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Course	announcements

• Recitation	Friday	at	2pm	(4-153)	– optional
• PS1	due	tonight;	PS2	out	Tuesday



Outline	for	today’s	class

1. Risk	stratification	(continued)
– Deriving	labels
– Evaluation
– Subtleties	with	ML-based	risk	stratification

2. Survival	modeling



Where	do	the	labels	come	from?

Typical	pipeline:
1. Manually	label	several	patients’	data	by	“chart	

review”
2. A)	Come	up	with	a	simple	rule	to	automatically	

derive	label	for	all	patients,	or

B)	Use	machine	learning	to	get	the	labels	
themselves



Step	1:
Visualization	of	individual	patient	data	is	

an	important	part	of	chart	review

Demographic	information
Patient	events	list

Events,	as	they	occur	for	the	first	time	in	patient	history	

https://github.com/nyuvis/patient-viz



Figure 1: Algorithm for identifying T2DM cases in the EMR.
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Source:	https://phekb.org/sites/phenotype/files/T2DM-algorithm.pdf

Step	2:
Example	of	a	
rule-based
phenotype
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1. Risk	stratification	(continued)
– Deriving	labels
– Evaluation
– Subtleties	with	ML-based	risk	stratification

2. Survival	modeling
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Receiver-operator	characteristic	curve
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– Deriving	labels
– Evaluation
– Subtleties	with	ML-based	risk	stratification

2. Survival	modeling



Non-stationarity:
Diabetes	Onset	After	2009

[Geiss LS,	Wang	J,	Cheng	YJ,	et	al.	Prevalence	and	Incidence	Trends	for	Diagnosed	
Diabetes	Among	Adults	Aged	20	to	79	Years,	United	States,	1980-2012. JAMA,	2014.]

→	Automatically	derived	labels	may	change	meaning



Non-stationarity:
Top	100	lab	measurements over	time

Time	(in	months,	from	1/2005	up	to	1/2014)
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bs

[Figure	credit:	Narges Razavian]

→	Significance	of	features	may	change	over	time
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[Figure	credit:	Mike	Oberst]

Non-stationarity:
ICD-9	to	ICD-10	shift

ICD-9

ICD-10

→	Significance	of	features	may	change	over	time



Re-thinking	evaluation	in	the	face	of	
non-stationarity

• How	was	our	diabetes	model	evaluation	flawed?
• Good	practice:	use	test	data	from	a	future	year:

5.2 Train and Test Splits

Data is partitioned into four disjoint sets of microbiology samples. As shown in Figure

5-1, distinct patient IDs are first split into disjoint sets, with 80% of patient IDs for

training/development (train/dev), and 20% for testing. Then, to evaluate how well

our models might generalize to the future, the data is split according to a train/dev

time range of 2007-2013, and a test time range of 2014-2016.

All model tuning and design decisions are made based on dataset 1 in Figure

5-1, which comprises approximately 56% of all filtered microbiological samples from

2007-2016. Dataset 1 corresponds to the train/dev set for both patient IDs and time

ranges, while dataset 2 corresponds to test patient IDs and train/dev time ranges,

dataset 3 corresponds to train/dev patient IDs and test time ranges, and dataset 4

corresponds to test patient IDs and test time ranges. This thesis only reports test

values for dataset 3, but future work will report values on the remaining test datasets

as well.

Figure 5-1: Partitioning of data into training/development and test sets, based on an
80-20 split of patient IDs and time intervals of 2007-2013 and 2014-2016.
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Train

Validate

[Figure	credit:	
Helen	Zhou]

Test



Intervention-tainted	outcomes
• Example	from	today’s	readings:

– Patients	with	pneumonia	who	have	a	history	of	
asthma	have	lower	risk	of	dying	from	pneumonia
– Thus,	we	learn:	HasAsthma(x)	=>	LowerRisk(x)

• What’s	wrong	with	the	learned	model?
– Risk	stratification	drives	interventions
– If	low	risk,	might	not	admit	to	ICU.	But	this	was	
precisely	what	prevented	patients	from	dying!

