Machine Learning for Healthcare HST.956, 6.S897

Lecture 18: Disease progression modeling & subtyping, Part 1

David Sontag

HEALTH SCIENCES & TECHNOLOGY **Prognosis:** Where is a patient in their disease trajectory? When will the disease progress? How will treatment affect disease progression?

Predicted risk of developing disease or predicting outcome

Example: Multiple myeloma

- Rare blood cancer
- MMRF CoMMpass Study has ~1000 patients

Myeloma Staging Systems

Stage	Durie-Salmon Staging System	Revised International Staging System
I	 All of the following: Hemoglobin >10.5 g/dL Serum calcium value normal or ≤12 mg/dL X-ray studies of bone, normal bone structure (scale 0) or solitary bone plasmacytoma only Low M-component production rate IgG value <5 g/dL; IgA value <3 g/dL 	 Serum albumin >3.5 g/dL Serum β₂-microglobulin <3.5 mg/L No high-risk cytogenetics Normal serum lactate dehydrogenase level
Π	 Orine light chains <4g/24 hours Neither stage I nor stage III A—No renal failure (creatinine ≤2 mg/dL) B—Renal failure (creatinine >2 mg/dL) 	Neither stage I nor stage III
Ш	 Hemoglobin value <8.5 g/dL Serum calcium value >12 mg/dL X-ray studies of bone, >3 lytic bone lesions High M-component production rate IgG value >7 g/dL; IgA value >5 g/dL Urine light chains >12 g/24 hours 	 Serum β₂-microglobulin >5.5 mg/L High-risk cytogenetics t(4;14) t(14;16) del(17p) Elevated serum lactate dehydrogenase level

https://www.lls.org/diseaseinformation/myeloma/diagn osis/myeloma-staging

Descriptive: What does a typical trajectory look like?

Example: Parkinson's

- Progressive nervous system disorder
- ► Affects 1 in 100 people over age 60
- PPMI dataset follows patients across time

[Poewe et al., Parkinson's disease. Nature Reviews Disease Primers, 2017]

Subtyping: Can we re-define the disease altogether?

[Lawton et al., Developing and validating Parkinson's disease subtypes and their motor and cognitive progression. *J Neurol Neurosurg Psychiatry*, 2018]

Predicting disease progression in Alzheimer's disease

[Image credit: Wikipedia; "Alzheimer's Disease Education and Referral Center, a service of the National Institute on Aging."]

MINI MENTAL STATE EXAMINATION (MMSE)

Name:

DOB:

Hospital Number:

T.

One point for each answer DATE:			
ORIENTATION Year Season Month Date Time	/ 5	/ 5	/ 5
Country Town District Hospital Ward/Floor	/ 5	/ 5	/ 5
REGISTRATION Examiner names three objects (e.g. apple, table, penny) and asks the patient to repeat (1 point for each correct. THEN the patient learns the 3 names repeating until correct).	/ 3	/ 3	/ 3
ATTENTION AND CALCULATION Subtract 7 from 100, then repeat from result. Continue five times: 100, 93, 86, 79, 65. (Alternative: spell "WORLD" backwards: DLROW).	/ 5	/ 5	/ 5
RECALL Ask for the names of the three objects learned earlier.	/ 3	/ 3	/ 3
LANGUAGE Name two objects (e.g. pen, watch).	/ 2	/ 2	/ 2
Repeat "No ifs, ands, or buts".	/ 1	/ 1	/ 1
Give a three-stage command. Score 1 for each stage. (e.g. "Place index finger of right hand on your nose and then on your left ear").	/ 3	/ 3	/ 3
Ask the patient to read and obey a written command on a piece of paper. The written instruction is: "Close your eyes".	/ 1	/ 1	/ 1
Ask the patient to write a sentence. Score 1 if it is sensible and has a subject and a verb.	/ 1	/ 1	/ 1
COPYING: Ask the patient to copy a pair of intersecting pentagons			
	/ 1	/ 1	/ 1
TOTAL:	/ 30	/ 30	/ 30

