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Reminder: Causal effects

» Potential outcomes under treatment and control, Y (1), Y (0)

» Covariates and treatment, X, T
X

» Conditional average treatment effect (CATE)
CATE(X) = E[Y(1) —Y(0) | X]

Potential outcomes Features Y




Today: Treatment policies/regimes

» A policy mr assigns treatments to patients
(typically depending on their medical history/state)

» Example: For a patient with medical history x,
m(x) = I[CATE(x) > 0]
“Treat if effect is positive”
» Today we focus on policies guided by clinical outcomes
(as opposed to legislation, monetary cost or side-effects)




Example: Sepsis management

» Sepsis is a complication of an infection which

can lead to massive organ failure and death

» One of the leading causes of death in the ICU

» The primary treatment target is the infection

» Other symptoms need management:

breathing difficulties, low blood pressure, ...




Recall: Potential outcomes

Septic patient with

breathing difficulties Y(0)
eO
3 Blood 1. Should the patient be put on
", oxygen . . .
. , Yo mechanical ventilation?
%
Y (1)
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Mechanical ventilation?




Today: Sequential decision making

» Many clinical decisions are made in sequence
» Choices early may rule out actions later

» Can we optimize the policy by which actions are made?
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Recall: Potential outcomes

Septic patient with
breathing difficulties

1. Should the patient be put on
% mechanical ventilation?

Mechanical ventilation?




Example: Sepsis management

Septic patient with ®
breathing difficulties o

® % 2. Should the patient be

sedated?
%
%,
£ ® (To alleviate discomfort due
o to mech. ventilation)

Mechanical ventilation? Sedation?




Example: Sepsis management

Septic patient with
breathing difficulties

Mechanical ventilation?

Sedation?

eo

&

Vasopressors?

3. Should we
artificially raise
blood pressure?

(Which may have
dropped due to
sedation)



Example: Sepsis management

Septic patient with
breathing difficulties

Mechanical ventilation?

Sedation?

eo

&

Vasopressors?

Observed
decisions
& response

Time

v



Finding optimal policies

» How can we treat patients so that their
outcomes are as good as possible?

» What are good outcomes?

» Which policies should we consider?

QOutcome




Success stories in popular press

» AlphaStar
» AlphaGo

» DQN Atari —ar e [
» Open Al Five IS




Reinforcement learning

» Maximize reward!
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Great! Now let’s treat patients

» Patient state at time S; is like the game board
» Medical treatments A; are like the actions

» Outcomes R, are the rewards in the game

» What could possibly go wrong?
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1. Decision processes
2. Reinforcement learning
3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare



Decision processes

» An agent repeatedly, at
times t takes actions A;
to receive rewards R;
from an environment,
the state S; of which is
(partially) observed

Reward R;

Environment

Action A;

State S;
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Decision process: Mechanical ventilation
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Abstract

The management of invasive mechanical vent-
laion and th regalaion of scdation and ana-
‘gesia during ventilation,

following major sungery. As advances in healthcare enable
more palieats to survive critical illcss of surgery,the need
for mechanical ventilation during recovery has isen.

Cloely coupled with vntition n he car of e po-
tenus i . which are crucial to main-

of the car ofpaents it o iiensiv cre
units. Both prolonged dependen ch:
il vatlaion s pcmasre cxntion e 2.

taining phy: uuhquql ey and controlling pain levels of
dents while intubated. The underlying condition of the
patient, as well as factors such as obesity or genctic varia-
of

higher hospital costs, but clnical opinion on the
best protocol for weaning patients of of a ven-
tilator varies. This work aims to develop a de-
cision support tool that uses available patient in-
formation 1o predicttime-to-extubation readincss
‘and to recommend a personalized regime of seda-
tion dosage and ventiltor support. To this cnd,
we use off-policy reinforccment learning algo-
rithms to determine the best action at a given pa-
et o bl ol (CU daa
We reatment policies from fitted Q-
icrion with cxtemly undemied tecs and
with feedforward neural networks, and demon-
strte that the policies learnt show promise in
recommending weaning protocols with improved
outcomes, in terms of minimizing fates of reintu-
bation and regulating physiological stabiity.

Introduction

Mechanical ventilation is one of the most widely used in-
terveations in admissions (0 the intensive care unit (ICU):
around 40% of patients in the ICU are supported on in-
vasive mechanical veatilation at any given hour, account-
ingfo 125 of Lol il cons i e Uried S
(Ambrosino and Gabbrielli 2010}, Wunsch et al. (2013]).
These see wplclly, paens wih s rsprsoy fne

o can e
drugs, and cause high inter-patent variabiity in repomse

0. given sedative (Patel and Kress [2012)), lending mot

vation to a personalized approach to sedation strtegies.

