Machine Learning for Healthcare 6.871, HST.956

Lecture 1: What makes healthcare unique?

Prof. David Sontag & Pete Szolovits

The Problem

- Cost of health care expenditures in the US are over \$3 trillion, and rising
- Despite having some of the best clinicians in the world, chronic conditions are
 - Often diagnosed late
 - Often inappropriately managed
- Medical errors are pervasive

Outline for today's class

- 1. Brief history of AI and ML in healthcare
- 2. Why *now*?
- 3. Examples of how ML will transform healthcare
- 4. What is *unique* about ML in healthcare?
- 5. Overview of class syllabus

1970's: MYCIN expert system

- 1970's (Stanford): MYCIN expert system for identifying bacteria causing severe infections
- Proposed a good therapy in ~69% of cases. Better than infectious disease experts

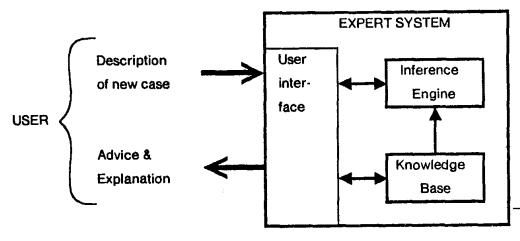


FIGURE 1-1 Major parts of an expert system. Arrows indicate information flow.

Dialogue interface

I am ready

** THIS IS A 26 YEAR OLD MALE PATIENT

My understanding is: The age of the patient is 26 The sex of the patient is male

** FIVE DAYS AGO, HE HAD RESPIRATORY-TRACT SYMPTOMS

What is his name?

** JO

My understanding is:
The name of the patient is Jo

Respiratory-tract is one of the symptoms that the patient had

** A COUPLE OF DAYS BEFORE THE ADMISSION, HE HAD A MALAISE

Please give me the date of admission

** MARCH 12, 1979

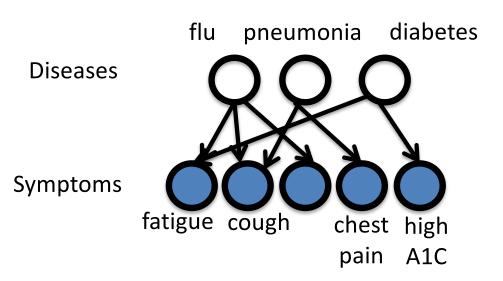
My understanding is:

The patient was admitted at the hospital 3 days ago Malaise is one of the symptoms that the patient had 5 days ago

FIGURE 33-1 Short sample dialogue. The physician's inputs appear in capital letters after the double asterisks.

1980's: INTERNIST-1/QMR model

- 1980's (Univ. of Pittsburgh): INTERNIST-1/Quick Medical Reference
- Diagnosis for internal medicine



Probabilistic model relating:

570 binary disease variables4,075 binary symptom variables45,470 directed edges

Elicited from doctors: **15 person-years of work**

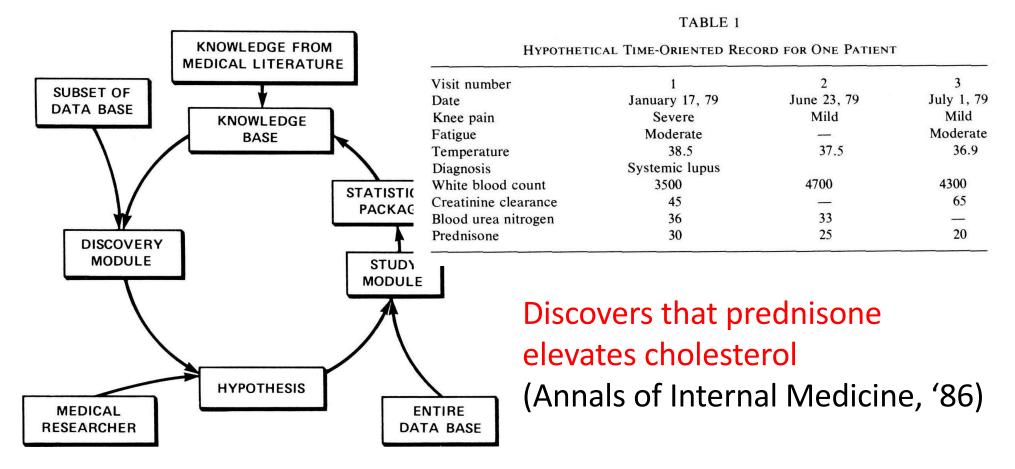
Led to advances in ML & AI (Bayesian networks, approximate inference)

- **Problems:** 1. Clinicians entered symptoms *manually*
 - 2. Difficult to maintain, difficult to generalize

[Miller et al., '86, Shwe et al., '91]

1980's: automating medical discovery

RX PROJECT: AUTOMATED KNOWLEDGE ACQUISITION



[Robert Blum, "Discovery, Confirmation and Incorporation of Causal Relationships from a Large Time-Oriented Clinical Data Base: The RX Project". Dept. of Computer Science, Stanford. 1981]

1990's: neural networks in medicine

- Neural networks with clinical data took off in 1990, with 88 new studies that year
- Small number of features (inputs)
- Data often collected by chart review

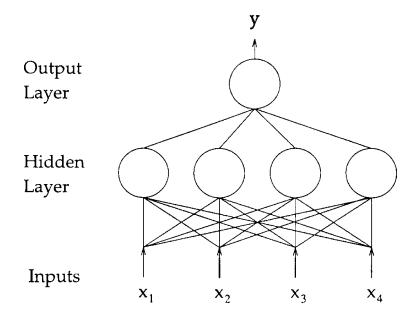


FIGURE 2. A multilayer perceptron. This is a two-layer perceptron with four inputs, four hidden units, and one output unit.

