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Reminder:	Potential	Outcomes

• Each	unit	(individual)	𝑥" has	two	potential	outcomes:	
– 𝑌$(𝑥") is	the	potential	outcome	had	the	unit	not	been	treated:	
“control	outcome”

– 𝑌'(𝑥") is	the	potential	outcome	had	the	unit	been	treated:	
“treated	outcome”

• Conditional	average	treatment	effect	for	unit	𝑖:	
𝐶𝐴𝑇𝐸 𝑥" = 𝔼/0~2(/0|45)	[𝑌'|𝑥"] − 𝔼/:~2(/:|45)[𝑌$|𝑥"]

• Average	Treatment	Effect:
𝐴𝑇𝐸 = 𝔼4~2(4) 𝐶𝐴𝑇𝐸 𝑥



Two	common	approaches	for	counterfactual	
inference

Covariate	adjustment	
Propensity	scores
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Covariate	adjustment	(reminder)

Explicitly	model	the	relationship	between	
treatment,	confounders,	and	outcome:



Covariate	adjustment	(reminder)

• Under	ignorability,	
𝐶𝐴𝑇𝐸 𝑥 =
𝔼4~2 4 	𝔼 𝑌' 𝑇 = 1, 𝑥 − 𝔼 𝑌$ 𝑇 = 0, 𝑥

• Fit	a	model	𝑓 𝑥, 𝑡 ≈ 𝔼 𝑌D 𝑇 = 𝑡, 𝑥 ,	then:
𝐶𝐴𝑇𝐸J 𝑥" = 𝑓 𝑥", 1 − 𝑓(𝑥", 0).



Covariate	adjustment	with	linear	models

• Assume	that:

	

• Then:
𝐶𝐴𝑇𝐸(𝑥): = 𝔼[𝑌' 𝑥 − 𝑌$ 𝑥 ] =

𝔼[(𝛽𝑥	 + 𝛾 + 𝜖') − 𝛽𝑥 + 𝜖$ ] = 𝛾	

age medicationBlood	pressure

𝑌D 𝑥 = 	𝛽𝑥	 + 𝛾 ⋅ 𝑡 + 𝜖D
𝔼 𝜖D = 0



• Assume	that:

	

• Then:
𝐶𝐴𝑇𝐸(𝑥): = 𝔼[𝑌' 𝑥 − 𝑌$ 𝑥 ] =

𝔼[(𝛽𝑥	 + 𝛾 + 𝜖') − 𝛽𝑥 + 𝜖$ ] = 𝛾	

age medication

𝐴𝑇𝐸:= 𝔼2 4 𝐶𝐴𝑇𝐸 𝑥 = 	𝛾

Blood	pressure

𝑌D 𝑥 = 	𝛽𝑥	 + 𝛾 ⋅ 𝑡 + 𝜖D
𝔼 𝜖D = 0

Covariate	adjustment	with	linear	models



• Assume	that:

	

• For	causal	inference,	need	to	estimate	𝛾 well,	
not	𝑌D 𝑥 - Identification,	not	prediction

• Major	difference	between	ML	and	statistics

age medication

𝐴𝑇𝐸:= 𝔼2 4 𝐶𝐴𝑇𝐸 𝑥 = 	𝛾

Blood	pressure

𝑌D 𝑥 = 	𝛽𝑥	 + 𝛾 ⋅ 𝑡 + 𝜖D
𝔼 𝜖D = 0

Covariate	adjustment	with	linear	models



What	happens	if	true	model	is	not	
linear?

