Machine Learning for Healthcare

HST.956, 6.5897

Lecture 19: Disease progression modeling &

—

b

CSAIL

subtyping, Part 2

David Sontag

1HTES

[

HST



Recap of goals of disease
progression modeling

* Predictive:
— What will this patient’s future trajectory look like?
* Descriptive:

— Find markers of disease stage and progression,
statistics of what to expect when

— Discover new disease subtypes

* Key challenges we will tackle:

— Seldom directly observe disease stage, but rather only
indirect observations (e.g. symptoms)

— Data is censored — don’t observe beginning to end



Outline of today’s lecture

1. Staging from cross-sectional data
— Wang, Sontag, Wang, KDD 2014

— Pseudo-time methods from computational
biology

2. Simultaneous staging & subtyping

— Young et al., Nature Communications 2018
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Stage vs. subtype

Staging: sort patients into early-late disease or
severity, i.e. discover the trajectory

Cross-sectional data: only 1 time point observed
per patient

— More generally, censored to be a short window

Naive clustering can’t differentiate between stage
and subtype

— Patients assumed to be aligned at baseline

Let’s build some intuition around how staging
from cross-sectional data might be possible...



In 1-D, might assume that low values
correspond to an early disease stage
(or vice-versa)

IIJOhnII llMaryII
Early disease Biomarker A Late disease

Assume samples were all taken today



What about in higher dimensions?
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What about in higher dimensions?

Insight #1: with
enough data, may
be possible to
recognize structure

Biomarker B

- Biomarker A
[Bendall et al., Cell 2014 (human B cell development)]



What about in higher dimensions?
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What about in higher dimensions?

A  Early disease

Biomarker B

Late disease
>

Biomarker A



May also seek to discover disease subtypes

A

Subtype 1
Subtype 2

Biomarker B

Biomarker A
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COPD diagnosis & progression

 COPD diagnosis made using a breath test — fraction of air
expelledin first second of exhalation < 70%

* Mostdoctors use GOLD criteria to stage the disease and
measure its progression:

1 (mild) 2 (moderate) 3 (severe) 4 (very severe)
FEV,:FVC <070 <0-70 <070 <070
FEV, =80% of predicted 50-80% of predicted 30-50% of predicted <30% of predicted or <50% of predicted plus
chronic respiratory failure
Treatment Influenza vaccination and Influenza vaccination, Influenza vaccination and Influenza vaccination and short-acting and
short-acting bronchodilator*  short-acting and short-acting and =1 long-acting =1 long-acting bronchodilator* when
when needed =1long-acting bronchodilator* when needed,  needed, inhaled glucocorticosteroid if
bronchodilator* when inhaled glucocorticosteroid if repeated exacerbations, long-term oxygen if
needed; consider respiratory repeated exacerbations; consider chronic respiratory failure occurs; consider
rehabilitation respiratory rehabilitation respiratory rehabilitation and surgery

GOLD=Global Initiative on Obstructive Lung Disease. *B: agonists or anticholinergics.

Table: Therapy at each stage of chronic obstructive pulmonary disease, by GOLD stage*

Chronic obstructive pulmonary disease. The Lancet, Volume 379, Issue 9823, Pages 1341 -1351, 7 April 2012




The big picture: generative model for patient data

Markov Jump Process

Progression Stages

K phenotypes, each
with its own Markov
chain

Observations

N patients

[Wang, Sontag, Wang, “Unsupervised learning of Disease Progression Models”, KDD 2014]



Model for patient’s disease progression across time

Underlying
. S(t 2 2
disease state ' 2> ' [ ) } > 4
% A = 34 days % %
Disease stage on Disease stage on Disease stage on Disease stage on
Mar. ‘117? Apr. 117 Feb. ‘127 Jun. 127

A continuous-time Markov process with irregular discrete-time
observations

The transition probability is defined by an intensity matrix and the time
interval:

Aii(A) 2 P(S; =j|Si—1 =i, 7 — i1 = A; Q)
= expm(AQ)j,

Matrix Q: Parameters to learn



Model for data at single point in time:

N patients

Noisy-OR network

Previously used for medical diagnosis, e.g. QMR-DT (Shwe
et al. '91)



Model for data at single point in time:
Noisy-OR network

Previously used for medical diagnosis, e.g. QMR-DT (Shwe
et al. '91)

Comorbidities / Phenotypes “Everything else”
N\ (hidden) (always on)
7~ N\ 7~ N\ 7~ N\

Diabetes Depression Lung cancer

All binary variables

Diagnosis codes,
medications, etc.

ex L —
Clinical findings
(observable)
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Model for data at single point in time:
Noisy-OR network

NN ” | Previously used for medical diagnosis, e.g.
QMR-DT (Shwe et al.’91)

,,,,,, \ Comorbidities / Phenotypes “Everything else”
N patients (hidden) (always on)
7~ N\ 7~ N\ VRN

Diabetes Depression Lung cancer

We also learn which
edges exist N

Associated with each
edge is a failure - |
probability B = L

Clinical findings
(observable)




Using anchors to ground the hidden variables

* Ananchor is a finding that can only be caused by a single
comorbidity (discussed in Lecture 8)

Diabetes K Comorbidities Leak Term
(hidden) (hidden)

205.02 D Clinical Findings
(Observable)

Y. Halpern, YD Choi, S. Horng, D. Sontag. Using Anchors to Estimate Clinical State without Labeled Data. To appearin the American
Medical Informatics Association (AMIA) Annual Symposium, Nov. 2014



Using anchors to ground the hidden variables

* Provide anchorsfor each of the comorbidities:

Comorbidity Representative Conditions (Anchor ICD-9 Codes)

COPD Chronic Bronchitis (491), Emphysema (492, 518), Chronic Airway Obstruction (496)

Asthma Asthma (493)

Cardiovascular =~ Hypertension (401), Congestive Heart Failure (428), Arrhythmia (427), Ischemic Heart Disease (414)

Lung Infection
Lung Cancer
Diabetes
Musculoskeletal
Kidney
Psychological
Obesity

Pneumonia (481, 485, 486)

Malignant Neoplasm of Upper/Lower Lobe, Bronchus or Lung (162)

Diabetes with Different Types and Complications (250)

Spinal Disorders (724), Soft Tissue Disorders (729), Osteoporosis (733)

Acute Kidney Failure (584), Chronic Kidney Disease (585), Renal Failure (586)
Anxiety (300), Depression (296, 311)

Morbid Obesity (278)

 Can beviewed as a type of weak supervision, using clinical
domain knowledge

 Withoutthese, the resultsare less interpretable



Model of comorbidities across time

) B S S ; ) . ST ) ) >

v I Y vy
T ‘ Ol ‘ ()
- ‘ - Has diabetes Has diabetes Has diabetes Has diabetes
N patients Mar. ‘117 Apr. ‘117 Feb. ‘127 Jun. 7,127

* Presence of comorbidities depends on value at previous time
step and on disease stage

e Later stagesof disease = more likely to develop comorbidities

 Make the assumption that once patient has a comorbidity,
likely to always have it



Experimental evaluation

We create a COPD cohort of 3,705 patients:

— At least one COPD-related diagnosis code

— At least one COPD-related drug
Removed patients with too few records

Clinical findings derived from 264 diagnosis codes
— Removed ICD-9 codes that only occurred to a small number of patients

Combined visitsinto 3-month time windows

34,976 visits, 189,815 positive findings



Inference

e Quterloop
— EM
— Algorithm to estimate the Markov Jump Process is borrowed
form recent literature in physics
* Innerloop

— Gibbs sampler used for approximate inference

— Perform block sampling of the Markov chains, improving the
mixing time of the Gibbs sampler

* If Il were to do it again... would do variational
inference with a recognition network (as in VAEs)

P. Metzner, I. Horenko, and C. Schutte. Generator estimation of markov jump processes based on incomplete
observations nonequidistantin time. Physical Review E, 76(6):066702, 2007.



