
Reinforcement learning
Fredrik D. Johansson

Clinical ML @ MIT

6.S897/HST.956: Machine Learning for Healthcare, 2019



Reminder: Causal effects

► Potential outcomes under treatment and control, 𝑌 1 , 𝑌 0
► Covariates and treatment, 𝑋, 𝑇

► Conditional average treatment effect (CATE)
𝐶𝐴𝑇𝐸 𝑋 = 𝔼 𝑌 1 − 𝑌 0 ∣ 𝑋

FeaturesPotential outcomes

𝑋 𝑇

𝑌



Today: Treatment policies/regimes

► A policy 𝝅 assigns treatments to patients
(typically depending on their medical history/state)

► Example: For a patient with medical history 𝑥, 
𝜋(𝑥) = 𝕀[𝐶𝐴𝑇𝐸 𝑥 > 0]

► Today we focus on policies guided by clinical outcomes 
(as opposed to legislation, monetary cost or side-effects)

“Treat if effect is positive”



Example: Sepsis management

► Sepsis is a complication of an infection which 
can lead to massive organ failure and death

► One of the leading causes of death in the ICU

► The primary treatment target is the infection

► Other symptoms need management: 
breathing difficulties, low blood pressure, …



Recall: Potential outcomes

Time
Mechanical ventilation? Sedation? Vasopressors?

Unobserved
responses

Observed 
decisions 
& response

Septic patient with
breathing difficulties

1. Should the patient be put on 
mechanical ventilation?

𝑌(0)

𝑌(1)
𝑇

𝑋

Blood 
oxygen



Today: Sequential decision making

► Many clinical decisions are made in sequence

► Choices early may rule out actions later

► Can we optimize the policy by which actions are made?

𝑡
𝑡8 𝑡9 𝑡:

𝐴9

𝑅8 𝑅9 𝑅:
𝑆8 𝑆9 𝑆:



Recall: Potential outcomes

Time
Mechanical ventilation? Sedation? Vasopressors?

Unobserved
responses

Observed 
decisions 
& response

Septic patient with
breathing difficulties

1. Should the patient be put on 
mechanical ventilation?



Example: Sepsis management

Time
Mechanical ventilation? Sedation? Vasopressors?

Unobserved
responses

Observed 
decisions 
& response

Septic patient with
breathing difficulties

2. Should the patient be
sedated?

(To alleviate discomfort due 
to mech. ventilation)



Example: Sepsis management

Time
Mechanical ventilation? Sedation? Vasopressors?

Unobserved
responses

Observed 
decisions 
& response

Septic patient with
breathing difficulties 3. Should we 

artificially raise 
blood pressure?

(Which may have 
dropped due to 

sedation)



Example: Sepsis management

Time
Mechanical ventilation? Sedation? Vasopressors?

Observed 
decisions 
& response

Septic patient with
breathing difficulties



Mechanical ventilation? Sedation? Vasopressors?

Finding optimal policies

► How can we treat patients so that their 
outcomes are as good as possible? 

► What are good outcomes?

► Which policies should we consider?

Outcome



Success stories in popular press

► AlphaStar
► AlphaGo
► DQN Atari
► Open AI Five



Reinforcement learning
Game state 𝑆8

Possible actions 𝐴8

Figure by Tim Wheeler, tim.hibal.org

Next state 𝑆9 Reward 𝑅9
(Loss)

► Maximize reward!



Great! Now let’s treat patients

► Patient state at time 𝑆= is like the game board

► Medical treatments 𝐴= are like the actions

► Outcomes 𝑅= are the rewards in the game

►What could possibly go wrong?
𝑡

𝑡8 𝑡9 𝑡:

𝐴9

𝑅8 𝑅9 𝑅:
𝑆8 𝑆9 𝑆:



1. Decision processes

2. Reinforcement learning

3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare



Decision processes

► An agent repeatedly, at 
times 𝑡 takes actions 𝐴=
to receive rewards 𝑅=
from an environment, 
the state 𝑆= of which is 
(partially) observed Environment

Agent

Action	𝐴=Reward	𝑅=

State	𝑆=



Decision process: Mechanical ventilation

Time
Mechanical ventilation? Sedation? Spontaneous breathing trial?

𝑆9, 𝑅9

𝐴8
𝐴9 𝐴?