• True	data	generating	process,	𝑥 ∈ ℝ:

𝐴𝑇𝐸 = 𝔼 𝑌' − 𝑌$ = 𝛾
• Hypothesized	model:

	

𝑌D 𝑥 = 	𝛽𝑥	 + 𝛾 ⋅ 𝑡 + 𝛿 ⋅ 𝑥;

𝑌DT 𝑥 = 𝛽U𝑥 + 𝛾V ⋅ 𝑡

𝛾V = 𝛾 + 𝛿
𝔼 𝑥𝑡 𝔼 𝑥; − 𝔼[𝑡;]𝔼[𝑥;𝑡]
𝔼 𝑥𝑡 ; − 𝔼[𝑥;]𝔼[𝑡;]

Depending	on	𝜹,	can	be	made	to	be	arbitrarily	large	or	
small!



Covariate	adjustment	with	non-linear	
models

• Random	forests	and	Bayesian	trees	
Hill	(2011),	Athey &	Imbens (2015),	Wager	&	Athey (2015)

• Gaussian	processes	
Hoyer	et	al.	(2009),	Zigler et	al.	(2012)

• Neural	networks
Beck	et	al.	(2000),	Johansson	et	al.	(2016),	Shalit	et	al.	(2016),	
Lopez-Paz	et	al.	(2016)



Example:	Gaussian	processes
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Figures:	Vincent	Dorie	&	Jennifer	Hill

Separate	treated	and	
control	models

Joint	treated	and	
control	model
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Example:	Neural	networks

Shalit,	Johansson,	Sontag.	Estimating	Individual	Treatment	Effect:	Generalization	
Bounds	and	Algorithms.	ICML,	2017
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Matching
• Find	each	unit’s	long-lost	counterfactual	
identical	twin,	check	up	on	his	outcome



Matching
• Find	each	unit’s	long-lost	counterfactual	
identical	twin,	check	up	on	his	outcome

Obama,	had	he	gone	to	law	school Obama,	had	he	gone	to	business	school



Matching
• Find	each	unit’s	long-lost	counterfactual	
identical	twin,	check	up	on	his	outcome

• Used	for	estimating	both	ATE	and	CATE



Match	to	nearest	neighbor	from	
opposite	group

Treated

Control Age

Charleson
comorbidity
index



Match	to	nearest	neighbor	from	
opposite	group
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1-NN	Matching

• Let	𝑑 ⋅,⋅ be	a	metric	between	𝑥’s
• For	each	𝑖,	define	𝑗 𝑖 = argmin	

_	`.D.		DabD5	
𝑑(𝑥_, 𝑥")

𝑗 𝑖 is	the	nearest	counterfactual	neighbor	of	𝑖
• 𝑡" = 1,	unit	𝑖 is	treated:

𝐶𝐴𝑇𝐸J 𝑥" = 𝑦" − 𝑦_ "
• 𝑡" =0,	unit	𝑖 is	control:

𝐶𝐴𝑇𝐸J 𝑥" = 𝑦_(") − 𝑦"



1-NN	Matching

• Let	𝑑 ⋅,⋅ be	a	metric	between	𝑥’s
• For	each	𝑖,	define	𝑗 𝑖 = argmin	

_	`.D.		DabD5	
𝑑(𝑥_, 𝑥")

𝑗 𝑖 is	the	nearest	counterfactual	neighbor	of	𝑖

• 𝐶𝐴𝑇𝐸J 𝑥" = (2𝑡" − 1)(𝑦"−𝑦_ " )

• 𝐴𝑇𝐸J = '
d
∑ 𝐶𝐴𝑇𝐸J 𝑥"d
"f'



Matching

• Interpretable,	especially	in	small-sample	regime
• Nonparametric
• Heavily	reliant	on	the	underlying	metric
• Could	be	misled	by	features	which	don’t	affect	
the	outcome



Covariate	adjustment	and	matching

• Matching	is	equivalent	to	covariate	adjustment	
with	two	1-nearest	neighbor	classifiers:
𝑌g' 𝑥 = 𝑦hh0 4 	,	𝑌g$ 𝑥 = 𝑦hh: 4
where	𝑦hhi 4 is	the	nearest-neighbor	of	𝑥
among	units	with	treatment	assignment