Problems: 1. Did not fit well into clinical workflow

2. Hard to get enough training data

3. Poor generalization to new places

[Penny & Frost, Neural Networks in Clinical Medicine. Med Decis Making, 1996]

Table 1 ● 25 Neural Network Studies in Medical Decision Making*

Subject	No. of Examples					Accuracy§	
	Training	Test	P†	Network	D‡	Neural	Other
Breast cancer⁴	57	20	60	9-15-2	0.6	80	75
Vasculitis ²	404	403	73	8-5-1	8.0	94	
Myocardial infarction ⁶	351	331	89	20-10 -10-1	1.1	97	84
Myocardial infarction ⁸	356	350	87	20-10-10-1	1.1	97	94
Low back pain ¹¹	100	100	25	50-48-2	0.2	90	90
Cancer outcome ¹³	5,169	3,102	_	54-40-1	1.4	0.779	0.776
Psychiatric length of stay ¹⁷	957	106	73	48-400-4	0.2	74	76
Intensive care outcome ²³	284	138	91	27-18-1	0.5	0.82	0.82
Skin tumor ²¹	150	100	80	18		80	90
Evoked potentials ³⁵	100	67	52	14-4-3	3.8	77	77
Head injury47	500	500	50	6-3-3	20	66	77
Psychiatric outcome ⁵⁴	289	92	60	41-10-1	0.7	79	-
Tumor classification ⁵⁵	53	6	38	8-9-3	1.4	99	88
Dementia ⁵⁷	75	18	19	80-10-7-7	0.6	61	
Pulmonary embolism ⁵⁹	607	606	69	50-4-1	2.9	0.82	0.83
Heart disease ⁶²	460	230	54	35-16-8-2	3	83 🦟	84
Thyroid function ⁶²	3,600	1,800	93	21-16-8-3	22	98	93
Breast cancer ⁶²	350	175	66	9-4-4-2	10	97	96
Diabetes ⁶²	384	192	65	8-4-4-2	12	77	75
Mycardial infarction ⁶³	2,856	1,429	56	291-1	9.8	85	
Hepatitis ⁶⁵	39	42	38	4-4-3	3.3	74	79
Psychiatric admission ⁷⁶	319	339	85	53-1-1	6.0	91	
Cardiac length of stay ⁸³	713	696	73	15~12-1	3.5	0.70	
Anti-cancer agents ⁸⁹	127	141	25	60-7-6	1.5	91	86
Ovarian cancer ⁹¹	75	98	_	6-6-2	2.6	84	81
MEDIAN VALUE	350	175	71	20	2.8		

^{*}For reference citations, see the reference list

[†]P = prior probability of most prevalent category.

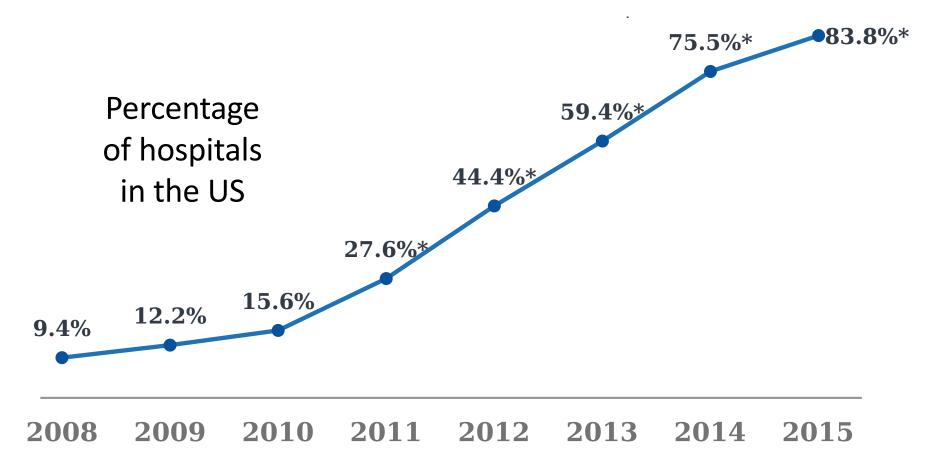
[‡]D = ratio of training examples to weights per output.

[§]A single integer in the accuracy column denotes percentage overall classification rate and a single real number between 0 and 1 indicates the AUROCC value. Neural = accuracy of neural net, Other = accuracy of best other method.

Outline for today's class

- 1. Brief history of AI and ML in healthcare
- 2. Why *now*?
- 3. Examples of how ML will transform healthcare
- 4. What is *unique* about ML in healthcare?
- 5. Overview of class syllabus

The Opportunity: Adoption of Electronic Health Records (EHR) has increased 9x in US since 2008



[Henry et al., ONC Data Brief, May 2016]

Large datasets



If you use MIMIC data or code in your work, please cite the following publication:

MIMIC-III, a freely accessible critical care database. Johnson AEW, Pollard TJ, Shen L, Lehman L, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, and Mark RG. Scientific Data (2016). DOI: 10.1038/sdata.2016.35. Available from: http://www.nature.com/articles/sdata201635

De-identified health data from ~40K critical care patients

Demographics, vital signs, laboratory tests, medications, notes, ...

