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Course announcements

 PS3 due Fri3/20

— Interpretability, learning to defer, dataset shift

* PS4 released Fri 3/20 and due Wed 4/8

— Fairness, causal inference

* Project teams should be formed by 3/17

— To aid in team creation, by Weds evening, please
enter your name/interests into project
spreadsheet (sent via Piazza)



Outline for today’s class

 Examples & formalization of dataset shift
* Testing for dataset shift

* Mitigating dataset shift
* Case studies



Types of dataset shift

* Pr,4(x,y) versus Pr ..(xy), where X are the features /
covariates and Y is the label / outcome

* (Simple) covariate shift: Pr_4(x) # Pr,.,(x) but
Proaly %) = Proey(y[x)

(Quifionero-Candela et al., Dataset Shift in Machine Learning, MIT Press 2008)
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Types of dataset shift

* Pr,4(x,y) versus Pr ..(xy), where X are the features /
covariates and Y is the label / outcome

* (Simple) covariate shift: Pr_4(x) # Pr,.,(x) but
Proaly %) = Proey(y[x)

* Domain shift: Pr4(y|x) # Pr_.,(y|x) due to feature
transformation

* Label shift: Pr_4(y|x) # Pr..,(y|x) due to labels taking
on a new meaning

(Quifionero-Candela et al., Dataset Shift in Machine Learning, MIT Press 2008)



Dataset shift / non-stationarity:
Models often do not generalize

MGH UCSF

What kind of dataset
shift is this?
Covariate and domain
shift

[Figure adopted from Jen Gong and Tristan Naumann]



Prevalence, per 100 Persons per Year

Dataset shift / non-stationarity:
Diabetes Onset After 2009
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—> Automatically derived labels may change meaning
Label shift

[Geiss LS, Wang J, Cheng Y], et al. Prevalence and Incidence Trends for Diagnosed
Diabetes Among Adults Aged 20 to 79 Years, United States, 1980-2012. JAMA, 2014.]



Dataset shift / non-stationarity:
Top 100 lab measurements over time
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Labs

00000

Time (in months, from 1/2005 up to 1/2014)

— Significance of features may change over time
Covariate shift

[Figure credit: Narges Razavian]



Dataset shift / non-stationarity:
ICD-9 to ICD-10 shift
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— Significance of features may change over time
Covariate shift (domain shift if mapping ICD10 to ICD9)

[Figure credit: Mike Oberst]



Outline for today’s class

Examples & formalization of dataset shift
Testing for dataset shift

Mitigating dataset shift

Case studies



n n
MMDz(p, q) := ﬁ ZZ (24, ;) — ZZk i, T n i 7 ZZ/%(:EQ,

Testing for dataset shift

Shift in p(y):

— Plot distributions

Shift in p(x) or p(x|y):

— Compare feature means

— Use kernel two-sample test (Gretton et al., JMLR ‘12)

Integral probability metric:  ppp — sun [E 0] — o [¢(r
(Muller, 1997) c(p,4) Eeg! pll(z)] — Eqll(z)]

Maximum mean discrepancy (MMD): L are functions with norm 1 in a RKHS:
(Gretton et al., 2012)

samples x1, ..., Ty ~ P, T, ..., 2, ~ q

i=1 j=1 i=1 j=1 i=1 j=1



Testing for dataset shift

e Shiftin p(y):
— Plot distributions

e Shiftin p(x) or p(x]|y):
— Compare feature means

— Use kernel two-sample test such as maximum mean
discrepancy/MMD (Gretton et al., IMLR “12)

— (Attempt to) learn a classifier to distinguish one dataset
from the other

samples X1, ..., Ty ~ P, T,y ..., T) ~ q
Binar cIassification Ovs. 1

D = {(x1,1),...,(zm,1),(27,0),...,(z ,0)}



Testing for dataset shift

* Testing for covariate shift (wound healing):

ROC - delayed wound healing w/2013 data only
1.00 -
0.75- F

ROC - 2013 vs pre-2013

Sensitivity
o
Sensitivity
o

Distinguish first 2/3 of 2013 from
last 1/3 of 2013

0.50
Specificity

Distinguish 2013 from pre-2013

(Slide credit: Ken Jung)



Outline for today’s class

Examples & formalization of dataset shift

Testing for dataset shift
Mitigating dataset shift

— Covariate shift
— Covariate shift
— Domain shift

Case studies

Do nothing. Regression just “works”

Importance sampling
Causal invariances



Covariate shift: nonparametric
regression just “works”

When can we expect training on p(x,y) and testing on
q(x,y) to give good results, forp # g?