[Caruana et	al.,	Intelligible	Models	for	Healthcare:	Predicting	Pneumonia	Risk	and	Hospital	30-
day	Readmission.	KDD	2015.]



Intervention-tainted	outcomes

𝑿
𝒀

ED	triage Death Time

“Mary”

Treatment

A	long	survival	time	may	be	because	of	treatment!

• Formally,	this	is	what’s	happening:

• How	do	we	address	this	problem?
• First	and	foremost,	must	recognize	it	is	happening	
– interpretable	models	help	with	this



Intervention-tainted	outcomes
• Hacks:

1. Modify	model,	e.g.	by	removing	the	
HasAsthma(x)	=>	LowerRisk(x) rule
I	do	not	expect	this	to	work	with	high-
dimensional	data

2. Re-define	outcome	by	finding	a	pre-treatment	
surrogate	(e.g.,	lactate	levels)

3. Consider	treated	patients	as	right-censored	by	
treatment

Example:
Henry,	Hager,	Pronovost,	Saria.	A	targeted	real-time	early	warning	
score	(TREWScore)	for	septic	shock.	Science	Translation	Medicine,	2015



Intervention-tainted	outcomes
• The	rigorous	way	to	address	this	problem	is	through	
the	language	of	causality:

• We	return	to	this	in	Lecture	14

Intervention, 𝑇

(admit to the ICU?)

Outcome, 𝑌 (death)

Patient, 𝑋

(everything we
know at triage) ?

Will	admission	to	ICU	lower	likelihood	of	death	for	patient?



No	big	wins	from	deep	models	on	
structured	data/text

standard definition of “unplanned”76 percentage, so we used a modified
form of the Centers for Medicare and Medicaid Services definition,77 which
we detail in the supplement. Billing diagnoses and procedures from the
index hospitalization were not used for the prediction because they are
typically generated after discharge. We included only readmissions to the
same institution.

Long length of stay. We predicted a length of stay at least 7 days, which
was approximately the 75th percentile of hospital stays for most services
across the datasets. The length of stay was defined as the time between
hospital admission and discharge.

Diagnoses. We predicted the entire set of primary and secondary ICD-9
billing diagnoses from a universe of 14,025 codes.

Prediction timing
This was a retrospective study. To predict inpatient mortality, we stepped
forward through each patient’s time course, and made predictions every
12 h starting 24 h before admission until 24 h after admission. Since many
clinical prediction models, such as APACHE,78 are rendered 24 h after
admission, our primary outcome prediction for inpatient mortality was at
that time-point. Unplanned readmission and the set of diagnosis codes
were predicted at admission, 24 h after admission, and at discharge. The
primary endpoints for those predictions were at discharge, when most
readmission prediction scores are computed79 and when all information
necessary to assign billing diagnoses is available. Long length of stay was
predicted at admission and 24 h after admission. For every prediction we
used all information available in the EHR up to the time at which the
prediction was made.

Fig. 4 Data from each health system were mapped to an appropriate FHIR (Fast Healthcare Interoperability Resources) resource and placed in
temporal order. This conversion did not harmonize or standardize the data from each health system other than map them to the appropriate
resource. The deep learning model could use all data available prior to the point when the prediction was made. Therefore, each prediction,
regardless of the task, used the same data

Scalable and accurate deep learning with electronic health
A Rajkomar et al.

7

Published in partnership with the Scripps Translational Science Institute npj Digital Medicine (2018) �18�

Rajkomar et	al.,	
Scalable	and	accurate	
deep	learning	with	
electronic	health	
records.	Nature	Digital	
Medicine,	2018

Recurrent	neural	
network	&	attention-
based	models	trained	
on	200K	hospitalized	
patients



No	big	wins	from	deep	models	on	
structured	data/text

[Rajkomar et	al.	‘18	electronic	supplementary	material:
https://static-content.springer.com/esm/art%3A10.1038%2Fs41746-018-0029-
1/MediaObjects/41746_2018_29_MOESM1_ESM.pdf]

Supplemental Table 1: Prediction accuracy of each task of deep learning model compared to baselines