Large datasets

SOLUTIONS | EVENTS | KNOWLEDGE | AB

Databases

"Data on nearly 230 million unique patients since 1995"

Market Knowledge

Real World Evidence

Stakeholder Management

Data & Tools

MarketScan Databases

Treatment Pathways Inpatient/Outpatient View

PULSE

Heartbeat Profiler

Putting Research
Data Into Your
Hands with the
MarketScan

The Family of MarketScan® Research Databases is the largest of its kind in the industry, with data on nearly 230 million unique patients since 1995.

\$\$\$

Large datasets

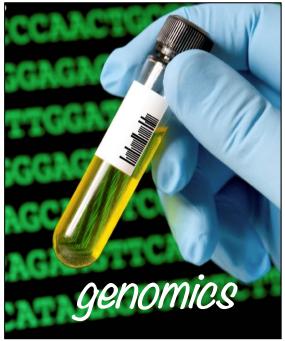
President Obama's initiative to create a 1 million person research cohort

Core data set:

- Baseline health exam
- Clinical data derived from electronic health records (EHRs)
- Healthcare claims
- Laboratory data

[Precision Medicine Initiative (PMI) working Group Report, Sept. 17 2015]

Diversity of digital health data



 Diagnosis codes: ICD-9 and ICD-10 (International Classification of Diseases)

...

ICD-9 codes 290-319: mental disorders

ICD-9 codes 320-359: diseases of the nervous system

ICD-9 codes 360-389: diseases of the sense organs

ICD-9 codes 390-459: diseases of the circulatory system

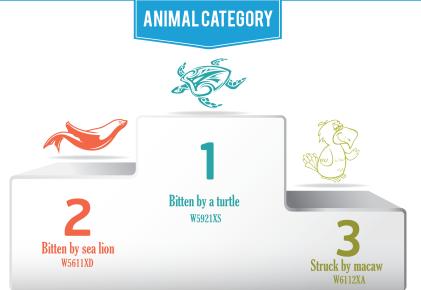
ICD-9 codes 460-519: diseases of the respiratory system

ICD-9 codes 520-579: diseases of the digestive system

ICD-9 codes 580-629: diseases of the genitourinary system

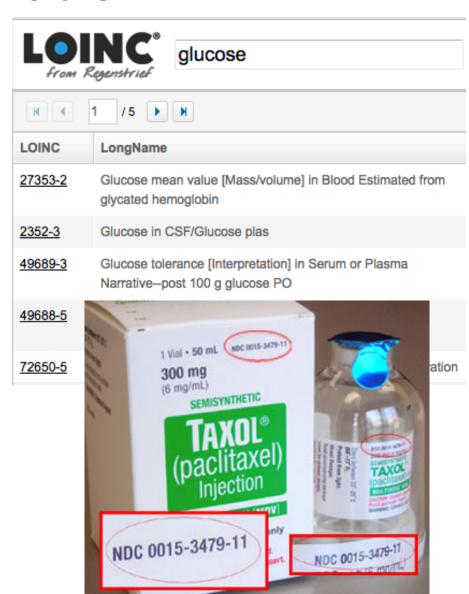
ICD-9 codes 630-679: complications of pregnancy, childbirth,

[https://en.wikipedia.org/wiki/Lis t of ICD-9 codes]

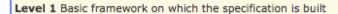


[https://blog.curemd.com/the-most-bizarre-icd-10-codes-infographic/]

- Diagnosis codes: ICD-9 and ICD-10 (International Classification of Diseases)
- Laboratory tests: LOINC codes
- Pharmacy: National Drug Codes (NDCs)
- Unified Medical Language System (UMLS): millions of medical concepts



[http://oplinc.com/newsletter/index_May08.htm]



For

Foundation

Base Documentation, XML, JSON, REST API + Search, Data Types, Extensions

Level 2 Supporting Implementation, and binding to external specifications

Downloads, Common Use Cases, Testing

Security & Privacy

Security, Consent Provenance AuditEvent

Conformance

StructureDefinition, CapabilityStatement, ImplementationGuide, Profiling

CodeSystem, ValueSet, ConceptMap, Terminology Svc

RDF

Level 3 Linking to real world concepts in the healthcare system

Administration

Patient, Practitioner, Device, Organization, Location, Healthcare Service

Level 4 Record-keeping and Data Exchange for the healthcare process

Clinical

Allergy, Problem, CarePlan, DetectedIssue, RiskAssessment, etc.

Diagnostics

Observation, Report, Specimen, ImagingStudy,Genomics,etc

Medications

Order, Dispense, Administration, Statement, Immunization, etc.

Workflow

Task, Appointment, Schedule, Referral, PlanDefinition, etc.