Theorem: If p(x) > 0 whenever q(x) > 0 and
p(y|x)=q(y]|x),theninthe limit of infinite data
from p, can achieve Bayes’ error on g

But we might not have infinite data!

We may have to use a more restricted model (e.g. a linear model
despite true one being non-linear)



Effect of covariate shift when (naively)
learning with misspecified models

* Training data p(x,y)=@ and test data q(x,y)=0O
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[Storkey, “When Training and Test Sets are Different”, Dataset in Machine Learning,
MIT Press 2009]



Effect of covariate shift when (naively)
learning with misspecified models

* Training data p(x,y)=@ and test data q(x,y)=0O

: . . Ideal linear
O O Q- model

_____

X

[Storkey, “When Training and Test Sets are Different”, Dataset in Machine Learning,
MIT Press 2009]



Effect of covariate shift when (naively)
learning with misspecified models

* Training data p(x,y)=@ and test data q(x,y)=0O
Linear model

learned on
training data

[Storkey, “When Training and Test Sets are Different”, Dataset in Machine Learning,
MIT Press 2009]



Learning using importance reweighting

* Training data p(x,y)=@ and test data q(x,y)=0O
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Learning using importance reweighting

* Training data p(x,y)=@ and test data q(x,y)=0O

§ Learned using
® ‘ importance
° @ reweighted
""" objective




Learning using importance reweighting

* Training data p(x,y)=@ and test data q(x,y)=0O

yA
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We only needed to know g(x) to figure out how to reweight the
training data! Example of unsupervised domain adaptation



When importance reweighting is not
enough

* Importance reweighted estimator can be high
variance

 |f there is no overlap, then unsupervised
domain adaptation is in general impossible —
even with infinite data

— E.g., ICD9 to ICD10



Learning under domain shift

 Must make additional assumptions, e.g.

— Covariate shift assumption holds for a subset of features
(Rojas-Carulla 18)

— Can disentangle factors of variation so as to learn models
robust to them (Heinze-Deml| & Meinshausen ‘19):

(a) Example 3, training set. (b) Example 3, test set.

JunfRR ARADLA

Figure 2: Motivating example 3: The goal is to predict whether a person is wearing glasses. The
distributions are shifted in test data by style interventions where style is the image quality.
A 5-layer CNN achieves 0% training error and 2% test error for images that are sampled
from the same distribution as the training images (a), but a 65% error rate on images
where the confounding between image quality and glasses is changed (b). See §5.3 for
more details.

[Rojas-Carulla, Scholkopf, Turner, Peters. Invariant Models for Causal Transfer Learning, JMLR ‘18]
[Heinze-Deml, Meinshausen. Conditional Variance Penalties and Domain Shift Robustness, ‘19]



Learning under domain shift

 Must make additional assumptions, e.g.

— Covariate shift assumption holds for a subset of features
(Rojas-Carulla 18)

— Can disentangle factors of variation so as to learn models
robust to them (Heinze-Deml| & Meinshausen ‘19):

Domain D
Learning algorithm assumes we have

<—@ A (some) training data with grouped

\/ observations (e.g. pictures of the
X)) same person with different image
N quality)

_________________

_________________

[Rojas-Carulla, Scholkopf, Turner, Peters. Invariant Models for Causal Transfer Learning, JMLR ‘18]
[Heinze-Deml, Meinshausen. Conditional Variance Penalties and Domain Shift Robustness, ‘19]



Outline for today’s class

Examples & formalization of dataset shift
Testing for dataset shift

Mitigating dataset shift
Case studies

— Framingham risk score

— Antibiotic resistance



Case study: Framingham risk score

* Many ML models are trained in one place and deployed more
broadly

 Example: Framingham coronary heart disease (CHD) risk score

— Model based on 6 major risk factors: age, BP, smoking, diabetes, total
cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C)

[Wilson et al., Circulation, 1998]



American

Heart
Association.

CHD score sheet for men using TC or LDL-C categories.

