Precision Medicine

April 25, 2019

H Bl Massachusetts

I I I I I Institute of
Technology



How precisely can we understand the individual
oatient”?

« Disease subtyping: clustering patients by
« Demographics
« Co-morbidities
- Vital Signs
- Medications
* Procedures
« Disease “trajectories”
 Image similarities
- Genetics:
- SNPs, Exome sequence, Whole genome sequence, RNA-seq, proteomics
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Drivers of Change

* New capabilities to compile molecular data on patients on a scale that was
unimaginable 20 years ago.

* Increasing success in utilizing molecular information to improve the diagnosis and
treatment of disease.

« Advances in information technology, such as the advent of electronic health records,
that make it possible to acquire detailed clinical information about large numbers of
individual patients and to search for unexpected correlations within enormous
datasets.

- A “perfect storm” among stakeholders that has increased receptivity to fundamental
changes throughout the biomedical research and healthcare-delivery systems.

« Shifting public attitudes toward molecular data and privacy of healthcare
information.



Google Maps: GIS layers Information Commons

Organized by Geographical Positioning Organized Around Individual Patients
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FIGURE 1-2 An Information Commons might use a GIS-type structure.

The proposed, individual-centric Information Commons (right panel) is somewhat
analogous to a layered GIS (left panel). In both cases, the bottom layer defines the
organization of all the overlays. However, in a GIS, any vertical line through the layers
connects related snippets of information since all the layers are organized by geographi-
cal position. In contrast, data in each of the higher layers of the Information Commons
will overlay on the patient layer in complex ways (e.g., patients with similar microbiomes
and symptoms may have very different genome sequences).



New

xonomy

Clinical Medicine

Biomedical Research

FIGURE 1-3 A knowledge network of disease would enable a new taxonomy.

An individual-centric Information Commons, in combination with all extant biologi-
cal knowledge, will inform a Knowledge Network of Disease, which will capture the
exceedingly complex causal influences and pathogenic mechanisms that determine
an individual’s health. The Knowledge Network of Disease would allow researchers
to hypothesize new intralayer cluster and interlayer connections. Validated findings
that emerge from the Knowledge Network, such as those which define new diseases or
subtypes of diseases that are clinically relevant (e.g., which have implications for patient
prognosis or therapy) would be incorporated into the New Taxonomy to improve di-
agnosis and treatment.



Centrality of Taxonomy (as a hypothesis)

My diseases are an asthma and
a dropsy and, what is less
curable, seventy-five.

~ Samuel Johnson

* What is “dropsy”?
- “water sickness”, “swelling”, “edema”

* disease that got Grandma to take to her bed permanently in Victorian dramas
« causes: COPD, CHF, CKD, ...

« Last recorded on a death certificate ~1949
- Is “asthma” equally non-specific?



Precision Medicine Modality Space (PMMS)

(Isaac Kohane)

 Very high dimensionality

« All of the characteristics of the NRC information commons

- Many of these individually have high dimension
« Time

- Claims
* Response to therapy

« Lumpy, corresponding to different highly specific diseases
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The Vision

(Isaac Kohane)

A 13 year old boy presented with a recurrence of abdominal pain, hourly diarrhea and
blood per rectum.

10 years earlier, he had been diagnosed with ulcerative colitis. At 3 years of age he was
treated with a mild anti-inflammatory drug and had been doing very well until this most
recent presentation.

On this occasion, despite the use of the full armamentarium of therapies: antimetabolites,
antibiotics, glucocorticoids, immunosuppressants, first and second generation
monoclonal antibody-based therapies, he continued to have pain and bloody diarrhea and
was scheduled to have his colon removed. This is often but not always curative but has
its own risks and consequences. After the fact, he and his parents had their exomes
sequenced, which revealed rare mutations affecting specific cytokines (inflammation
mediators/signalling mechanisms).

If we had plotted his position in PMMS by his proximity in clinical presentation at age 3,
he would have been well within the cloud of points (each patient is a point in the above
diagram) like the yellow point. If we had included the mutational profile of his cytokines he
would have been identified as an outlier, like the green point. Also, if we had included his
later course, where he was refractory to all therapies, he would have also been an outlier.
But only if we had included the short duration (< 6 months) over which he was refractory
because for a large minority of ulcerative colitis patients they become refractory to
multiple medical treatments but of many years.



How to Classify this Patient?

- Perhaps there are 3 main groups of Ulcerative Colitis patients:
1. life-long remission after treatment with a commonly used monoclonal antibody

2. initially have a multiyear remission but over the decades become refractory
one after the other to each treatment and have to undergo colectomy

3. initially have a remission but then no standard therapy works
- Could we have identified this patient as belonging to group 3 long before his crisis?

« Machine learning challenges:
- Defining closeness to centrality of a specified population in PMMS: a distance function

 Defining outliers in PMMS. Distance function may change the results considerably but
it’s driven by the question you are asking.

« Which is the best PMMS representation for time varying data?

- What is the optimal weighting/normalization of dimensions in a PMMS? Is it task specific
and if so how are the task-specific metrics determined.

- How best to find the most specific neighborhood for a patient? What is a minimal size
for such a neighborhood from the information theoretic perspective and from the
practical “it makes no difference to be more precise” perspective?
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A shallow dive into genetics
(following a lecture by Alvin Kho, Boston Children’s Hospital)

“Biology is the science of exceptions.” — O. Pagan
Children inherit traits from parents; how?
- Gregor Mendel (~1854): discrete factors of inheritance, called “genes”
- Johann Miescher (~1869): “nuclein”, a compound in cell nuclei, now called DNA
- Alfred Hershey & Martha Chase (1952): DNA, not protein, carries genetic info
- James Watson, Francis Crick and Rosalind Franklin (1953): DNA is a double helix
« Gene:

- “A fundamental physical and functional unit of heredity that is a DNA sequence
located on a specific site on a chromosome which encodes a specific functional
product (RNA, protein).” (From NCBI)

« Remaining mysteries
- Still hard to find what parts of DNA code genes
- What does the rest (vast majority) of DNA do? Control structure?
- How does geometry affect this mechanism?