𝑅:

Environment

Agent

Action	"#Reward	$#

State	%#

𝑆?, 𝑅?

𝑅= = 𝑅=@A=BCD + 𝑅=
@FG=	HII + 𝑅=@FG=	HG

𝑆8



Decision process: Mechanical ventilation

𝑆9

𝑆?

𝑆8

► State 𝑆= includes demographics, 
physiological measurements,  
ventilator settings, level of 
consciousness, dosage of 
sedatives, time to
ventilation, number of 
intubations



Decision process: Mechanical ventilation

𝐴9
𝐴?

𝐴8

► Actions 𝐴= include intubation 
and extubation, as well as 
administration and dosages of 
sedatives



Decision processes

► A decision process specifies how states 𝑆=, actions 𝐴=, and 
rewards 𝑅= are distributed: 𝑝(𝑆8, … , 𝑆:, 𝐴8, … , 𝐴:, 𝑅8, … , 𝑅:)

► The agent interacts with the environment according to a 
behavior policy 𝜇 = 𝑝(𝐴= ∣ ⋯ )*

* The …	depends on the type of agent



Markov Decision Processes

► Markov decision processes (MDPs) are a special case

► Markov transitions: 
𝑝 𝑆= 𝑆8, … , 𝑆=N9, 𝐴8, … , 𝐴=N9 = 𝑝(𝑆= ∣ 𝑆=N9, 𝐴=N9)

► Markov reward function: 𝑝 𝑅= 𝑆=, 𝐴= = 𝑝 𝑅= 𝑆8, … , 𝑆=N9, 𝐴8, … , 𝐴=N9

► Markov action policy 𝜇 = 𝑝(𝐴= ∣ 𝑆=) = 𝑝 𝐴= 𝑆8, … , 𝑆=N9, 𝐴8, … , 𝐴=N9



Markov assumption

► State transitions, actions and reward depend only on most 
recent state-action pair

𝑆8 𝑆9 𝑆:

𝐴8

𝑅8

…	

𝐴:

𝑅:



Contextual bandits (special case)*

► States are independent: 𝑝 𝑆= 𝑆=N9, 𝐴=N9 = 𝑝(𝑆=)
► Equivalent to single-step case: potential outcomes!

𝑆8 𝑆9 𝑆:

𝐴8

𝑅8

…	

𝐴:

𝑅:
* The term “contextual bandits” has connotations of efficient exploration, which is not addressed here



Contextual bandits & potential outcomes

► Think of each state 𝑆A as an i.i.d. patient, the actions 𝐴A as the 
treatment group indicators and 𝑅A as the outcomes

𝑆8 𝑆:

𝐴8

𝑅8

…	

𝐴:

𝑅:



Goal of RL

► Like previously with causal effect estimation, we are interested 
in the effects of actions 𝐴= on future rewards

𝑆8 𝑆9 𝑆:

𝐴8

𝑅8

…	

𝐴:

𝑅:



Value maximization

► The goal of most RL algorithms is to maximize the expected 
cumulative reward—the value 𝑉P of its policy 𝜋

► Return: 𝐺= = ∑ 𝑅D:
DS=

► Value: 𝑉P = 𝔼TU∼P 𝐺8

► The expectation is taken with respect to scenarios acted out 
according to the learned policy 𝜋

Sum of future rewards

Expected sum of rewards under policy 𝜋



Example

► Let’s say that we have data from a policy 𝜋

𝑅99

𝑅?9
𝑅W9 𝐺9 = 𝑅99 + 𝑅?9 + 𝑅W9

𝐺? = 𝑅9? + 𝑅?? + 𝑅W?

𝐺W = 𝑅9W + 𝑅?W + 𝑅WW

𝑅9? 𝑅??
𝑅W?

𝑅9W

𝑅?W
𝑅WW

Patient 1

Patient 2

Patient 3

𝑎99 = 1

𝑎9? = 0

𝑎9W = 0

𝑎?? = 1
𝑎W? = 1

𝑎?W = 0

𝑎WW = 0

𝑎?9 = 0 𝑎W9 = 1

𝑉P ≈
1
𝑛
[𝐺G
G

AS9

Return 

Value



Robot in a room

+1

−1

Start

► Stochastic actions
𝑝 Move	up 𝐴 = ”𝑢𝑝” = 0.8
Available non-opposite moves 
have uniform probability

► Rewards:
+1 at [4,3] (terminal state)
-1 at [4,2] (terminal)
-0.04 per step

Slide from Peter Bodik



?