Hospital A Hospital B
Inpatient Mortality, AUROC1(95% CI)
Deep learning 24 hours after admission 0.95(0.94-0.96) 0.93(0.92-0.94)
Full feature enhanced baseline at 24 hours after admission 0.93 (0.92-0.95) 0.91 (0.89-0.92)
Full feature simple baseline at 24 hours after admission 0.93 (0.91-0.94) 0.90 (0.88-0.92)
Baseline (aEWS2) at 24 hours after admission 0.85 (0.81-0.89) 0.86 (0.83-0.88)
30-day Readmission, AUROC (95% CI)
Deep learning at discharge 0.77(0.75-0.78) 0.76(0.75-0.77)
Full feature enhanced baseline at discharge 0.75 (0.73-0.76) 0.75 (0.74-0.76)
Full feature simple baseline at discharge 0.74 (0.73-0.76) 0.73 (0.72-0.74)
Baseline (mHOSPITAL3) at discharge 0.70 (0.68-0.72) 0.68 (0.67-0.69)
Length of Stay at least 7 days AUROC (95% CI)
Deep learning 24 hours after admission 0.86(0.86-0.87) 0.85(0.85-0.86)
Full feature enhanced baseline at 24 hours after admission 0.85 (0.84-0.85) 0.83 (0.83-0.84)
Full feature simple baseline at 24 hours after admission 0.83 (0.82-0.84) 0.81 (0.80-0.82)
Baseline (mLiu4) at 24 hours after admission 0.76 (0.75-0.77) 0.74 (0.73-0.75)
1 Area under the receiver operator curve
2 Augmented early warning score
3 Modified HOSPITAL score
4 Modified Liu score

12

Comparison	
to	Razavian
et	al.	‘15
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12

Comparison	
to	Razavian
et	al.	‘15

Keep	in	mind:
Small	wins	with	deep	models	may	disappear	
altogether	with	dataset	shift	or	non-stationarity	
(Jung	&	Shah,	JBI	‘15)



No	big	wins	from	deep	models	on	
structured	data/text	– why?

• Sequential	data	in	medicine	is	very	different	
from	language	modeling
–Many	time	scales,	significant	missing	data,	and	
multi-variate	observations

– Likely	do	exist	predictivenonlinear	interactions,	but	
subtle

– Not	enough	data	to	naively	deal	with	the	above	two
• Medical	community	has	already	come	up	with	
some	very	good	features



Outline	for	today’s	class

1. Risk	stratification	(continued)
– Deriving	labels
– Evaluation
– Subtleties	with	ML-based	risk	stratification

2. Survival	modeling



Survival	modeling

• We	focus	on	right-censored data:

1:4 P. Wang et al.

their time to event is greater than the observation time, we can only have the censored
time (C) which may be the time of withdrawn, lost or the end of the observation. They
are considered to be censored instances in the context of survival analysis. In other
words, here, we can only observe either survival time (T

i

) or censored time (C
i

) but
not both, for any given instance i. If and only if y

i

= min(T
i

, C
i

) can be observed during
the study, the dataset is said to be right-censored, which is a common scenario that
arises in many practical problems [Marubini and Valsecchi 2004].

In Figure 1, an illustrative example is given for a better understanding of the def-
inition of censoring and the structure of survival data. Six instances are observed in
this longitudinal study for 12 months and the event occurrence information during this
time period is recorded. From Figure 1, we can find that only subjects S4 and S6 have
experienced the event (marked by ‘X’) during the follow-up time and the observed time
for them is the event time. While the event did not occur within the 12 months period
for subjects S1, S2, S3 and S5, which are considered to be censored and marked by red
dots in the figure. More specifically, subjects S2 and S5 are censored since there was
no event occurred during the study period, while subjects S1 and S3 are censored due
to the withdrawal or being lost to follow-up within the study time period.

Fig. 1: An illustration to demonstrate the survival analysis problem.