11



Central Dogma of Molecular Biology

* Francis Crick, 1958 — at the time, controversial and tentative
- Sequence Hypothesis

+ “the specificity of a piece of nucleic acid is expressed solely by the sequence
of its bases, and that this sequence is a (simple) code for the amino acid
seqguence of a particular protein”

« Central Dogma

+ “the transfer of information from nucleic acid to nucleic acid, or from nucleic
acid to protein may be possible, but transfer from protein to protein, or from
protein to nucleic acid is impossible”

« ... afew Nobel Prizes later:

 Transcription is regulated by promoter, repressor, and enhancer regions on the
genome, to which proteins bind.

Symp Soc Exp Biol. 1958;12:138-63 12




Current Interpretation of Central Dogma

DNA: C, G, A, T double strand

RNA: C, G, A, U single strand

Protein: 21 amino acids
(genetic code, codon)

Biological System:

cDNA (later)
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A few Nobel Prizes Later...

 Transcription is regulated by promoter, repressor, and enhancer regions on the
genome, to which proteins bind.

* Promoter of the thymidine kinase gene of herpes simplex virus
mMENA
o g
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- Enhancer of SV40 virus gene
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- Repressor prevents activator from binding or alters activator

(A}

Activator

Repressor competes with
activator for binding to DNA.
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(B) Repressor binds DNA and inhibits
transcription by protein-protein interaction.

Repression —
domain 2

DNA-binding
domain -
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Genes are a tiny fraction of the genomel!

Exons (1.5%) Regulatory

sequences (5%)

L1
sequences
(17%)

Alu elements
(10%)

Simple sequence Large-segment
DNA (3%) duplications (5-6%)

Reece et al. 2013 16



MIT News S —
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% % FULL SCREEN

MIT Professor Gerald Fink delivers the
2018-2019 James R. Killian Jr. Faculty
Achievement Award Lecture, titled, “What
is a Gene?”"

Photo: Jake Belcher

<>

The evolving definition of a gene

Professor Gerald Fink, a pioneer in the field of genetics, delivers the annual Killian
Lecture.

MIT News Office “a gene is any segment of DNA that is

April 5, 2019 transcribed into RNA that has some function”



t’s More Complex:
Alternative Splicing, 3-D structure, etc.

(eukarya)

Gene Expression
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‘ Transcription
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From www.answers.com

Phenotype = f(Genotype, Environment)
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Exceptions to oversimplified Central Dogma

Retroviruses

- RNA into DNA via reverse transcriptase: E.g., avian sarcoma/leukosis viruses, mouse
leukemia viruses, human immunodeficiency virus (HIV)

« RNA (virus) > DNA (host) > RNA (virus) > Protein (virus)
Primitive RNA viruses
 Error-prone RNA replication. E.g., hepatitis B, rabies, Dengue, Ebola, flu
« Genetic RNA > Intermediate RNA > Protein
Prions
- Self-replicating proteins. E.g., Creuzfeldt-dakob, “mad cow”, kuru

* Protein > Protein
DNA-modifying proteins
* DNA-repair proteins: MCM (Minichromosome maintenance) family
« CRISPR-CAS9
Retrotransposons
- Mobile DNA (genetic) segments in eukarya. Esp. plants, >90% wheat genome.
* Retrotransposon DNA > RNA > DNA

19



More Complexity

Long non-coding RNA (IncRNA) participate in gene regulation
RNA Interference (MiRNA) prevent post-transcriptional function of mRNA

by histone modifications

Methylation, genomic imprinting
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Chromatin packages DNA into compact forms, but accessible to transcription only
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What Makes All This Possible”?

Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts

$1K
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20012002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 IEARALEISEleENE
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Whole Exome Sequencing Cost
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Providing leading genomic services & solutions

Human Whole Exome Sequencing
Promotion

$299uUsD $399usD

g
50X On-target 100X On-target (
Coverage (6GB) Coverage (12GB) N

« 25-day turnaround
- Advanced Analysis
« Monogenic
- Complex/multifactorial disorders
« Cancer (for tumor-normal pair samples)

https://en.novogene.com/next-generation-sequencing-services/human-genome/whole-exome-sequencing-service/ 22



RNA-Seg

« Measuring the transcriptome (gene expression levels, i.e., which genes are active,
and to what degree) | B S

New
Customer

RNA-Seq ™

Starting at $199 w

Get Promo Code >

 Single-Cell RNA Sequencing analyzes gene expression at the single-cell level for
heterogeneous samples.

- “The SMART-Seq HT Kit is designed for the synthesis of high-quality cDNA
directly from 1-100 intact cells or ultra-low amounts of total RNA (10-1,000 pg).”

- $360.00

https://www.genewiz.com/en/Public/Services/Next-Generation-Sequencing/RNA-Seq 23
https://www.takarabio.com/products/next-generation-sequencing/single-cell-rna-and-dna-seqg/smart-seq-ht-for-streamlined-mrna-seq



Advanced Analysis

Monogenic disorders
1. Variant filtering

2. Analysis under
dominant/recessive
model (Pedigree
information is needed)

2.1.Analysis under
dominant model

2.2.Analysis under
recessive model

3. Functional annotation
of candidate genes

4. Pathway enrichment
analysis of candidate
genes

5. Linkage analysis

6. Regions of
homozygosity (ROH)
analysis

Complex/multifactorial
disorders

All monogenic analyses
plus...