Customizations for COPD

Enforce monotonic stage progression, i.e. S;,; 2 S;:

N S

Enforce monotonicity in distributions of comorbidities in first

— To do this, we solve a tiny convex optimization problem within EM

Enforce that transitionsin X can only happen at the same time
as transitionsin S

Edge weights given a Beta(0.1, 1) prior to encourage sparsity



Edges learned for kidney disease

Diagnhosis code Weight

*585.3 0.20 Chronic Kidney Disease, Stage lii (Moderate)
285.9 0.15 Anemia, Unspecified

*585.9 0.10 Chronic Kidney Disease, Unspecified

599.0 0.08 Urinary Tract Infection, Site Not Specified
*585.4 0.08 Chronic Kidney Disease, Stage Iv (Severe)
*584.9 0.07 Acute Renal Failure, Unspecified

*586 0.07 Renal Failure, Unspecified

782.3 0.06 Edema

*585.6 0.05 End Stage Renal Disease

5939 0.04 Unspecified Disorder Of Kidney And Ureter
272.4 0.04 Other And Unspecified Hyperlipidemia
272.2 0.03 Mixed Hyperlipidemia
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Edges learned for kidney disease

Diagnhosis code Weight

*585.3 0.20 Chronic Kidney Disease, Stage lii (Moderate)
285.9 0.15 Anemia, Unspecified
*585.9 0.10 Chronic Kidney Disease,
599.0 0.08 Urinary Tract Infection, _ kidneys make an important
*585.4 0.08 Chronic Kidney Disease, hormone called erythropoietin
*584.9 0.07 Acute Renal Failure, Uns (EPO). Hormones are secretions

. ... That your body makes to help
E 3
586 0.07 Renal Failure, Unspecifie your body work and keep you

782.3 0.06 Edema healthy. EPO tells your body to
*585.6 0.05 End Stage Renal Disease make red blood cells. When you

o have kidney disease, your kid
593.9 0.04  Unspecified Disorder Of "0 'C K/CNeY Gbecse, youl KEneys
cannot make enough EPO. This

272.4 0.04 Other And UnSPECified | causes your red blood cell count
272.2 0.03 Mixed Hyperlipidemia fo drop and anemia fo develop.

Why do people with kidney
disease get anemia?

WWW.KIDNEY.ORG S



Diagnosis code

*162.9
518.89
*162.8
*162.3
786.6
793.1
786.09
*162.5
*162.2
702.0
511.9
*162.4

Edges learned for lung cancer

Weight

0.60 Malignant Neoplasm Of Bronchus And Lung
0.15 Other Diseases Of Lung, Not Elsewhere Classified
0.15 Malignant Neoplasm Of Other Parts Of Lung
0.15 Malignant Neoplasm Of Upper Lobe, Lung

0.15 Swelling, Mass, Or Lump In Chest

0.10 Abnormal Findings On Radiological Exam Of Lung
0.07 Other Respiratory Abnormalities

0.06 Malignant Neoplasm Of Lower Lobe, Lung

0.04 Malignant Neoplasm Of Main Bronchus

0.03  Actinic Keratosis

0.03 Unspecified Pleural Effusion

0.03 Malignant Neoplasm Of Middle Lobe, Lung
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Edges learned for lung infection

Diagnosis code Weight

*486 0.30 Pneumonia, Organism Unspecified

786.05 0.10 Shortness Of Breath

786.09 0.10 Other Respiratory Abnormalities

786.2 0.10 Cough

793.1 0.06 Abnormal Findings On Radiological Exam Of Lung
285.9 0.05 Anemia, Unspecified

518.89 0.05 Other Diseases Of Lung, Not Elsewhere Classified
466.0 0.05 Acute Bronchitis

799.02 0.05 Hypoxemia

599.0 0.04 Urinary Tract Infection, Site Not Specified
V58.61 0.04 Long-Term (Current) Use Of Anticoagulants
786.50 0.04 Chest Pain, Unspecified



Progression of a single patient

Progression Stage I | 11 l’
Years Elapsed | 0.5l 3.25
Hypertension™
Cardiovascular ; +*—hk —k—k >
Pain in Limb* Cervicalgia Lumbago* Pain in Joint
Musculoskeletal {=—<j¢ Y Y > >
Depression™ Anxiety™
Psychological -} e h P + Y Yy >
2010 2013
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Prevalence of comorbidities across stages
(Cardiovascular disease)
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[
Editorials | August 2009 | s VI