Problem Statement: For a given instance i, represented by a triplet (X
i

, y
i

, �
i

),
where X

i

2 R1⇥P is the feature vector; �
i

is the binary event indicator, i.e., �
i

= 1 for
an uncensored instance and �

i

= 0 for a censored instance; and y
i

denotes the observed
time and is equal to the survival time T

i

for an uncensored instance and C
i

otherwise,
i.e.,

y
i

=

⇢
T
i

if �
i

= 1
C

i

if �
i

= 0
(1)

It should be noted that T
i

is a latent value for censored instances since these instances
did not experience any event during the observation time period.

The goal of survival analysis is to estimate the time to the event of interest T
j

for
a new instance j with feature predictors denoted by X

j

. It should be noted that, in
survival analysis problem, the value of T

j

will be both non-negative and continuous.

2.2. Survival and Hazard Function
The survival function, which is used to represent the probability that the time to the
event of interest is not earlier than a specified time t [Lee and Wang 2003; Klein and
Moeschberger 2005], is one of the primary goals in survival analysis. Conventionally,

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: March 2017.

[Wang,	Li,	Reddy.	Machine	Learning	for	Survival	Analysis:	A	Survey.	2017]

Event	occurrence
e.g.,	death,	divorce,	college	graduation

Censoring

T



Survival	modeling

• Why	not	use	classification,	as	before?
– Less	data	for	training	(due	to	exclusions)
– Pessimistic	estimates	due	to	choice	of	window

• What	about	regression,	e.g.	minimizing	mean-
squared	error?
– T	is	non-negative,	may	want	long	tails
– If	we	just	naively	removed	censored	events,	we	
would	be	introducing	bias



Notation	and	formalization
• Data	are	(x,	T,	b)=(features,	time,	censoring),	where	
b=0,1 denotes	whether	time	is	of	censoring	or	event	
occurrence

• Let	f(t)	=	P(t)	be	the	probability	of	death	at	time	t
• Survival	function:	the	probability	of	an	individual	
surviving	beyond	time	t,

2.1 Hazard and Survival Function 9

2.1 Hazard and Survival Function

We first present the basic definitions of survival and hazard function and their rela-
tionships, which are the fundamental quantities for parametric and nonparametric
inference on survival data.

Assume that failure time T is a nonnegative continuous random variable with a
density function f (t) and a corresponding distribution function F(t) = P(T ≤ t).
The survival function of T , the probability of an individual surviving beyond time t
or not experiencing a failure up to time t , is defined by

S(t) = P(T > t) =
∫ ∞

t
f (x)dx .

For a distribution of lifetimes of an industrial item, S(t) is referred to as the reliability
function of T (Crowder et al. 1991). From the definition of F(t), we have that

S(t) = 1 − P(an individual fails before or at t) = 1 − F(t).

Notice that S(t) is a monotonically decreasing continuous function with

S(0) = 1 and S(∞) = limt→∞S(t) = 0.

The hazard function is defined by

λ(t) = lim△t→0
P(t ≤ T < t + △t |T ≥ t)

△t

= lim△t→0
P(t ≤ T < t + △t)/△t

P(T ≥ t)

= f (t)
S(t)

which is the instantaneous failure rate at time t , given the individual surviving just
prior to t . In particular, λ(t)△t is the approximate probability of dying in [t, t + △t),
given survival just prior to time t . The hazard function is also referred as the hazard
rate, failure rate, the force of mortality, and intensity function. The corresponding
cumulative (or integrated) hazard function is defined as

!(t) =
∫ t

0
λ(x)dx .

From the definition λ(t) = f (t)/S(t), we have the following relationships:

λ(t) = − d
dt

log S(t)

[Ha,	Jeong,	Lee.	Statistical	Modeling	of	Survival	Data	with	Random	Effects.	Springer	2017]



Notation	and	formalization

Machine Learning for Survival Analysis: A Survey 1:5

survival function is represented by S, which is given as follows:

S(t) = Pr(T � t). (2)

The survival function monotonically decreases with t, and the initial value is 1 when
t = 0, which represents the fact that, in the beginning of the observation, 100% of the
observed subjects survive; in other words, none of the events of interest have occurred.