. De novo mutation

analysis (Trio/Quartet)

1.1. De novo SNP/
InDel detection

1.2. Calculation of
de novo mutation
rates

. Protein-protein

interaction (PPI)
analysis

. Association analysis of

candidate genes (at
least 20 trios or case/
control pairs)

Cancer (for tumor-
normal pair samples)

1. Screening for predisposing
genes

2. Mutation spectrum &
mutation signature analyses

3. Screening for known driver
genes

4. Analyses of tumor
significantly mutated genes

5. Analysis of copy number
variations (CNV)

5.1. distribution
5.2. recurrence
6. Fusion gene detection

/. Purity & ploidy analyses of
tumor samples

8. Tumor heterogeneity
analyses

9. Tumor evolution analysis

10. Display of genomic
variants with Circos

https://en.novogene.com/next-generation-sequencing-services/human-genome/whole-exome-sequencing-service/ 24



Early Efforts to Characterize Disease Subtypes
using Gene Expression Microarrays

 MRNA -> cDNA
- Amplification
« Mark with red fluorescent dye

- Flow over microarray with thousands of spots/wells holding complementary single-
stranded DNA fragments, which are distinct parts of genes

- Measure fluorescence at each spot to determine expression level of each gene

 Alternative: Mark “normal” tissue with green fluorescence, flow both over
microarray, and measure ratio of red to green at each spot

+ Cluster samples by nearness in gene expression space, genes by expression
similarity across samples (bi-clustering)

Journal of Pathology

J Pathol 2001; 195: 41-52.
DOI: 10.1002/path.889

Review Article

Towards a novel classification of human malignancies
based on gene expression patterns

- 2 ~ :‘ .
Ash A. Alizadeh’, Douglas T. Ross™, Charles M. Perou™ and Matt van de Rin * 25



Typical Expression Microarray

Clustered Breast Carcinoma
Biopsy Specimens

Experiment
‘e \/va

DNA microarray

Figurel. Schematic representation of a
DNA microarray hybridization comparing
gene expression of a malignant epithelial
cancer with its normal tissue counterpart

EST
KIAA0130
ERBB2
MLNG64
ERBB2

Clustered Genes ERBB2

BC2
ERBB2
Staining

Figure 2. Example of data clustering. This small sample

of array data was copied from a much larger data set,

similar to the one shown in Figure 3. Note how all five
different cDNA clones specific for ERBB2 on the array
cluster tightly together. The immunostaining for ERBB2

on one of the breast samples (column indicated by an

arrow) 1s shown in the lower panel 26



Cell lines Tumor samples . ‘Kera.t_in e
_ Fetada N : : :
| om ey e i SR Figure 3. Cluster analysis of 19 cell lines and
R B 65 breast tumour samples showing how
Cell Cluster ﬁ-'.';’ ., x4 ";: . .
“s .« -~ different host cell populations can be
i FPEE : : :

e identified in the tumour samples

IgG light Chain
T g

Cluster

Basal-Epithelial
Cell Cluster

| B-cell
Cluster

I Normal Breast
Cluster

Proliferation

Cluster CD68
I Macrophage
Cluster > )
\ E = . ’
3 : .‘W_ -
D e S
ke T e
ot s @
I T-cell Cluster e © 8 wcf g

\ M G RN S

Interferon/STAT1 CD3
Cluster .

.
NV
s

W

Luminal-Epithelial
Cell Cluster

Expression Scale Relative to Average

R N S SO R NE L RET . o 27
I

 ERBB2/HER2
Cluster



IEmnR)

(

|

1
A i l% Figure 5. Cluster analysis on 65 breast
I’] [] . . I3 . . D)
g el S Sl carcinoma samples, using the ‘intrinsic
Hea- RO B 5559 psrnecownsn TI05I0%0 DSTY wdde smeme
s NN r-M 3 v FIONN L BT R R | oA R = X = Bl s s NN DMy NS v ¢ .
AHAANRS rm—ox——ééocwmm@$owa—SSNuoommnoooo“ocoowonnwwww
O v werlorcdodorerrrrldedrrm RGN rrrrrrrr OO - rENNTreD gene ISt
XX OOXZ X0 A AR A AR RO R A AR A RN R AR A S XS X E 0000 O OXXE XX %
BEZZriiciiiiiiiililLZilRilRiiRRlLRlRRlLRiRRELZZ2Z3ZRRiREE
S OERGBOR666660666660086060060006606660666006000060LEERR0R0600060
NN N R R e I N e e e R e R e e e PPN O W ENWEZEEZEZE
— A I — — — — — Q— — — — — — — i — s

. |___
M ermra sl LA ST A& AR A TR

Q

™
>

®

1
X

CELL CLLAYNFHOMA 2
F5TS, WEAKLY SNLARTO MEVSAANE GLYCOPROTEIN
21700
NEBULETTE
DVA SEQUENCE FROM CLONE 14TA1% ON CHROMOSONE 1P32 133
PROLACTIN RECEPTOR
202024
IR0

ORI
NYOSIN W

aTme
NACETYLTRANSFERASE 7 ARYLAMINE NACETYLTRANSFERASE
CONA DKFIPASLA 0N FROM CLONE DKFZPAILA S

oa

s

SEVEN W ABSENT A DRICSOPHILA HOMOLOG 2

F'E:’SIN TRAANSMEMBRANE PAOTEASE. SERINE 1

41708

amas

HUMAN SECRETORY PROTEIN P18 NINA, CONPLETE COS
HEPATOCYTE NUCLEAR FACTOR = ALPHA

X-B0X SNDING PROTEM 1

LSTROGEN RECEPTOR 1

EEJT?OUEN ﬁéCEWOﬂ 1

&llh:NNUNG PROTEN D

ANNEXIN xxx)

BREAST CANCER, ESTROGEN REGULATED Livy PROTEIN LIV
e

HUMAN CHACNOSOME 16 BAC CLONE CITOATSK-254P0
T

1T
ESTS SNILASTO INOSITOL POLYPHOSPHATE &-PHOSPHATASE
1

1
MURINE LEUKENIA VIRAL BAILY ONCOOENE HOMOLOG
NURNKE LEUKENIA VIRAL BNt ONCOGENE HOMOLOG
LUTHERAN SLOOO GROUP AURERGER B ANTIGEN INCLUDED
HOMO SAPIENS PWD GENE MANA 3 END

