
Machine	Learning	for	Healthcare
HST.956,	6.S897

Lecture	19:	Disease	progression	modeling	&	
subtyping,	Part	2

David	Sontag



Recap	of	goals	of	disease	
progression	modeling

• Predictive:
– What	will	this	patient’s	future	trajectory	look	like?	

• Descriptive:
– Find	markers	of	disease	stage	and	progression,	
statistics	of	what	to	expect	when

– Discover	new	disease	subtypes
• Key	challenges	we	will	tackle:
– Seldom	directly	observe	disease	stage,	but	rather	only	
indirect	observations	(e.g.	symptoms)

– Data	is	censored	– don’t	observe	beginning	to	end



Outline	of	today’s	lecture

1. Staging	from	cross-sectional	 data
– Wang,	Sontag,	Wang,	KDD 2014
– Pseudo-time	methods	from	computational	

biology
2. Simultaneous	staging	&	subtyping
– Young	et	al.,	Nature	Communications	2018
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Stage	vs.	subtype

• Staging:	sort	patients	into	early-late	disease	or	
severity,	i.e.	discover	the	trajectory

• Cross-sectional	data:	only	1	time	point	observed	
per	patient
– More	generally,	censored	to	be	a	short	window

• Naïve	clustering	can’t	differentiate	between	stage
and	subtype
– Patients	assumed	to	be	aligned	at	baseline

• Let’s	build	some	intuition	around	how	staging	
from	cross-sectional	data	might	be	possible…



Biomarker	A

“John” “Mary”

Early	disease Late	disease

In	1-D,	might	assume	that	low	values	
correspond	to	an	early	disease	stage	
(or	vice-versa)

Assume	samples	were	all	taken	today



Biomarker	A

Biomarker	B

What	about	in	higher	dimensions?



Biomarker	A

Biomarker	B

What	about	in	higher	dimensions?

Insight	#1:	with	
enough	data,	may	
be	possible	to	
recognize	structure

[Bendall	et	al.,	Cell	2014	(human	B	cell	development)]
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Biomarker	A

Biomarker	B

What	about	in	higher	dimensions?

Insight	#2:	sequential	
observations	from	
same	patient	can	
also	help

Each	color	is	
a	different	
patient



Biomarker	A

Biomarker	B

What	about	in	higher	dimensions?

Early	disease

Late	disease



Biomarker	A

Biomarker	B

May	also	seek	to	discover	disease	subtypes

Subtype	1
Subtype	2
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COPD	diagnosis	&	progression

• COPD	diagnosis	made	using	a	breath	test	– fraction	of	air	
expelled	in	first	second	of	exhalation	<	70%

• Most	doctors	use	GOLD	criteria	to	stage	the	disease	and	
measure	its	progression:

Chronic	obstructive	pulmonary	disease.	The	Lancet, Volume	379,	Issue	9823,	Pages	1341	- 1351,	7	April	2012



The	big	picture:	generative	model	for	patient	data

Markov	Jump	Process

Progression	Stages

K phenotypes,	each	
with	its	own	Markov	

chain

Observations

[Wang,	Sontag,	Wang,	“Unsupervised	learning	of	Disease	Progression	Models”,	KDD	2014]

Diabetes

Depression

Lung	cancer



Disease	stage	on
Feb.	‘12?

Disease	stage	on
Jun.	‘12?

Disease	stage	on
Mar.	‘11?

Disease	stage	on
Apr.	‘11?

Model	for	patient’s	disease	progression	across	time

• A	continuous-time	Markov	process	with	irregular	 discrete-time	
observations

• The	transition	probability	is	defined	by	an	intensity	matrix	and	the	time	
interval:

Matrix	Q:			Parameters	 to	learn

S1 S2 ST-1 ST……

S(τ)Underlying
disease	state

� = 34 days



Model	for	data	at	single	point	in	time:
Noisy-OR	network
Previously	used	for	medical	diagnosis,	e.g.	QMR-DT	 (Shwe
et	al.	’91)



Model	for	data	at	single	point	in	time:
Noisy-OR	network
Previously	used	for	medical	diagnosis,	e.g.	QMR-DT	 (Shwe
et	al.	’91)

Comorbidities /	Phenotypes
(hidden)

“Everything	else”
(always	on)

Diagnosis	codes,
medications,	etc.

Clinical	findings
(observable)

Diabetes Depression Lung	cancer

205.02 296.3 Methotrexate

All	binary	variables
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Model	for	data	at	single	point	in	time:
Noisy-OR	network
Previously	used	for	medical	diagnosis,	e.g.	
QMR-DT	 (Shwe et	al.	’91)

Comorbidities /	Phenotypes
(hidden)

“Everything	else”
(always	on)

Clinical	findings
(observable)

Diabetes Depression Lung	cancer

205.02 296.3 Methotrexate

We	also	learn	which	
edges	exist

Associated	with	each	
edge	is	a	failure	
probability



• An	anchor	is	a	finding	that	can	only	be	caused	by	a	single	
comorbidity	(discussed	in	Lecture	8)

Using	anchors	to	ground	the	hidden	variables

Diabetes

205.02

Y.	Halpern,	YD	Choi,	S.	Horng,	D.	Sontag.	Using	Anchors	to	Estimate	Clinical	State	without	Labeled	Data.	To	appear	in	the	American	
Medical	Informatics	Association	(AMIA)	Annual	Symposium,	Nov.	2014



• Provide	anchors	for	each	of	the	comorbidities:

• Can	be	viewed	as	a	type	of	weak	supervision,	using	clinical	
domain	knowledge

• Without	these,	the	results	are	less	interpretable

Using	anchors	to	ground	the	hidden	variables



Has	diabetes
Feb.	‘12?

Has	diabetes
Jun.	7,	‘12?

Has	diabetes
Mar.	‘11?

Has	diabetes
Apr.	‘11?