Financial

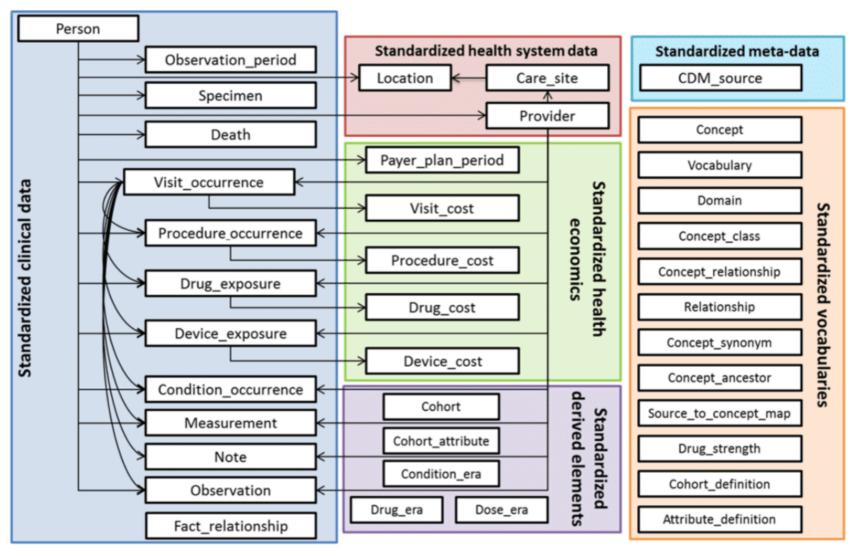
Claim, Account, Coverage, Claim, EligibilityRequest, ExplanationOfBenefit, etc.

Level 5 Providing the ability to reason about the healthcare process

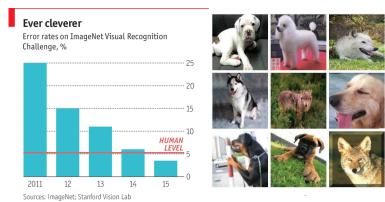
Clinical Reasoning

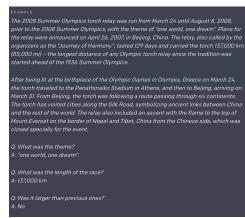
Library, ServiceDefinition & GuidanceResponse, Measure/MeasureReport, etc

OMOP Common Data Model v5.0



Breakthroughs in machine learning





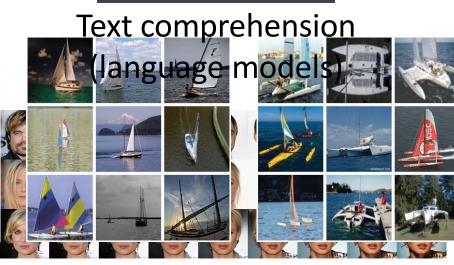


Figure 5: Linear interpolation in latent space between real images.

Generating realistic data (GANs, VAEs)

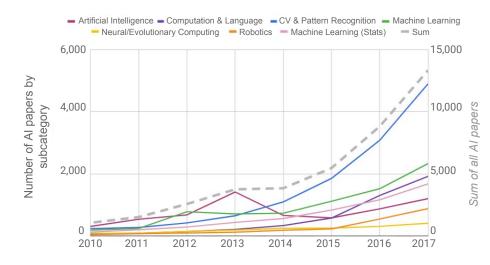
ESP Cat Subtree

Imagenet Cat Subtree

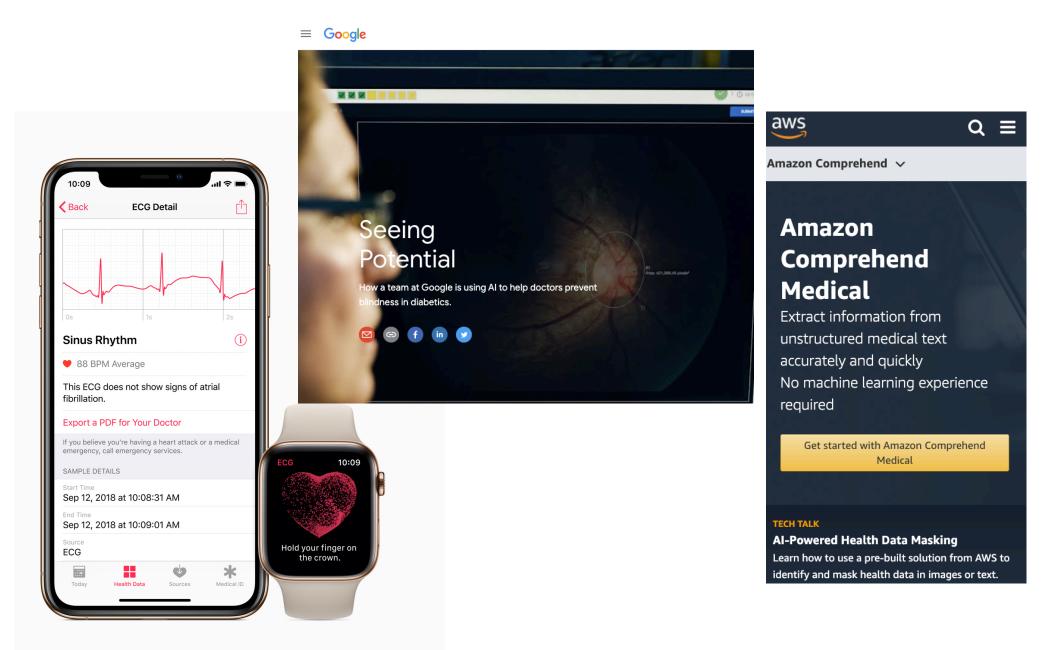
What's driving these advances?