TR

ACYL-COENZYME A DENYDROGENASE SHORTBRANCHED CHAUN
CARNITINE PALMITOYLT RANSFERASE 1T

ALDO-KETO FEDUCTASE FAMLY 7. MENBER A2

CYTOCHRONE Paso, SUBFAMILY A

ANGIOTENSN RECEPTOR ¢

LYNPHOD NUCLEAR PROTEN RELATED TO AFd

HUMAN MANA FOR XAD0) GENE

EPGIDE HYDROLASE 2. CYTOPLASNIC

DUAL SPECFICITY PHOSPHATASE ¢

CAR0-2 RECEPTON PROTEIN-TYROSING KINASE PRECURSOR
-

ERBB2FOLYA

FRA-RS

ERE-0:
GROWTH FACTOR RECEPTOR-BOURD PROTEN 7
STERODOGENC ACUTE REGULATORY PROTEIN RELATED

ot o
SWUSAF RELATED ACTIN DEFENDENT REGUCATOR OF CHROMATIN
TMF RECEPTOR.ASSOCATED FACTOR 4

FLOTHLIN 3
TGFDA-INDUCED ANTHAPOPTOTIC FACTOR ¢

DUAL SPECIFICITY PHOSPHATASE 6

LAMININ, GAMVMA 2

MATHIX NETALLOPROTEINASE 14 MEMERANE-INSERTED
COLLAGEN, TYPE XVIL ALPHA 1

CALPCHIN 1, BASIC SMOOTH MUSCLE

PLEIOTROPHIN HEPARIN IINDING GROWTH FACTOR 3
PLEIOTROPHIN HEPARIN BINDING GROWTH FACTOR »
102788

GELSOLIN AMYLOIDORS, FINNSH TYPE

BULLCUS PEMPHIGOID ANTIGEN 1 32024060

SHALL NOUCIBLE CYTOKIMNE SUBFAMLY O CYSX2CYs

ESTS FOGHLY SIMLAR TO XEHATIN X3, 38X TYPE I|L EMOCRMAL

ESTS SMAMLAR TO ATAXIA-TELANGECTASIA GRCUP D PRACTEIN
CHYSTALUN, ALPHA B

CAVEOLIN 2

AMNNEXN | LIPOCORTIN |

OYSTRCPHIN MUSCULAR OYSTROPHY. DUCHENNE AND BECKERTYPES
DHYDRCPYRIMDINASE.UKE 2

EPDERMAL GROWTH FACTOR RECEPTOR

X SEME NELANOMA GROWTH STIMULATING ACTIVITY, ALPHA
PHOSPHONOSITIDE-3-KINASE, REGULATORY SUSUNIT. ALPHA
HUNAN DNABINDING PROTEIN ABPEF MANA, COMPLETE COS
ANTLEUKOPROTEINASE
FATTY AQD RINDING PROTEN 7, BRAN
CHITINASE 3-UKEK 2
TAANSMEMBRANE 4 SUPERFAMLY MEMSER 1
TRANSNEMBRANE ¢ SUPERFANILY MEMEER 1
HOMD SAPENS MENA FOR CALPAIN-UKE PROTEASE CANPX
KERATIN T

LADINIM 1

CADHERIN 3. P.CADHERIN PLACENTAL

FROTEMN TYROSNE PHOSPHMATASE RECEFTORTYPE X

SRY S5EX-DETERVINNG REGION Y-ROX & CANPOMELIC DYSPLASIA

288877
INTEGRIN, BETA ¢
TROPONIN L SKELETAL FAST

[T]he branching pattern of the
dendrogram clustered with this
‘intrinsic’ gene list identified four
major groups of breast tumours:

(¢) luminal-epithelial/ ER+

(d) ERBB2 and other associated
genes

(e) normal breast

(f) high-level expression of two
clusters of genes that are
characteristic of normal breast
basal epithelial cells

... found to be statistically
significantly associated with
differences in overall patient survival
and relapse-free survival
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Survival of Different Subgroups of Breast Cancer Patients

- from a similar (later) analysis of a different breast cancer cohort, they identified five
subgroups

A 5 tumor subtypes (based upon Fig 1) B 5 tumor subtypes (based upon Fig 1)
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Fig. 3. Overall and relapse-free survival analysis of the 49 breast cancer patients, uniformly treated in
a prospective study

Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas
distinguish tumor subclasses with clinical implications. PNAS, 98(19), 10869—10874. http://doi.org/10.1073/pnas.191367098 29
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Relationships between Genotype and Phenotype

« What is a Phenotype?
 Disease (e.g., breast cancer or normal; type of @

Phe1

lymphoma)
- Qualitative or quantitative traits (e.g., eye color, @
weight) 4’
- Behavior

« Gene-wide Association Studies (GWAS) look for genetic
differences that correspond to specific phenotypic
differences

- Single-nucleotide polymorphisms (SNP) (n>1M)
« Copy Number Variations (CNV)

« Gene expression levels

e | 0oks at all genes, not a selected set

« Phenome-wide Association Studies (PheWAS) look for
phenotypic variations that correspond to specific genetic
feature variations a1




GWAS

- Find gene variants associated with phenotype differences

« As of 2017, over 3,000 human GWA studies have examined over 1,800 diseases
and traits, and thousands of SNP associations have been found.

5
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~log1o(P)
10
Y

T ' T T T T T T T T T
2 wn (o) ~ @ D o - ™~ ™ 0 OO
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chromosome
An illustration of a Manhattan plot depicting several strongly associated risk loci. Each dot represents a SNP, with the X-axis showing genomic

location and Y-axis showing association level. This example is taken from a GWA study investigating microcirculation, so the tops indicates
genetic variants that more often are found in individuals with constrictions in small blood vessels.

-
o~
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GWAS

- Genotype a cohort of cases and controls, typically identifying >1M
SNPs

« For each SNP, compute odds of disease given the SNP [O(D|S)] and
odds of disease given no SNP [O(D|~S)]

« Odds ratio, O(D|S) / O(D|~S) is measure of association between this
SNP and the phenotype; if different from 1, indicates association

SNP1 SNP2 SNP...
Cases Cases Repeat for all
‘ Count of G: ‘ Count of G: SNPs

2104 of 4000 1648 of 4000

Frequency of G:| Frequency of G:

52.6% 41.2%
| | |
| Controls ‘ Controls \
Count of G: Count of G:
2676 of 6000 2532 of 6000

| | |
Frequency of G: | Frequency of G:

- 44.6% | 42.2% ‘

. P-value: ‘P-value: ‘
5.0-101° 0.33

https://upload.wikimedia.org/wikipedia/commons/1/1e/Method_example_for_GWA_study_designs.png 33