Model	of	comorbidities across	time

S1 S2 ST-1 ST
……

S(τ)

X1,1 X1,2 X1,T-1 X1,T
……

• Presence	of	comorbidities depends	on	value	at	previous	time	
step	and	on	disease	stage

• Later	stages	of	disease	=	more	likely	to	develop	comorbidities

• Make	the	assumption	that	once	patient	has	a	comorbidity,	
likely	to	always	have	it



Experimental	evaluation

• We	create	a	COPD	cohort	of	3,705	patients:
– At	least	one	COPD-related	 diagnosis	code

– At	least	one	COPD-related	 drug

• Removed	patients	with	too	few	records

• Clinical	findings	derived	from	264	diagnosis	codes
– Removed	 ICD-9	codes	 that	only	occurred	 to	a	small	number	of	patients

• Combined	visits	into	3-month	time	windows

• 34,976	visits,	189,815	positive	findings



Inference

• Outer	loop
– EM
– Algorithm	 to	estimate	the	Markov	Jump	Process	is	borrowed	

form	recent	literature	in	physics	

• Inner	loop
– Gibbs	sampler	used	for	approximate	 inference
– Perform	block	sampling	of	the	Markov	 chains,	 improving	 the	

mixing	time	of	the	Gibbs	sampler

• If	I	were	to	do	it	again…	would	do	variational	
inference	with	a	recognition	network	(as	in	VAEs)

P.	Metzner,	I.	Horenko,	and	C.	Schutte.	Generator	estimation	of	markov jump	processes	based	on	incomplete	
observations	nonequidistant in	time.	Physical	Review	E,	76(6):066702,	2007.



Customizations	 for	COPD

• Enforce	monotonic	stage	progression,	i.e.	St+1 ≥	St:

• Enforce	monotonicity in	distributions	of	comorbidities in	first	
time	step,	e.g.	Pr(Xj,1	|	S1 =	2)	≥	Pr(Xj,1	|	S1 =	1)	
– To	do	this,	we	solve	a	tiny	convex	optimization	problem	within	EM

• Enforce	that	transitions	in	X	can	only	happen	at	the	same	time	
as	transitions	in	S

• Edge	weights	given	a	Beta(0.1,	1)	prior	to	encourage	sparsity

S1 S2 ST-1 ST……

S(τ)



*585.3 0.20 Chronic	Kidney	Disease,	Stage	Iii	(Moderate)
285.9 0.15 Anemia,	Unspecified
*585.9 0.10 Chronic	Kidney	Disease,	Unspecified
599.0 0.08 Urinary	Tract	Infection,	 Site	Not	Specified
*585.4 0.08 Chronic	Kidney	Disease,	Stage	Iv	(Severe)
*584.9 0.07 Acute	Renal	Failure,	Unspecified
*586 0.07 Renal	Failure,	Unspecified
782.3 0.06 Edema
*585.6 0.05 End	Stage	Renal	Disease
593.9 0.04 Unspecified	 Disorder	Of	Kidney	And	Ureter
272.4 0.04 Other	And	Unspecified	 Hyperlipidemia
272.2 0.03 Mixed	Hyperlipidemia

Diagnosis	code Weight

Edges	learned	for	kidney	disease



*585.3 0.20 Chronic	Kidney	Disease,	Stage	Iii	(Moderate)
285.9 0.15 Anemia,	Unspecified
*585.9 0.10 Chronic	Kidney	Disease,	Unspecified
599.0 0.08 Urinary	Tract	Infection,	 Site	Not	Specified
*585.4 0.08 Chronic	Kidney	Disease,	Stage	Iv	(Severe)
*584.9 0.07 Acute	Renal	Failure,	Unspecified
*586 0.07 Renal	Failure,	Unspecified
782.3 0.06 Edema
*585.6 0.05 End	Stage	Renal	Disease
593.9 0.04 Unspecified	 Disorder	Of	Kidney	And	Ureter
272.4 0.04 Other	And	Unspecified	 Hyperlipidemia
272.2 0.03 Mixed	Hyperlipidemia

Diagnosis	code Weight

Edges	learned	for	kidney	disease



*585.3 0.20 Chronic	Kidney	Disease,	Stage	Iii	(Moderate)
285.9 0.15 Anemia,	Unspecified
*585.9 0.10 Chronic	Kidney	Disease,	Unspecified
599.0 0.08 Urinary	Tract	 Infection,	Site	Not	Specified
*585.4 0.08 Chronic	Kidney	Disease,	Stage	Iv	(Severe)
*584.9 0.07 Acute	Renal	Failure,	Unspecified
*586 0.07 Renal	Failure,	Unspecified
782.3 0.06 Edema
*585.6 0.05 End	Stage	Renal	Disease
593.9 0.04 Unspecified	Disorder	 Of	Kidney	And	Ureter
272.4 0.04 Other	And	Unspecified	Hyperlipidemia
272.2 0.03 Mixed	Hyperlipidemia

Diagnosis	code Weight

Edges	learned	for	kidney	disease
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like eggs, fish and liver. Your 
body needs these important 
minerals and vitamins to help 
make red blood cells.

■   A poor diet

 You can become anemic 
if you do not eat healthy 
foods with enough vitamin 
B12, folic acid and iron. Your 
body needs these important 
vitamins and minerals to help 
make red blood cells.

Before starting anemia treatment, 
your doctor will order tests to find 
the exact cause of your anemia.

Why do people with kidney  
disease get anemia?

Your kidneys make an important 
hormone called erythropoietin 
(EPO). Hormones are secretions 
that your body makes to help 
your body work and keep you 
healthy. EPO tells your body to 
make red blood cells. When you 
have kidney disease, your kidneys 
cannot make enough EPO. This 
causes your red blood cell count 
to drop and anemia to develop. 