Step 1
Age
Years LDLPts Chol Pts
30-34 B 1
35-39 0 [0)
40-44 1 M
45-49 2 2)
50-54 3 [3]
55-59 4 4]
60-64 5 [5]
65-69 6 [6)
70-74 7 m
Step 2
LDL-C
(mg/dl) (mmol/L) LDL Pts
<100 <2.59 -3
100-129  2.60-3.36 0
130-159  3.37-4.14 0
160-190  4.15-4.92 1
2
Cholesterol
(mg/dl)  (mmol/L) Chol Pts
<160 <4.14 3]
160-199  4.15-5.17 [0]
200-239  5.18-6.21 ]

45-49
50-59
260

0.91-1.16
1.17-1.29 [ [0
1.30-1.55 0

>1.56 -1

(sum from steps 1-6)
Step 7

R
Adding up the points
Age

LDL-C or Chol
HDL-C
Blood
Pressure
Diabetes

Smoker

Point total

Step 4
Blood Pressure
Systolic Diastolic (mm Hg)
(mm Hg) <80 80-84 85-89 90-99 >100
<120 0 ts
120-129 0 [0] pts
130-139 1[1] pts
140-159

>160

Note: When systolic and diastolic pressures provide different
estimates for point scores, use the higher number

Step 5
Diabetes
LDLPts Chol Pts
No 0 0]
Yes 2
Step 6
Smoker
LDL Pts Chol Pts
No 0 [0]
Yes 2 2

Key
Color Relative Risk
green Very low
white Low

yellow Moderate

(determine CHD risk from point total)

Step 8
CHD Risk
LDLPts 10Yr Chol Pts 10Yr
Total CHD Risk Total CHD Risk
<3 1%
-2 2%
-1 2% [<1] [2%]
0 3% 0] [3%]
1 4% M [3%]
2 4% 2] [4%)
3 6% 3] 5%]
4 7% 4] [7%]
5 9% 5] [8%]
6 1% (6] [10%]
7 14% m [13%]
8 18% 8] [16%]
9 22% 9] [20%]
10 27% [10] [25%)
1 33% 1] [31%]
12 40% [12) [37%]
13 47% 3] [45%)
>14 >56% [>14] [>53%)
(compare to average person your age)
Step 9
|2t T Comparative Risk: i 0 il
Age Average Average Low**
(years) 10 Yr CHD 10 Yr Hard* CHD 10 Yr CHD
Risk Risk Risk
30-34 3% 1% 2%
35-39 5% 4% 3%
40-44 7% 4% 4%
45-49 1% 8% 4%
50-54 14% 10% 6%
55-59 16% 13% 7%
60-64 21% 20% 9%
65-69 25% 22% 1%
70-74 30% 25% 14%
* Hard CHD events exclude angina pectoris

** Low risk was calculated for a person the same

age, optimal blood pressure, LDL-C 100-129 mg/dL
or cholesterol 160-199 mg/dl, HDL-C 45 mg/dL for
men or 55 mg/dL for women, non-smoker, no diabetes

Risk estimates were derived from the experience of
the Frami Heart Study, a i
Caucasian population in Massachusetts, USA

Peter W. F. Wilson et al. Circulation. 1998;97:1837-1847

Copyright © American Heart Association, Inc. All rights reserved.



Case study: Framingham risk score

Many ML models are trained in one place and deployed more

broadly

Example: Framingham coronary heart disease (CHD) risk score

Prediction of coronary heart disease using risk factor categories [HTML] from ahajournals.org

Authors
Publication date
Journal

Volume

Issue

Pages
Publisher

Description

Total citations

Full text - MIT Libraries
Peter WF Wilson, Ralph B D’Agostino, Daniel Levy, Albert M Belanger, Halit Silbershatz, William B Kannel

1998/5/1

Circulation

97

18

1837-1847

Lippincott Williams & Wilkins

Background—The objective of this study was to examine the association of Joint National Committee (JNC-V) blood
pressure and National Cholesterol Education Program (NCEP) cholesterol categories with coronary heart disease
(CHD) risk, to incorporate them into coronary prediction algorithms, and to compare the discrimination properties of
this approach with other noncategorical prediction functions. Methods and Results—This work was designed as a
prospective, single-center study in the setting of a community-based ...