“GWA studies typically identify common variants with
small effect sizes (lower right).”
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Udler, M. S., Kim, J., Grotthuss, von, M., Bonas-Guarch, S., Cole, J. B., Chiou, J., et al. (2018). Type 2 diabetes genetic loci informed by multi-trait associations point to
disease mechanisms and subtypes: A soft clustering analysis. PLoS Medicine, 15(9), e1002654—-23. http://doi.org/10.1371/journal.pmed.1002654

Example: GWAS of Type-Ill Diabetes

- Goal: identify “soft” clusters of genetic loci to suggest subtypes of T2D and possible
mechanisms

- “Over the past decade, genome-wide association stud- ies (GWAS) and other large-scale
genomic studies have identified over 100 loci associated with T2D, causing modest
increases in disease risk (odds ratios generally <1.2)”

- Data selected from multiple previous studies:

« 94 T2D-associated variants

 glycemic traits — fasting insulin, fasting glucose, fasting insulin adjusted for BMI, 2-hour glucose
on oral glucose tolerance test [OGTT] adjusted for BMI [2hrGlu adj BMI], glycated hemoglobin
[HbA1c], homeostatic model assess- ments of beta cell function [HOMA-B] and insulin resistance
[HOMA-IR], incremental insu- lin response at 30 minutes on OGTT [Incr30], insulin secretion at 30
minutes on OGTT [Ins30], fasting proinsulin adjusted for fasting insulin, corrected insulin
response [CIR], disposition index [DI], and insulin sensitivity index [ISI]

- BMI, height, waist circumference [WC] with and without adjustment for BMI, and waist-hip ratio
[WHR] with and without adjustment for BMI; birth weight and length; % body fat, HR

- lipid levels (HDL cholesterol, low-density lipoprotein [LDL] cholesterol, total cholesterol,
triglycerides), leptin with and without BMI adjustment, adiponectin adjusted for BMI, urate [35],
Omega-3 fatty acids, Omega-6-fatty acids, plasma phospholipid fatty acids in the de novo
lipogenesis pathway, and very long-chain saturated fatty acids

 Associations with: ischemic stroke, coronary artery disease, renal function (€GFR), urine albumin-
creatinine ratio (UACR); chronic kidney disease (CKD); and systolic (SBP) and diastolic blood
pressure (DBP) 35



Bayesian Non-Negative Matrix Factorization (oNMF)

X=AB+ FE
p(X10) = HN(Xi,j% (AB;;),0%)
where 8 = {A, B,0?} are all paramete;‘sj‘ of the model, and
N(z; 1, 0%) = (270%) Y2 exp(—(x — p)?/(202))

Assume A and B are independently exponentially distributed, with scales «;, and (3, ;.

Then

[)(A) - H X n eXp(_ai,'nAi"n)u(Ai,n)
,n
and
p(B) =[] Bn,j exp(—Bn;Bn,j)u(Bn,;)
n,J
where u(x) is the unit step function.
The prior for the noise term is chosen as an inverse gamma density with shape k and scale

6:
9k

(k)

p(c®) =G Yo% k,0) = (02)—1;—1 exp(—

—5)

0'2

Schmidt, M. N., Winther, O., & Hansen, L. K. (2009). Bayesian non-negative matrix factorization. Presented at the Independent Component Analysis and Signal Separation. 36



12D GWAS

Association matrix (47x94) of traits x variants
- traits doubled: one set inverted where z-score was negative, the other positive
* maintains non-negativity of matrix
NNMF to factor X ~ WH
« Wis (47 x K), HT is (94 x K), K optimized by bNMF:

- maximizing p(X) for different K lets this technique estimate the right number of
factors

* loss function is || X-WH||2 + Lo(W and H, coupled by relevance weights)
MCMC: Gibbs sampling + tricks to compute estimates of p(X)

Data about 17K people from four different studies, all “European ancestry”

« Metabolic Syndrome in Men Study; Diabetes Genes in Founder Populations
(Ashkenazi) study; The Partners Biobank; The UK Biobank

* Individual-level analyses of individuals with T2D from all four data sets

Udler, M. S., Kim, J., Grotthuss, von, M., Bonas-Guarch, S., Cole, J. B., Chiou, J., et al. (2018). Type 2 diabetes genetic loci informed by multi-trait associations

point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Medicine, 15(9), e1002654—23. http://doi.org/10.1371/journal.pmed.1002654 37



Results

 Five subtypes of T2D (“identification of five robust clusters present on 82.3% of
iterations”), with their interpretations:

- Beta-cell

* Proinsulin

« Obesity

* Lypodistrophy
- Liver/Lipid

38
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Beta-cell Proinsulin Obesity Lipodystrophy Liver/Lipid

HOMA-B HOMA-B HOMA-B HOMA-B

HOMA - IR 4 ’ HOL  HOMA-IR « J HDL HOMA-IR ' HOL  HOMA - ! HOL HOMA - I

HM BAI BAI (SAR ] B

Fig 1. Cluster-defining characteristics. (A) Standardized effect sizes of cluster GRS-trait associations
derived from GWAS summary statistics shown 1n spider plot. The middle of the three concentric
octagons 1s labeled “0,” representing no association between the cluster GRS and trait. A subset of
discriminatory traits are displayed. Points falling outside the middle octagon represent positive cluster-
trait associations, whereas those inside it represent negative cluster-trait associations. (B) Associations of
GRSs in individuals with T2D with various traits. Results are from four studies (METSIM, Ashkenazi,
Partners Biobank, and UK Biobank) meta-analyzed together. Effect sizes are scaled by the raw trait
standard deviation. (C) Differences 1n trait effect sizes between individuals with T2D having GRSs in the
highest decile of a given cluster versus all other individuals with T2D. Results are from the same four
studies meta-analyzed together. Effect sizes are scaled by the raw trait standard deviation. BMI, body
mass index; Fastins, fasting insulin; GRS, genetic risk score; GWAS, genome-wide association study;
HDL, high-density lipoprotein; HOMA-B, homeostatic model assessment of beta cell function; HOMA-
IR, homeostatic model assessment of insulin resistance; METSIM, Metabolic Syndrome in Men Study;
Prolns, fasting proinsulin adjusted for fasting insulin; TG, serum triglycerides; T2D, type 2 diabetes;
WC, waist circumference; WHR-F, waist-hip ratio in females; WHR-M, waist-hip ratio in males.