*162.9 0.60 Malignant	Neoplasm	Of	Bronchus	And	Lung
518.89 0.15 Other	Diseases	Of	Lung,	Not	Elsewhere	 Classified
*162.8 0.15 Malignant	Neoplasm	Of	Other	Parts	Of	Lung
*162.3 0.15 Malignant	Neoplasm	Of	Upper	Lobe,	Lung
786.6 0.15 Swelling,	Mass,	Or	Lump	In	Chest
793.1 0.10 Abnormal	Findings	On	Radiological	Exam	Of	Lung
786.09 0.07 Other	Respiratory	Abnormalities
*162.5 0.06 Malignant	Neoplasm	Of	Lower	Lobe,	Lung
*162.2 0.04 Malignant	Neoplasm	Of	Main	Bronchus
702.0 0.03 Actinic	Keratosis
511.9 0.03 Unspecified	 Pleural	Effusion
*162.4 0.03 Malignant	Neoplasm	Of	Middle	Lobe,	Lung

Diagnosis	code Weight

Edges	learned	for	lung	cancer



*162.9 0.60 Malignant	 Neoplasm	Of	Bronchus	 And	Lung
518.89 0.15 Other	Diseases	Of	Lung,	Not	Elsewhere	 Classified
*162.8 0.15 Malignant	 Neoplasm	Of	Other	Parts	Of	Lung
*162.3 0.15 Malignant	 Neoplasm	Of	Upper	Lobe,	Lung
786.6 0.15 Swelling,	Mass,	Or	Lump	In	Chest
793.1 0.10 Abnormal	Findings	On	Radiological	Exam	Of	Lung
786.09 0.07 Other	Respiratory	Abnormalities
*162.5 0.06 Malignant	 Neoplasm	Of	Lower	Lobe,	Lung
*162.2 0.04 Malignant	 Neoplasm	Of	Main	Bronchus
702.0 0.03 Actinic	Keratosis
511.9 0.03 Unspecified	 Pleural	Effusion
*162.4 0.03 Malignant	 Neoplasm	Of	Middle	Lobe,	Lung

Diagnosis	code Weight

Edges	learned	for	lung	cancer



*162.9 0.60 Malignant	Neoplasm	Of	Bronchus	And	Lung
518.89 0.15 Other	Diseases	Of	Lung,	Not	Elsewhere	Classified
*162.8 0.15 Malignant	Neoplasm	Of	Other	Parts	Of	Lung
*162.3 0.15 Malignant	Neoplasm	Of	Upper	Lobe,	Lung
786.6 0.15 Swelling,	Mass,	 Or	Lump	In	Chest
793.1 0.10 Abnormal	 Findings	On	Radiological	 Exam	Of	Lung
786.09 0.07 Other	Respiratory	Abnormalities
*162.5 0.06 Malignant	Neoplasm	Of	Lower	Lobe,	Lung
*162.2 0.04 Malignant	Neoplasm	Of	Main	Bronchus
702.0 0.03 Actinic	Keratosis
511.9 0.03 Unspecified	Pleural	Effusion
*162.4 0.03 Malignant	Neoplasm	Of	Middle	Lobe,	Lung

Diagnosis	code Weight

Edges	learned	for	lung	cancer



*486 0.30 Pneumonia,	 Organism	Unspecified
786.05 0.10 Shortness	 Of	Breath
786.09 0.10 Other	Respiratory	Abnormalities
786.2 0.10 Cough
793.1 0.06 Abnormal	Findings	On	Radiological	Exam	Of	Lung
285.9 0.05 Anemia,	Unspecified
518.89 0.05 Other	Diseases	Of	Lung,	Not	Elsewhere	 Classified
466.0 0.05 Acute	Bronchitis
799.02 0.05 Hypoxemia
599.0 0.04 Urinary	Tract	Infection,	 Site	Not	Specified
V58.61 0.04 Long-Term	 (Current)	 Use	Of	Anticoagulants
786.50 0.04 Chest	Pain,	Unspecified

Diagnosis	code Weight

Edges	learned	for	lung	infection



Progression	of	a	single	patient

2010 2013
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Prevalence	of	comorbidities	across	stages
(Diabetes	&	Musculoskeletal	disorders)
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Prevalence	of	comorbidities	across	stages
(Cardiovascular	disease)
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Outline	of	today’s	lecture

1. Staging	from	cross-sectional	 data
– Wang,	Sontag,	Wang,	KDD 2014
– Pseudo-time	methods	from	computational	

biology
2. Simultaneous	staging	&	subtyping
– Young	et	al.,	Nature	Communications	2018



Single-cell	sequencing

[Figure	source:	https://en.wikipedia.org/wiki/Single_cell_sequencing]



Inferring	original	trajectory	from	single-cell	data

Next, the pseudotime trajectory of the cells in this low-dimensional embedding is character-
ised. In Monocle [12] this is achieved by the construction of a minimum spanning tree (MST)
joining all cells. The diameter of the MST provides the main trajectory along which pseudo-
time is measured. Related graph-based techniques (Wanderlust) have also been used to
characterise temporal processes from single cell mass cytometry data [10]. In SCUBA [11] the
trajectory itself is directly modelled using principal curves [27] and pseudotime is assigned to
each cell by projecting its location in the low-dimensional embedding on to the principal
curve. The estimated pseudotimes can then be used to order the cells and to assess differential
expression of genes across pseudotime. Note that in the diffusion pseudotime framework [17],
all the diffusion components are used in the random-walk pseudotime model and there is no
strict dimensionality reduction step. However, the derivation of the diffusion maps does lead
to the compression of information into the first few diffusion components which is what
enables successful visualisation [23].