Robot in a room

? ? ?

?

? ? ? ?

+1

−1

► Stochastic actions
𝑝 Move	up 𝐴 = ”𝑢𝑝” = 0.8
Available non-opposite moves 
have uniform probability

► Rewards:
+1 at [4,3] (terminal state)
-1 at [4,2] (terminal)
-0.04 per step

Slide from Peter Bodik

What is the optimal policy?



Robot in a room

+1

−1

► The following is the optimal 
policy/trajectory under 
deterministic transitions

► Not achievable in our 
stochastic transition model

Slide from Peter Bodik



Robot in a room

+1

−1

► Optimal policy

► How can we learn this?

Slide from Peter Bodik



1. Decision processes

2. Reinforcement learning

3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare



Paradigms*

Model-based RL

Transitions
𝑝 𝑆= 𝑆=N9, 𝐴=N9

G-computation
MDP estimation

Value-based RL

Value/return
𝑝 𝐺= 𝑆=, 𝐴=

Q-learning
G-estimation

Policy-based RL

Policy
𝑝(𝐴= ∣ 𝑆=)

REINFORCE
Marginal structural models

*We focus on off-policy RL here



Paradigms*

Model-based RL

Transitions
𝑝 𝑆= 𝑆=N9, 𝐴=N9

G-computation
MDP estimation

Value-based RL

Value/return
𝑝 𝐺= 𝑆=, 𝐴=

Q-learning
G-estimation

Policy-based RL

Policy
𝑝(𝐴= ∣ 𝑆=)

REINFORCE
Marginal structural models

*We focus on off-policy RL here



Dynamic programming

+1

−1

► Assume that we know how 
good a state-action pair is

► Q: Which end state is the 
best? A: [4,3]

► Q: What is the best way to get 
there? A: Only [3,1]

Slide from Peter Bodik

Start

[3,1] [4,3]



Dynamic programming

+1

−1

► [2,1] is slightly better than [3,2] 
because of the risk of 
transitioning to [4,2] from [3,2]

► Which is the best way to [2,1]?

Slide from Peter Bodik

Start

[2,1]

[3,2] [4,2]



Dynamic programming

► The idea of dynamic 
programming for 
reinforcement learning is to 
recursively learn the best 
action/value in a previous 
state given the best 
action/value in future states

Slide from Peter Bodik

+1

−1



Dynamic programming

► Next: How do we get the 
value of each state?

Slide from Peter Bodik

+1

−1



Q-learning

► Q-learning is a value-based reinforcement learning method

► Recall: The value of a state 𝑠 under a policy 𝜋 is
𝑣P 𝑠 ≔ 𝔼P 𝐺= ∣ 𝑆= = 𝑠

Reward discount factor*

*Mathematical tool more than anything

≔ 𝔼P ∑ 𝛾m𝑅=nmo
mS8 ∣ 𝑆= = 𝑠



Q-learning

► Q-learning is a value-based reinforcement learning method

► The value of a state 𝑠 under a policy 𝜋 is
𝑣P 𝑠 ≔ 𝔼P 𝐺= ∣ 𝑆= = 𝑠

► The value of a state-action pair 𝑠, 𝑎 is
𝑞P 𝑠, 𝑎 ≔ 𝔼P 𝐺= ∣ 𝑆= = 𝑠, 𝐴= = 𝑎

Reward discount factor*

*Mathematical tool more than anything

≔ 𝔼P ∑ 𝛾m𝑅=nmo
mS8 ∣ 𝑆= = 𝑠



Q-learning

► Q-learning attempts to estimate 𝒒𝝅 with a function 𝑄(𝑠, 𝑎) such 
that 𝜋 is the deterministic policy

𝜋 𝑠 = arg	maxx 𝑄(𝑠, 𝑎)

► The best 𝑄 is the best state-action value function

𝑄∗ 𝑠, 𝑎 = max
P
𝑞P(𝑠, 𝑎) =: 𝑞∗(𝑠, 𝑎)



Bellman equation

► For the optimal Q-function 𝑞∗, “Bellman optimality” holds*

𝑞∗ 𝑠, 𝑎 = 𝔼P 𝑅= + 𝛾maxB{
𝑞∗(𝑆=n9, 𝑎{) ∣ 𝑆= = 𝑠, 𝐴= = 𝑎

► Look for functions with this property!