Disease status quantified by cognitive score (continuous valued)

MMSE scoring 24-30: no cognitive impairment 18-23: mild cognitive impairment 0-17: severe cognitive impairment

Predicting disease progression in Alzheimer's disease

- Goal: Predict disease status in 6, 12, 24, 36, and 48 months
- Five different regression tasks?
- Challenge: data sparsity
 - Total number of patients is small
 - Labels are noisy
 - Due to censoring, fewer patients at later time points

Predicting disease progression in Alzheimer's disease

- Goal: Predict disease status in 6, 12, 24, 36, and 48 months
- Five different regression tasks?
- Challenge: data sparsity

Number of patients M months after baseline (Alzheimer's Disease Neuroimaging Initiative)

M06	M12	M24	M36	M48
648	642	569	389	87

M06 = 6 months after baseline

Multi-task learning

- Goal: Predict disease status in 6, 12, 24, 36, and 48 months
- Rather than learn several independent models, view as *multi-task* learning
 - Select common set of biomarkers for all time points
 - Also allow for specific set of biomarkers at different time points
 - Incorporate temporal smoothness in models

y) (T, ge $= \Im(\bar{x}, y) \Im_{2}$ $Z' max(0, 1-y; X; W_k)$ +12

Convex fused sparse group lasso

• Simultaneously learn all 5 models by solving the following convex optimization problem:

 $\min_{W} L(W) + \lambda_1 \|W\|_1 + \lambda_2 \|RW^T\|_1 + \lambda_3 \|W\|_{2,1}$

- Squared loss: L(W) = ||S ⊙ (XW Y)||²_F
 (S is a mask to account for labels missing in subset of tasks)
- Group Lasso penalty $||W||_{2,1}$ given by $\sum_{i=1}^{d} \sqrt{\sum_{j=1}^{t} W_{ij}^2}$

•
$$R = 5$$

4 $\begin{pmatrix} 1 - 1 \\ 1 - 1 \\ 1 - 1 \\ 1 - 1 \end{pmatrix}$

Features

MRI scans (white matter parcellation volume, etc.) +

Demographic	age, years of education, gender				
Genetic	ApoE- $\varepsilon 4$ information				
Baseline	MMSE, ADAS-Cog, ADAS-MOD, ADAS sub-				
cognitive	scores, CDR, FAQ, GDS, Hachinski, Neu-				
scores	ropsychological Battery, WMS-R Logical				
	Memory				
Lab tests	RCT1, RCT11, RCT12, RCT13, RCT14,				
	RCT1407, RCT1408, RCT183, RCT19,				
	RCT20, RCT29, RCT3, RCT392, RCT4,				
	RCT5, RCT6, RCT8				

371 in total

Results (averaged over 5 time points)

	Baseline –	 Temporal smoothing helps! 				
	independent regressors	$\lambda_2 = 20$	$\lambda_2 = 50$	$\lambda_2 = 100$		
	Ridge	cFSGL1	cFSGL2	cFSGL3		
		Targ	get: MMSE			
nMSE	0.548 ± 0.057	0.428 ± 0.052	0.400 ± 0.053	0.395 ± 0.052		
R	0.689 ± 0.030	0.772 ± 0.030	0.790 ± 0.032	$\boldsymbol{0.796 \pm 0.031}$		

nMSE – normalized mean squared error. Smaller is better R – average R² (correlation coefficient). Larger is better

$$\min_{W} L(W) + \lambda_1 \|W\|_1 + \lambda_2 \|RW^T\|_1 + \lambda_3 \|W\|_{2,1}$$

Feature importance varies by time

(a) Target: ADAS-Cog (25 stable features)

Can we use an unsupervised approach?