A limitation of these approaches is that they provide only a single point estimate of pseudo-
times concealing the full impact of variability and technical noise. As a consequence, the statis-
tical uncertainty in the pseudotimes is not propagated to downstream analyses precluding a
thorough treatment of stability. To date, the impact of this pseudotime uncertainty has not
been explored and its implications are unknown as the methods applied typically do not pos-
sess a probabilistic interpretation. However, we can examine the stability of the pseudotime

Fig 1. The single cell pseudotime estimation problem. (A) Single cells at different stages of a temporal process. (B) The
temporal labelling information is lost during single cell capture. (C) Statistical pseudotime estimation algorithms attempt to
reconstruct the relative temporal ordering of the cells but cannot fully reproduce physical time. (D) The pseudotime estimates
can be used to identify genes that are differentially expressed over (pseudo)time.

doi:10.1371/journal.pcbi.1005212.g001

Probabilistic Models for Pseudotime Inference

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005212 November 21, 2016 3 / 20

[Figure	from:	Campbell	&	Yau,	PLOS	Computational	 Biology,	2016]



Fig 9. Identifying pseudotime dependent gene activation behaviour. Ten selected genes from [12] found using our sigmoidal gene activation model
exhibiting a range of activation times. For each gene, we show the expression levels of each cell (centre) where each row corresponds to an ordering
according to a different posterior samples of pseudotime. The orange line corresponds to a point estimate of the activation time. The posterior density of
the estimated activation time is also shown (right).

doi:10.1371/journal.pcbi.1005212.g009

Probabilistic Models for Pseudotime Inference

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005212 November 21, 2016 14 / 20

[Campbell	 &	
Yau,	PLOS	
Computational	
Biology,	2016]
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that method development should pay more attention to maintain-
ing reasonable running times and memory usage.

Stability. It is not only important that a method is able to infer an 
accurate model in a reasonable time frame, but also that it pro-
duces a similar model when given very similar input data. To test 
the stability of each method, we executed each method on ten 
different subsamples of the datasets (95% of the cells, 95% of the 
features), and calculated the average similarity between each pair 
of models using the same scores used to assess the accuracy of a 
trajectory (Fig. 3d).

Given that the trajectories of methods that fix the topology either 
algorithmically or through a parameter are already very constrained, 
it is to be expected that such methods tend to generate very stable 
results. Nonetheless, some fixed topology methods still produced 
slightly more stable results, such as SCORPIUS and MATCHER for 
linear methods and MFA for multifurcating methods. Stability was 
much more diverse among methods with a free topology. Slingshot 
produced more stable models than PAGA (Tree), which in turn pro-
duced more stable results than pCreode and Monocle DDRTree.

Usability. While not directly related to the accuracy of the inferred 
trajectory, it is also important to assess the quality of the implemen-
tation and how user-friendly it is for a biological user40. We scored 
each method using a transparent checklist of important scientific 
and software development practices, including software packaging,  
documentation, automated code testing and publication into a peer-
reviewed journal (Supplementary Table 3). It is important to note 
that there is a selection bias in the tools chosen for this analysis,  
as we did not include a substantial set of tools due to issues with 
installation, code availability and executability on a freely avail-
able platform (which excludes MATLAB). The reasons for not 
including certain tools are all discussed on our repository (https://
github.com/dynverse/dynmethods/issues?q=label:unwrappable). 

Installation issues seem to be quite general in bioinformatics41 and 
the trajectory inference field is no exception.

We found that most methods fulfilled the basic criteria, such as the 
availability of a tutorial and elemental code quality criteria (Fig. 3d  
and Supplementary Fig. 6). While recent methods had a slightly bet-
ter quality score than older methods, several quality aspects were 
consistently lacking for the majority of the methods (Supplementary 
Fig. 6 right) and we believe that these should receive extra attention 
from developers. Although these outstanding issues covered all five 
categories, code assurance and documentation in particular were 
problematic areas, notwithstanding several studies pinpointing 
these as good practices42,43. Only two methods had a nearly perfect 
usability score (Slingshot and Celltrails), and these could be used 
as an inspiration for future methods. We observed no clear relation 
between usability and method accuracy or usability (Fig. 2b).

Discussion
In this study, we presented a large-scale evaluation of the perfor-
mance of 45 TI methods. By using a common trajectory representa-
tion and four metrics to compare the methods’ outputs, we were 
able to assess the accuracy of the methods on more than 200 data-
sets. We also assessed several other important quality measures, 
such as the quality of the method’s implementation, the scalability 
to hundreds of thousands of cells and the stability of the output on 
small variations of the datasets.

Based on the results of our benchmark, we propose a set of prac-
tical guidelines for method users (Fig. 5 and guidelines.dynverse.
org). We postulate that, as a method’s performance is heavily depen-
dent on the trajectory type being studied, the choice of method 
should currently be primarily driven by the anticipated trajectory 
topology in the data. For most use cases, the user will know very 
little about the expected trajectory, except perhaps whether the data 
is expected to contain multiple disconnected trajectories, cycles or 
a complex tree structure. In each of these use cases, our evaluation  

guidelines.dynverse.org

Do you expect
multiple

disconnected
trajectories?

≤ Disconnected

≤ Tree

Tree

Do you expect
a particular
topology?
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cycles in the

topology?
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tree with two or

more bifurcations?

Linear

Bifurcation

Cycle

Multifurcation

Yes / I don’t know

No

Yes

No /
I don’t know
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Confirm
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using a method
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Confirm results
using at least
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[Saelens,	Cannoodt,	Todorov,	Saeys.	A	comparison	of	single-cell	 trajectory	inference	methods.	
Nature	Biotechnology,	2019]
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population of cells branched from the trajectory near the transition 
between phases. These cells lacked myogenic markers but expressed 
PDGFRA and SPHK1, suggesting that they are contaminating intersti-
tial mesenchymal cells and did not arise from the myoblasts. Such cells 
were recently shown to stimulate muscle differentiation19. Monocle’s 
estimates of the frequency and proliferative status of these cells  
were consistent with estimates derived from immunofluorescent 
stains against ANPEP (also known as CD13) and nuclear Ser10- 
phosphorylated histone H3 (Supplementary Fig. 4). Monocle thus 
enabled analysis of the myoblast differentiation trajectory without 
subtracting these cells by immunopurification, maintaining in vitro 
differentiation kinetics that resemble physiological cell crosstalk 
occurring in the in vivo niche.