Is COPD Really a Cardiovascular Disease? | rreeroview
Don D. Sin, MD, FCCP

Author and Funding Information : -

Chest. 2009;136(2):329-330. doi:10.1378/chest.09-0808 Text Size: A A A

Related editorial/commentary:

/ A Postmortem Analysis of Major Causes of Early Death in Patients Hospitalized With COPD : o

Exacerbation (Chest. 2009;136(2):376-380.)

m References ‘

It is now well established that COPD is a chronic inflammatory condition with rt failure) -
significant extrapulmonary manifestations.' In patients with mild-to-moderate ‘

COPD, the leading cause of morbidity and mortality is cardiovascular disease.jin |
\ the Lung Health Study,“ which examined nearly 6,000 smokers whose FEVywas [ |

0.6| between 55% and 90% predicted, cardiovascular diseases were the leading cause 6 9.0
of hospitalization, accounting for nearly 50% of all hospital admissions, and the
second leading cause of mortality, accounting for a quarter of all deaths.
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Solid Tissue

Single-cell sequencing

RT& Second-strand

Synthesis
b%‘;
Dissociation Single Cell Isolation RNA cDNA

IVT , OR
Amplified . X 5
RNA ‘_',: S \;f'

RT ‘ PCR
CAAGTTCCTACAGCTA
AGTCCATGCCCATCCG W h»_ # b
AATCGGACTTCAGCCT y
GACCTAAGCCATCAGA - m « \
AATCCTAGCATCCAGC /
ACCGTTACATCAACAG y : .
ATTCGATAACGACCAT
CATGCCATTGACGATT

Sequencing Sequencing Library Amplified cDNA

[Figure source: https://en.wikipedia.org/wiki/Single cell sequencing]




Inferring original trajectory from single-cell data

A Physical time

—
) O OOO QOO OO
e® @ o 905 A C
B @ C |

Process estimation

00 L O I:> @00 000 CRDOOCITITDOOOD
O ® O O “Statistically inferred ordering”
e 500 @

" . o Gene A
Loss of temporal information ><
Gene B

Pseudotime

“Genes that are differentially expressed over
(pseudo)time”

Fig 1. The single cell pseudotime estimation problem. (A) Single cells at different stages of a temporal process. (B) The
temporal labelling information is lost during single cell capture. (C) Statistical pseudotime estimation algorithms attempt to
reconstruct the relative temporal ordering of the cells but cannot fully reproduce physical time. (D) The pseudotime estimates
can be used to identify genes that are differentially expressed over (pseudo)time.

[Figure from: Campbell & Yau, PLOS Computational Biology, 2016]



Gene

RP11-275114.4

RARRES3

C1S

GS1-174L6.4

CTC-244M17 1

RP11-709B3.2

CLSTN2

ZSCANS31

IL20RA

APOL4

Posterior Posterior Posterior Posterior Posterior Posterior Posterior Posterior Posterior

Posterior

samples samples samples samples samples samples samples samples samples

samples

Expression

Pseudotime

Activation times

AN
/\
JAN
/\
/AN
VAN
/\
/\

ANS
I\

Pseudotime

[Campbell &
Yau, PLOS
Computational
Biology, 2016]



Estimated running time

(cells x features)
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[Saelens, Cannoodt, Todorov, Saeys. A comparison of single-cell trajectory inference methods.
Nature Biotechnology, 2019]

https://github.com/dynverse/dynbenchmark/




MST-based approach (Monocle)

Cells represented as

points in expression space Reduce dimensionality Build MST on cells
. (ICA) o
S (R ‘ ' ®
“0“ E % . ﬂ
------ --9® :
: R @
"""" rd o
QPR
..... :’,ﬁ-:..... -
...... .. -
Label cells by type Order cells in pseudotime
via MST
Differentially expressed ®
genes by cell type ® O Look for
Differentially expressed ® - longest
genes across pseudotime path in
@
Gene expression ® the tree
clusters and trends

