 2013, 2015; Yu et al., 2017; Rojas-Carulla et al., 2018; Magliacane et al.,
2018). There are two di�culties in transferring these results to the setting of domain shifts
in image classification. The first hurdle is that the classification task is typically anti-causal
since the image we use as a predictor is a descendant of the true class of the object we are
interested in rather than the other way around. The second challenge is that we do not
want (or could) guard against arbitrary interventions on any or all variables but only would
like to guard against a shift of the style features. It is hence not immediately obvious how
standard causal inference can be used to guard against large domain shifts.

Another line of work uses a class of distributions of the form F = F✏(F0) with

F✏(F0) := {distributions F such that D(F, F0)  ✏}, (2)

with ✏ > 0 a small constant andD(F, F0) being, for example, a �-divergence (Namkoong and
Duchi, 2017; Ben-Tal et al., 2013; Bagnell, 2005; Volpi et al., 2018) or a Wasserstein distance
(Shafieezadeh-Abadeh et al., 2017; Sinha et al., 2018; Gao et al., 2017). The distribution
F0 can be the true (but generally unknown) population distribution P from which the data
were drawn or its empirical counterpart Pn. The distributionally robust targets in Eq. (2)
can often be expressed in penalized form (Gao et al., 2017; Sinha et al., 2018; Xu et al.,
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Learning under domain shift

• Must make additional assumptions, e.g.
– Covariate shift assumption holds for a subset of features 

(Rojas-Carulla ‘18)
– Can disentangle factors of variation so as to learn models

robust to them (Heinze-Deml & Meinshausen ‘19):

[Rojas-Carulla, Schölkopf, Turner, Peters. Invariant Models for Causal Transfer Learning, JMLR ‘18]
[Heinze-Deml, Meinshausen. Conditional Variance Penalties and Domain Shift Robustness, ‘19]

(a)
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(b)

Domain D

Y

X
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�ID

X
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image X(�) Ŷ (X(�))
f✓

Figure 3: Observed quantities are shown as shaded nodes; nodes of latent quantities are transparent.
Left: data generating process for the considered model as in Gong et al. (2016), where the
e↵ect of the domain on the orthogonal features Xstyle is mediated via unobserved noise �.
The style interventions and all its descendants are shown as nodes with dashed borders
to highlight variables that are a↵ected by style interventions. Right: our setting. The
domain itself is unobserved but we can now observe the (typically discrete) ID variable
we use for grouping. The arrow between ID and Y can be reversed, depending on the
sampling scheme.

7

Learning algorithm assumes we have 
(some) training data with grouped
observations (e.g. pictures of the 
same person with different image 
quality)



Outline for today’s class

• Examples & formalization of dataset shift
• Testing for dataset shift
• Mitigating dataset shift
• Case studies
– Framingham risk score
– Antibiotic resistance



Case study: Framingham risk score
• Many ML models are trained in one place and deployed more 

broadly
• Example: Framingham coronary heart disease (CHD) risk score

– Model based on 6 major risk factors: age, BP, smoking, diabetes, total 
cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C)

[Wilson et al., Circulation, 1998]



CHD score sheet for men using TC or LDL-C categories. 

Peter W. F. Wilson et al. Circulation. 1998;97:1837-1847

Copyright © American Heart Association, Inc. All rights reserved.



Case study: Framingham risk score
• Many ML models are trained in one place and deployed more 

broadly
• Example: Framingham coronary heart disease (CHD) risk score



Case study: Framingham risk score
• Many ML models are trained in one place and deployed more 

broadly
• Example: Framingham coronary heart disease (CHD) risk score

– 99% of Framingham participants are of European descent
– How well does it generalize to a Chinese population?

• C-statistic (=AUC on censored data) on Chinese population is 
0.705/0.742 (M/F)

• What else should we look at?

[Liu et al., JAMA ‘04]



Case study: Framingham risk score
• Example: Framingham coronary heart disease (CHD) risk score 

(directly applied to Chinese population)

tained in the CMCS cohort. A total of
19.4% of men and 13.8% of women re-
ported physical activity (defined as
physical activity regularly during off
hours at least once per week and last-
ing more than 20 minutes each time).
Those who reported less exercise also
tended to have higher BP, higher glu-
cose levels, and lower HDL-C levels. Af-
ter adjusting for these factors, the as-
sociation of exercise with CHD was not
significant (data available from
authors). Performance of the func-
tions were compared in urban vs rural
residents. Performance of the CMCS
and recalibrated Framingham func-
tions for urban vs rural men and women
were all very similar, with overlap-
ping 95% CIs (data available from
authors).

