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Course announcements

* Recitation Friday at 2pm (4-153) — optional
* PS1 due tonight; PS2 out Tuesday



Outline for today’s class

1. Risk stratification (continued)
— Deriving labels
— Evaluation
— Subtleties with ML-based risk stratification

2. Survival modeling



Where do the labels come from?

Diabetes Onset

T T+W

Patient A +

Typical pipeline:
1. Manually label several patients’ data by “chart
review”

2. A) Come up with a simple rule to automatically
derive label for all patients, or

B) Use machine learning to get the labels
themselves



Step 1:
Visualization of individual patient data is
an important part of chart review
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Figure 1: Algorithm for identifying T2DM cases in the EMR.

Step 2:
Example of a
rule-based
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Source: https://phekb.org/sites/phenotype/files/T2DM-algorithm.pdf
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Outline for today’s class

1. Risk stratification (continued)
— Deriving labels
— Evaluation
— Subtleties with ML-based risk stratification

2. Survival modeling
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Receiver-operator characteristic curve
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Receiver-operator characteristic curve
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Calibration (note: different dataset)
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Outline for today’s class

1. Risk stratification (continued)
— Deriving labels

— Evaluation
— Subtleties with ML-based risk stratification

2. Survival modeling



Prevalence, per 100 Persons per Year

Non-stationarity:
Diabetes Onset After 2009
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—> Automatically derived labels may change meaning

[Geiss LS, Wang J, Cheng VY], et al. Prevalence and Incidence Trends for Diagnosed
Diabetes Among Adults Aged 20to 79 Years, United States, 1980-2012.JAMA, 2014.]



Non-stationarity:
'op 100 lab measurements over time

— ]
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Labs

Time (in months, from 1/2005 up to 1/2014)

— Significance of features may change overtime

[Figure credit: Narges Razavian]



Non-stationarity:
ICD-9 to ICD-10 shift

Count of diagnosis codes

2000 2005 2010 2015

— Significance of features may change overtime

[Figure credit: Mike Oberst]



Re-thinking evaluation in the face of
non-stationarity

* How was our diabetes model evaluation flawed?
* Good practice: use test data from a future year:

Test
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' patient IDs 3 o _ 13,168 (~7%)
spluf by / (~20%) 26,895 (~15%) distinct patient IDs P,
patients; patient IDs
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between these / Train y
groups of 88,310
patient IDs . l
208,752 micro samples* micro samples
\ 146,434 distinct 52,600
patient IDs 107,414 (~59%) distinct patient IDs (~£9%)
(~80%) distinct
* train/development set Pﬂﬂﬁﬂt IDs
[Figure credit:
Helen Zhoul] split by S 2007 - 2013 2014 - 2016
date range




Intervention-tainted outcomes

 Example from today’s readings:

— Patients with pneumonia who have a history of
asthma have lower risk of dying from pneumonia

— Thus, we learn: HasAsthma(x) => LowerRisk(x)

* What’s wrong with the learned model?

— Risk stratification drives interventions

— If low risk, might not admit to ICU. But this was
precisely what prevented patients from dying!

[Caruana et al., Intelligible Models for Healthcare: Predicting Pneumonia Risk and Hospital 30-
day Readmission. KDD 2015.]



Intervention-tainted outcomes

* Formally, this is what’s happening:

Y
ED trlage Treatment Death> Time
|
‘Mary

A long survival time may be because of treatment!

e How do we address this problem?

* First and foremost, must recognize it is happening
— interpretable models help with this



Intervention-tainted outcomes

e Hacks:

1. Modify model, e.g. by removingthe
HasAsthma(x) => LowerRisk(x) rule
| do not expect this to work with high-
dimensional data

2. Re-define outcome by finding a pre-treatment
surrogate (e.g., lactate levels)

3. Considertreated patients as right-censored by
treatment

Example:
Henry, Hager, Pronovost, Saria. A targeted real-time early warning
score (TREWScore) for septic shock. Science Translation Medicine, 2015



Intervention-tainted outcomes

* Therigorous way to address this problemis through
the language of causality:

Patient, X Intervention, T

(everything we
know at triage)

(admit to the ICU?)
)

Outcome, Y (death)

Will admission to ICU lower likelihood of death for patient?

e We return to thisin Lecture 14



No big wins from deep models on

structured data/text
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Health systems collect and store
electronic health records in various

formats in databases.

All available data for each patient is
converted to events recorded in
containers based on the Fast
Healthcare Interoperability Resource

(FHIR) specification.

The FHIR resources are placed in
temporal order, depicting all events
recorded in the EHR (i.e. timeline).
The deep learning model uses this
full history to make each prediction.