- Twin goals:
 - Discover disease subtypes:

Want to describe heterogeneity in a way that can be easy to act on (i.e., interpretable)

Not *just* interested in prediction – rather, identify cohorts for clinical trials, better understand disease mechanism

- Make use of similarity of individuals at baseline

Dimensionality reduction to prevent overfitting

K-Means

- An iterative clustering algorithm
 - Initialize: Pick K random points as cluster centers
 - Alternate:
 - 1. Assign data points to closest cluster center
 - 2. Change the cluster center to the average of its assigned points
 - Stop when no points' assignments change

 Pick K random points as cluster centers (means)

Shown here for K=2

Iterative Step 1

 Assign data points to closest cluster center

Iterative Step 2

 Change the cluster center to the average of the assigned points

 Repeat until convergence

Asthma: the problem

 5 to 10% of people with severe asthma remain poorly controlled despite maximal inhaled therapy

[Holgate ST, Polosa R. The mechanisms, diagnosis, and management of severe asthma in adults. Lancet. 2006; 368:780–793]

[whatasthmais.com]

Asthma: the question

"It is now recognised that there are distinct asthma phenotypes and that distinct therapeutic approaches may only impinge on some aspects of the disease process within each subgroup"

- What are the processes (genetic or environmental) that underlie different subtypes of asthma?
- Which aspects of airway remodelling are important in disease subtypes?
- What are the best biomarkers of disease progression or treatment response?
- Why are some patients less responsive to conventional therapies than others?

[Adcock et al., "New targets for drug development in asthma". The Lancet, 2008]

Discovering subtypes from data

The data

- All patients had physician diagnosis of asthma and at least one recent prescription for asthma therapy
- All were current nonsmokers
- *Data set #1*: 184 patients recruited from primary-care practices in the UK
- *Data set #2*: 187 patients from refractory asthma clinic in the UK
- *Data set #3*: 68 patients from 12 month clinical study
- Features: *z* scores for continuous variables, 0/1 for categorical
 - Some of the continuous variables log-transformed to approximate a normal distribution

Variable	Primary Care (<i>n</i> = 184)	Secondary Care (<i>n</i> = 187)	Longitudinal Cohort (n = 68)
Sex, % female	54.4	65.8	47.1
Age, yr (SD)	49.2 (13.9)	43.4 (15.9)	52.4 (14.6)
Age of onset, yr (SD)	24.7 (19)	20.3 (18.4)	31.1 (23.7)
Atopic status, % positive	72.8	73.8	57.4
Body mass index, kg/m ² (SD)	27.5 (5.4)	28.5 (6.5)	28.0 (5.9)
PC_{20} methacholine [†] , mg/ml	1.04 (1.13)	Ť	0.67 (0.68)
Peak flow variability, amp % mean	17 (0.38)	32.2 (0.48)	13.8 (0.29)
FEV_1 change with bronchodilator, %	1.63 (1.16)	12.8 (0.41)	3.2 (1.04)
Post-bronchodilator FEV_1 , % predicted	91.4 (21)	82.1 (21.1)	80.2 (20.6)
Sputum eosinophil count, %	1.32 (0.62)	2.9 (0.99)	2.4 (0.81)
$F_{E_{NO}}$ [‡] , ppb	31.6 (0.33)	43 (0.32)	4.32 (0.64) [‡]
Sputum neutrophil count, %	55.09 (0.31)	46.7 (0.32)	41.1 (0.35)
Modified JACS [§] (SD)	1.36 (0.74)	2.02 (1.16)	1.42 (1.26)
Dose of inhaled corticosteroid, BDP equivalent/ μ g (SD)	632 (579)	1,018 (539)	1,821 (1,239)
Long-acting bronchodilator use, %	40.2	93	86.7

Comparison of Baseline Characteristics in the three Asthma Populations

Definition of abbreviations: amp = amplitude; BDP = beclomethasone dipropionate; JACS = Juniper Asthma Control Score