Immediate reward Future (discounted) rewards*State-action value

*A necessary property for optimality of dynamic programming



Q-learning with discrete states

► If states are discrete, 𝑠 ∈ {0, … , 𝐾}, Q-learning can be solved 
exactly using dynamic programming (for small enough 𝐾)*

► Initialize a table of 𝑄 𝑠, 𝑎
► Repeat 

𝑄 𝑆=, 𝐴= ← 𝑄 𝑆=, 𝐴= + 𝛼 𝑅= + 𝛾maxB 𝑄(𝑆=n9, 𝑎) − 𝑄(𝑆=, 𝐴=)

*Converges to the optimal 𝑞∗ if all state-action pairs visited over and over again

Learning rate



Q-learning with discrete states

1. Initialize 𝑄 𝑠, 𝑎 = 0, let 𝛼, 𝛾 = 1	
2. Repeat

𝑄 𝑆=, 𝐴= ← 𝑄 𝑆=, 𝐴= + 𝛼 𝑅= + 𝛾maxB 𝑄(𝑆=n9, 𝑎) − 𝑄(𝑆=, 𝐴=)
+1

-1

0.96

-0.04

-0.04-0.04-0.04-0.04

-0.04

-0.04

-0.04

-0.04 -0.04-0.04 -0.04-0.04 -0.04

-1.04

-1.04

-0.04

-0.04

-0.04

-0.04

Q-table

Assume that transitions are 
deterministic for now

Let each state-pair be visited in 
order, over and over*

* We will come back to this



Q-learning with discrete states

1. Initialize 𝑄 𝑠, 𝑎 = 0, let 𝛼, 𝛾 = 1	
2. Repeat

𝑄 𝑆=, 𝐴= ← 𝑄 𝑆=, 𝐴= + 𝛼 𝑅= + 𝛾maxB 𝑄(𝑆=n9, 𝑎) − 𝑄(𝑆=, 𝐴=)
+1

-1

-0.08

-0.080.92-0.08-0.08

-0.08

-0.08

-0.08

-0.08 -0.08-0.08 -0.08-0.08 -0.08

-1.04

-1.04

-0.08

-0.08

0.92

-0.08

Q-table

0.96



Q-learning with discrete states

1. Initialize 𝑄 𝑠, 𝑎 = 0, let 𝛼, 𝛾 = 1	
2. Repeat

𝑄 𝑆=, 𝐴= ← 𝑄 𝑆=, 𝐴= + 𝛼 𝑅= + 𝛾maxB 𝑄(𝑆=n9, 𝑎) − 𝑄(𝑆=, 𝐴=)
+1

-1

0.88

0.880.92-0.120.88

-0.12

-0.12

-0.12

-0.12 -0.12-0.12 -0.12-0.12 -0.12

-1.04

-1.04

0.88

-0.08

0.92

-0.12

Q-table

0.96



Q-learning with discrete states

1. Initialize 𝑄 𝑠, 𝑎 = 0, let 𝛼, 𝛾 = 1	
2. Repeat

𝑄 𝑆=, 𝐴= ← 𝑄 𝑆=, 𝐴= + 𝛼 𝑅= + 𝛾maxB 𝑄(𝑆=n9, 𝑎) − 𝑄(𝑆=, 𝐴=)
+1

-1

0.88

0.880.920.840.88

0.84

-0.16

-0.16

-0.16 0.84-0.16 -0.16-0.16 0.84

-1.04

-1.04

0.88

0.84

0.92

-0.16

Q-table

0.96



Q-learning with discrete states

1. Initialize 𝑄 𝑠, 𝑎 = 0, let 𝛼, 𝛾 = 1	
2. Repeat

𝑄 𝑆=, 𝐴= ← 𝑄 𝑆=, 𝐴= + 𝛼 𝑅= + 𝛾maxB 𝑄(𝑆=n9, 𝑎) − 𝑄(𝑆=, 𝐴=)
+1

-1

0.88

0.880.920.840.88

0.84

-0.18

0.80

0.80 0.84-0.18 0.800.80 0.84

-1.04

-1.04

0.88

0.84

0.92

0.80

Q-table

0.96



Q-learning with discrete states

1. Initialize 𝑄 𝑠, 𝑎 = 0, let 𝛼, 𝛾 = 1	
2. Repeat

𝑄 𝑆=, 𝐴= ← 𝑄 𝑆=, 𝐴= + 𝛼 𝑅= + 𝛾maxB 𝑄(𝑆=n9, 𝑎) − 𝑄(𝑆=, 𝐴=)
+1

-1

0.96

0.88

0.880.920.840.88

0.84

0.76

0.80

0.80 0.840.76 0.800.80 0.84

-1.04

-1.04

0.88

0.84

0.92

0.80

Q-table



Fitted Q-learning (with function approximation)