To find genes that were dynamically regulated as the cells pro-
gressed through differentiation, we modeled expression of each gene 
as a nonlinear function of pseudotime. A total of 1,061 genes were 

dynamically regulated during differentiation (false discovery rate 
(FDR) < 5%; Fig. 2c). Cells positive for MEF2C and MYH2, early and 
late markers of differentiation, respectively, were present at expected 
frequencies as assayed by both immunofluorescence and RNA-Seq. 
Moreover, the pseudotime ordering of cells shows an increase in 
MEF2C+ cells before the increase in MYH2+ cells (Fig. 2d). Notably, 
genes that act at the early and late stages of muscle differentiation 
showed pseudotemporal kinetics that were highly consistent with 
expectations, with cell-cycle regulators active early in pseudotime 
and sarcomere components active later, confirming the accuracy of 
the ordering (Supplementary Fig. 5).

We next examined the pseudotemporal kinetics of a set of genes 
whose mouse orthologs are targeted by Myod, Myog or Mef2 pro-
teins in C2C12 myoblasts20 (Supplementary Fig. 6). The kinetics of 
these genes during differentiation were highly consistent with changes 
observed during mouse myogenesis, with nearly all significantly 
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black line indicates the main diameter path of the MST and provides the backbone of Monocle’s pseudotime ordering of the cells. (c) Expression 
for differentially expressed genes identified by Monocle (rows), with cells (columns) shown in pseudotime order. Interstitial mesenchymal cells are 
excluded. (d) Bar plot showing the proportion of MEF2C- and MYH2-expressing cells measured by immunofluorescence at the time of collection (top), 
RNA-Seq at the time of collection (middle) or RNA-Seq at pseudotime (bottom). MEF2C was considered detectably expressed at or above 100 FPKM, 
MYH2 at 1 FPKM. MEF2C exhibits a bimodal pattern of expression across the cells (not shown), and a threshold of 100 FPKM separates the modes.  
(e) Expression of key regulators of muscle differentiation, ordered by time collected (cyclin-dependent kinase 1, CDK1; inhibitor of DNA binding 1,  
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[Magwene et	al.,	Bioinformatics,	2003;	Trapnell et	al.,	Nature	Biotechnology,	2014]
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population of cells branched from the trajectory near the transition 
between phases. These cells lacked myogenic markers but expressed 
PDGFRA and SPHK1, suggesting that they are contaminating intersti-
tial mesenchymal cells and did not arise from the myoblasts. Such cells 
were recently shown to stimulate muscle differentiation19. Monocle’s 
estimates of the frequency and proliferative status of these cells  
were consistent with estimates derived from immunofluorescent 
stains against ANPEP (also known as CD13) and nuclear Ser10- 
phosphorylated histone H3 (Supplementary Fig. 4). Monocle thus 
enabled analysis of the myoblast differentiation trajectory without 
subtracting these cells by immunopurification, maintaining in vitro 
differentiation kinetics that resemble physiological cell crosstalk 
occurring in the in vivo niche.

To find genes that were dynamically regulated as the cells pro-
gressed through differentiation, we modeled expression of each gene 
as a nonlinear function of pseudotime. A total of 1,061 genes were 

dynamically regulated during differentiation (false discovery rate 
(FDR) < 5%; Fig. 2c). Cells positive for MEF2C and MYH2, early and 
late markers of differentiation, respectively, were present at expected 
frequencies as assayed by both immunofluorescence and RNA-Seq. 
Moreover, the pseudotime ordering of cells shows an increase in 
MEF2C+ cells before the increase in MYH2+ cells (Fig. 2d). Notably, 
genes that act at the early and late stages of muscle differentiation 
showed pseudotemporal kinetics that were highly consistent with 
expectations, with cell-cycle regulators active early in pseudotime 
and sarcomere components active later, confirming the accuracy of 
the ordering (Supplementary Fig. 5).

We next examined the pseudotemporal kinetics of a set of genes 
whose mouse orthologs are targeted by Myod, Myog or Mef2 pro-
teins in C2C12 myoblasts20 (Supplementary Fig. 6). The kinetics of 
these genes during differentiation were highly consistent with changes 
observed during mouse myogenesis, with nearly all significantly 
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Figure 2 Monocle orders individual cells by progress through differentiation. (a) An overview of the Monocle algorithm. (b) Cell expression profiles 
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RNA-Seq at the time of collection (middle) or RNA-Seq at pseudotime (bottom). MEF2C was considered detectably expressed at or above 100 FPKM, 
MYH2 at 1 FPKM. MEF2C exhibits a bimodal pattern of expression across the cells (not shown), and a threshold of 100 FPKM separates the modes.  
(e) Expression of key regulators of muscle differentiation, ordered by time collected (cyclin-dependent kinase 1, CDK1; inhibitor of DNA binding 1,  
ID1; myogenin, MYOG). (f) Regulators from e, ordered by Monocle in pseudotime. Points in e,f are colored by time collected (0 h, red; 24 h, gold;  
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Statistical	model	for	probabilistic	pseudotime

Preliminaries
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estimates by taking multiple random subsets of a dataset and re-estimating the pseudotimes
for each subset. For example, we have found that the pseudotime assigned to the same cell can
vary considerably across random subsets in Monocle (details given in S1 Text and S1 Fig).

In order to address pseudotime uncertainty in a formal and coherent framework, probabi-
listic approaches using Gaussian Process Latent Variable Models (GPLVM) have been used
recently as non-parametric models of pseudotime trajectories [14, 28, 29]. These provide an
explicit model of pseudotimes as latent embedded one-dimensional variables. These models
can be fitted within a Bayesian statistical framework using priors on the pseudotimes [14],
deterministic optimisation methods for approximate inference [29] or Markov Chain Monte
Carlo (MCMC) simulations allowing full posterior uncertainty in the pseudotimes to be deter-
mined [28]. In this article we adopt this framework based to assess the impact of pseudotime
uncertainty on downstream differential analyses. We will show that pseudotime uncertainty
can be non-negligible and when propagated to downstream analysis may considerably inflate
false discovery rates. We demonstrate that there exists a limit to the degree of recoverable tem-
poral resolution, due to intrinsic variability in the data, with which we can make statements
such as “this cell precedes another”. Finally, we propose a simple means of accounting for the
different possible choices of reduced dimension data embeddings. We demonstrate that, given
sensible choices of low-dimensional representations, these can be combined to produce more
robust pseudotime estimates. Overall, we outline a modelling and analytical strategy to pro-
duce more stable pseudotime based differential expression analysis.