- Democratization of machine learning
 - Large datasets
 - Cheap fast processing (GPUs + TPUs)
 - High-quality open-source software (scikit-learn, PyTorch, TensorFlow)
- More and more researchers

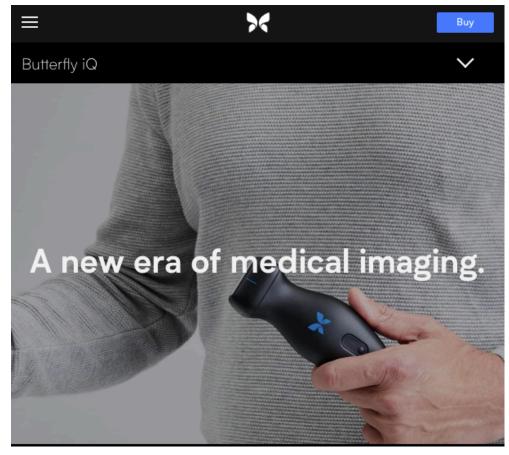
Number of AI papers on arXiv by subcategory (2010–2017) Source: arXiv



Tech industry interest in health care



Tech industry interest in health care



106 STARTUPS TRANSFORMING HEALTHCARE WITH AI



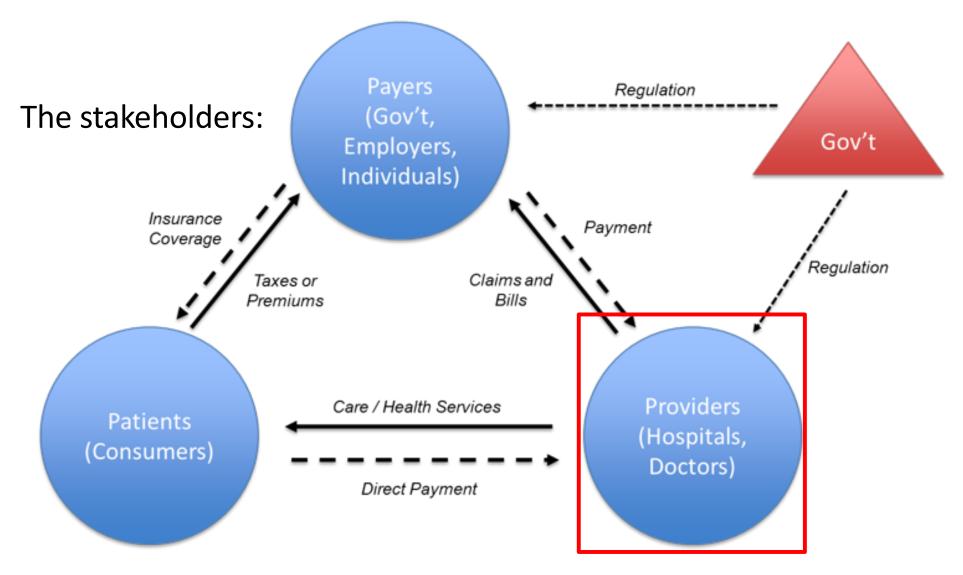
Tech/pharma interest in health care

- Major acquisitions to get big data for ML:
 - Merge (\$1 billion purchase by IBM, 2015)
 medical imaging
 - Truven Health Analytics (\$2.6 billion purchase by IBM, 2016)
 - health insurance claims
 - Flatiron Health (\$1.9 billion purchase by Roche,2018)
 - electronic health records (oncology)

Outline for today's class

- 1. Brief history of AI and ML in healthcare
- 2. Why *now*?
- 3. Examples of how ML will transform healthcare
- 4. What is *unique* about ML in healthcare?
- 5. Overview of class syllabus

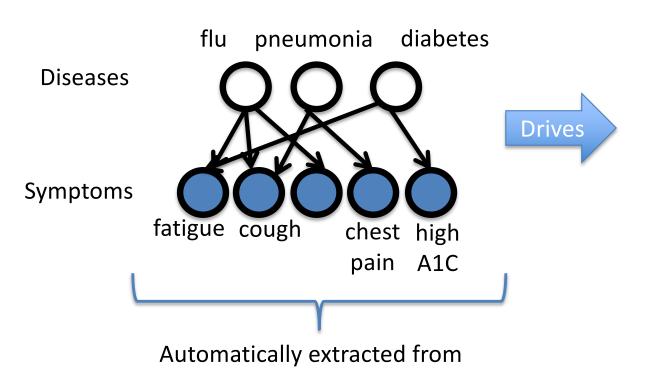
ML will transform every aspect of healthcare



Source for figure:

http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry

Behind-the-scenes reasoning about the patient's conditions (current and future)



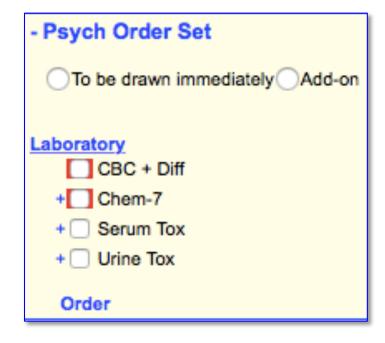
electronic health record

- Better triage
- Faster diagnosis
- Early detection of adverse events
- Prevent medical errors

