Machine Learning for Healthcare HST.956, 6.S897

Lecture 15: Causal Inference Part 2

David Sontag

Acknowledgement: adapted from slides by Uri Shalit (Technion)

Reminder: Potential Outcomes

- Each unit (individual) x_i has two potential outcomes:
 - $Y_0(x_i)$ is the potential outcome had the unit not been treated: "control outcome"
 - $Y_1(x_i)$ is the potential outcome had the unit been treated: "treated outcome"
- Conditional average treatment effect for unit *i*: $CATE(x_i) = \mathbb{E}_{Y_1 \sim p(Y_1|x_i)} [Y_1|x_i] - \mathbb{E}_{Y_0 \sim p(Y_0|x_i)} [Y_0|x_i]$
- Average Treatment Effect:

$$ATE = \mathbb{E}_{x \sim p(x)}[CATE(x)]$$

Two common approaches for counterfactual inference

Covariate adjustment Propensity scores

Covariate adjustment (reminder)

Explicitly model the relationship between treatment, confounders, and outcome:

Covariate adjustment (reminder)

- Under ignorability, CATE(x) = $\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}[Y_1 | T = 1, x] - \mathbb{E}[Y_0 | T = 0, x] \right]$
- Fit a model $f(x,t) \approx \mathbb{E}[Y_t|T = t, x]$, then: $\widehat{CATE}(x_i) = f(x_i, 1) - f(x_i, 0).$

Covariate adjustment with linear models

• Assume that:

Blood pressure age medication $Y_t(x) = \beta x + \gamma \cdot t + \epsilon_t$ $\mathbb{E}[\epsilon_t] = 0$

• Then:

 $CATE(x) := \mathbb{E}[Y_1(x) - Y_0(x)] =$

Covariate adjustment with linear models

• Assume that:

Blood pressure age medication $Y_t(x) = \beta x + \gamma \cdot t + \epsilon_t$ $\mathbb{E}[\epsilon_t] = 0$

• Then:

 $CATE(x) := \mathbb{E}[Y_1(x) - Y_0(x)] = \mathbb{E}[(\beta x + \gamma + \epsilon_1) - (\beta x + \epsilon_0)] = \gamma$

 $ATE := \mathbb{E}_{p(x)}[CATE(x)] = \gamma$

Covariate adjustment with linear models

• Assume that:

- For causal inference, need to estimate γ well, not $Y_t(x)$ Identification, not prediction
- Major difference between ML and statistics

What happens if true model is not linear?

• True data generating process, $x \in \mathbb{R}$:

$$Y_t(x) = \beta x + \gamma \cdot t + \delta \cdot x^2$$

$$ATE = \mathbb{E}[Y_1 - Y_0] = \gamma$$

• Hypothesized model: $\widehat{Y}_t(x) = \widehat{\beta}x + \widehat{\gamma} \cdot t$

$$\hat{\gamma} = \gamma + \underbrace{\delta}_{\mathbb{E}[xt]\mathbb{E}[x^2] - \mathbb{E}[t^2]\mathbb{E}[x^2t]}^{\mathbb{E}[xt]\mathbb{E}[x^2t]} - \mathbb{E}[x^2]\mathbb{E}[t^2]$$

Depending on δ , can be made to be arbitrarily large or small!

Covariate adjustment with non-linear models

- Random forests and Bayesian trees Hill (2011), Athey & Imbens (2015), Wager & Athey (2015)
- Gaussian processes Hoyer et al. (2009), Zigler et al. (2012)
- Neural networks

Beck et al. (2000), Johansson et al. (2016), Shalit et al. (2016), Lopez-Paz et al. (2016)

Example: Gaussian processes

Figures: Vincent Dorie & Jennifer Hill

Example: Neural networks

Shalit, Johansson, Sontag. *Estimating Individual Treatment Effect: Generalization Bounds and Algorithms*. ICML, 2017

• Find each unit's long-lost counterfactual identical twin, check up on his outcome

• Find each unit's long-lost counterfactual identical twin, check up on his outcome

Obama, had he gone to law school

Obama, had he gone to business school

- Find each unit's long-lost counterfactual identical twin, check up on his outcome
- Used for estimating both ATE and CATE