𝑡 = 0,1

• 1-NN	matching	is	in	general	inconsistent,	
though	only	with	small	bias	(Imbens 2004)	



Two	common	approaches	for	counterfactual	
inference

Covariate	adjustment	
Propensity	scores



Propensity	scores

• Tool	for	estimating	ATE
• Basic	idea:	turn	observational	study	into	a	
pseudo-randomized	trial	by	re-weighting	
samples,	similar	to	importance	sampling



Inverse	propensity	score	re-weighting

𝑥' = 𝑎𝑔𝑒

𝑥; =
Charlson
comorbidity	
index

Treated

Control

𝑝(𝑥|𝑡 = 0) ≠ 𝑝 𝑥 𝑡 = 1
control			 treated



𝑝 𝑥 𝑡 = 0 ⋅ 𝑤$(𝑥) ≈ 𝑝 𝑥 𝑡 = 1 ⋅ 𝑤'(𝑥)
reweighted	control					reweighted	treated

Inverse	propensity	score	re-weighting

𝑥' = 𝑎𝑔𝑒

𝑥; =
Charlson
comorbidity	
index

Treated

Control



Propensity	score
• Propensity	score:	𝑝 𝑇 = 1 𝑥 ,
using	machine	learning	tools

• Samples	re-weighted	by	the	inverse	propensity	
score	of	the	treatment	they	received



Propensity	scores	– algorithm
Inverse	probability	of	treatment	weighted	estimator

How	to	calculate	ATE	with	propensity	score
for	sample	 𝑥', 𝑡', 𝑦' , … , (𝑥d, 𝑡d, 𝑦d)

1. Use	any	ML	method	to	estimate	𝑝V 𝑇 = 𝑡 𝑥

2. ˆATE =
1

n

X

i s.t. ti=1

yi
p̂(ti = 1|xi)

� 1

n

X

i s.t. ti=0

yi
p̂(ti = 0|xi)



Propensity	scores	– algorithm
Inverse	probability	of	treatment	weighted	estimator

How	to	calculate	ATE	with	propensity	score
for	sample	 𝑥', 𝑡', 𝑦' , … , (𝑥d, 𝑡d, 𝑦d)

1. Randomized	trial	𝑝(𝑇 = 𝑡|𝑥) = 0.5

2. ˆATE =
1

n

X

i s.t. ti=1

yi
p̂(ti = 1|xi)

� 1

n

X

i s.t. ti=0

yi
p̂(ti = 0|xi)



Propensity	scores	– algorithm
Inverse	probability	of	treatment	weighted	estimator

How	to	calculate	ATE	with	propensity	score
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Propensity	scores	– algorithm
Inverse	probability	of	treatment	weighted	estimator
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Propensity	scores	– algorithm
Inverse	probability	of	treatment	weighted	estimator

How	to	calculate	ATE	with	propensity	score
for	sample	 𝑥', 𝑡', 𝑦' , … , (𝑥d, 𝑡d, 𝑦d)

1. Randomized	trial	𝑝 = 0.5

2. ˆATE =
1

n

X

i s.t. ti=1

yi
0.5

� 1

n

X

i s.t. ti=0
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Sum	over	~𝒏
𝟐
terms



Propensity	scores	- derivation

• Recall	average	treatment	effect:

• We	only	have	samples	for:

Ex⇠p(x)[ E [Y1|x, T = 1]�E [Y0|x, T = 0] ]

Ex⇠p(x|T=1)[ E [Y1|x, T = 1]]

Ex⇠p(x|T=0)[ E [Y0|x, T = 0]]



Propensity	scores	- derivation

• We	only	have	samples	for:

Ex⇠p(x|T=1)[ E [Y1|x, T = 1]]

Ex⇠p(x|T=0)[ E [Y0|x, T = 0]]



Propensity	scores	- derivation

• We	only	have	samples	for:

• We	need	to	turn	𝑝(𝑥|𝑇 = 1) into	𝑝(𝑥):

Ex⇠p(x|T=1)[ E [Y1|x, T = 1]]

Ex⇠p(x|T=0)[ E [Y0|x, T = 0]]

p(x|T = 1) · p(T = 1)

p(T = 1|x) = p(x)?