On the contrary, the cumulative death distribution function F (t), which represents
the probability that the event of interest occurs earlier than t, is defined as F (t) =
1� S(t), and death density function can be obtained as f(t) = d

dt

F (t) for continuous
cases, and f(t) = [F (t+�t)� F (t)]/�t, where �t denotes a small time interval, for
discrete cases. Figure 2 shows the relationship among these functions.

Time in years

Fig. 2: Relationship among different entities f(t), F (t) and S(t).

In survival analysis, another commonly used function is the hazard function (h(t)),
which is also called the force of mortality, the instantaneous death rate or the condi-
tional failure rate [Dunn and Clark 2009]. The hazard function does not indicate the
chance or probability of the event of interest, but instead it is the rate of event at time
t given that no event occurred before time t. Mathematically, the hazard function is
defined as:

h(t) = lim
�t!0

Pr(t  T < t+�t | T � t)

�t
= lim

�t!0

F (t+�t)� F (t)

�t · S(t) =
f(t)

S(t)
(3)

Similar to S(t), h(t) is also a non-negative function. While all the survival functions,
S(t), decrease over time, the hazard function can have a variety of shapes. Consider
the definition of f(t), which can also be expressed as f(t) = � d

dt

S(t), so the hazard
function can be represented as:

h(t) =
f(t)

S(t)
= � d

dt
S(t) · 1

S(t)
= � d

dt
[lnS(t)]. (4)

Thus, the survival function defined in Eq. (2) can be rewritten as

S(t) = exp(�H(t)) (5)

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: March 2017.

[Wang,	Li,	Reddy.	Machine	Learning	for	Survival	Analysis:	A	Survey.	2017]



Kaplan-Meier	estimator

• Example	of	a	non-parametric	method;	good	for	
unconditional	density	estimation

[Figure	credit:	Rebecca	Peyser]

Time	t

Survival	
probability,	

S(t)

x=0 x=1

12 2 Classical Survival Analysis

are satisfied in the data. In practice, however, when the underlying distributional
assumption is not testable as in the designing stage of a study or the parametric
assumptions are not satisfied in the observed data, nonparametric methods are prefer-
able.

Let Ti (i = 1, . . . , n) be the potential failure time and Ci be the corresponding
potential censoring time for the i th individual. Then, the observable randomvariables
are

Yi = min(Ti ,Ci ) and δi = I (Ti ≤ Ci ),

where I (·) is the indicator function. The following are the two usual assumptions
under noninformative censoring:

Assumption 1: Ti ’s and Ci ’s are independent, and pairs (Ti ,Ci )’s are also inde-
pendent (i = 1, . . . , n).

Assumption 2: Ci ’s are noninformative of Ti ’s.

Here, the noninformativeness implies that the censoring distribution does not
depend on the parameters of interest from the failure time distribution (Klein and
Moeschberger 2003). Under the noninformative censoring, we have the two well-
known nonparametric estimators in survival analysis; Kaplan and Meier (1958) esti-
mator for the survival function and Nelson (1969, 1972)–Aalen (1978) estimator for
the cumulative hazard function. Note that independence is a probabilistic property,
while noninformativeness depends on the relationship between parameters in the
model.

Let yi be the observed value of Yi . Suppose that there are D (D ≤ n) distinct
observed event times y(1) < y(2) < · · · < y(D) among yi ’s. Let d(k) be the number of
events at y(k) (k = 1, . . . , D). Let n(k) be the number of individuals who are at risk
at y(k), that is, the number of individuals who are alive and uncensored just prior to
y(k). The Kaplan–Meier (K–M) estimator of S(t), is defined by

ŜK−M(t) =
∏

k:y(k)≤t

{
1 − d(k)

n(k)

}
,

which is also called the product-limit estimator. The K–M estimator is a step function
with jumps at the observed event times and reduces to the empirical survival function
estimator under no censoring. The variance of theK–Mestimator is usually estimated
using Greenwood’s formula:

v̂ar(ŜK−M(t)) = Ŝ2K-M(t)
∑

k:y(k)≤t

d(k)
n(k){n(k) − d(k)}

.

