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How precisely can we understand the individual 
patient?

• Disease subtyping: clustering patients by

• Demographics

• Co-morbidities

• Vital Signs

• Medications

• Procedures

• Disease “trajectories”

• Image similarities

• Genetics: 


• SNPs, Exome sequence, Whole genome sequence, RNA-seq, proteomics
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Drivers of Change

• New capabilities to compile molecular data on patients on a scale that was 
unimaginable 20 years ago.  

• Increasing success in utilizing molecular information to improve the diagnosis and 
treatment of disease.  

• Advances in information technology, such as the advent of electronic health records, 
that make it possible to acquire detailed clinical information about large numbers of 
individual patients and to search for unexpected correlations within enormous 
datasets.  

• A “perfect storm” among stakeholders that has increased receptivity to fundamental 
changes throughout the biomedical research and healthcare-delivery systems.  

• Shifting public attitudes toward molecular data and privacy of healthcare 
information.
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Centrality of Taxonomy (as a hypothesis)

• What is “dropsy”?

• “water sickness”, “swelling”, “edema”

• disease that got Grandma to take to her bed permanently in Victorian dramas

• causes: COPD, CHF, CKD, …

• Last recorded on a death certificate ~1949


• Is “asthma” equally non-specific?
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Precision Medicine Modality Space (PMMS) 
(Isaac Kohane)

• Very high dimensionality

• All of the characteristics of the NRC information commons


• Many of these individually have high dimension

• Time

• Claims

• Response to therapy


• Lumpy, corresponding to different highly specific diseases
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The Vision 
(Isaac Kohane)

A 13 year old boy presented with a recurrence of abdominal pain, hourly diarrhea and 
blood per rectum. 

10 years earlier, he had been diagnosed with ulcerative colitis. At 3 years of age he was 
treated with a mild anti-inflammatory drug and had been doing very well until this most 
recent presentation. 

On this occasion, despite the use of the full armamentarium of therapies: antimetabolites, 
antibiotics, glucocorticoids, immunosuppressants, first and second generation 
monoclonal antibody-based therapies, he continued to have pain and bloody diarrhea and 
was scheduled to have his colon removed. This is often but not always curative but has 
its own risks and consequences. After the fact, he and his parents had their exomes 
sequenced, which revealed rare mutations affecting specific cytokines (inflammation 
mediators/signalling mechanisms). 

If we had plotted his position in PMMS by his proximity in clinical presentation at age 3, 
he would have been well within the cloud of points (each patient is a point in the above 
diagram) like the yellow point. If we had included the mutational profile of his cytokines he 
would have been identified as an outlier, like the green point. Also, if we had included his 
later course, where he was refractory to all therapies, he would have also been an outlier. 
But only if we had included the short duration (< 6 months) over which he was refractory 
because for a large minority of ulcerative colitis patients they become refractory to 
multiple medical treatments but of many years. �9



How to Classify this Patient?

• Perhaps there are 3 main groups of Ulcerative Colitis patients:

1. life-long remission after treatment with a commonly used monoclonal antibody

2. initially have a multiyear remission but over the decades become refractory 

one after the other to each treatment and have to undergo colectomy

3. initially have a remission but then no standard therapy works


• Could we have identified this patient as belonging to group 3 long before his crisis?

• Machine learning challenges:


• Defining closeness to centrality of a specified population in PMMS: a distance function

• Defining outliers in PMMS. Distance function may change the results considerably but 

it’s driven by the question you are asking.

• Which is the best PMMS representation for time varying data?

• What is the optimal weighting/normalization of dimensions in a PMMS? Is it task specific 

and if so how are the task-specific metrics determined.

• How best to find the most specific neighborhood for a patient? What is a minimal size 

for such a neighborhood from the information theoretic perspective and from the 
practical “it makes no difference to be more precise” perspective?
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A shallow dive into genetics 
(following a lecture by Alvin Kho, Boston Children’s Hospital)

• “Biology is the science of exceptions.” — O. Pagan

• Children inherit traits from parents; how?