Propensity	scores	- derivation

• We	only	have	samples	for:

• We	need	to	turn	𝑝(𝑥|𝑇 = 1) into	𝑝(𝑥):

Ex⇠p(x|T=1)[ E [Y1|x, T = 1]]

Ex⇠p(x|T=0)[ E [Y0|x, T = 0]]

p(x|T = 1) · p(T = 1)

p(T = 1|x) = p(x)

Propensity	score



Propensity	scores	- derivation

• We	only	have	samples	for:

• We	need	to	turn	𝑝(𝑥|𝑇 = 0) into	𝑝(𝑥):

Ex⇠p(x|T=1)[ E [Y1|x, T = 1]]

Ex⇠p(x|T=0)[ E [Y0|x, T = 0]]

p(x|T = 0) · p(T = 0)

p(T = 0|x) = p(x)

Propensity	score



• We	want:

• We	know	that:

• Thus:

• We	can	approximate	this	empirically	as:

(similarly	for	ti=0)

p(x|T = 1) · p(T = 1)

p(T = 1|x) = p(x)

Ex⇠p(x)[Y1(x)]

Ex⇠p(x|T=1)


p(T = 1)

p(T = 1 | x)Y1(x)

�
= Ex⇠p(x)[Y1(x)]

1

n1

X

i s.t.ti=1


n1/n

p̂(ti = 1 | xi)
yi

�
=

1

n

X

i s.t.ti=1

yi
p̂(ti = 1 | xi)



Problems	with	IPW

• Need	to	estimate	propensity	score	(problem	in	
all	propensity	score	methods)

• If	there’s	not	much	overlap,	propensity	scores	
become	non-informative	and	easily	mis-
calibrated

• Weighting	by	inverse	can	create	large	variance	
and	large	errors	for	small	propensity	scores
– Exacerbated	when	more	than	two	treatments



Many	more	ideas	and	methods

• Natural	experiments	&	regression	
discontinuity

• Instrumental	variables



Many	more	ideas	and	methods	–
Natural	experiments

• Does	stress	during	pregnancy	affect	later	child	
development?

• Confounding:	genetic,	mother	personality,	
economic	factors…

• Natural	experiment:	the	Cuban	missile	crisis	of	
October	1962.	Many	people	were	afraid	a	nuclear	
war	is	about	to	break	out.

• Compare	children	who	were	in	utero	during	the	
crisis	with	children	from	immediately	before	and	
after



Many	more	ideas	and	methods	–
Instrumental	variables	

• Informally:	a	variable	which	affects	treatment	
assignment	but	not	the	outcome

• Example:	are	private	schools	better	than	public	
schools?

• Confounding:	different	student	population,	
different	teacher	population

• Can’t	force	people	which	school	to	go	to



Many	more	ideas	and	methods	–
Instrumental	variables

• Informally:	a	variable	which	affects	treatment	
assignment	but	not	the	outcome

• Example:	are	private	schools	better	than	public	
schools?

• Can’t	force	people	which	school	to	go	to
• Can	randomly give	out	vouchers	to	some	children,	
giving	them	an	opportunity	to	attend	private	
schools

• The	voucher	assignment	is	the	instrumental	
variable



Summary

• Two	approaches	to	use	machine	learning	for	
causal	inference:
1. Predict	outcome	given	features	and	treatment,	then	

use	resulting	model	to	impute	counterfactuals	
(covariate	adjustment)

2. Predict	treatment	using	features	(propensity	score),	
then	use	to	reweight	outcome	or	stratify	the	data

• Causal	graphs	important	for	thinking	through	
whether	problem	is	setup	appropriately	and	
whether	assumptions	hold