			Cluster 1	Cluster 2	Cluster 3	
	Variable	Primary Care (<i>n</i> = 184)	Early-Onset Atopic Asthma (n = 61)	Obese Noneosinophilic (n = 27)	Benign Asthma (<i>n</i> = 96)	Significance (P Value) [*]
	Sex [†] , % female	54.4	45.9	81.5	52.1	0.006
	Age, yr (SD)	49.2 (13.9)	44.5 (14 3)	53.9 (14)	50.8 (13)	0.003
	Age of onset ^{$\dot{\tau}$} , yr (SD)	24.7 (19)	14.6 (15.4)	35.3 (19.6)	28.2 (18.3)	<0.001
	Atopic status ^{\dagger} , % positive	72.8	95.1	51.9	64.6	<0.001
)	Body mass index ^{\dagger} , kg/m ² (SD)	27.5 (5.4)	26.1 (3.8)	36.2 (5.5)	26 (3.6)	<0.001
	PC_{20} methacholine ^{†‡} , mg/ml	1.04 (1.13)	0.12 (0.86)	1.60 (0.93)	6.39 (0.75)	<0.001
	PC ₂₀ >8 mg/ml, n (%)	64 (34.7)	2 (3.3)	6 (22.2)	56 (58.3)	<0.001
	Peak flow variability $^{\dagger \ddagger}$, amp % mean	17 (0.38)	20 (0.47)	21.9 (0.32)	14.8 (0.32)	0.039
	FEV_1 change with bronchodilator $\ddagger,\%$	1.63 (1.16)	4.5 (0.91)	1.82 (1.16)	0.83 (1.22)	<0.001
	Post-bronchodilator FEV_1 , % predicted	91.4 (21)	86.9 (20.7)	91.5 (21.4)	94.2 (20.7)	0.107
	Sputum eosinophil count ^{$\dagger \ddagger, \%$}	1.32 (0.62)	3.75 (0.64)	1.55 (0.51)	0.65 (0.44)	<0.001
	$F_{E_{NO}}$, ppb	31.6 (0.33)	57.5 (0.27)	25.8 (0.29)	22.8 (0.27)	<0.001
	Sputum neutrophil count $\ddagger, \%$	55.09 (0.31)	45.87 (0.24)	72.71 (0.13)	57.56 (0.36)	0.038
	Modified JACS ^{\dagger} (SD)	1.36 (0.74)	1.54 (0.58)	2.06 (0.73)	1.04 (0.66)	<0.001
	Dose of inhaled corticosteroid, BDP equivalent/ μ g (SD)	632 (579)	548 (559)	746 (611)	653 (581)	0.202
	Long-acting bronchodilator use, %	40.2	34.4	48.2	41.7	0.442
	Previous hospital admission or emergency attendance, no. per patient	0.60 (1.57)	1.04	0.26	0.20	0.037
	Previous outpatient attendance, % attended	15%	22%	19%	6%	0.121
	Severe asthma exacerbations (requiring oral corticosteroids) in past 12 mo, no. per patient	1.25 (1.94)	1.86 (0.32)	1.07 (0.32)	0.39 (0.18)	0.002

Clusters in primary care

(found by K-means)