• Gregor Mendel (~1854): discrete factors of inheritance, called “genes”

• Johann Miescher (~1869): “nuclein”, a compound in cell nuclei, now called DNA

• Alfred Hershey & Martha Chase (1952): DNA, not protein, carries genetic info

• James Watson, Francis Crick and Rosalind Franklin (1953): DNA is a double helix


• Gene: 

• “A fundamental physical and functional unit of heredity that is a DNA sequence 

located on a specific site on a chromosome which encodes a specific functional 
product (RNA, protein).” (From NCBI)


• Remaining mysteries

• Still hard to find what parts of DNA code genes

• What does the rest (vast majority) of DNA do?  Control structure?

• How does geometry affect this mechanism?

• …
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Central Dogma of Molecular Biology

• Francis Crick, 1958 — at the time, controversial and tentative

• Sequence Hypothesis


• “the specificity of a piece of nucleic acid is expressed solely by the sequence 
of its bases, and that this sequence is a (simple) code for the amino acid 
sequence of a particular protein” 


• Central Dogma

• “the transfer of information from nucleic acid to nucleic acid, or from nucleic 

acid to protein may be possible, but transfer from protein to protein, or from 
protein to nucleic acid is impossible”


• … a few Nobel Prizes later:

• Transcription is regulated by promoter, repressor, and enhancer regions on the 

genome, to which proteins bind.

�12Symp Soc Exp Biol. 1958;12:138-63



Current Interpretation of Central Dogma

�13Kohane et al, MIT Press, 2003

DNA: C, G, A, T double strand

RNA: C, G, A, U single strand 

Protein: 21 amino acids  
(genetic code, codon)



A few Nobel Prizes Later…

• Transcription is regulated by promoter, repressor, and enhancer regions on the 
genome, to which proteins bind.

• Promoter of the thymidine kinase gene of herpes simplex virus


• Enhancer of SV40 virus gene
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far away

https://www.ncbi.nlm.nih.gov/books/NBK9904/



• Repressor prevents activator from binding or alters activator
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Genes are a tiny fraction of the genome!

�16Reece et al. 2013 



�17

“a gene is any segment of DNA that is 
transcribed into RNA that has some function”



It’s More Complex: 
Alternative Splicing, 3-D structure, etc.
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Phenotype = f(Genotype, Environment)



Exceptions to oversimplified Central Dogma 

• Retroviruses 

• RNA into DNA via reverse transcriptase: E.g., avian sarcoma/leukosis viruses, mouse 

leukemia viruses, human immunodeficiency virus (HIV) 

• RNA (virus) > DNA (host) > RNA (virus) > Protein (virus) 


• Primitive RNA viruses 

• Error-prone RNA replication. E.g., hepatitis B, rabies, Dengue, Ebola, flu 

• Genetic RNA > Intermediate RNA > Protein 


• Prions 

• Self-replicating proteins. E.g., Creuzfeldt-Jakob, “mad cow”, kuru 

• Protein > Protein


• DNA-modifying proteins 

• DNA-repair proteins: MCM (Minichromosome maintenance) family

• CRISPR-CAS9


• Retrotransposons

• Mobile DNA (genetic) segments in eukarya. Esp. plants, >90% wheat genome.

• Retrotransposon DNA > RNA > DNA
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More Complexity

• Long non-coding RNA (lncRNA) participate in gene regulation

• RNA Interference (miRNA) prevent post-transcriptional function of mRNA

• Protein degradation mechanisms alter post-translational population of proteins

• Chromatin packages DNA into compact forms, but accessible to transcription only 

by histone modifications

• Methylation, genomic imprinting
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What Makes All This Possible?