Using the estimated survival function such as ŜK−M(t), tp is estimated by the
smallest observed survival time such that S(ti ) ≤ 1 − p. That is,

12 2 Classical Survival Analysis
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with jumps at the observed event times and reduces to the empirical survival function
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using Greenwood’s formula:
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d(k)
n(k){n(k) − d(k)}

.

Using the estimated survival function such as ŜK−M(t), tp is estimated by the
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Observed	event	times
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are satisfied in the data. In practice, however, when the underlying distributional
assumption is not testable as in the designing stage of a study or the parametric
assumptions are not satisfied in the observed data, nonparametric methods are prefer-
able.

Let Ti (i = 1, . . . , n) be the potential failure time and Ci be the corresponding
potential censoring time for the i th individual. Then, the observable randomvariables
are

Yi = min(Ti ,Ci ) and δi = I (Ti ≤ Ci ),

where I (·) is the indicator function. The following are the two usual assumptions
under noninformative censoring:

Assumption 1: Ti ’s and Ci ’s are independent, and pairs (Ti ,Ci )’s are also inde-
pendent (i = 1, . . . , n).

Assumption 2: Ci ’s are noninformative of Ti ’s.

Here, the noninformativeness implies that the censoring distribution does not
depend on the parameters of interest from the failure time distribution (Klein and
Moeschberger 2003). Under the noninformative censoring, we have the two well-
known nonparametric estimators in survival analysis; Kaplan and Meier (1958) esti-
mator for the survival function and Nelson (1969, 1972)–Aalen (1978) estimator for
the cumulative hazard function. Note that independence is a probabilistic property,
while noninformativeness depends on the relationship between parameters in the
model.
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∑

k:y(k)≤t

d(k)
n(k){n(k) − d(k)}

.

Using the estimated survival function such as ŜK−M(t), tp is estimated by the
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=	#	events	at	this	time	

=	#	of	individuals	alive	
and	uncensored



Maximum	likelihood	estimation

• Commonly	parametric	densities	for	f(t):2.1 Hazard and Survival Function 11

Table 2.1 Useful parametric distributions for survival analysis
Distribution Hazard rate λ(t) Survival function

S(t)
Density function f (t)

Exponential (λ > 0) λ exp(−λt) λ exp(−λt)

Weibull (λ,φ > 0) λφtφ−1 exp(−λtφ) λφtφ−1 exp(−λtφ)

Log-normal
(σ > 0,µ ∈ R)

f (t)/S(t) 1 − !{(lnt − µ)/σ} ϕ{(lnt − µ)/σ}(σt)−1

Log-logistic
(λ > 0,φ > 0)

(λφtφ−1)/(1+ λtφ) 1/(1+ λtφ) (λφtφ−1)/(1+ λtφ)2

Gamma (λ,φ > 0) f (t)/S(t) 1 − I (λt,φ) {λφ/"(φ)}tφ−1 exp(−λt)

Gompertz
(λ,φ > 0)

λeφt exp{ λ
φ (1 − eφt )} λeφt exp{ λ

φ (1 − eφt )}

!(·) [ϕ(·)], c.d.f [p.d.f.] of N(0,1); I (x,φ) = 1
"(φ)

∫ x
0 uφ−1e−udu, incomplete gamma function

we have
f (t) = λφtφ−1 exp(−λtφ) t ≥ 0.

Note that
log{− log S(t)} = logλ + φ log t,

which is used for checking the Weibull model.
Table2.1 summarizes useful parametric distributions including exponential,

Weibull, log-normal, log-logistic, gamma, and Gompertz. These parametric distribu-
tions have been implemented in the survreg() function in the R package survival
as we see in Sect. 2.4.

Percentile of Distribution

Inmany applications, the percentile of a failure time distribution is of interest, e.g., the
median survival time. The 100pth percentile (or the pth quantile) of the distribution
of T is the value tp satisfying

P(T ≤ tp) = p ∈ (0, 1),

which is equivalent to S(tp) = 1 − p. That is, tp = F−1(p) indicates the time point
to which the 100p% of population will fail; in particular, the median survival time
t0.5 is the median of distribution of T . For example, tp = − log(1 − p)/λ for an
exponential distribution and tp = {− log(1 − p)/λ}1/φ for a Weibull distribution.