To assess the effect of the portion of
the study population that had only 3
years of follow-up, a separate model was
created after exclusion of the partici-
pants who dropped out. The RRs, 10-
year CHD rates, and prediction capa-
bilities did not differ from the current
cohort. Nevertheless, the total person-
years of follow-up and CHD events were
reduced and the 95% CIs for some risk
factor categories were wider after the
exclusion (data available from authors).

COMMENT
In the present analysis, we tested the
performance of the Framingham func-
tions in a large Chinese population,
both directly and after recalibration, and
compared them with the usefulness of
functions derived from the Chinese co-
hort itself to determine absolute risk of
CHD. Estimation of absolute risk of
CHD to treat and prevent CHD8-11 com-
monly relies on prediction models de-
rived from the experience of prospec-
tive cohort studies. Although prediction
algorithms developed by Framingham
investigators have been widely adopted
to formulate clinical guidelines in the
United States and elsewhere,12-14 the
Framingham functions have overesti-
mated CHD risk in some populations,
leading to concern that it is not appro-
priate to generalize the results to other
populations.15,16,30 Framingham func-

Figure 1. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the CMCS
Functions
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Figure 2. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the Original
Framingham Functions
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Figure 3. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the
Recalibrated Framingham Functions
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Case study: Framingham risk score
• Many ML models are trained in one place and deployed more 

broadly
• Example: Framingham coronary heart disease (CHD) risk score

– 99% of Framingham participants are of European descent
– How well does it generalize to a Chinese population?

• C-statistic (=AUC on censored data) 0.705/0.742 (M/F)
• Re-fit using local data only slightly improves C-statistic (=AUC 

on censored data), to 0.736/0.759 (M/F)

[Liu et al., JAMA ‘04]



Case study: Framingham risk score
• Example: Framingham coronary heart disease (CHD) risk score 

(re-fit to Chinese population)

confidence interval [CI], 0.696-
0 .776) and 0.759 (95% CI,
0.699-0.818), respectively, showing
good ability to distinguish cases from
noncases. In the calibration, the Hos-
mer-Lemeshow !2 was 12.6 for men
(P=.13) and 14.2 for women (P=.08),
showing that the actual CHD rates in
the CMCS cohort were similar to the
event rates predicted by CMCS func-
tions (FIGURE 1 ).

Original Framingham Functions. In
the original Framingham functions, the
" coefficients in the Framingham Cox
model, mean values of the risk fac-
tors, and mean incidence rates in the
Framingham cohort were used di-
rectly. In the discriminatory analysis,
the original Framingham functions
separated cases from noncases in the
CMCS cohort nearly as well as the
CMCS functions. The AUROCs were
0.705 (95% CI, 0.665-0.746) for men
and 0.742 (95% CI, 0.686-0.798) for

women. However, in calibration, the
original Framingham functions statis-
tically overestimated the event rates ob-
served in the CMCS cohort. The Hos-
mer-Lemeshow !2 was 645.9 for men
(P# .001) and 147.6 for women
(P# .001) (FIGURE 2). Larger differ-
ences were observed in higher deciles.
For example, in the 10th decile in men,
the predicted rate was 20% and the ac-
tual rate was only 3%.

Recalibrated Framingham Func-
tions. In the recalibrated Framing-
ham functions, the " coefficients were
taken from the Framingham Cox
model, but mean values from the CMCS
cohort were used for the risk factors and
the mean incidence rates. Recalibra-
tion did not affect the discriminatory
ability but improved the calibration sub-
stantially, especially in women. The !2

was 31.5 for men (P# .001) and 16.9
for women (P=.03) (FIGURE 3 ). The
largest difference between the actual

rate and the predicted rate after reca-
libration was 1.5% (in the 10th decile
in men), compared with the differ-
ence of 17% for the original Framing-
ham functions.