�21

~1¢/megabase



Whole Exome Sequencing Cost 

• 25-day turnaround

• Advanced Analysis


• Monogenic

• Complex/multifactorial disorders

• Cancer (for tumor-normal pair samples)


�22https://en.novogene.com/next-generation-sequencing-services/human-genome/whole-exome-sequencing-service/



RNA-Seq

• Measuring the transcriptome (gene expression levels, i.e., which genes are active, 
and to what degree)


• Single-Cell RNA Sequencing analyzes gene expression at the single-cell level for 
heterogeneous samples.

• “The SMART-Seq HT Kit is designed for the synthesis of high-quality cDNA 

directly from 1–100 intact cells or ultra-low amounts of total RNA (10–1,000 pg).”

• $360.00 

�23https://www.genewiz.com/en/Public/Services/Next-Generation-Sequencing/RNA-Seq
https://www.takarabio.com/products/next-generation-sequencing/single-cell-rna-and-dna-seq/smart-seq-ht-for-streamlined-mrna-seq



Monogenic disorders 
1. Variant filtering

2. Analysis under 

dominant/recessive 
model (Pedigree 
information is needed)


2.1.Analysis under 
dominant model


2.2.Analysis under 
recessive model


3. Functional annotation 
of candidate genes


4. Pathway enrichment 
analysis of candidate 
genes


5. Linkage analysis

6. Regions of 

homozygosity (ROH) 
analysis 

Complex/multifactorial 
disorders 
All monogenic analyses 
plus…

1. De novo mutation 

analysis (Trio/Quartet)

1.1. De novo SNP/

InDel detection

1.2. Calculation of 

de novo mutation 
rates


2. Protein-protein 
interaction (PPI) 
analysis


3. Association analysis of 
candidate genes (at 
least 20 trios or case/
control pairs) 

Cancer (for tumor-
normal pair samples) 
1. Screening for predisposing 
genes

2. Mutation spectrum & 
mutation signature analyses

3. Screening for known driver 
genes

4. Analyses of tumor 
significantly mutated genes

5. Analysis of copy number 
variations (CNV) 

   5.1. distribution

   5.2. recurrence

6. Fusion gene detection 

7. Purity & ploidy analyses of 
tumor samples 

8. Tumor heterogeneity 
analyses

9. Tumor evolution analysis 

10. Display of genomic 
variants with Circos

�24https://en.novogene.com/next-generation-sequencing-services/human-genome/whole-exome-sequencing-service/

Advanced Analysis



Early Efforts to Characterize Disease Subtypes  
using Gene Expression Microarrays

• mRNA -> cDNA

• Amplification

• Mark with red fluorescent dye

• Flow over microarray with thousands of spots/wells holding complementary single-

stranded DNA fragments, which are distinct parts of genes

• Measure fluorescence at each spot to determine expression level of each gene

• Alternative: Mark “normal” tissue with green fluorescence, flow both over 

microarray, and measure ratio of red to green at each spot

• Cluster samples by nearness in gene expression space, genes by expression 

similarity across samples (bi-clustering)
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Typical Expression Microarray  
Experiment
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Figure1. Schematic representation of a 
DNA microarray hybridization comparing 
gene expression of a malignant epithelial 
cancer with its normal tissue counterpart 

Figure 2. Example of data clustering. This small sample 
of array data was copied from a much larger data set, 
similar to the one shown in Figure 3. Note how all five 
different cDNA clones specific for ERBB2 on the array 
cluster tightly together. The immunostaining for ERBB2 
on one of the breast samples (column indicated by an 
arrow) is shown in the lower panel 
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Figure 3. Cluster analysis of 19 cell lines and 
65 breast tumour samples showing how 
different host cell populations can be 
identified in the tumour samples
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[T]he branching pattern of the 
dendrogram clustered with this 
‘intrinsic’ gene list identified four 
major groups of breast tumours:

• (c) luminal-epithelial/ER+ 
• (d) ERBB2 and other associated 

genes 
• (e) normal breast
• (f) high-level expression of two 

clusters of genes that are 
characteristic of normal breast 
basal epithelial cells