[Magwene et al., Bioinformatics, 2003; Trapnell et al., Nature Biotechnology, 2014]



Component 1

MST-based approach (Monocle)

+

Proliferating
cell

Differentiatin Interstitial
9 o mesenchymal
myoblast cell

Beginning of
/ pseudotime

End of
(@)~ pseudotime

-2

Component 2

[Trapnell et al., Nature Biotechnology, 2014]



Statistical model for probabilistic pseudotime

o is a Gaussian process if for any collection T = {t;,i =1,..., N},
p(ty)
| ~N(O,K(T,T))
p(tn)
2 Htil_ti2H2 -
k(ti,ti,) =71°exp | — 572 (squared exponential)
o E§=ﬂ.ﬂ1
E2=ﬂ.1
— =
= o
g
o - [ | [ [ [ |
0 2 4 6 8 10



probabikty density

Statistical model for probabilistic pseudotime

t, ~ TruncNormal,, ,,(,, 07), i=1,...,N,

Y = diag(a7, ..

., 05)

t

P P: dimension (e.g. 2)

KO(t,¢) = exp(—=A,(t —t)), j=1,...,P,

0.00
1

‘uj ~ GP(()7 K(i))7 ] — 1, L ,P7 GP: Gaussian Process (1-D)
x, ~ MultiNorm(u(t,),X), i=1,...,N.

v ... | distribution

1

N: number of data points

\ Truncated normal

[Campbell & Yau, PLOS Computational Biology, 2016]



Outline of today’s lecture

1. Staging from cross-sectional data
— Wang, Sontag, Wang, KDD 2014

— Pseudo-time methods from computational
biology

2. Simultaneous staging & subtyping
— Young et al., Nature Communications 2018

Acknowledgement: Subsequent slides adapted from Daniel Alexander



Temporal heterogeneity

Patients show various disease stages through which patterns of pathology
evolve

Alzheimer’s disease Frontotemporal dementia

transentorhinal limbic isocortical

pattern | | pattern Il I pattern 1l B pattern IV

Braak and Braak 1991 Brettschneider et al. 2014



Phenotypic heterogeneity

Individuals have different disease subtypes with distinct patterns of
pathology

Alzheimer’s disease Frontotemporal dementia

A
Hippocampal- Limbic- Controls > MAPT

Typical sparing predominant }J@f é@; ﬁ %
. - - = r

1 | i

.; ) : ¢ ~ b 5 A

Controls > GRN

%*

Murray et al. 2011, Whitwell et al. 2012

Whitwell et al. 2012



Subtype and Stage Inference (SuStaln)

d
Application: subtyping and staging new patients

Underlying model
00 Al
A3 1 i P Z (i a =
() < <. & f_\.‘-\_ H ! 1 E N— = —
— i ] ]
| 3 8
® 00 | oum 5T e = S &
3 / \. P _ Jr i "‘j'&;?\"
= 3 I i & : S :
h L 1 . 1 : I 90@ : /Q‘Q@ I’ :
i ! 1 : “‘0\\19

DY @mo@

Stages
Output: reconstruction of disease subtypes and stages

Subtypes

Input data: heterogeneous patient snapshots

[Young et al., Nature Communications 2018]



Subtype and Stage Inference (SuStaln)

* Generative model for a data point:

— Sample subtype ¢ ~ Categorical(f,, ..., f¢)
— Sample stage t ~ Categorical(uniform)
— For each biomarkeri, sample x; ~ N(gc,z’(t), o;)

* Means are enforced to be monotonicallyincreasing
and piece-wise linear:

th—lt, 0<t <ty

' Shown here for one
choice of ¢,i— no

- parameter sharing across

2 +%<t— s, )t <t<t:_ biomarkers or subtypes

ZR + Zlmixt—ZR (t - thR ) 3 thR <t S 1

\ Ezp

z,—z
4t tg z_t; <t - th1 > ’ thl <t < thz

22 21

[Young et al., Brain 2014; Young et al., Nature Communications 2018]