► If the number of states 𝐾 is large or 𝑆= is not discrete, we 
cannot maintain a table for 𝑄 𝑠, 𝑎

► Instead, we may represent 𝑄 𝑠, 𝑎 by a function 𝑄� and 
minimize the risk

𝑅 𝑄� = 𝔼P 𝑅 + 𝛾max
B�

𝑄� 𝑆′, 𝐴{ − 𝑄� 𝑆, 𝐴
?

Current estimateOld estimate of 𝑄



Bellman equation (one step)

► In the one-step case (no future states)

𝑅 𝑄� = 𝔼P 𝑅= + 𝛾maxB�
𝑄� 𝑆′, 𝑎{ − 𝑄� 𝑆, 𝐴

?

= 𝔼P 𝑅= − 𝑄� 𝑆, 𝐴
?

► Finding 𝑞(𝑠, 𝑎) is analogous to finding expected potential 
outcomes 𝔼 𝑅 𝑎 ∣ 𝑆 = 𝑠 in the one-step case!



Recall: Potential outcomes

Control outcome
𝔼[𝑌 0 ∣ 𝑋]

𝑋

𝑌(
𝑡)

Treated outcome
𝔼[𝑌 1 ∣ 𝑋]

min
IU

1
𝑛=

[ 𝑓= 𝑥A − 𝑦A ?
�

A:=�S=

Regression adjustment



Fitted Q-learning as covariate adjustment

► Fitted Q-learning is like covariate adjustment (regression) with 
a moving target (which is updated during learning)

𝑅 𝑄� = 𝔼P 𝐺� 𝑆, 𝐴, 𝑆{, 𝑅 − 𝑄� 𝑆, 𝐴
	?

PredictionTargetExpectation over transitions	(𝑠, 𝑎, 𝑠{, 𝑟)

Choice of loss, (here squared)

≔ 𝑅 + 𝛾max
B�

𝑄� 𝑆′, 𝑎{



Off-policy learning

► Where does our data come from?

𝑅 𝑄� = 𝔼P 𝑅 + 𝛾max
B�

𝑄� 𝑆′, 𝑎{ − 𝑄� 𝑆, 𝐴
?

► ”What are the inputs and outputs of our regression?” 

► Alternate between updates of 𝑄� and 𝑄�

How do we evaluate this expectation?



Exploration in RL

► Tuples 𝑠, 𝑎, 𝑠{, 𝑟 may be obtained by:
► On-policy exploration—“Playing the game” with the current policy

► Randomized trials—Executing a sequentially random policy

► Off-policy (observational)—E.g., healthcare records

► The latter is most relevant to us!



1. Decision processes

2. Reinforcement learning paradigms

3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare



Off-policy learning

► Trajectories 𝑠9, 𝑎9, 𝑟9 , … , 𝑠:, 𝑎:, 𝑟: ,of states 𝑠=, actions 𝑎=, 
and rewards 𝑟= observed in e.g. medical record

► Actions are drawn according to a behavior policy 𝜇, but we 
want to know the value of a new policy 𝜋

► Learning policies from this data is at least as hard as 
estimating treatment effects from observational data



Assumptions for (off-policy) RL

► Sufficient conditions for identifying value function 

Strong ignorability:
𝑌(0), 𝑌(1) ⫫ 𝑇 ∣ 𝑋

“No hidden confounders”

Overlap: 
∀𝑥, 𝑡: 	𝑝 𝑇 = 𝑡 𝑋 = 𝑥 > 0

“All actions possible”

Single-step case Sequential case

Sequential randomization:
𝐺 … ⫫ 𝐴= ∣ 𝑆=� , �̅�=N9	

“Reward indep. of policy given history”