Additional Analyses
The prevalence of body mass index of
at least 25 was 33.5% in men and 33.9%
in women. When body mass index (cal-
culated as weight in kilograms di-
vided by the square of height in me-
ters) was included in the CMCS model,
the RR for body mass index of 25 or
higher was 1.29 for men and 1.68 for
women, both nonsignificant. More-
over, RRs for diabetes, TC, HDL-C, and
BP were all reduced after including body
mass index. The AUROC had a non-
significant increase (from 0.736 to
0.739 in men and from 0.759 to 0.763
in women) and the calibration did not
change significantly (data available from
authors). Data on exercise were ob-

Table 3. Cox Regression Coefficients and RRs for CHD Risk Factors in Men and Women in the CMCS and Framingham Cohorts

Risk Factors

Men Women

CMCS Framingham* CMCS Framingham*

" RR (95% CI) " RR (95% CI) " RR (95% CI) " RR (95% CI)
Age 0.07 1.08 (1.05-1.10)† 0.05 1.05 (1.04-1.07) 0.07 1.07 (1.03-1.11) 0.17 1.19 (0.97-1.45)
Age squared NA NA NA −0.001
Blood pressure

Optimal −0.51 0.60 (0.34-1.05) 0.09 1.10 (0.67-1.82) −0.50 0.61 (0.26-1.38) −0.74 0.48 (0.22-1.05)
Normal Reference Reference Reference Reference
High normal 0.21 1.24 (0.69-2.20) 0.42 1.53 (0.98-2.36) −0.87 0.42 (0.12-1.53) −0.37 0.69 (0.34-1.42)
Stage 1 hypertension 0.33 1.39 (0.84-2.31) 0.66 1.93 (1.28-2.92) 0.34 1.40 (0.64-3.08) 0.22 1.24 (0.69-2.24)
Stage 2-4 hypertension 0.77 2.16 (1.27-3.68) 0.90 2.45 (1.59-3.79) 0.47 1.60 (0.70-3.67) 0.61 1.84 (1.00-3.39)

TC, mg/dL
# 160 −0.51 0.60 (0.37-0.98) −0.38 0.69 (0.31-1.52) 0.18 1.19 (0.58-2.44) 0.21 1.23 (0.27-5.64)
160-199 Reference Reference Reference Reference
200-239 0.07 1.08 (0.71-1.63)† 0.57 1.77 (1.25-2.50) 0.13 1.14 (0.55-2.36) 0.44 1.55 (0.81-2.96)
240-279 0.32 1.37 (0.74-2.55) 0.74 2.10 (1.43-3.10) 0.14 1.15 (0.39-3.41) 0.56 1.74 (0.90-3.40)
$ 280 0.52 1.68 (0.67-4.20) 0.83 2.29 (1.39-3.76) 1.67 5.29 (2.08-13.45) 0.89 2.44 (1.21-4.93)

HDL-C, mg/dL
# 35 −0.25 0.78 (0.35-1.74)† 0.61 1.84 (1.17-2.88) 0.62 1.86 (0.71-4.88) 0.73 2.08 (1.00-4.31)
35-44 0.01 1.01 (0.60-1.70) 0.37 1.45 (0.94-2.21) 0.30 1.35 (0.65-2.81) 0.60 1.82 (1.05-3.16)
45-49 Reference Reference 0.08 1.09 (0.47-2.49) 0.60 1.82 (1.05-3.14)
50-59 −0.07 0.93 (0.56-1.55) 0.00 1.00 (0.62-1.60) Reference Reference
$ 60 −0.40 0.67 (0.39-1.15) −0.46 0.63 (0.34-1.18) −0.78 0.46 (0.21-1.03) −0.54 0.58 (0.33-1.02)

Diabetes 0.09 1.09 (0.57-2.08) 0.53 1.69 (1.11-2.57) 0.18 1.20 (0.43-3.35) 0.87 2.38 (1.40-4.06)
Smoking 0.62 1.86 (1.31-2.64) 0.73 2.07 (1.60-2.68) −0.95 0.39 (0.05-2.82)† 0.98 2.65 (1.77-3.97)
Abbreviations: CI, confidence interval; CMCS indicates Chinese Multi-provincial Cohort Study; HDL-C, high-density lipoprotein cholesterol; NA, not applicable; RR, relative risk;