… found to be statistically 
significantly associated with 
differences in overall patient survival 
and relapse-free survival 

Figure 5. Cluster analysis on 65 breast 
carcinoma samples, using the ‘intrinsic’ 
gene list 



Survival of Different Subgroups of Breast Cancer Patients

• from a similar (later) analysis of a different breast cancer cohort, they identified five 
subgroups

�29

Fig. 3. Overall and relapse-free survival analysis of the 49 breast cancer patients, uniformly treated in 
a prospective study 

Sørlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas 
distinguish tumor subclasses with clinical implications. PNAS, 98(19), 10869–10874. http://doi.org/10.1073/pnas.191367098
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Figure 6. Hierarchical clustering of 
gene expression data depicting 
relationships between 96 samples of 
normal and malignant lymphocytes 
[19]. The dendrogram on the left lists 
the samples studied and provides a 
measure of the relatedness of gene 
expression in each sample. The 
dendrogram is colour-coded 
according to the category of mRNA 
sample studied (see upper right key) 

sub-clusters of DLBCL 5yr survival

germinal centre B-like 76%

activated B-like 16%



Relationships between Genotype and Phenotype

• What is a Phenotype?

• Disease (e.g., breast cancer or normal; type of 

lymphoma)

• Qualitative or quantitative traits (e.g., eye color, 

weight)

• Behavior

• …


• Gene-wide Association Studies (GWAS) look for genetic 
differences that correspond to specific phenotypic 
differences

• Single-nucleotide polymorphisms (SNP) (n>1M)

• Copy Number Variations (CNV)

• Gene expression levels

• Looks at all genes, not a selected set 

• Phenome-wide Association Studies (PheWAS) look for 
phenotypic variations that correspond to specific genetic 
feature variations �31
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GWAS

• Find gene variants associated with phenotype differences

• As of 2017, over 3,000 human GWA studies have examined over 1,800 diseases 

and traits, and thousands of SNP associations have been found.

�32

An illustration of a Manhattan plot depicting several strongly associated risk loci. Each dot represents a SNP, with the X-axis showing genomic 
location and Y-axis showing association level. This example is taken from a GWA study investigating microcirculation, so the tops indicates 
genetic variants that more often are found in individuals with constrictions in small blood vessels.

https://en.wikipedia.org/wiki/Genome-wide_association_study

https://en.wikipedia.org/wiki/Manhattan_plot
https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
https://en.wikipedia.org/wiki/Genetic_association
https://en.wikipedia.org/wiki/Microcirculation


GWAS

• Genotype a cohort of cases and controls, typically identifying >1M 
SNPs


• For each SNP, compute odds of disease given the SNP [O(D|S)] and 
odds of disease given no SNP [O(D|~S)]


• Odds ratio, O(D|S) / O(D|~S) is measure of association between this 
SNP and the phenotype; if different from 1, indicates association
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https://upload.wikimedia.org/wikipedia/commons/1/1e/Method_example_for_GWA_study_designs.png



“GWA studies typically identify common variants with 
small effect sizes (lower right).”

�34https://en.wikipedia.org/wiki/Genome-wide_association_study#/media/File:GWAS_Disease_allele_effects.png



Example: GWAS of Type-II Diabetes
• Goal: identify “soft” clusters of genetic loci to suggest subtypes of T2D and possible 

mechanisms

• “Over the past decade, genome-wide association stud- ies (GWAS) and other large-scale 

genomic studies have identified over 100 loci associated with T2D, causing modest 
increases in disease risk (odds ratios generally <1.2)”


• Data selected from multiple previous studies:

• 94 T2D-associated variants

• glycemic traits — fasting insulin, fasting glucose, fasting insulin adjusted for BMI, 2-hour glucose 

on oral glucose tolerance test [OGTT] adjusted for BMI [2hrGlu adj BMI], glycated hemoglobin 
[HbA1c], homeostatic model assess- ments of beta cell function [HOMA-B] and insulin resistance 
[HOMA-IR], incremental insu- lin response at 30 minutes on OGTT [Incr30], insulin secretion at 30 
minutes on OGTT [Ins30], fasting proinsulin adjusted for fasting insulin, corrected insulin 
response [CIR], disposition index [DI], and insulin sensitivity index [ISI] 


• BMI, height, waist circumference [WC] with and without adjustment for BMI, and waist-hip ratio 
[WHR] with and without adjustment for BMI; birth weight and length; % body fat, HR


• lipid levels (HDL cholesterol, low-density lipoprotein [LDL] cholesterol, total cholesterol, 
triglycerides), leptin with and without BMI adjustment, adiponectin adjusted for BMI, urate [35], 
Omega-3 fatty acids, Omega-6-fatty acids, plasma phospholipid fatty acids in the de novo 
lipogenesis pathway, and very long-chain saturated fatty acids


• Associations with: ischemic stroke, coronary artery disease, renal function (eGFR), urine albumin-
creatinine ratio (UACR); chronic kidney disease (CKD); and systolic (SBP) and diastolic blood 
pressure (DBP) �35

Udler, M. S., Kim, J., Grotthuss, von, M., Bonàs-Guarch, S., Cole, J. B., Chiou, J., et al. (2018). Type 2 diabetes genetic loci informed by multi-trait associations point to 
disease mechanisms and subtypes: A soft clustering analysis. PLoS Medicine, 15(9), e1002654–23. http://doi.org/10.1371/journal.pmed.1002654



Bayesian Non-Negative Matrix Factorization (bNMF)

�36Schmidt, M. N., Winther, O., & Hansen, L. K. (2009). Bayesian non-negative matrix factorization. Presented at the Independent Component Analysis and Signal Separation.



T2D GWAS

• Association matrix (47x94) of traits x variants

• traits doubled: one set inverted where z-score was negative, the other positive


• maintains non-negativity of matrix

• NNMF to factor X ~ WH


• W is (47 x K), HT is (94 x K), K optimized by bNMF: 

• maximizing p(X) for different K lets this technique estimate the right number of 

factors 

• loss function is ||X-WH||2 + L2(W and H, coupled by relevance weights)


• MCMC: Gibbs sampling + tricks to compute estimates of p(X)


• Data about 17K people from four different studies, all “European ancestry”

• Metabolic Syndrome in Men Study; Diabetes Genes in Founder Populations 

(Ashkenazi) study; The Partners Biobank; The UK Biobank

• Individual-level analyses of individuals with T2D from all four data sets

�37Udler, M. S., Kim, J., Grotthuss, von, M., Bonàs-Guarch, S., Cole, J. B., Chiou, J., et al. (2018). Type 2 diabetes genetic loci informed by multi-trait associations 
point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Medicine, 15(9), e1002654–23. http://doi.org/10.1371/journal.pmed.1002654



Results

• Five subtypes of T2D (“identification of five robust clusters present on 82.3% of 
iterations”), with their interpretations:

• Beta-cell

• Proinsulin

• Obesity

• Lypodistrophy

• Liver/Lipid
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Fig 1. Cluster-defining characteristics. (A) Standardized effect sizes of cluster GRS-trait associations 
derived from GWAS summary statistics shown in spider plot. The middle of the three concentric 
octagons is labeled “0,” representing no association between the cluster GRS and trait. A subset of 
discriminatory traits are displayed. Points falling outside the middle octagon represent positive cluster-
trait associations, whereas those inside it represent negative cluster-trait associations. (B) Associations of 
GRSs in individuals with T2D with various traits. Results are from four studies (METSIM, Ashkenazi, 
Partners Biobank, and UK Biobank) meta-analyzed together. Effect sizes are scaled by the raw trait 
standard deviation. (C) Differences in trait effect sizes between individuals with T2D having GRSs in the 
highest decile of a given cluster versus all other individuals with T2D. Results are from the same four 
studies meta-analyzed together. Effect sizes are scaled by the raw trait standard deviation. BMI, body 
mass index; Fastins, fasting insulin; GRS, genetic risk score; GWAS, genome-wide association study; 
HDL, high-density lipoprotein; HOMA-B, homeostatic model assessment of beta cell function; HOMA-
IR, homeostatic model assessment of insulin resistance; METSIM, Metabolic Syndrome in Men Study; 
ProIns, fasting proinsulin adjusted for fasting insulin; TG, serum triglycerides; T2D, type 2 diabetes; 
WC, waist circumference; WHR-F, waist-hip ratio in females; WHR-M, waist-hip ratio in males. 
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PheWAS = “reverse GWAS”

• GWAS studies generalized from one to multiple phenotypes

• Unlike SNPs, phenotypes were not well characterized


• Billing codes, EHR data, temporal progression

• Vanderbilt example:


• (2010) biobank held 25,769 samples

• first 6,000 European-Americans with samples; no other criteria

• five SNPs: 


• rs1333049 [coronary artery disease (CAD) and carotid artery stenosis (CAS)], 

• rs2200733 [atrial fibrillation (AF)], 

• rs3135388 [multiple sclerosis (MS) and systemic lupus erythematosus (SLE)], 

• rs6457620 [rheumatoid arthritis (RA)], 

• rs17234657 [Crohn’s disease (CD)] 


• Defined PheWAS code table, cleaning up ICD-9-CM to 744 case groups

• https://phewascatalog.org/phecodes

• E.g., tuberculosis = {010-018 (TB in various organs), 137 (late effects of tuberculosis),  

647.3 (tuberculosis complicating the peripartum period)}

•  (2015) 1866 PheWAS codes, with 1-496 ICD codes grouped [TB is the one with 496!]

�42Denny, J. C., Ritchie, M. D., Basford, M. A., Pulley, J. M., Bastarache, L., Brown-Gentry, K., et al. (2010). PheWAS: demonstrating the feasibility of a phenome-
wide scan to discover gene-disease associations. Bioinformatics (Oxford, England), 26(9), 1205–1210. http://doi.org/10.1093/bioinformatics/btq126

https://phewascatalog.org/phecodes


Diseases Associated with SNP rs3135388 

• Expected MS, 
SLE
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You Don’t Always Get What You Expect

�44



Expression Quantitative Trait Loci (eQTLs) 

• Genetic variants that explain quantitative expression levels

• i.e., use expression levels to define phenotype

• no need for clinical knowledge, human judgment

• potential to explain genetic mechanisms

�45Nica, A. C., & Dermitzakis, E. T. (2013). Expression quantitative trait loci: present and future. Philosophical Transactions of the Royal Society B: Biological 
Sciences, 368(1620), 20120362–20120362. http://doi.org/10.1098/rstb.2012.0362



Differential Expression in Different Populations

• European — African: 17% of genes in small sample (16 people)

• European — Asian: 1097/4197 = 26%

• 4 populations from HapMap sample of 270 people: 17-29% different expression 

levels

• But:


• Some effect may be environmental

• Large differences between different tissues (most early studies used only blood)

• Limited correlation to disease phenotypes


• Nevertheless:

• Evidence for suspect causative genes in various diseases: asthma, Crohn’s


• “The large-scale disease studies performed so far have uncovered multiple variants 
of low-effect sizes affecting multiple genes. This suggests that common forms of 
disease are most probably not the result of single gene changes with a single 
outcome, but rather the outcome of perturbations of gene networks which are 
affected by complex genetic and environmental interactions.”
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QTL, eQTL, & Disease Traits

• L = QTL

• R = RNA expression level (eQTL)