Table 1. Associations of cluster genetic risk scores and selected GWAS traits.

Beta Cell Proinsulin Obesity Lipodystrophy Liver/Lipid
N Loci = 30 NLoci=7 NLoci=5 N Loci = 20 NLoci=5

Trait beta P-value beta P-value beta P-value beta P-value beta P-value
Adiponectin ~0.0005 0.55 -0.0019 0.37 ~0.0007 0.74 -0.0114 3.34F %3 -0.0007 0.77
BMI -0.0026 6.0x107° -0.0080 3.1x107% 0.0396 9.7x10 %7 -0.0079 1.81E™ ! 0.0001 0.94
Bodyfat -0.0016 0.11 ~0.0061 4.5x10"° 0.0247 2.1x10°% -0.0120 9.04E** ~0.0031 0.26
CIR ~0.0584 7.1x107 % -0.0234 0.014 -0.0010 0.92 0.0087 0.10 -0.0021 0.85
DI -0.0543 6.6x10° ~0.0080 0.40 ~0.0086 0.40 -0.0102 0.05 -0.0115 0.30
2hrGlu adj BMI 0.0288 2.0x10°"* 0.0204 0.02 0.0064 0.49 0.0292 2.26E° -0.0257 0.01

FI -0.0033 44x1077 -0.0054 2.2x107* 0.0087 6.1x10°% 0.0068 1.96E7'¢ 0.0071 3.8x10°°
FI adj BMI -0.0026 4.4x10°° ~0.0040 1.3x10° -0.0008 0.57 0.0082 3.01E”"" 0.0082 2.1x10°°
HDL ~0.0008 0.51 ~0.0031 0.27 -0.0059 0.05 -0.0191 1.96E 0.0069 0.038
Height 0.0009 0.12 -0.0058 3.3x10°° -0.0033 1.9x107° 0.0061 44477 -0.0005 0.77
HC -0.0031 3.5x107° -0.0113 1.0x10° " 0.0345 9.1x10° 7 -0.0116 9.69E** -0.0007 0.73
HOMA-B -0.0066 1.9x107%! -0.0103 2.6x107 " 0.0066 8.0x107° 0.0019 0.03 0.0019 0.30
HOMA-IR ~-0.0011 0.21 -0.0041 0.03 0.0108 9.0x10°® 0.0066 2.2x107"° 0.0093 2.6x107°
Incr30 -0.0398 6.9x10° " -0.0239 0.02 -0.0053 0.63 0.0198 4.8x107* 0.0102 0.38
Ins30 adj BMI -0.0503 1.8x10™** ~0.0310 1.8x10° 0.0027 0.81 0.0163 3.9x10° 0.0054 0.64
ISI adj BMI -0.0039 0.06 -0.0020 0.67 0.0045 0.37 -0.0213 1.3x10° "3 -0.0086 0.12
Leptin 0.0009 0.50 -0.0067 0.03 0.0197 1.0x107° -0.0245 8.9x10°* 0.0147 3.1x107°
Linoleic acid 0.0093 0.29 -0.0232 0.25 0.0027 0.90 -0.0024 0.83 0.1330 1.31x10°%
Palmitoleic 0.0002 0.74 0.0024 0.11 0.0034 0.03 -0.0020 0.02 -0.0104 5.50x10°°
Proinsulin 0.0097 1.2x10°"° -0.0297 1.4x10°"® 0.0047 0.18 0.0059 1.3x107° 0.0059 0.13
Total Chol 0.0023 0.06 -0.0055 0.04 -0.0023 0.45 0.0046 3.2x10°° -0.0182 3.1x10°%
Triglycerides 0.0022 0.07 ~0.0027 0.33 0.0066 0.03 0.0194 1.8x10** | -0.0416 = 1.0x10°°
Urate -0.0007 0.51 ~0.0045 0.084 0.0165 1.4x107° 0.0090 2.2x107" -0.0260 2.6x107'®
WC -0.0020 5.23x107° -0.0096 1.5x107° 0.0379 1.0x107192 -0.0058 3.6x1071° -0.0005 0.80
WC female -0.0010 0.30 -0.0073 3.9x107* 0.0376 1.4x10°%° -0.0022 0.07 0.0000 0.99
WC male -0.0031 1.6x10° -0.0128 54x107° 0.0374 1.1x10°°" -0.0102 2.8x10°"° 0.0007 0.80
WHR 0.0014 0.05 -0.0016 0.30 0.0229 3.7x107 % 0.0051 1.6x10°% 0.0016 0.43
WHR female 0.0027 4.0x107° 0.0010 0.62 0.0221 2.8x107 % 0.0140 5.6x107*2 0.0027 0.31
WHR male 0.0003 0.74 ~0.0049 0.03 0.0242 1.4x10°* -0.0059 7.6x10°° 0.0003 0.92




PheWAS = “reverse GWAS”

- GWAS studies generalized from one to multiple phenotypes
« Unlike SNPs, phenotypes were not well characterized
- Billing codes, EHR data, temporal progression
« Vanderbilt example:
(2010) biobank held 25,769 samples
first 6,000 European-Americans with samples; no other criteria
five SNPs:
« rs1333049 [coronary artery disease (CAD) and carotid artery stenosis (CAS)],
« rs2200733 [atrial fibrillation (AF)],
« rs3135388 [multiple sclerosis (MS) and systemic lupus erythematosus (SLE)],

« rs6457620 [rheumatoid arthritis (RA)],
« rs17234657 [Crohn’s disease (CD)]

Defined PheWAS code table, cleaning up ICD-9-CM to 744 case groups
- https://phewascatalog.org/phecodes

- E.g., tuberculosis = {010-018 (TB in various organs), 137 (late effects of tuberculosis),
647.3 (tuberculosis complicating the peripartum period)}

(2015) 1866 PheWAS codes, with 1-496 ICD codes grouped [TB is the one with 496!]