Match to nearest neighbor from opposite group

Charleson comorbidity index Treated Control Age

Match to nearest neighbor from opposite group

Charleson comorbidity index

Treated

Control

1-NN Matching

- Let $d(\cdot, \cdot)$ be a metric between x's
- For each *i*, define $j(i) = \underset{j \ s.t. \ t_j \neq t_i}{\operatorname{argmin}} d(x_j, x_i)$

j(i) is the nearest counterfactual neighbor of i

•
$$t_i = 1$$
, unit *i* is treated:
 $\widehat{CATE}(x_i) = y_i - y_{j(i)}$

•
$$t_i = 0$$
, unit *i* is control:
 $\widehat{CATE}(x_i) = y_{j(i)} - y_i$

1-NN Matching

- Let $d(\cdot, \cdot)$ be a metric between x's
- For each *i*, define $j(i) = \underset{j \ s.t. \ t_j \neq t_i}{\operatorname{argmin}} d(x_j, x_i)$

j(i) is the nearest counterfactual neighbor of i

•
$$\widehat{CATE}(x_i) = (2t_i - 1)(y_i - y_{j(i)})$$

•
$$\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} \widehat{CATE}(x_i)$$

- Interpretable, especially in small-sample regime
- Nonparametric
- Heavily reliant on the underlying metric
- Could be misled by features which don't affect the outcome

Covariate adjustment and matching

• Matching is equivalent to covariate adjustment with two 1-nearest neighbor classifiers: $\hat{Y}_1(x) = y_{NN_1(x)}$, $\hat{Y}_0(x) = y_{NN_0(x)}$ where $y_{NN_t(x)}$ is the nearest-neighbor of xamong units with treatment assignment t = 0,1

• 1-NN matching is in general inconsistent, though only with small bias (Imbens 2004)

Two common approaches for counterfactual inference

Covariate adjustment Propensity scores

Propensity scores

- Tool for estimating ATE
- Basic idea: turn observational study into a pseudo-randomized trial by re-weighting samples, similar to importance sampling

Propensity score

- Propensity score: p(T = 1|x), using machine learning tools
- Samples re-weighted by the inverse propensity score of the treatment they received

How to calculate ATE with propensity score for sample $(x_1, t_1, y_1), \dots, (x_n, t_n, y_n)$

1. Use any ML method to estimate $\hat{p}(T = t | x)$

2.
$$A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i=1} \frac{y_i}{\hat{p}(t_i=1|x_i)} - \frac{1}{n} \sum_{i \text{ s.t. } t_i=0} \frac{y_i}{\hat{p}(t_i=0|x_i)}$$

How to calculate ATE with propensity score for sample $(x_1, t_1, y_1), \dots, (x_n, t_n, y_n)$

1. Randomized trial p(T = t | x) = 0.5

2.
$$A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i=1} \frac{y_i}{\hat{p}(t_i=1|x_i)} - \frac{1}{n} \sum_{i \text{ s.t. } t_i=0} \frac{y_i}{\hat{p}(t_i=0|x_i)}$$

How to calculate ATE with propensity score for sample $(x_1, t_1, y_1), \dots, (x_n, t_n, y_n)$

1. Randomized trial p(T = t | x) = 0.5

2.
$$\hat{ATE} = \frac{1}{n} \sum_{i \text{ s.t. } t_i = 1} \frac{y_i}{0.5} - \frac{1}{n} \sum_{i \text{ s.t. } t_i = 0} \frac{y_i}{0.5} = \frac{y_i}{0.5}$$

How to calculate ATE with propensity score for sample $(x_1, t_1, y_1), \dots, (x_n, t_n, y_n)$

1. Randomized trial p = 0.5

2.
$$A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i = 1} \frac{y_i}{0.5} - \frac{1}{n} \sum_{i \text{ s.t. } t_i = 0} \frac{y_i}{0.5} = \frac{2}{n} \sum_{i \text{ s.t. } t_i = 1} y_i - \frac{2}{n} \sum_{i \text{ s.t. } t_i = 0} y_i$$

• Recall average treatment effect:

 $\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}\left[Y_1 | x, T = 1\right] - \mathbb{E}\left[Y_0 | x, T = 0\right] \right]$

• We only have samples for:

 $\mathbb{E}_{x \sim p(x|T=1)} \left[\mathbb{E} \left[Y_1 | x, T = 1 \right] \right]$ $\mathbb{E}_{x \sim p(x|T=0)} \left[\mathbb{E} \left[Y_0 | x, T = 0 \right] \right]$