Rajkomaret al.,,

Scalable and accurate
deep learning with

electronichealth

records. Nature Digital

Medicine, 2018

Recurrent neural

network & attention-
based modelstrained
on 200K hospitalized

patients



No big wins from deep models on

structured data/text

Supplemental Table 1: Prediction accuracy of each task of deep learning model compared to baselines

Hospital A Hospital B
Inpatient Mortality, AUROC(95% CI)
Deep learning 24 hours after admission 0.95(0.94-0.96) 0.93(0.92-0.94)
Full feature enhanced baseline at 24 hours after admission  0.93(0.92-0.95)  0.91 (0.89-0.92)
Full feature simple baseline at 24 hours after admission 0.93(0.91-0.94)  0.90(0.88-0.92)
Baseline (aEWS?) at 24 hours after admission 0.85(0.81-0.89) 0.86(0.83-0.88)

30-day Readmission, AUROC (95% CI)

Deep learning at discharge 0.77(0.75-0.78)  0.76(0.75-0.77)
Full feature enhanced baseline at discharge 0.75(0.73-0.76)  0.75(0.74-0.76)
Full feature simple baseline at discharge 0.74(0.73-0.76)  0.73(0.72-0.74)
Baseline (mHOSPITAL?) at discharge 0.70(0.68-0.72)  0.68(0.67-0.69)

Length of Stay at least 7 days AUROC (95% CI)

Deep learning 24 hours after admission

0.86(0.86-0.87) 0.85(0.85-0.86

( ) ( )
Full feature enhanced baseline at 24 hours after admission  0.85(0.84-0.85)  0.83(0.83-0.84)
Full feature simple baseline at 24 hours after admission 0.83(0.82-0.84)  0.81(0.80-0.82)
Baseline (mLiu?) at 24 hours after admission 0.76 (0.75-0.77)  0.74(0.73-0.75)

[Rajkomar et al. ‘18 electronic supplementary material:

https://static-content.springer.com/esm/art%3A10.1038%2Fs41746-018-0029-
1/MediaObjects/41746 2018 29 MOESM1_ESM.pdf]

Comparison
to Razavian
et al. ‘15



No big wins from deep models on
structured data/text

Keep in mind:
Small wins with deep models may disappear

altogetherwith dataset shift or non-stationarity
(Jung & Shah, JBI “15)




No big wins from deep models on
structured data/text — why?

* Sequential data in medicine is very different
from language modeling

— Many time scales, significant missing data, and
multi-variate observations

— Likely do exist predictive nonlinear interactions, but
subtle

— Not enough data to naively deal with the above two

* Medical community has already come up with
some very good features



Outline for today’s class

1. Risk stratification (continued)
— Deriving labels
— Evaluation
— Subtleties with ML-based risk stratification

2. Survival modeling



Survival modeling

 We focus on right-censored data:

Event occurrence
/ e.g., death, divorce, college graduation
S6 Pk
S5 o

wn
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Time T

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]



Survival modeling

 Why not use classification, as before?
— Less data for training (due to exclusions)
— Pessimistic estimates due to choice of window

 What about regression, e.g. minimizing mean-
squared error?
— T is non-negative, may want long tails

— If we just naively removed censored events, we
would be introducing bias



Notation and formalization

e Dataare (x, T, b)=(features, time, censoring), where
b=0,1 denotes whether time is of censoring or event

occurrence
e Letf(t) = P(t) be the probability of death at time t

e Survival function:the probability of an individual
surviving beyond time t,

S(t)=P(T >1t) = /OO f(x)dx

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]



Notation and formalization

A
F(t) or proportion dead

0.8
B f(t) or death density
E 0.6 |-
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Fig. 2: Relationship among different entities f(¢), F'(t) and S(t).

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]



Kaplan-Meier estimator

 Example of a non-parametric method; good for
unconditional density estimation

=0 ==l Observed event times
S T Yy < Yoy <+ < YD)
Survival d) = # events at this time
probability, e Nk = # of individuals alive
S(t)

and uncensored
: 5 d k)
0.00 SK_M(Z') = H { _
0 500 1000 1500 2000 k:y(k)ft n(k)

Time t

[Figure credit: Rebecca Peyser]



Maximum likelihood estimation

 Commonly parametric densities for f(t):

Table 2.1 Useful parametric distributions for survival analysis

Distribution Survival function Density function f(¢)
S(1)

Exponential (A > 0) exp(—At) Aexp(—Ar)

Weibull (A, ¢ > 0) exp(—)\t(b) A¢t¢_1 exp(—At¢)

Log-normal (parameters 1 — ®{(Int — p)/o} | {(nt — )/} (o)~}

(0>0,p€R) can be a

Log-logistic function of x) 1/(1 4+ At?) Aot~ 1 /(1 + At?)?

A>0,0>0)

Gamma (\, ¢ > 0) 1 — I\, @) N/ T ()2 L exp(—Ar)

Gompertz exp{%(l — %)) Ae? exp{%(l — e?))

(A, ¢ > 0)

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]



Maximum likelihood estimation

e Two kinds of observations: censored and uncensored

Uncensored likelihood

pe(T=t|x) = f(1)

Censored likelihood
p(éensored(t | X) :pe(T >t | X) — S(t)
e Putting the two together, we get:
> "b;logp&sered(¢ | x) + (1 —b) logpy (t]x)
=1

Optimize via gradient or stochastic gradient ascent!



Evaluation for survival modeling

* Concordance-index (also called C-statistic): look at
model’s ability to predict relative survival times:

A 1 . .
c=— Z Z I1S(g;1X5) > S(9:| X))
1:0;, = 07:y: <y,
* |llustration — blue lines denote pairwise comparisons:

Y Y2 Vs

y
O | 5

Y4
O o
Black = uncensored

Red = censored

* Equivalentto AUCfor binary variables and no censoring

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]



Final thoughts on survival modeling

* Could also evaluate:
— Mean-squared error for uncensored individuals
— Held-out (censored) likelihood

— Derive binary classifier from learned model and
check calibration

e Partial likelihood estimators (e.g. for cox-
proportional hazards models) can be much
more data efficient