Clusters in		Cluster 1	Cluster 2	Cluster 3	Cluster 4	-
secondary care	Secondary Care (n = 187)	Early Onset, Atopic (n = 74)	Obese, Noneosinophilic (n = 23)	Early Symptom Predominant (n = 22)	Inflammation Predominant (n = 68)	Significance (P Value) [*]
Sex ^{\dot{T}} , % female	65.8	Resembled o	lusters from	68.2	47.1	<0.001
Age, yr (SD)	43.4 (15.9)	primary care	– i.e., these	35.5 (15.5)	50.6 (15.1)	<0.001
Age of onset $\dot{\vec{T}}$, yr (SD)	20.3 (18.4)	are comm spectrum	on across of severity	12.6 (15)	32.6 (19.1)	<0.001
Atopic status † , % positive	73.8			81.8	63.2	0.024
Body mass index [†] , kg/m ² (SD)	28.5 (6.5)	Objective measures of disease severity show		23.6 (3.1)	27 (3.9)	<0.001
Peak flow variability [‡] , amp % mean	32.2 (0.48)	more advan	ced disease	24.2 (0.65)	27.6 (0.36)	0.002
FEV ₁ change with bronchodilator $\ddagger, \%$	12.8 (0.41)	24.5 (0.31)	9.3 (0.35)	4.5 (0.33)	9.8 (0.34)	<0.001
Post-bronchodilator FEV ₁ , % predicted (SD)	82.1 (21.1)	79.0 (21.9)	79.0 (18.5)	79.5 (26.1)	87.2 (18.5)	0.093
Sputum eosinophil count $^{\dagger \ddagger}$, %	2.9 (0.99)	4.2 (0.76)	1.3 (1.01)	0.1 (0.9)	8.4 (0.64)	<0.001
$F_{E_{NO}}$, ppb	43 (0.32)	51.2 (0.36)	24.2 (0.27)	22.6 (0.30)	53.1 (0.32)	<0.001
Sputum neutrophil count, $\%$	46.7 (0.32)	45.4 (0.39)	49.3 (0.22)	51.3 (0.23)	45.9 (0.29)	0.892
Modified JACS \dot{i} (SD)	2.02 (1.16)	2.63 (0.93)	2.37 (1.09)	2.11 (1.11)	1.21 (0.95)	<0.001
Dose of inhaled corticosteroid, BDP equivalent/µg (SD)	1,018 (539)	1,168 (578)	1,045 (590)	809 (396)	914 (479)	0.008
Long-acting bronchodilator use, %	93.0	91.9	95.4	90.9	94.1	0.999

How should we treat asthma?

- Now we use 3rd dataset 68 patients over 12 months
- Randomized control trial with two arms:
 - Standard clinical care ("clinical")
 - Regular monitoring of airway inflammation using induced sputum, to titrate steroid therapy to maintain normal eosinophil counts ("sputum")
- Original study found <u>no difference</u> in corticosteroid usage
 - But, this could have been explained by heterogeneity in treatment response!

Patients in different clusters respond differently to treatment! (analysis using 3rd dataset from 12 month study)

		Treatment	strategy	
Cluster (found using <i>baseline</i> dat	a) Outcomes	Clinical (<i>n</i> = 10)	Sputum (<i>n</i> = 8)	Significance
1: Obese female	Δ Inhaled corticosteroid dose [*] /µg per day (SEM)	-400 (328)	-462 (271)	0.89
	Severe exacerbation frequency over 12 mo (SEM)	1.40 (0.78)	1.50 (0.80)	0.93
	Number commenced on oral corticosteroids	2	1	0.59
		Clinical $(n = 15)$	Sputum ($n = 24$)	
2: Inflammation predominant	Δ Inhaled corticosteroid dose */µg per day (SEM)	+753 (334)	+241 (233)	0.22
	Severe exacerbation frequency over 12 mo (SEM)	3.53 (1.18)	0.38 (0.13)	0.002
	Number commenced on oral corticosteroids	2	9	0.17
		Clinical $(n = 7)$	Sputum $(n = 4)$	
3: Early symptom predominant	Δ Inhaled corticosteroid dose */µg per day (SEM)	+1,429 (429)	-400 (469)	0.022
	Severe exacerbation frequency over 12 mo (SEM)	5.43 (1.90)	2.50 (0.87)	0.198
	Number commenced on oral corticosteroids	6	0	Undefined

Summary – two approaches

• Supervised:

predict future disease status

• Unsupervised:

which patients look similar / different? Do clusters have different outcomes?

Limitations that we'll address in the next lecture

- Can't differentiate between *stage* and *subtype* Patients assumed to be aligned at baseline
- Only make use of one time point per patient
- Assumes single factor (cluster) explains all variation
- Distance function is particularly simplistic
- Either supervised or unsupervised, but not both – how to combine?