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Course	announcements
• Please	fill	out	mid-semester	survey
• Project	proposals

– You	will	receive	e-mail	 feedback	 this	week
– Office	hours	next	Tuesday,	10-11:30am

• Problem	sets
– PS1-4	graded	(see	Stellar)
– PS5	out	tonight,	due	next	Tuesday,	April	9
– Last	problem	 set,	PS6,	released	 in	~2	weeks

• Recitation	this	week	will	be	a	discussion	of
– Brat	et	al.,	Postsurgical	prescriptions	 for	opioid	naïve	patients	

and	association	with	overdose	and	misuse,	BMJ	2018
– Bertsimas	et	al.,	Personalized	 diabetes	management	 using

electronic	medical	 records,	Diabetes	Care	2017



Does	gastric	bypass	surgery	prevent
onset	of	diabetes?

• In	Lecture	4	&	PS2	we	used	machine	learning	for	early	
detection	of	Type	2	diabetes

• Health	system	doesn’t	want	to	know	how	to	predict	
diabetes	– they	want	to	know	how	to	prevent	it

• Gastric	bypass	surgery	is	the	highest negative	weight	
(9th	most	predictive	feature)
– Does	this	mean	it	would	be	a	good	intervention?

1994 2000

<4.5%									4.5%–5.9%								6.0%–7.4%						7.5%–8.9%										>9.0%

2013



• Such	predictive	models	widely	used	to	stage	patients.	
Should	we	initiate	treatment?	How	aggressive?

• What	could	go	wrong	if	we	trained	to	predict	survival,	
and	then	used	to	guide	patient	care?

Mammography	(86K	subjects)

Competitive Period Launch: Nov 18, 2016
Competitive Period Close: May 9, 2017

Out	of	1000	women	screened,	only	5	will	have	breast	cancer

Goal:	develop	algorithms	for	risk	stratification	of	screening	
mammograms	that	can	be	used	to	improve	breast	cancer	
detection

What	is	the	likelihood	this	patient,	with	
breast	cancer,	will	survive	5	years?

𝑿
𝒀

Diagnosis Death Time

“Mary”

Treatment

A	long	survival	time	may	be	because	of	treatment!



• People	respond	differently	to	treatment
• Goal:	use	data	from	other	patients	and	their	journeys	
to	guide	future	treatment	decisions

• What	could	go	wrong	if	we	trained	to	predict	(past)	
treatment	decisions?

What	treatment	should	we	give	this	patient?
Expansion Pathology 

with DNA-FISH and Protein-IF

Blue =	HER2	Protein
Red =	HER2	Amplicon
Green =	Centromeric probe

Negative	for	HER2	Amplification HER2	Amplified

Expansion	pathology
(image	from	Andy	Beck)

“David” Treatment	A

Treatment	A“Juana”
“John” Treatment	B

Best	this	can	do	is	
match	current	
medical	practice!



• Doing	a	randomized	control	trial	is	unethical
• Could	we	simply	answer	this	question	by	comparing	
Pr(lung	cancer	|	smoker)	vs	Pr(lung	cancer	|	nonsmoker)?

• No!	Answering	such	questions	from	observational	data	is	
difficult	because	of	confounding

Does	smoking	cause	lung	cancer?



To	properly	answer,	need	to	formulate	as	
causal questions:

Intervention, 𝑇

(e.g. medication, 
procedure)

Outcome, 𝑌

Patient, 𝑋

(including all
confounding
factors)

?

High	dimensional Observational	data



Potential	Outcomes	Framework
(Rubin-Neyman Causal	Model)

• Each	unit	(individual)	𝑥' has	two	potential	outcomes:	
– 𝑌((𝑥') is	the	potential	outcome	had	the	unit	not	been	treated:	
“control	outcome”

– 𝑌+(𝑥') is	the	potential	outcome	had	the	unit	been	treated:	
“treated	outcome”

• Conditional	average	treatment	effect	for	unit	𝑖:	
𝐶𝐴𝑇𝐸 𝑥' = 𝔼23~5(23|78)	[𝑌+|𝑥'] − 𝔼2=~5(2=|78)[𝑌(|𝑥']

• Average	Treatment	Effect:
𝐴𝑇𝐸:= 𝔼 𝑌+ − 𝑌( = 	𝔼7~5(7) 𝐶𝐴𝑇𝐸 𝑥



Potential	Outcomes	Framework
(Rubin-Neyman Causal	Model)

• Each	unit	(individual)	𝑥' has	two	potential	outcomes:	
– 𝑌((𝑥') is	the	potential	outcome	had	the	unit	not	been	treated:	
“control	outcome”