Denny, J. C., Ritchie, M. D., Basford, M. A., Pulley, J. M., Bastarache, L., Brown-Gentry, K., et al. (2010). PheWAS: demonstrating the feasibility of a phenome- 42
wide scan to discover gene-disease associations. Bioinformatics (Oxford, England), 26(9), 1205-1210. http://doi.org/10.1093/bioinformatics/btq126


https://phewascatalog.org/phecodes

Diseases Associated with SNP rs3135388

- Expected MS,

SLE

* | Multiple Sclerosis |
) -
-~ e I I
. Malignant neoplasm of rectum
o o™ * .Ber.\i n digestive tract neoplasms
-8’ Sengnda Acute renal failure
' . * Erythematous conditions
*Diabetes mellu‘us heart di
mon sease
o Pituitary disorders ® ®condudt dpusorde:y . Polymyalgiarheumatica
#Chronic kndney disease (CKD) °
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______ ,___ _____,_J\tbemsclero!ns_______________
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Fig. 1. Phenome-wide scan for association with rs3135388. MS is replicated
from prior analyses. The dashed line represents the P =0.05; the dotted line
represents the Bonferroni correction.
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You Don’t Always Get What You Expect

Table 2. Diseases previously associated with the five SNP studied and current Phe WAS ORs

SNP Gene/region Disease Cases Previous OR PheWAS P-value Phe WAS OR
rs3135388 DRBI1*1501 MS 89 1.99¢ 2.77 x 10°° 2.24 (1.56-3.16)
SLE 141 2.06° 1.13 (0.79-1.58)
rs 17234657 Chr. 5 CD 200 1.54° 0.00080 1.57 (1.19-2.04)
152200733 Chr. 4¢25 AF and flutter 606  1.75¢ 1.15 (0.95-1.39)
rs 1333049 Chr. 9p21 CAD 1181 1.20-1.47¢ 0.011 1.13 (1.03-1.23)
Carotid atherosclerosis 333 1.46 0.98 (0.84-1.15)
rs6457620 Chr. 6 RA# 392 2.36° 0.0002 1.35 (1.15-1.58)
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Expression Quantitative Trait Loci (eQTLS)

- Genetic variants that explain quantitative expression levels
* I.e., use expression levels to define phenotype
* no need for clinical knowledge, human judgment
« potential to explain genetic mechanisms

| Mb TSS | Mb
IMb window * e g
—
probe =
gene ]
SN O UL 1 O O O I IR LT N
100 1
80 1
2 601
% eQTL
2 407 \
\
20 N AR
\‘~
} ’ '4_;.-..._'_ >—
0 ~1.5 0O 1.5 30 45 60 75
expression levels
Nica, A. C., & Dermitzakis, E. T. (2013). Expression quantitative trait loci: present and future. Philosophical Transactions of the Royal Society B: Biological 45

Sciences, 368(1620), 20120362—20120362. http://doi.org/10.1098/rstb.2012.0362



Differential Expression in Different Populations

European — African: 17% of genes in small sample (16 people)
European — Asian: 1097/4197 = 26%

4 populations from HapMap sample of 270 people: 17-29% different expression
levels

But:
- Some effect may be environmental
- Large differences between different tissues (most early studies used only blood)
- Limited correlation to disease phenotypes
Nevertheless:
- Evidence for suspect causative genes in various diseases: asthma, Crohn’s

“The large-scale disease studies performed so far have uncovered multiple variants
of low-effect sizes affecting multiple genes. This suggests that common forms of
disease are most probably not the result of single gene changes with a single
outcome, but rather the outcome of perturbations of gene networks which are
affected by complex genetic and environmental interactions.”
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QTL, eQTL, & Disease Traits

L =QTL

R = RNA expression level (eQTL)

C = complex trait

Model that best fits data is most likely

M1 M2 M3 TR N
Cc . L p—» C >R > (L) !
S —— N N L/ I
c 7/
Causal model Reactive model Independent model
M4 M5
B, Ly
. R, | (L)
(L) c . R>— s C
<R, (Ln

More complicated causal models

Schadt, E. E., Lamb, J., Yang, X., Zhu, J., Edwards, S., GuhaThakurta, D., et al. (2005). An integrative genomics approach to infer causal associations between gene 47
expression and disease. Nature Genetics, 37(7), 710-717. http://doi.org/10.1038/ng1589



A More Complex Story
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the primary
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Scaling Up Gene-Phene Association Studies

« UK Biobank collects data on ~.5M de-identified individuals

everyone will have full exome sequencing (50K so far)

100K have worn 24-hour activity monitor for a week, 20K have had repeat
measurements

on-line questionnaires: diet, cognitive function, work history, digestive health
100K will have imaging: brain, heart, abdomen, bones, carotid artery

linking to EHR: death, cancer, hospital episodes, GP, blood biochemistry
developing more accurate phenotyping

« Ongoing stream of results
- April 18th, 2019: Genetic variants that protect against obesity and type 2 diabetes

discovered

- April 17th, 2019: Moderate meat eaters at risk of bowel cancer

 April 8th, 2019: Research identifies genetic causes of poor sleep

https://www.ukbiobank.ac.uk
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UK Biobank GWAS

- Users; e.g., Neale Lab @ MGH & Broad
« Phenome scan in UK Biobank (https://github.com/MRCIEU/PHESANT)
- PHESANT “traits": 2891 total (274 continuous / 271 ordinal / 2346 binary)
* Aug 2018: 4,203 phenotypes
- ICD10: 633 binary
* FinnGen curated: 559

- imputed-v3 model (“a ‘quick-and-dirty’ analysis that strives to provide a reliable,
albeit imperfect, insight into the UK Biobank data”)

» Linear regression model in Hail (linreg)
« Three GWAS per phenotype
- Both sexes
* Female only
- Male only
« Covariates: 1st 20 PCs + sex + age + age”\2 + sexage + sexage2
- Sex-specific covariates: 1st 20 PCs + age + age/2

https://www.ukbiobank.ac.uk 50


https://github.com/MRCIEU/PHESANT

Heritability

- Most heritable traits look genetic for large sample sizes 0.15
- Height (h2 =.46, p=7.5e-109) >
+ College degree (h2 =.28, p=6.6e-195) g™
« TV watching (h2 =.096, p=2.8e-114) E

« How much insight does this convey?