Methods

Statistical model for probabilistic pseudotime

The hierarchical model specification for the Gaussian Process Latent Variable model is
described as follows:

g ⇠ GammaÖga; gbÜ;
lj ⇠ ExpÖgÜ; j à 1; . . . ; P;

s2
j ⇠ InvGammaÖa;bÜ; j à 1; . . . ; P;

ti ⇠ TruncNormalâ0;1ÜÖmt; s
2
t Ü; i à 1; . . . ;N;

Σ à diagÖs2
1; . . . ; s2

PÜ
KÖjÜÖt; t0Ü à exp Ö�ljÖt � t0Ü2Ü; j à 1; . . . ; P;

mj ⇠ GPÖ0;KÖjÜÜ; j à 1; . . . ; P;

xi ⇠ MultiNormÖμÖtiÜ;ΣÜ; i à 1; . . . ;N:

Ö1Ü

where xi is the P-dimensional input of cell i (of N) found by performing dimensionality
reduction on the entire gene set (for our experiments P = 2 following previous studies). The
observed data is distributed according to a multivariate normal distribution with mean func-
tion μ and a diagonal noise covariance matrix S. The prior over the mean function μ in each
dimension is given by a Gaussian Process with zero mean and covariance function K given by
a standard double exponential kernel. The latent pseudotimes t1, . . ., tN are drawn from a trun-
cated Normal distribution on the range [0, 1). Under this model |λ| can be thought of as the
arc-length of the pseudotime trajectories, so applying larger levels of shrinkage to it will
result in smoother trajectories passing through the point space. This shrinkage is ultimately
controlled by the gamma hyperprior on γ, whose mean and variance are given by ga

gb
and ga

g2
b

Probabilistic Models for Pseudotime Inference

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005212 November 21, 2016 4 / 20

Statistical	model	for	probabilistic	pseudotime

GP:	Gaussian	 Process	 (1-D)

[Campbell	 &	Yau,	PLOS	Computational	 Biology,	2016]

N:	number	of	data	points

P:	dimension	 (e.g.	2)

Truncated	 normal	
distribution
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Temporal	heterogeneity
Patients	show	various	disease	 stages	through	which	patterns	of	pathology	
evolve

Braak and	Braak 1991	

Alzheimer’s	disease Frontotemporal dementia

Brettschneider et	al.	2014



Individuals	have	different	disease	 subtypes	with	distinct	patterns	of	
pathology	 	

Typical
Hippocampal-

sparing
Limbic-

predominant

Murray et al. 2011, Whitwell et al. 2012 

Alzheimer’s	disease Frontotemporal dementia

Whitwell et al. 2012 

Phenotypic	heterogeneity



Subtype	and	Stage	Inference	(SuStaIn)	

Synthetic data. A simulation study (see Supplementary Methods,
Supplementary Results, Supplementary Discussion and Supple-
mentary Figures 1–12) verifies the ability of the SuStaIn algorithm
to recover predefined subtypes and their progression patterns
from heterogeneous data sets with comparable numbers of sub-
jects, biomarkers and clusters (subtypes) to those used in this
study.

Subtype progression patterns. We demonstrate SuStaIn in two
neurodegenerative diseases, genetic FTD and sporadic AD, using
cross-sectional regional brain volumes from MRI data in the
GENetic Frontotemporal dementia Initiative (GENFI) and the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). GENFI
investigates biomarker changes in carriers of mutations in GRN,
MAPT and C9orf72 genes, which cause FTD. GRN and MAPT
mutations are known to be associated with distinct phenotypes,
whereas C9orf72 is a heterogeneous group30. Here, GENFI serves
as a test data set with a partially known ground truth for vali-
dation, as we expect SuStaIn to identify genetic groups as distinct
phenotypic subtypes. However, it further supports investigation
of the phenotypic and temporal heterogeneity within genotypes.
Specifically, we ran SuStaIn on the combined data set from all 172
mutation carriers in GENFI (Fig. 2a), without genotypes, and
compared the resulting subtype assignments and progression
patterns with (a) participant’s genotype labels (Fig. 2b), and (b)
subtype progression patterns obtained from each genotype
separately (Supplementary Figure 13; 76 GRN carriers, 63 C9orf72
carriers, 33 MAPT carriers). Next, we used SuStaIn to identify
sporadic AD subtypes from ADNI (793 subjects, including 524
with mild cognitive impairment (MCI) or AD) and characterise
their progression from early to late disease stages (Fig. 3). We
tested consistency of the SuStaIn subtypes in a largely indepen-
dent data set—ADNI 1.5T MRI (576 subjects, including 396 with
MCI or AD) scans (Fig. 4) rather than the main 3T data set used
for Fig. 3. In each disease, cross-validation tests the reproduci-
bility of the subtypes and estimated progression patterns (Sup-
plementary Figure 14).