Shantng iy 1t ot of Ebing pudess
mcchaica venitaion, The pamary disguon s fo
detcrmining whether a paticnt is ready to be extubated
imeive sexsnin fr resolaon o the underyng dis
case, hacmodynamic stability, asscssment of current ven-
tlae setiogs s el of concioumcs, s faaly
spontancous breathing trials (SBTS). Pro-
fonged etiedonand corresponding over-sedation
i wih ot cebeion deliam, deug dee
dene, entcriaduced preumoni, and Wiher pent
mortaity rates o1 m adaton o
flating costs oy «Immmg  oupal rescurce. Pysiciane

ture extubations that necessitate reintubation within 48-72
an cause severe patient discomfortand resultin even
fonger ICU stays (Krinsley ctal. 2012, Eff
of sedation and ventilation is therefore a prioriy both for
improving paticnt outcomes and reducing costs, but a ack
of comprebensive cvidence and the variabilty in outcomes
between individuals and subpopulations means there s lit-
e agreement n clinical ltcrature on the best weaning pro-
tocol (Conti et a. [2014], Goldstone [2002))

In this work, we aim 1o deselop a decision support tool
that

o m
condition such as prcumonia, i, or heart discse, or
cases in which breathing support is necessitated by neu-
rological disorders, impaired consciousness, or weakness

ICU setting to alert clinicians when a patient s ready for
initiation of weaning, and to recommend a personalized
reatment protocol. We explore the use of off-policy re-

Mechanical ventilation?

Sedation?

Spontaneous breathing trial?

Time

v




Decision process: Mechanical ventilation

» State S; includes demographics,
physiological measurements,
ventilator settings, level of
consciousness, dosage of
sedatives, time to 50
ventilation, number of
intubations




Decision process: Mechanical ventilation

» Actions A4, include intubation
and extubation, as well as
administration and dosages of
sedatives A,



Decision processes

» A decision process specifies how states S;, actions 4;, and
rewards R; are distributed: p(Sy, ..., S7,4¢, ..., A1, Ry, ..., R7)

» The agent interacts with the environment according to a
behavior policy u = p(4¢ | -+ )*

* The ... depends on the type of agent




Markov Decision Processes

» Markov decision processes (MDPs) are a special case

» Markov transitions:
p(St | SO) ""St—erO' '"’At—l) — p(St | St—l'At—l)

» Markov reward function: p(R; | S¢, A¢) =p(R; 1 So, ., Se—1, Ags s Ap—r)

» Markov action policy u = p(A; | S¢) =p(Ac1So, ) Sec1,Ags s Apr)




Markov assumption

» State transitions, actions and reward depend only on most
recent state-action pair




Contextual bandits (special case)*

» States are independent: p(S; | Si_1,4;-1) = p(5;)
» Equivalent to single-step case: potential outcomes!

AO AT

/
50 51 St

Ry Rt

* The term “contextual bandits” has connotations of efficient exploration, which is not addressed here




Contextual bandits & potential outcomes

» Think of each state S; as an i.i.d. patient, the actions A; as the
treatment group indicators and R; as the outcomes

AO AT




Goal of RL

» Like previously with causal effect estimation, we are interested
in the effects of actions A; on future rewards

Ar




Value maximization

» The goal of most RL algorithms is to maximize the expected
cumulative reward—the value 1, of its policy =

» Return: G, = Y!_, R,

Sum of future rewards

» Value: V;, = E,, .[Go]

Expected sum of rewards under policy

» The expectation is taken with respect to scenarios acted out
according to the learned policy




Example

Value
n
1
Vn = Ez Gn
» Let’s say that we have data from a policy = =1
@ =0 =1 Return
a=1 Ry 1 1 1 1
R% G - Rl + R2 + R3
1
Patient 1 R;
Patient 2 , =1
“ast d=i i G? = R? + R? + R}
R% RZ R3
Patient 3 2
a3 =0 Rf az; =0
RS a; =0
R3

G® =R} + R3 + R3



Robot In a room

» Stochastic actions <_f_.
p(Moveup | A ="up”) = 0.8
Available non-opposite moves
have uniform probability

» Rewards:

+1 at [4,3] (terminal state)
-1 at [4,2] (terminal)
-0.04 per step

Slide from Peter Bodik

+1

Start




Robot in a room
4 What is the optimal policy?

» Stochastic actions
p(Moveup | A ="up”) = 0.8
Avalilable non-opposite moves
have uniform probability

» Rewards:

+1 at [4,3] (terminal state)
-1 at [4,2] (terminal)
-0.04 per step

Slide from Peter Bodik




Robot In a room

» The following is the optimal
policy/trajectory under
deterministic transitions

» Not achievable in our
stochastic transition model

Slide from Peter Bodik




Robot In a room

» Optimal policy

» How can we learn this?