• We only have samples for:

 $\mathbb{E}_{x \sim p(x|T=1)} \left[\mathbb{E} \left[Y_1 | x, T = 1 \right] \right]$ $\mathbb{E}_{x \sim p(x|T=0)} \left[\mathbb{E} \left[Y_0 | x, T = 0 \right] \right]$

• We only have samples for:

 $\mathbb{E}_{x \sim p(x|T=1)} \left[\mathbb{E} \left[Y_1 | x, T = 1 \right] \right]$ $\mathbb{E}_{x \sim p(x|T=0)} \left[\mathbb{E} \left[Y_0 | x, T = 0 \right] \right]$

• We need to turn p(x|T = 1) into p(x):

$$p(x|T = 1) \cdot ? = p(x)$$

• We only have samples for:

 $\mathbb{E}_{x \sim p(x|T=1)} \left[\mathbb{E} \left[Y_1 | x, T = 1 \right] \right]$ $\mathbb{E}_{x \sim p(x|T=0)} \left[\mathbb{E} \left[Y_0 | x, T = 0 \right] \right]$

• We need to turn p(x|T = 1) into p(x):

$$p(x|T = 1) \cdot \frac{p(T = 1)}{p(T = 1|x)} = p(x)$$

$$Propensity score$$

• We only have samples for:

 $\mathbb{E}_{x \sim p(x|T=1)} \left[\mathbb{E} \left[Y_1 | x, T = 1 \right] \right]$ $\mathbb{E}_{x \sim p(x|T=0)} \left[\mathbb{E} \left[Y_0 | x, T = 0 \right] \right]$

• We need to turn p(x|T = 0) into p(x):

$$p(x|T = 0) \cdot \frac{p(T = 0)}{p(T = 0|x)} = p(x)$$

$$Propensity score$$

- We want: $\mathbb{E}_{x \sim p(x)}[Y_1(x)]$
- We know that:

$$\frac{p(x|T=1)}{p(T=1)} \cdot \frac{p(T=1)}{p(T=1|x)} = p(x)$$

• Thus:

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{p}(\boldsymbol{x}|\boldsymbol{T}=1)} \left[\frac{p(T=1)}{p(T=1 \mid \boldsymbol{x})} Y_1(\boldsymbol{x}) \right] = \mathbb{E}_{\boldsymbol{x} \sim p(\boldsymbol{x})} [Y_1(\boldsymbol{x})]$$

• We can approximate this empirically as:

$$\frac{1}{n_1} \sum_{i \text{ s.t.} t_i = 1} \left[\frac{n_1/n}{\hat{p}(t_i = 1 \mid x_i)} y_i \right] = \frac{1}{n} \sum_{i \text{ s.t.} t_i = 1} \frac{y_i}{\hat{p}(t_i = 1 \mid x_i)}$$

(similarly for t_i=0)

Problems with IPW

- Need to estimate propensity score (problem in all propensity score methods)
- If there's not much overlap, propensity scores become non-informative and easily miscalibrated
- Weighting by inverse can create large variance and large errors for small propensity scores
 - Exacerbated when more than two treatments

Many more ideas and methods

- Natural experiments & regression discontinuity
- Instrumental variables

Many more ideas and methods – Natural experiments

- Does stress during pregnancy affect later child development?
- Confounding: genetic, mother personality, economic factors...
- Natural experiment: the Cuban missile crisis of October 1962. Many people were afraid a nuclear war is about to break out.
- Compare children who were in utero during the crisis with children from immediately before and after

Many more ideas and methods – Instrumental variables

- Informally: a variable which affects treatment assignment but not the outcome
- Example: are private schools better than public schools?
- Confounding: different student population, different teacher population
- Can't force people which school to go to

Many more ideas and methods – Instrumental variables

- Informally: a variable which affects treatment assignment but not the outcome
- Example: are private schools better than public schools?
- Can't force people which school to go to
- Can randomly give out vouchers to some children, giving them an opportunity to attend private schools
- The voucher assignment is the instrumental variable

Summary

- Two approaches to use machine learning for causal inference:
 - Predict outcome given features and treatment, then use resulting model to impute counterfactuals (*covariate adjustment*)
 - 2. Predict treatment using features (*propensity score*), then use to reweight outcome or stratify the data
 - Causal graphs important for thinking through whether problem is setup appropriately and whether assumptions hold