SuStaIn reveals within-genotype phenotypes in FTD. Figure 2
shows that SuStaIn successfully identifies the progression patterns
of the different genetic groups in GENFI, without prior knowl-
edge of genotype, and further suggests that phenotypic hetero-
geneity of the C9orf72 group results from two neuroanatomical
subtypes. Figure 2a shows the four subtypes that SuStaIn finds
from the full set of all mutation carriers in GENFI. We refer to
them as the asymmetric frontal lobe subtype, temporal lobe
subtype, frontotemporal lobe subtype and subcortical subtype.
Figure 2b reveals that GRN mutation carriers are the main con-
tributors to the asymmetric frontal lobe subtype, MAPT mutation
carriers are the main contributors to the temporal lobe subtype,
and C9orf72 mutation carriers are the main contributors to both
the frontotemporal lobe subtype and the subcortical subtype. This
suggests that there are two distinct subtypes in the C9orf72 group.
Application of SuStaIn to each genetic group separately supports
this finding by demonstrating that the GRN mutation carriers are
best described as a single asymmetric frontal lobe subtype, the
MAPT mutation carriers are best described as a temporal lobe
subtype and the C9orf72 mutation carriers are best described as
two distinct disease subtypes: a frontotemporal lobe subtype and
a subcortical subtype. SuStaIn additionally finds a subsidiary
cluster in the MAPT group for which the progression pattern has
high uncertainty. This high uncertainty likely prevents the cluster
from being detected when applying SuStaIn to all mutation car-
riers in Fig. 2 as this small number of subjects can be sufficiently
modelled by the three alternative subtype progression patterns.
Supplementary Figure 13 shows that the subtype progression
patterns for each genetic group are in good agreement with those
found in the full set of all mutation carriers (Fig. 2a). Supple-
mentary Figure 14A shows that the four subtypes estimated in
Fig. 2a are reproducible under cross-validation, with a high
average similarity between cross-validation folds of >93% for each
subtype. Altogether these results provide strong validation of
SuStaIn’s ability to recover distinct subtypes and their progression
patterns from a heterogeneous data set, while simultaneously
disentangling the heterogeneity of the C9orf72 group into two
distinct subtypes.
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Fig. 1 Conceptual overview of SuStaIn. The Underlying model panel (a) considers a patient cohort to consist of an unknown set of disease subtypes. The
input data (Input data panel, b), which can be entirely cross-sectional, contains snapshots of biomarker measurements from each subject with unknown
subtype and unknown temporal stage. SuStaIn recovers the set of disease subtypes and their temporal progression (as shown in the Output panel,
c) via simultaneous clustering and disease progression modelling. Given a new snapshot, SuStaIn can estimate the probability the subject belongs to each
subtype and stage, by comparing the snapshot with the reconstruction (as shown in the Application panel, d). This figure depicts two hypothetical disease
subtypes, labelled I and II, and the biomarkers are regional brain volumes, but SuStaIn is readily applicable to any scalar disease biomarker and any number
of subtypes. The colour of each region indicates the amount of pathology in that region, ranging from white (no pathology) to red to magenta to blue
(maximum pathology)
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[Young	et	al.,	Nature	Communications	2018]



Subtype	and	Stage	Inference	(SuStaIn)	

[Young	et	al.,	Brain 2014;	Young	et	al.,	Nature	Communications	2018]

• Generative	model	for	a	data	point:
– Sample	subtype	c ~	Categorical(f1,	…,	fC)
– Sample	stage	t	~	Categorical(uniform)
– For	each	biomarker	i,	sample

• Means	are	enforced	to	be	monotonically	increasing	
and	piece-wise	linear:information for covariate correction: age, sex, education and APOE genotype from

the ADNIMERGE table. We downloaded diagnostic follow-up information to test
the association of the SuStaIn model subtypes and stages with longitudinal
outcomes. We also downloaded baseline cerebrospinal fluid (CSF) measurements
of Aβ1–42, which we used to identify a control population. Again, see
Supplementary Table 4 for a summary of the biomarkers used in the SuStaIn
modelling.

z-scores. We expressed each regional volume measurement as a z-score relative to
a control population: in GENFI we used data from all non-carriers, in ADNI we
used amyloid-negative CN subjects, defined as those with a CSF Aβ1–42 mea-
surement >192 pg per ml41. This gave us a control population of 48 amyloid-
negative CN subjects for the 3T data set, and 56 amyloid-negative CN subjects for
the 1.5T data set. We used these control populations to determine whether the
effects of age, sex, education or number of APOE4 alleles (ADNI only) were sig-
nificant, and if so to regress them out. We then normalised each data set relative to
its control population, so that the control population had a mean of 0 and standard
deviation of 1. Because regional brain volumes decrease over time the z-scores
become negative with disease progression, so for simplicity we took the negative
value of the z-scores so that the z-scores would increase as the brain volumes
became more abnormal.

SuStaIn modelling. We formulate the model underlying SuStaIn as groups of
subjects with distinct patterns of biomarker evolution (see Mathematical Model).
We refer to a group of subjects with a particular biomarker progression pattern as a
subtype. The biomarker evolution of each subtype is described as a linear z-score
model in which each biomarker follows a piecewise linear trajectory over a com-
mon timeframe. The noise level for each biomarker is assumed constant over the
timeframe and is derived from a control population (see Mathematical model).
This linear z-score model is based on the event-based model in refs. 7,8,38, but
reformulates the events so that they represent the continuous linear accumulation
of a biomarker from one z-score to another, rather than an instantaneous switch
from a normal to an abnormal level. A key advantage of this formulation is that it
can work with purely cross-sectional data because it requires no information about
the timescale of change, but instead uses events as control points of piecewise linear
segments with arbitrary duration. The model fitting considers increasing number of
subtypes C, for which we estimate the proportion of subjects f that belong to each
subtype, and the order SC in which biomarkers reach each z-score for each subtype
c= 1 … C. We determine the optimal number of subtypes C for a particular data
set through ten-fold cross-validation (see Cross-validation).

Mathematical model. The linear z-score model underlying SuStaIn is a con-
tinuous generalisation of the original event-based model7,8, which we describe first.

The event-based model in refs. 7,8 describes disease progression as a series of
events, where each event corresponds to a biomarker transitioning from a normal
to an abnormal level. The occurrence of an event, Ei, for biomarker i= 1 … I, is
informed by the measurements xij of biomarker i in subject j, j= 1 … J. The whole
data set X= {xij | i= 1 … I, j= 1 … J} is the set of measurements of each
biomarker in each subject. The most likely ordering of the events is the sequence S
that maximises the data likelihood

P XjSð Þ ¼
YJ

j¼1

XI

k¼0

PðkÞ
Yk

i¼1

P xijjEi
! " YI

i¼kþ1

P xijj:Ei
! " !" #

; ð1Þ

where P(x | Ei) and P(x | ¬Ei) are the likelihoods of measurement x given that
biomarker i has or has not become abnormal, respectively. P(k) is the prior
likelihood of being at stage k, at which the events E1, ..., Ek have occurred, and the
events Ek+1, …, EI have yet to occur. The model uses a uniform prior on the stage,
so that P(k)= 1/(I + 1), k= 0 … I, i.e. a priori individuals are equally likely to
belong to any stage along the progression pattern. The likelihoods P(x | Ei) and P(x
| ¬Ei) are modelled as normal distributions.