Slide from Peter Bodik




1. Decision processes
2. Reinforcement learning
3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare



Paradigms™
Model-based RL

Transitions
p(Se | S, Ap—1)

G-computation
MDP estimation

*We focus on off-policy RL here

Value-based RL

Value/return
p(G: | S¢, Ap)

Q-learning
G-estimation

Policy-based RL

Policy
p(A: | S¢)

REINFORCE

Marginal structural models



Paradigms™

*We focus on off-policy RL here

Value-based RL

Value/return
p(G: | S¢, Ap)

Q-learning
G-estimation




Dynamic programming

» Assume that we know how
good a state-action pair is

» Q: Which end state is the
best? A: [4,3]

» Q: What is the best way to get
there? A: Only [3,1]

Slide from Peter Bodik




Dynamic programming

» [2,1] is slightly better than [3,2]
because of the risk of
transitioning to [4,2] from [3,2]

» Which is the best way to [2,1]?

Slide from Peter Bodik




Dynamic programming

» The idea of dynamic
programming for
reinforcement learning is to
recursively learn the best
action/value in a previous
state given the best
action/value in future states

Slide from Peter Bodik




Dynamic programming

» Next: How do we get the
value of each state?

Slide from Peter Bodik



Q-learning
» Q-learning is a value-based reinforcement learning method

» Recall: The value of a state s under a policy « is
UT[(S) = [, [Gt | St — S] = En[ X707/ Resj 1 S = ]

Reward discount factor*

*Mathematical tool more than anything



Q-learning
» Q-learning is a value-based reinforcement learning method

» The value of a state s under a policy  is
UT[(S) = [, [Gt | St — S] = En[ X707/ Resj 1 S = ]

Reward discount factor*

» The value of a state-action pair (s,a) is
qrc(S: a) = [Erc[Gt | 5¢ = 5, A = a]

*Mathematical tool more than anything




Q-learning
» Q-learning attempts to estimate g, with a function Q(s, a) such
that o is the deterministic policy

n(s) = arg max, Q(s,a)

» The best Q is the best state-action value function

Q'(5,@) = maxqq(s,a) =:¢(s, @)




Bellman equation

» For the optimal Q-function g*, “Bellman optimality” holds*

q*(S) a) — IET[ [Rt ~+ yn}l,alxq*(st-l-l’ a’) | St = S,At = a]

State-action value Immediate reward  Future (discounted) rewards*

» Look for functions with this property!

*A necessary property for optimality of dynamic programming




Q-learning with discrete states

» If states are discrete, s € {0, ..., K}, Q-learning can be solved
exactly using dynamic programming (for small enough K)*

» Initialize a table of Q(s, a)
» Repeat

Q(Se, Ar) « Q(Sp, Ap) + a [Rt Ty mc?x Q(St41,a) — Q(St»At)]

Learning rate

*Converges to the optimal g* if all state-action pairs visited over and over again




Q-learning with discrete states

T Q-tabl
1. Initialize Q(s,a) = 0, leta,y =1 e

2. Repeat
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et each state-pair be visited in
order, over and over®

* We will come back to this




-learning with discrete states

T Q-tabl
Initialize Q(s,a) =0, leta,y =1 e

epeat

A < QS A) +a [Rt + Yy max Q(St+1,a) — Q(St, Ay)

.
,
N ,
N .
N - ,
N . .
N .
N ,

N ,
N ’
N ,

-0.08 -0.08




-learning with discrete states

T Q-tabl
Initialize Q(s,a) =0, leta,y =1 e

epeat

A < QS A) +a [Rt + Yy max Q(St+1,a) — Q(St, Ay)

.
,
N ,
N .
N ,
N L] .
N .
N ,

N ,
N ’
N ,

-0.12 x-0.12




-learning with discrete states

T Q-tabl
Initialize Q(s,a) =0, leta,y =1 e

epeat

A < QS A) +a [Rt + Yy max Q(St+1,a) — Q(St, Ay)

.

.
,
N ,
N .
N ,
N . .
N
N ,

N ,
N ’
N ,

-0.16 <-0.16




-learning with discrete states

Q-table

Initialize Q(s,a) =0, leta,y =1
epeat

A < QS A) +a [Rt + Yy max Q(St+1,a) — Q(St, Ay)




-learning with discrete states

Q-table

Initialize Q(s,a) =0, leta,y =1
epeat

A < QS A) +a [Rt + Yy max Q(St+1,a) — Q(St, Ay)




Fitted Q-learning (with function approximation)

» If the number of states K is large or S; is not discrete, we
cannot maintain a table for Q(s, a)

» Instead, we may represent Q(s,a) by a function Q4 and
minimize the risk

R(Qg) = Eg [(R +y max Q(s", A" — Qe(S,A))ZI

Old estimate of Q Current estimate




Bellman equation (one step)

» In the one-step case (no future states)
R 2
R(Qp) = Ex |(Re + pemascisa) — 0p(5,4)) |
= E. [(Re — Qo (5, 4))°]

» Finding q(s, a) is analogous to finding expected potential
outcomes E[R(a) | S = s] in the one-step case!