Propagating best practices

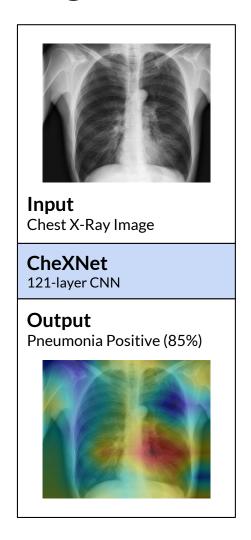
	ashboard decision support algorithms have determined that this patient ligible for the Atrius Cellulitis pathway. Please choose from the following
	Enroll in pathway
	Decline
	You can include a comment for the reviewers: Mandatory if Declining
E	Below are links to the pathway and/or other supporting documents:
	Atrius Cellulitis Pathway

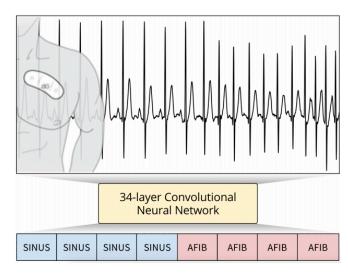
Anticipating the clinicians' needs



- Chest Pain Order Set
○ To be drawn immediately ○ Add-on
Initial Place IV (saline lock); flush per protocol Continuous Cardiac monitoring Continuous Pulse oximetry
EKG (pick 1) Indication: Chest Pain Indication: Dyspnea
Laboratory CBC + Diff + Chem-7 Troponin
Aspirin (pick 1) Aspirin 324 mg PO chewed Aspirin 243 mg PO chewed Aspirin taken before arrival
Imaging XR Chest PA & Lateral

Reducing the need for specialist consults



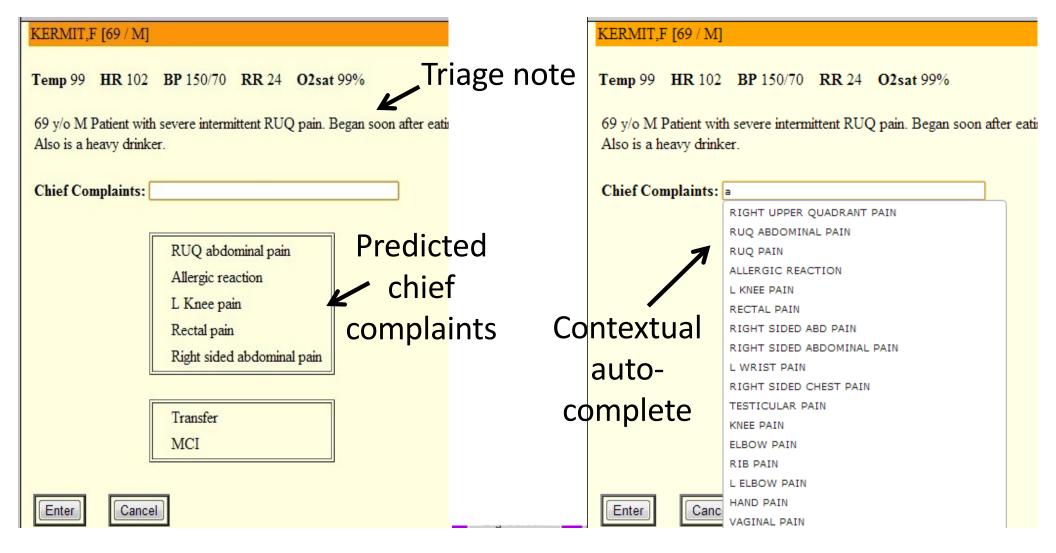


Arrhythmia?

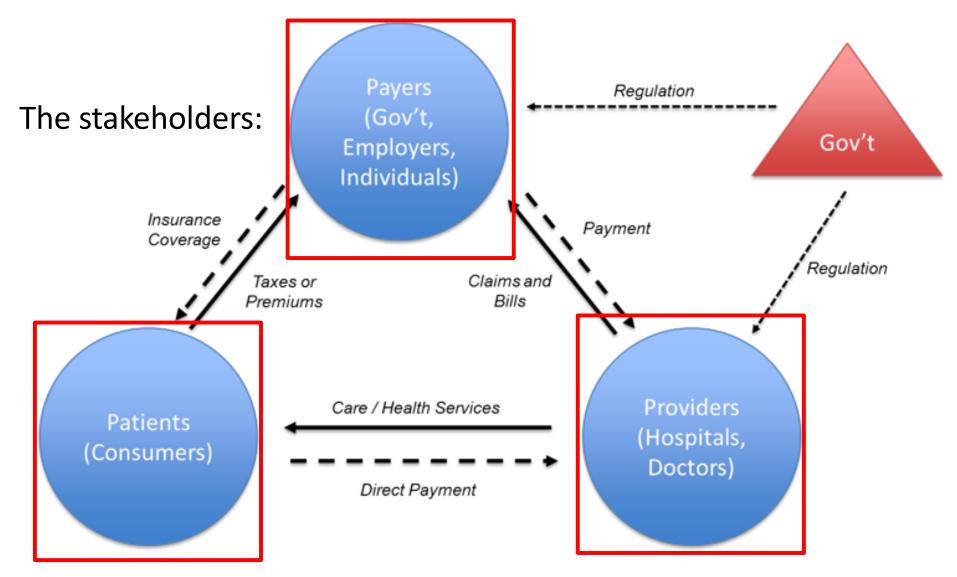
Figure sources: Rajpurkar et al., arXiv:1711.05225 '17