The linear z-score model we use in this work reformulates the event-based
model in (1) by replacing the instantaneous normal to abnormal events with events
that represent the (more biologically plausible) linear accumulation of a biomarker
from one z-score to another. The linear z-score model consists of a set of N z-score
events Eiz, which correspond to the linear increase of biomarker i= 1 … I to a z-
score zir= zi1 … ziRi

, i.e. each biomarker is associated with its own set of z-scores,
and so N=

P
i
Ri . Each biomarker also has an associated maximum z-score, zmax,

which it accumulates to at the end of stage N. We consider a continuous time axis,
t, which we choose to go from t= 0 to t= 1 for simplicity (the scaling is arbitrary).
At each disease stage k, which goes from t= k

Nþ1 to t= kþ1
Nþ1, a z-score event Eiz

occurs. The biomarkers evolve as time t progresses according to a piecewise linear

function gi(t), where

g tð Þ ¼

z1
tEz1

t; 0<t % tEz1

z1 þ
z2&z1

tEz2
&tEz1

t & tEz1

! "
; tEz1 <t % tEz2

..

.

zR&1 þ
zR&zR&1

tEzR
&tEzR&1

t & tEzR&1

! "
; tEzR&1

<t % tEzR

zR þ
zmax&zR
1&tEzR

t & tEzR

! "
; tEzR <t % 1

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

:

Thus, the times tEiz are determined by the position of the z-score event Eiz in the
sequence S, so if event Eiz occurs in position k in the sequence then tEiz =

kþ1
Nþ1.

To formulate the model likelihood for the linear z-score model we replace Eq.
(1) with

P XjSð Þ ¼
YJ

j¼1

XN

k¼0

Z t¼ kþ1
Nþ1

t¼ k
Nþ1

PðtÞ
YI

i¼1

P xijjt
! " !

∂t

 !" #
; ð2Þ

where,

P xijjt
! "

¼ NormPDF xij; gi tð Þ; σ i
! "

:

NormPDF(x, μ, σ) is the normal probability distribution function, with mean μ and
standard deviation σ, evaluated at x. We assume the prior on the disease time is
uniform, as in the original event-based model.

The SuStaIn model is a mixture of linear z-score models, hence we have

P XjMð Þ ¼
XC

c¼1

fc P XjScð Þ;

where C is the number of clusters (subtypes), f is the proportion of subjects
assigned to a particular cluster (subtype), and M is the overall SuStaIn model.

Model fitting. Supplementary Figure 15 provides a flowchart detailing the pro-
cesses involved in the SuStaIn model fitting. Model fitting requires simultaneously
optimising subtype membership, subtype trajectory and the posterior distributions
of both. In particular, the cost function here depends on the sequence ordering,
which to our knowledge standard algorithms do not handle. We therefore derive
our own algorithm to fit SuStaIn, based on the well-established methods developed
for the event-based model (7,8,42,43), for which we demonstrate convergence and
optimality in simulation (see Supplementary Results: Convergence) and in the data
sets used here (see Convergence). As shown in the black box in Supplementary
Figure 15, the SuStaIn model is fitted hierarchically, with the number of clusters
being estimated via model selection criteria obtained from cross-validation. The
hierarchical fitting initialises the fitting of each C-cluster (subtype) model from the
previous C-1-cluster model, i.e. the clustering problem is solved sequentially from
C= 1 … Cmax (where Cmax is the maximum number of clusters being fitted),
initialising each model using the previous model. For the initial cluster (C= 1), we
use the single-cluster expectation maximisation (E-M) procedure shown in the
green box in Supplementary Figure 15, and described subsequently. We fit sub-
sequent cluster numbers (C > 1) hierarchically by generating C-1 candidate C-
cluster models using the split-cluster E-M procedure shown in the blue box in
Supplementary Figure 15, and described subsequently. From these C-1 candidate
C-cluster models, the model with the highest likelihood is chosen.

The split-cluster E-M procedure shown in the blue box in Supplementary
Figure 15 is used to generate each of the C-1 candidate C cluster models. For each
of the C-1 clusters, the split-cluster E-M procedure first finds the optimal split of
cluster c into two clusters. To find the optimal split of cluster c into two clusters, the
data points belonging to cluster c are randomly assigned to two separate clusters.
The optimal model parameters for these two data subsets are then obtained using
the single-cluster E-M procedure (green box in Supplementary Figure 15). These
cluster parameters are used to initialise the fitting of a two-cluster model to the
subset of the data belonging to cluster c, using E-M. This two-cluster solution is
then used together with the other C-2 clusters to initialise the fitting of the C-
cluster model. The C-cluster model is then optimised using E-M, alternating
between updating the sequences Sc for each cluster and the fractions fc. This
procedure is repeated for 25 different start points (random cluster assignments) to
find the maximum likelihood solution (see Convergence).

The single-cluster E-M procedure shown in the green box in Supplementary
Figure 15 is used to find the optimal model parameters (the sequence S in which
the biomarkers reach each z-score) for a single-cluster. In the single-cluster E-M
procedure the sequence S is initialised randomly. This sequence is then optimised
using E-M by going through each z-score event E in turn and finding its optimal
position in the sequence relative to the other z-score events, i.e. by fixing the order
of the subsequence T= S/E and maximising the likelihood of the sequence by
changing the position of event e in the subsequence T. The sequence S is updated
until convergence. Again the single-cluster sequence S is optimised from 25
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xi ⇠ N (gc,i(t),�i)

Shown	here	for	one	
choice	of	c,i – no	
parameter	sharing	 across	
biomarkers	 or	subtypes