Cited by 8422

LL-LI_LIJ_I_LLI_I_IJ_I_I_L-_

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017



Case study: Framingham risk score

Many ML models are trained in one place and deployed more
broadly

Example: Framingham coronary heart disease (CHD) risk score
— 99% of Framingham participants are of European descent
— How well does it generalize to a Chinese population?

C-statistic (=AUC on censored data) on Chinese population is
0.705/0.742 (M/F)

What else should we look at?

[Liu et al., JAMA ‘04]



Case study: Framingham risk score

 Example: Framingham coronary heart disease (CHD) risk score
(directly applied to Chinese population)

Figure 2. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the Original
Framingham Functions

CHD Event Rates
] Predicted M Actual

0.20- Men - 0.90 - Women
0.154 0.15
0.10+
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on Original Framingham Functions on Original Framingham Functions

[Liu et al., JAMA ‘04]
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Case study: Framingham risk score

Many ML models are trained in one place and deployed more
broadly

Example: Framingham coronary heart disease (CHD) risk score
— 99% of Framingham participants are of European descent
— How well does it generalize to a Chinese population?

C-statistic (=AUC on censored data) 0.705/0.742 (M/F)

Re-fit using local data only slightly improves C-statistic (=AUC
on censored data), to 0.736/0.759 (M/F)

[Liu et al., JAMA ‘04]



CMCs

Framingham™

Risk Factors B

Age 0.07
Age squared NA
Blood pressure

Optimal -0.51

Normal

High normal 0.21

Stage 1 hypertension 0.33

Stage 2-4 hypertension 0.77
TC, mg/dL

<160 -0.51

160-199

200-239 0.07

240-279 0.32

=280 0.52
HDL-C, mg/dL

<35 -0.25

35-44 0.01

45-49

50-59 -0.07

=60 -0.40
Diabetes 0.09
Smoking 0.62

0.05
NA

0.09

0.42
0.66
0.90

-0.38

0.57
0.74
0.83

0.61
0.37

0.00
—-0.46
0.53
0.73

Case study: Framingham risk score

Example: Framingham coronary heart disease (CHD) risk score
(re-fit to Chinese population)

[Liu et al., JAMA ‘04]



Case study: Framingham risk score

 Example: Framingham coronary heart disease (CHD) risk score
(re-fit to Chinese population)

Figure 1. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the CMCS

Functions
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[Liu et al., JAMA ‘04]



Case study: predicting antibiotic
resistance

0O0®
BAE o s News'  opon P
Medscape Thursday, April 5, 2018
NEWS HEALTH NEWS & PERSPECTIVE DRUGS & DISEASES CME & EDUCATION ACADEN
Home World UK England N Weland Scotland Wales Husiness Politics | I L
24 January 2013 EsCErm O sa] | News>Medsa pe Medical News
Antibiotic-Resistant 'Nightmare' Bacteria a
Antibiotic 'apocalypse’ warning Growing US Threat

By James Gallagher

The rise in drug resistant infe

ctions Is

Unusual forms of 'nightmare' antibiotic-
resistant bacteria detected in 27 states

Megan Brooks
April 04, 2018

73

[Oberst, Boominathan, Zhou, Kanjilal, Sontag]



Case study: predicting antibiotic
resistance

Guide choice of antibiotic,
even before culture results
come back

Data from MGH & BWH hospitals in Boston

We show that we can nearly eliminate 2" line
antibiotic usage while decreasing the rate of
inappropriate antibiotics prescribed

Key tool: predicting antibiotic resistance



Case study: predicting antibiotic
resistance

* |n our early investigations, we included
features derived from clinical notes

* We noticed that top predictors were 2010,
2009’, 2014/, etc.

 We knew there was non-stationarity due to
levels of resistance changing, but this was
much more than we expected



Case study: predicting antibiotic

What
happened in
20067

A new card was
introduced to MIC
testing with a lower
range dilutions (more
dynamic range)

As a result, cut points to
decide difference
between
resistant/susceptible
were moved down
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This resulted in many
more “positives” for
pre-2006 years, but
which were simply
because these were
the lowest possible
values that could be
recorded

Label shift

detected by model
introspection

[Figure from Helen Zhoul]



Conclusion

Dataset shift happens all the time with
nealthcare data

t doesn’t always hurt performance

nterpretability methods can help with
detecting and mitigating dataset shift

Safe deployments should include automated
checks for dataset shift

Active area of research in ML