Positivity: 
∀𝑎, 𝑡: 	𝑝 𝐴= = 𝑎 𝑆=� , �̅�=N9	 > 0

“All actions possible at all times”



Single-step case

Strong ignorability:
𝑌(0), 𝑌(1) ⫫ 𝑇 ∣ 𝑋

“No hidden confounders”

Overlap: 
∀𝑥, 𝑡: 	𝑝 𝑇 = 𝑡 𝑋 = 𝑥 > 0

“All actions possible”

Positivity: 
∀𝑎, 𝑡: 	𝑝 𝐴= = 𝑎 𝑆=� , �̅�=N9	 > 0

“All actions possible at all times”

Assumptions for (off-policy) RL

► Sufficient conditions for identifying value function 

Sequential case

Sequential randomization:
𝐺 … ⫫ 𝐴= ∣ 𝑆=� , �̅�=N9	

“Reward indep. of policy given history”



Recap: Learning potential outcomes

Medication B
“Treated”
! = 1

Medication A
“Control”
! = 0

Age = 54
Gender = Female

Race = Asian

Blood pressure = 150/95

WBC count = 6.8*109/L

Temperature = 36.7°C

Blood sugar = High

Anna

Sep 15 

Blood sugar = ?
%(0)

Blood sugar = ?
%(1)

May 15 



Treating Anna once
► We assumed a simple causal graph. This let us identify the causal effect 

of treatment on outcome from observational data

Treatment, 𝐴

Outcome, 𝑅

State, 𝑆 Effect of treatment 𝑅(𝑎) ⫫ 𝐴 ∣ 𝑆
Ignorability

Potential outcome under
action 𝑎



Treating Anna over time
► Let’s add a time point…

𝐴9

𝑅9

𝑆9

𝑅?

𝐴?

𝑆?

𝑡 = 1 𝑡 = 2

𝑅=(𝑎) ⫫ 𝐴= ∣ 𝑆=

Ignorability



Treating Anna over time
► What influences her state?

𝐴9

𝑅9

𝑆9

𝑅?

𝐴?

𝑆?

It is likely that if Anna is diabetic, she will remain so

Anna’s health status depends on how we treated her

𝑅=(𝑎) ⫫ 𝐴= ∣ 𝑆=

Ignorability



Treating Anna over time
► What influences her state?

𝐴9

𝑅9

𝑆9

𝑅?

𝐴?

𝑆?

The outcome at a later time may depend on an earlier state

The outcome at a later time point may depend on earlier choices

𝑅=(𝑎) ⫫ 𝐴= ∣ 𝑆=

Ignorability



Treating Anna over time
► What influences her state?

𝐴9

𝑅9

𝑆9

𝑅?

𝐴?

𝑆?

If we already tried a treatment,
we might not try it again

If the last treatment was unsuccessful, 
it may change our next choice

If we know that a 
patient had a 

symptom previously, 
it may affect future 

decisions

𝑅=(𝑎) ⫫ 𝐴= ∣ 𝑆=

Ignorability



State & ignorability

► To have sequential ignorability, we need to remember history!

𝐴9

𝑅9

𝑆9

𝑅?

𝐴?

𝑆?

History 𝐻?
𝐴9

𝑅9

𝐻9

𝑅?

𝐴?

𝐻? 𝑅=(𝑎) ⫫ 𝐴= ∣ 𝐻=

Ignorability



Summarizing history

► The difficulty with history is that its size grows with time 

► A simple change of the standard MDP is to store the states 
and actions of a length 𝒌 window looking backwards

► Another alternative is to learn a summary function that 
maintains what is relevant for making optimal decisions, 
e.g., using an RNN



State & ignorability

► We cannot leave out unobserved confounders

𝐴9

𝑅9

𝐻9

𝑅?

𝐴?

𝐻?

Unobserved confounder, 𝑈

𝐴9

𝑅9

𝐻9

𝑅?

𝐴?

𝐻?

Unobserved confounder, 𝑈

…	



What made success possible/easier?
► Full observability

Everything important to optimal action is observed

► Markov dynamics
History is unimportant given recent state(s)

► Limitless exploration & self-play through simulation
We can test “any” policy and observe the outcome

► Noise-less state/outcome (for games, specifically)



1. Decision processes

2. Reinforcement learning paradigms

3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare. Tomorrow!