2.1.2 Nonparametric Estimation of Basic Quantities

In survival analysis, parametricmethods based on distributions in Table2.1 have been
well developed and would provide efficient results when the parametric assumptions

[Ha,	Jeong,	Lee.	Statistical	Modeling	of	Survival	Data	with	Random	Effects.	Springer	2017]

(parameters	
can	be	a	
function	of	x)



Maximum	likelihood	estimation

• Two	kinds	of	observations:	censored	and	uncensored

• Putting	the	two	together,	we	get:

Optimize	via	gradient	or	stochastic	gradient	ascent!

Parametric Maximum Likelihood
Two kinds of observations: uncensored and censored

Uncensored likelihood

p✓ (T = t |x)

Censored likelihood

pcensored
✓ (t |x) = p✓ (T > t |x) =

Z 1

t
p✓ (a |x)da

For all observations take the Monte-Carlo estimate of expectation
under F

nX

i=1

bi log pcensored
✓ (t |x) + (1� bi) log p✓ (t |x)

Optimize via gradient or stochastic gradient ascent!

S(t)

= f(t)

Parametric Maximum Likelihood
Two kinds of observations: uncensored and censored

Uncensored likelihood

p✓ (T = t |x)

Censored likelihood

pcensored
✓ (t |x) = p✓ (T > t |x) =

Z 1

t
p✓ (a |x)da

For all observations take the Monte-Carlo estimate of expectation
under F

nX

i=1

bi log pcensored
✓ (t |x) + (1� bi) log p✓ (t |x)

Optimize via gradient or stochastic gradient ascent!



Evaluation	for	survival	modeling
• Concordance-index	(also	called	C-statistic):	look	at	

model’s	ability	to	predict	relative survival	times:

• Illustration	– blue	lines	denote	pairwise	comparisons:

• Equivalent	to	AUC	for	binary	variables	and	no	censoring

[Wang,	Li,	Reddy.	Machine	Learning	for	Survival	Analysis:	A	Survey.	2017]

1:22 P. Wang et al.

tion performance in survival analysis needs to be measured using more specialized
evaluation metrics.

5.1. C-index
In survival analysis, a common way to evaluate a model is to consider the relative risk
of an event for different instance instead of the absolute survival times for each in-
stance. This can be done by computing the concordance probability or the concordance
index (C-index) [Harrell et al. 1984; Harrell et al. 1982; Pencina and D’Agostino 2004].
The survival times of two instances can be ordered for two scenarios: (1) both of them
are uncensored; (2) the observed event time of the uncensored instance is smaller than
the censoring time of the censored instance [Steck et al. 2008]. This can be visualized
by the ordered graph given in Figure 4. Figure 4(a) and Figure 4(b) are used to illus-

1y 2y 3y 4y 5y

Fig. 4: Illustration of the ranking constraints in survival data for C-index calculations
(y1 < y2 < y3 < y4 < y5). Here, black circles indicate the observed events and red
circles indicate the censored observations. (a) No censored data and (b) with censored
data.

trate the possible ranking comparisons (denoted by edges between instances) for the
survival data without and with censored instances, respectively. There are

�5
2

�
= 10

possible pairwise comparisons for the five instances in the survival data without cen-
sored cases shown in Figure 4(a). Due to the presence of censored instances (repre-
sented by red circles) in Figure 4(b), only 6 out of the 10 comparisons are feasible.
It should be noted that, for a censored instance, only an earlier uncensored instance
(for example y2&y1) can be compared with. However, any censored instance cannot be
compared with both censored and uncensored instances after its censored time (for
example, y2&y3 and y2&y4) since its actual event time is unknown.