TC, total cholesterol.
SI conversions: To convert HDL-C and TC to mmol/L, multiply by 0.0259.
*Data for the Framingham cohort are from D’Agostino et al.7
†Relative risk in the CMCS cohort is significantly different from that in the Framingham cohort (P# .10).
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Case study: Framingham risk score
• Example: Framingham coronary heart disease (CHD) risk score 

(re-fit to Chinese population)
tained in the CMCS cohort. A total of
19.4% of men and 13.8% of women re-
ported physical activity (defined as
physical activity regularly during off
hours at least once per week and last-
ing more than 20 minutes each time).
Those who reported less exercise also
tended to have higher BP, higher glu-
cose levels, and lower HDL-C levels. Af-
ter adjusting for these factors, the as-
sociation of exercise with CHD was not
significant (data available from
authors). Performance of the func-
tions were compared in urban vs rural
residents. Performance of the CMCS
and recalibrated Framingham func-
tions for urban vs rural men and women
were all very similar, with overlap-
ping 95% CIs (data available from
authors).

To assess the effect of the portion of
the study population that had only 3
years of follow-up, a separate model was
created after exclusion of the partici-
pants who dropped out. The RRs, 10-
year CHD rates, and prediction capa-
bilities did not differ from the current
cohort. Nevertheless, the total person-
years of follow-up and CHD events were
reduced and the 95% CIs for some risk
factor categories were wider after the
exclusion (data available from authors).

COMMENT
In the present analysis, we tested the
performance of the Framingham func-
tions in a large Chinese population,
both directly and after recalibration, and
compared them with the usefulness of
functions derived from the Chinese co-
hort itself to determine absolute risk of
CHD. Estimation of absolute risk of
CHD to treat and prevent CHD8-11 com-
monly relies on prediction models de-
rived from the experience of prospec-
tive cohort studies. Although prediction
algorithms developed by Framingham
investigators have been widely adopted
to formulate clinical guidelines in the
United States and elsewhere,12-14 the
Framingham functions have overesti-
mated CHD risk in some populations,
leading to concern that it is not appro-
priate to generalize the results to other
populations.15,16,30 Framingham func-

Figure 1. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the CMCS
Functions
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Figure 2. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the Original
Framingham Functions
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Figure 3. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the
Recalibrated Framingham Functions
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Case study: predicting antibiotic 
resistance

[Oberst, Boominathan, Zhou, Kanjilal, Sontag]



• Guide choice of antibiotic,
even before culture results
come back

• Data from MGH & BWH hospitals in Boston
• We show that we can nearly eliminate 2nd line 

antibiotic usage while decreasing the rate of 
inappropriate antibiotics prescribed

• Key tool: predicting antibiotic resistance

Case study: predicting antibiotic 
resistance



Case study: predicting antibiotic 
resistance

• In our early investigations, we included 
features derived from clinical notes

• We noticed that top predictors were ‘2010’, 
‘2009’, ‘2014’, etc.

• We knew there was non-stationarity due to 
levels of resistance changing, but this was 
much more than we expected



Case study: predicting antibiotic 
resistance

What 
happened in 
2006?

A new card was 
introduced to MIC 
testing with a lower 
range dilutions (more 
dynamic range)

As a result, cut points to 
decide difference 
between 
resistant/susceptible 
were moved down

Let’s look at the  raw MIC lab values for FEP , as well as where the breakpoints sit (we pick MIC for 
FEP because there are far more MIC tests than DD tests, and FEP is one of these antibiotics for 
which the early labels changed dramatically): 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Raw MIC Values  for FEP for enterobacteriaceae (# Samples vs. MIC), plotted with the 
corresponding  2017 breakpoint . On or left of blue line is susceptible, right of blue line is resistant.  

 
Because of the breakpoint placement, the vast majority of samples from 2002-2005 are indeed 
resistant (consistent with the Figure 3 plot). 
 

[Figure from Helen Zhou]

This resulted in many 
more “positives” for 
pre-2006 years, but 
which were simply 
because these were 
the lowest possible 
values that could be 
recorded

Label shift 
detected by model 
introspection



Conclusion

• Dataset shift happens all the time with 
healthcare data

• It doesn’t always hurt performance
• Interpretability methods can help with 

detecting and mitigating dataset shift
• Safe deployments should include automated 

checks for dataset shift
• Active area of research in ML