0 0.2 0.4
h2 estimate

Distribution of LDSR SNP-heritability
estimates for phenotypes with Neﬁ > 10,000.

http://www.nealelab.is/blog/2017/9/20/insights-from-estimates-of-snp-heritability-for-2000-traits-and-disorders-in-uk-biobank 51



Gene Set Enrichment Analysis (GSEA)

* Problems with genome-wide expression analysis
* No gene may pass multiple hypothesis testing because of weak signals
- Many genes may pass, but with no coherent understanding of their relationships
 Single-gene analyses fail to account for pathway interactions
- Little overlap among genes identified by multiple studies
- Therefore, consider gene sets (defined by biological knowledge of pathways)
- Broad published 1,325 biologically defined gene sets (2005) [17,810 today]

+ “genes involved in oxidative phosphorylation [in muscle tissue] show reduced
expression in diabetics, although the average decrease per gene is only 20%”

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545—15550. http://doi.org/ 50
10.1073/pnas.0506580102



GSEA

- Consider L, the list of rank-ordered genes by differential expression between cases
and controls; the top and bottom ranked genes are the ones of interest

- Given genes in a set S, are they randomly distributed in L, or concentrated?

A Phenotype B Leading edge subset

Classes ¥ Gene set S
A B |
NN GenesetS ,

Correlation with Phenotype

N E——

Random Walk

- “Random walk”
proportional to correlation
of gene expression to
phenotype

- Statistical significance
computed by random
permutation test on
phenotype; adjust for
multiple hypotheses

- TN—

Maximum deviation Gene List Rank
from zero provides the
enrichment score ES(S)

Ranked Gene List

Fig. 1. A GSEA overview illustrating the method. (A) An expression data set
sorted by correlation with phenotype, the corresponding heat map, and the
gene tags,” i.e., location of genes from a set S within the sorted list. (B) Plot
of the running sum for Sin the data set, including the location of the maximum
enrichment score (ES) and the leading-edge subset.



Early GSEA Successes

Data set: Lymphoblast cell lines Data set: Lung cancer outcome, Boston study
Enriched in males Enriched in poor outcome
chry <0.001 Hypoxia and p53 in the cardiovascular system 0.050
chrYp11 <0.001 Aminoacyl tRNA biosynthesis 0.144
chrYq11 I Insulin upregulated genes 0.118
Tfestls gxpressed genes 0.012 tRNA synthetases 0.157
Enriched in females . N
X inactivation genes <0.001 Leucine deprivation down-regulated genes 0.144
Female reproductive tissue expressed genes 0.045 Telomerase up-regulated genes 0.123
Data set: p53 status in NCI-60 cell lines Glutamine deprivation down-regulated genes 0.146
Enriched in p53 mutant Cell cycle checkpoint 0.216
Ras signaling pathway 0.171 Data set: Lung cancer outcome, Michigan study
Enriched in p53 wild type Enriched in poor outcome
Hypoxia and p53 in the cardiovascular system <0.001 Glycolysis gluconeogenesis 0.006
Stress induction of HSP regulation <0.001 vegf pathway 0.028
p53 signaling pathway <0.001 Insulin up-regulated genes 0.147
P53 up-regulated genes 0.013 Insulin signalling 0.170
Radiation sensitivity genes 0.078 Telomerase up-regulated genes 0.188

Data set: Acute leukemias

. . Glutamate metabolism 0.200
Enriched in ALL c i th 0 204
chr6q21 0.011 erarpn o [?a way _
chr5q31 0.046 p53 signalling 0.179
chr13q14 0.057 tRNA synthetases 0.225
chr14q32 0.082 Breast cancer estrogen signalling 0.250
chr17g23 0.071 Aminoacyl tRNA biosynthesis 0.229

- Consider pathways, not just gene sets
* e.g., AND/OR graphs, or circuits
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RISE OF DEEP LEARNING FOR OMICS INTEGRATION

633

TABLE |. DEEP LEARNING ARCHITECTURES AND APPROACHES FOR OMICS ANALYSIS

Method Key features Input data and applications
CNN Hierarchical architecture commonly used for Multidimensional arrays such as DNA-seq,
image classification DNase-seq, protein-binding microarrays,
Includes convolution and pooling layers and ChlP-seq
(Miotto et al., 2017) Prediction of binding site, nucleosome
Detection of locally and globally consistent positioning, and DNA accessibility
features in the data (Min et al., 2017a) (Alipanahi et al., 2015; Kelley et al., 2016,
Strength: established architectures useful for Min et al., 2017b; Zhang et al., 2018)
encoding complex local and global
interactions (e.g., relationships between DNA
motifs) (Angermueller et al., 2016)
RNN Sequential architecture useful for text and time  Sequential data such as genomic sequences or
series data (Wenpeng et al., 2017) natural language
Cyclic connections share information from Prediction of protein structure, gene expression
previous and current state (Min et al., 2017a) regulation, protein homology, and DNA
Strength: identification of latent relationships in methylation (Angermueller et al., 2017,
sequential (Angermueller et al., 2016) Li et al,, 2017a; Seunghyun et al., 2016;
Seren and Ole, 2014)
AE Unsupervised learning Genome-scale omics data such as gene
Combination of encoder and decoder is used expression data
to predict the input data and is useful for Identification of informative features
detecting consistent patterns in the data (Ding et al., 2018; Gupta et al., 2015)
(Miotto et al., 2017)
Strength: nonsupervised identification of major
patterns in the data (Ching et al., 2018)
DNN-MDA Application of DNN for construction of NMR-based metabolite profiling
(Date and Kikuchi, classification and regression models, and Identification of biomarkers
2018) estimation of variable importance by an
MDA
Strength: estimation of variable importance
DeepNovo Integrating CNN and LSTM RNN Tandem mass spectra of proteomics data

(Tran et al.,, 2017)

Strength: combining useful features
from CNN and RNN

Prediction of novel peptide sequence

AE, autoencoder: CNN, convolutional neural network: DNN, deep neural network: LSTM, long short-term memory: MDA, mean
decrease accuracy: NMR, nuclear magnetic resonance; RNN, recurrent neural network.

Grapov, D., Fahrmann, J., Wanichthanarak, K., & Khoomrung, S. (2018). Rise of Deep Learning for Genomic, Proteomic,

and Metabolomic Data Integration in Precision Medicine. OMICS: a Journal of Integrative Biology, 22(10), 630—636.