Rajpurkar et al., arXiv:1707.01836, '17

Automated documentation and billing



ML will transform every aspect of healthcare

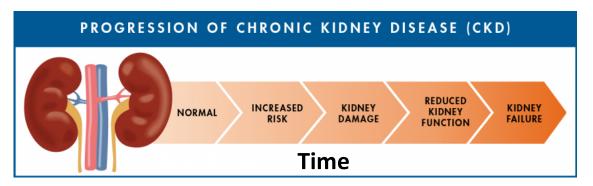


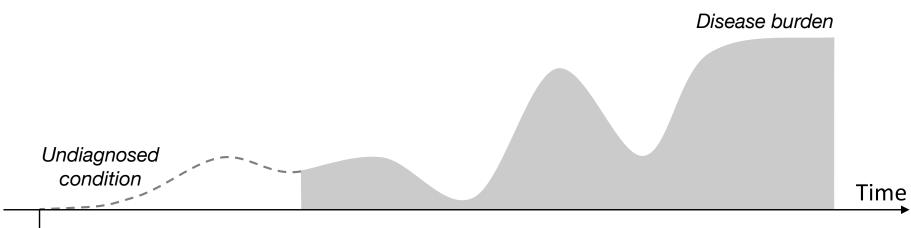
Source for figure:

http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry

What is the future of how we treat chronic disease?

Predicting a patient's future disease progression



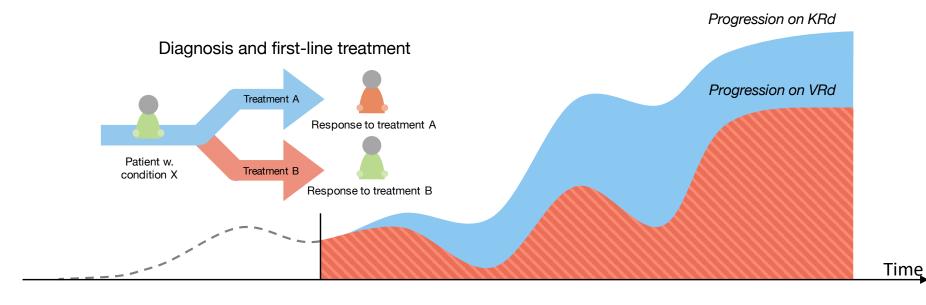


What is the future of how we treat chronic disease?

- Predicting a patient's future disease progression
- Precision medicine

Choosing first line therapy in multiple myeloma

A) KRd: carfilzomib-lenalidomide-dexamethasone, B) VRd: bortezomib-lenalidomide-dexamethasone



What is the future of how we treat chronic disease?

 Early diagnosis, e.g. of diabetes, Alzheimer's, cancer

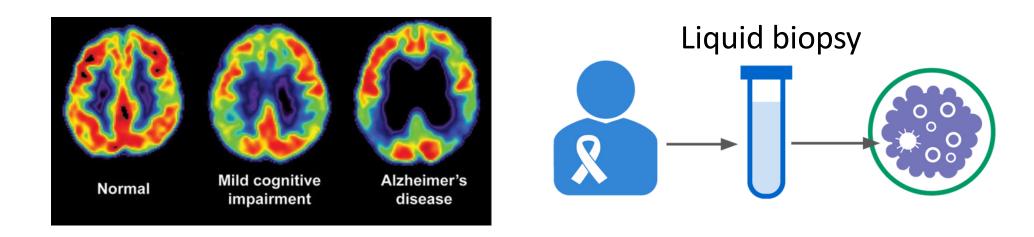


Figure sources: NIH, https://www.roche.com/research_and_development/what_we_are_working_on/oncology/liquid-biopsy.htm

What is the future of how we treat chronic disease?

 Continuous monitoring and coaching, e.g. for the elderly, diabetes, psychiatric disease

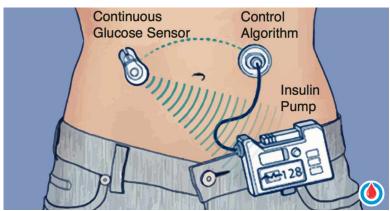


Figure source (left): http://www.emeraldforhome.com/

What is the future of how we treat chronic disease?

 Discovery of new disease subtypes; design of new drugs; better targeted clinical trials

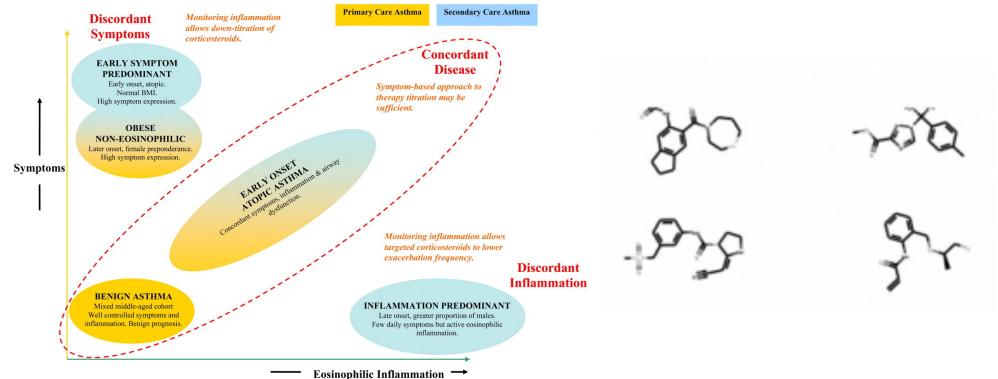


Figure sources: Haldar et al., Am J Respir Crit Care Med, 2008 http://news.mit.edu/2018/automating-molecule-design-speed-drug-development-0706