Recall: Potential outcomes

Regression adjustment Control outcome

mm—E(ftocl) 70 PYOU

i:t;=

. Treated outcome
E[Y(1) | X]

Y(t)




Fitted Q-learning as covariate adjustment

» Fitted Q-learning is like covariate adjustment (regression) with
a moving target (which is updated during learning)

Choice of loss, (here squared)

A

R(Qs) = Ex|(G(5, 4,5, R) = Qo (5, M) |

= R + y max 0(S’,a")
N a J
!

Expectation over transitions (s,a, s’,r) Target Prediction

N




Off-policy learning

» Where does our data come from?
2 I 2
R(Qp) = By | (R +ymax(S',a) = 0p(5,4)) |
L How do we evaluate this expectation?

» "What are the inputs and outputs of our regression?”

» Alternate between updates of Q and Qg




Exploration in RL

» Tuples (s,a,s’,r) may be obtained by:
» On-policy exploration—“Playing the game” with the current policy
» Randomized trials —Executing a sequentially random policy

» Off-policy (observational)—E.g., healthcare records

» The latter is most relevant to us!




1. Decision processes
2. Reinforcement learning paradigms
3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare



Off-policy learning

» Trajectories (s{,a4,11), ..., (s, ar, rp),0f states s;, actions a,,
and rewards r; observed in e.g. medical record

» Actions are drawn according to a behavior policy u, but we
want to know the value of a new policy «

» Learning policies from this data is at least as hard as
estimating treatment effects from observational data




Assumptions for (off-policy) RL

» Sufficient conditions for identifying value function

Single-step case Sequential case
Strong ignorability: Sequential randomization:
Y(0),Y() LT IX G(.) LAy | 5 Ay
“No hidden confounders” “Reward indep. of policy given history”
Overlap: Positivity:
v, t: p(T=t|X=x)>0 Va,t: p(A; =a| S, A1) >0
“All actions possible” “All actions possible at all times”



Assumptions for (off-policy) RL

» Sufficient conditions for identifying value function

Sequential case

Sequential randomization:
G(.)LA NS, A4

“Reward indep. of policy given history”




Recap: Learning potential outcomes

abmin
HH May 15 % Sep 15
-» | Medication A =
= 13 ””
Anna Control
t=0
Age = 54 Blood sugar = ?
Gender = Female Y(O)
Race = Asian
Blood pressure = 150/95 <=
WBC count = 6.8*10°/L %
Temperature = 36.7°C i i
_ Medication B
Blood sugar = High “Treated” Blood sugar = ?
t=1 Y(1)




Treating Anna once

» We assumed a simple causal graph. This let us identify the causal effect
of treatment on outcome from observational data

Treatment, A

Ignorability
State, S Effect of treatment R(@LAIS

Potential outcome under
Outcome, R action a




Treating Anna over time

» Let’s add a time point...

Ignorability
S, S, Ri(a) L A | S




Treating Anna over time

» What influences her state?

Anna’s health status depends on how we treated her

Ignorability
Ri(a) L A | S

It is likely that if Anna is diabetic, she will remain so



Treating Anna over time

» What influences her state?

The outcome at a later time point may depend on earlier choices

Ignorability

The outcome at a later time may depend on an earlier state



Treating Anna over time

» What influences her state?

If we already tried a treatment,

If we know that a we might not try it again
patient had a
symptom previously, Ay l A,
it may affect future
decisions |gn |Iity
51 R (gLl | St

If the last treatment was unsuccessful,
it may change our next choice




State & ignorability

» To have sequential ignorability, we need to remember history!

History H,

Ignorability
R:(a) L A; | H;




Summarizing history

» The difficulty with history is that its size grows with time

» A simple change of the standard MDP is to store the states
and actions of a length k window looking backwards

» Another alternative is to learn a summary function that
maintains what is relevant for making optimal decisions,
e.g., using an RNN




State & ignorability

» We cannot leave out unobserved confounders

Unobserved confounder, U

Unobserved confounder, U




What made success possible/easier?

» Full observability
Everything important to optimal action is observed

» Markov dynamics
History is unimportant given recent state(s)

» Limitless exploration & self-play through simulation
We can test “any” policy and observe the outcome

» Noise-less state/outcome (for games, specifically)




1. Decision processes
2. Reinforcement learning paradigms

3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare. Tomorrow!