• C = complex trait

• Model that best fits data is most likely

�47Schadt, E. E., Lamb, J., Yang, X., Zhu, J., Edwards, S., GuhaThakurta, D., et al. (2005). An integrative genomics approach to infer causal associations between gene 
expression and disease. Nature Genetics, 37(7), 710–717. http://doi.org/10.1038/ng1589



A More Complex Story
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Scaling Up Gene-Phene Association Studies

• UK Biobank collects data on ~.5M de-identified individuals

• everyone will have full exome sequencing (50K so far)

• 100K have worn 24-hour activity monitor for a week, 20K have had repeat 

measurements

• on-line questionnaires: diet, cognitive function, work history, digestive health

• 100K will have imaging: brain, heart, abdomen, bones, carotid artery

• linking to EHR: death, cancer, hospital episodes, GP, blood biochemistry

• developing more accurate phenotyping


• Ongoing stream of results

• April 18th, 2019: Genetic variants that protect against obesity and type 2 diabetes 

discovered

• April 17th, 2019: Moderate meat eaters at risk of bowel cancer

• April 8th, 2019: Research identifies genetic causes of poor sleep

�49https://www.ukbiobank.ac.uk



UK Biobank GWAS

• Users; e.g., Neale Lab @ MGH & Broad

• Phenome scan in UK Biobank (https://github.com/MRCIEU/PHESANT) 


• PHESANT “traits": 2891 total (274 continuous / 271 ordinal / 2346 binary)

• Aug 2018: 4,203 phenotypes


• ICD10: 633 binary

• FinnGen curated: 559

• imputed-v3 model (“a ‘quick-and-dirty’ analysis that strives to provide a reliable, 

albeit imperfect, insight into the UK Biobank data”)

• Linear regression model in Hail (linreg)

• Three GWAS per phenotype


• Both sexes

• Female only

• Male only


• Covariates: 1st 20 PCs + sex + age + age^2 + sexage + sexage2

• Sex-specific covariates: 1st 20 PCs + age + age^2

�50https://www.ukbiobank.ac.uk

https://github.com/MRCIEU/PHESANT


Heritability

• Most heritable traits look genetic for large sample sizes

• Height (h2 =.46, p=7.5e-109)

• College degree (h2 =.28, p=6.6e-195)

• TV watching (h2 =.096, p=2.8e-114)


• How much insight does this convey?

�51http://www.nealelab.is/blog/2017/9/20/insights-from-estimates-of-snp-heritability-for-2000-traits-and-disorders-in-uk-biobank



Gene Set Enrichment Analysis (GSEA)

• Problems with genome-wide expression analysis

• No gene may pass multiple hypothesis testing because of weak signals

• Many genes may pass, but with no coherent understanding of their relationships

• Single-gene analyses fail to account for pathway interactions

• Little overlap among genes identified by multiple studies


• Therefore, consider gene sets (defined by biological knowledge of pathways)

• Broad published 1,325 biologically defined gene sets (2005) [17,810 today]

• “genes involved in oxidative phosphorylation [in muscle tissue] show reduced 

expression in diabetics, although the average decrease per gene is only 20%”

�52
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based 
approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545–15550. http://doi.org/
10.1073/pnas.0506580102



GSEA

• Consider L, the list of rank-ordered genes by differential expression between cases 
and controls; the top and bottom ranked genes are the ones of interest


• Given genes in a set S, are they randomly distributed in L, or concentrated?

�53

• “Random walk” 
proportional to correlation 
of gene expression to 
phenotype

• Statistical significance 
computed by random 
permutation test on 
phenotype; adjust for 
multiple hypotheses



Early GSEA Successes

• Consider pathways, not just gene sets

• e.g., AND/OR graphs, or circuits
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�55Grapov, D., Fahrmann, J., Wanichthanarak, K., & Khoomrung, S. (2018). Rise of Deep Learning for Genomic, Proteomic, 
and Metabolomic Data Integration in Precision Medicine. OMICS: a Journal of Integrative Biology, 22(10), 630–636.