Outline for today's class

- 1. Brief history of AI and ML in healthcare
- 2. Why *now*?
- 3. Examples of how ML will transform healthcare
- 4. What is unique about ML in healthcare?
- 5. Overview of class syllabus

- Life or death decisions
 - Need robust algorithms
 - Checks and balances built into ML deployment
 - (Also arises in other applications of AI such as autonomous driving)
 - Need fair and accountable algorithms
- Many questions are about unsupervised learning
 - Discovering disease subtypes, or answering question such as "characterize the types of people that are highly likely to be readmitted to the hospital"?
- Many of the questions we want to answer are causal
 - Naïve use of supervised machine learning is insufficient

 Very little labeled data Ever cleverer Recent breakthroughs in Al Error rates on ImageNet Visual Recognition Challenge, % depended on lots of labeled data! Loud and clear Speech-recognition word-error rate, selected benchmarks, % Log scale Switchboard Switchboard cellular Meeting speech IBM, Switchboard 10 HUMAN Microsoft, Switchboard The Switchboard corpus is a collection of recorded telephone conversations widely used to train and test speech-recognition systems 2011 12 13 14 15 Sources: ImageNet; Stanford Vision Lab Sources: Microsoft; research papers

Economist.com

- Very little labeled data
 - Motivates semi-supervised learning algorithms
- Sometimes small numbers of samples (e.g., a rare disease)
 - Learn as much as possible from other data (e.g. healthy patients)
 - Model the problem carefully
- Lots of missing data, varying time intervals, censored labels

- Difficulty of de-identifying data
 - Need for data sharing agreements and sensitivity
- Difficulty of deploying ML
 - Commercial electronic health record software is difficult to modify
 - Data is often in silos; everyone recognizes need for interoperability, but slow progress
 - Careful testing and iteration is needed

Goals for the semester

- Intuition for working with healthcare data
- How to set up as machine learning problems
- Understand which learning algorithms are likely to be useful and when
- Appreciate subtleties in safely & robustly applying ML in healthcare
- Set the research agenda for the next decade

Outline for today's class

- 1. Brief history of AI and ML in healthcare
- 2. Why *now*?
- 3. Examples of how ML will transform healthcare
- 4. What is *unique* about ML in healthcare?
- 5. Overview of class syllabus

Course staff

- David Sontag (instructor)
 - Associate Professor in EECS (course 6) and part of CSAIL and IMES
 - PhD '10, then 5 years as professor at NYU
 - Leads clinical machine learning research group
- Peter Szolovits (instructor)
 - Professor in EECS, associate faculty in IMES
 - Researching AI in medicine since 1975 (!)
 - Leads clinical decision making group in CSAIL

Course staff

- Monica Agrawal (teaching assistant)
 - PhD student with David Sontag
 - Research in clinical NLP
 - Undergrad at Stanford (with Jure Leskovec) and intern at Flatiron Health
- Matthew McDermott (teaching assistant)
 - PhD student with Pete Szolovits
 - Research on deep learning in machine learning for health care
 - Executive committee for new CHIL conference, organizer of NeurIPS ML4H workshop
- Office hours Monday 12:30pm, location TBA

Prerequisites & Enrollment

- Must submit pre-req quiz (on course website) by 11:59PM EST today
- We assume previous undergraduate-level ML, and comfort with:
 - Machine learning methodology (e.g. generalization, cross-validation)
 - Supervised machine learning techniques (e.g. support vector machines, neural networks)
 - Optimization for ML (e.g. stochastic gradient descent)
 - Statistical modeling (e.g. Gaussian mixture models)
 - Python
- Listeners and auditors by permission only; please fill out pre-req quiz

Logistics

- Course website: https://mlhcmit.github.io/
- All announcements made via Piazza make sure you are signed up for it!
- Recitation (optional): Fridays, starting next week (details TBD)
- Grading:
 - 35% homework (~5 problem sets; both theory & practice)
 - 20% quiz (early/mid April)
 - 35% course project
 - 10% participation (scribing, reading responses, and in-class discussion)

Upcoming problem sets

- PSO (due Mon 5pm): human subjects training & MIMIC data use agreement
- PS1: Predicting mortality in ICUs using labs and clinical text
 - Released late next week
 - Due Feb 24 (tentative)

Draft Schedule

- Module 1: Overview of clinical care & data (3 lectures)
- Module 2: Using ML for risk stratification and diagnosis (9 lectures)
 - Supervised learning with noisy, biased, or censored labels
 - Interpretability; Methods for detecting dataset shift; Fairness; Uncertainty
- Module 3: Suggesting treatments (4 lectures)
 - Causal inference; Off-policy reinforcement learning
- Module 4: Understanding disease and its progression (3 lectures)
 - Unsupervised learning on censored time series with substantial missing data
 - Discovery of disease subtypes; Precision medicine
- Module 5: Human factors (3 lectures)
 - Differential diagnosis; Utility-theoretic trade-offs
 - Automating clinical workflows
 - Translating technology into the clinic

6.S897/HST.956 vs 6.874

- Our class will focus on clinical data and its use to improve health care
- For reasons of time & scope, we will not go deep into applications in the life sciences
 - For this, we recommend taking 6.874
 Computational Systems Biology: Deep Learning in the Life Sciences

https://mit6874.github.io/