Consider both the observations and prediction values of two instances, (y1, ŷ1) and
(y2, ŷ2), where y

i

and ŷ
i

represent the actual observation time and the predicted value,
respectively. The concordance probability between them can be computed as

c = Pr(ŷ1 > ŷ2|y1 � y2) (20)
By this definition, for the binary prediction problem, C-index will have a similar mean-
ing to the regular area under the ROC curve (AUC), and if y

i

is binary, then the C-index
is the AUC [Li et al. 2016d]. As the definition above is not straightforward, in practice,
there are multiple ways of calculating the C-index.
(1) When the output of the model is a hazard ratio (such as the outcome obtained by

Cox based models), C-index can be computed using

ĉ =
1

num

X

i:�
i

=1

X

j:y
i

<y

j

I[X
i

�̂ > X
j

�̂] (21)

where i, j 2 {1, · · · , N}, num denotes the number of all comparable pairs, I[·] is the
indicator function and �̂ is the estimated parameters from the Cox based models.
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Black	=	uncensored
Red	=	censored
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(2) For the survival methods which aim at directly learning the survival time, the
C-index should be calculated as:

ĉ =
1

num

X

i:�
i

=1

X

j:y
i

<y

j

I[S(ŷ
j

|X
j

) > S(ŷ
i

|X
i

)] (22)

where S(·) is the estimated survival probabilities.

In order to evaluate the performance during a follow-up period, Heagerty and Zheng
defined the C-index for a fixed follow-up time period (0, t⇤) as the weighted average of
AUC values at all possible observation time points [Heagerty and Zheng 2005]. The
time-dependent AUC for any specific survival time t can be calculated as

AUC(t) = P (ŷ
i

< ŷ
j

|y
i

< t, y
j

> t) =
1

num(t)

X

i:y
i

<t

X

j:y
j

>t

I(ŷ
i

< ŷ
j

) (23)

where t 2 T
s

which is the set of all possible survival times and num(t) represents the
number of comparable pairs for the time point t. Then the C-index during the time
period (0, t⇤), which is the weighted average of the time-dependent AUC obtained by
Eq. (23), is computed as

c
t

⇤ =
1

num

X

i:�
i

=1

X

j:y
i

<y

j

I(ŷ
i

< ŷ
j

) =
X

t2T

s

AUC(t) · num(t)

num
(24)

Thus c
t

⇤ is the probability that the predictions are concordant with their outcomes for
a given data during the time period (0, t⇤).

5.2. Brier Score
Named after the inventor Glenn W. Brier, the Brier score (BS) [Brier 1950] is developed
to predict the inaccuracy of probabilistic weather forecasts. It can only evaluate the
prediction models which have probabilistic outcomes; that is, the outcome must remain
within the range [0,1], and the sum of all the possible outcomes for a certain individual
should be 1. When we consider the binary outcome prediction with a sample of N
instances and for each X

i

(i = 1, 2, ..., N), the predicted outcome at t is ŷ
i

(t), and the
actual outcome is y

i

(t); then, the empirical definition of the Brier score at the specific
time t can be given by

BS(t) =
1

N

NX

i=1

[ŷ
i

(t)� y
i

(t)]2 (25)

where the actual outcome y
i

(t) for each instance can only be 1 or 0.
Brier score was extended in [Graf et al. 1999] to be a performance measure for sur-

vival problems with censored information to evaluate the prediction models where the
outcome to be predicted is either binary or categorical in nature. When incorporating
the censoring information in the dataset, the individual contributions to the empiri-
cal Brier score are reweighted according to the censored information. Then, the Brier
score can be updated as follows:

BS(t) =
1

N

NX

i=1

w
i

(t)[ŷ
i

(t)� y
i

(t)]2 (26)

In Eq.(26), w
i

(t), given in Eq. (27), denotes the weight for the ith instance and it is
estimated by incorporating the Kaplan-Meier estimator of the censoring distribution
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Final	thoughts	on	survival	modeling

• Could	also	evaluate:
–Mean-squared	error	for	uncensored	individuals
– Held-out	(censored)	likelihood
– Derive	binary	classifier	from	learned	model	and	
check	calibration

• Partial	likelihood	estimators	(e.g.	for	cox-
proportional	hazards	models)	can	be	much	
more	data	efficient