– 𝑌+(𝑥') is	the	potential	outcome	had	the	unit	been	treated:	
“treated	outcome”

• Observed	factual	outcome:	
𝑦' = 𝑡'𝑌+ 𝑥' + 1 − 𝑡' 𝑌((𝑥')

• Unobserved	counterfactual	outcome:	
𝑦'CD = (1 − 𝑡')𝑌+ 𝑥' + 𝑡'𝑌((𝑥')



The	fundamental problem	of	causal inference
“The	fundamental problem	of	

causal inference”

We	only	ever	observe	one	of	the	
two	outcomes



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌+ 𝑥

𝑌( 𝑥

Example	– Blood	pressure	and	age



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌+ 𝑥

𝑌( 𝑥

Blood	pressure	and	age

𝐶𝐴𝑇𝐸(𝑥)



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌+ 𝑥

𝑌( 𝑥

Blood	pressure	and	age

𝐴𝑇𝐸



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌+ 𝑥

𝑌( 𝑥

Blood	pressure	and	age

Treated

Control



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌+ 𝑥

𝑌( 𝑥

Blood	pressure	and	age

Treated

Control

Counterfactual	treated

Counterfactual	control



(age,	gender,
exercise,treatment)

Sugar	levels
had	they
received	

medication	A

Sugar	levels
had	they
received	

medication	B

Observed
sugar	levels

(45,	F,	0,	A) 6 5.5 6
(45,	F,	1,	B) 7 6.5 6.5
(55,	M,	0,	A) 7 6 7
(55,	M,	1,	B) 9 8 8
(65,	F,	0,	B) 8.5 8 8
(65,F,	1,	A) 7.5 7 7.5
(75,M,	0,	B) 10 9 9
(75,M,	1,	A) 8 7 8

(Example	from	Uri	Shalit)



(age,	gender,
exercise)

Sugar	levels
had	they
received	

medication	A

Sugar	levels
had	they
received	

medication	B

Observed
sugar	levels

(45,	F,	0) 6 5.5 6
(45,	F,	1) 7 6.5 6.5
(55,	M,	0) 7 6 7
(55,	M,	1) 9 8 8
(65,	F,	0) 8.5 8 8
(65,F,	1) 7.5 7 7.5
(75,M,	0) 10 9 9
(75,M,	1) 8 7 8

(Example	from	Uri	Shalit)



(age,	gender,
exercise)

Y0:	Sugar	levels
had	they
received	

medication	A

Y1:	Sugar	levels
had	they
received	

medication	B

Observed
sugar	levels

(45,	F,	0) 6 5.5 6
(45,	F,	1) 7 6.5 6.5
(55,	M,	0) 7 6 7
(55,	M,	1) 9 8 8
(65,	F,	0) 8.5 8 8
(65,F,	1) 7.5 7 7.5
(75,M,	0) 10 9 9
(75,M,	1) 8 7 8

(Example	from	Uri	Shalit)



(age,gender,
exercise)

Sugar	levels
had	they
received	

medication	
A

Sugar	levels
had	they
received	

medication	
B

Observed
sugar	levels

(45,	F,	0) 6 5.5 6

(45,	F,	1) 7 6.5 6.5

(55,	M,	0) 7 6 7

(55,	M,	1) 9 8 8

(65,	F,	0) 8.5 8 8

(65,F,	1) 7.5 7 7.5

(75,M,	0) 10 9 9

(75,M,	1) 8 7 8

mean(sugar|medication B)	–
mean(sugar|medicaton A)	=	
?

mean(sugar|had they	received	 B)	–
mean(sugar|had they	received	 A)	=
?

(Example	from	Uri	Shalit)



(age,gender,
exercise)

Sugar	levels
had	they
received	

medication	
A

Sugar	levels
had	they
received	

medication	
B

Observed
sugar	levels

(45,	F,	0) 6 5.5 6

(45,	F,	1) 7 6.5 6.5

(55,	M,	0) 7 6 7

(55,	M,	1) 9 8 8

(65,	F,	0) 8.5 8 8

(65,F,	1) 7.5 7 7.5

(75,M,	0) 10 9 9

(75,M,	1) 8 7 8

mean(sugar|medication B)	–
mean(sugar|medicaton A)	=	
7.875	- 7.125		=	0.75

mean(sugar|had they	received	 B)	–
mean(sugar|had they	received	 A)	=	
7.125	- 7.875		=	-0.75

(Example	from	Uri	Shalit)



Typical	assumption	– no	unmeasured	
confounders

𝑌(, 𝑌+:	potential	outcomes	for	control	and	treated
𝑥:	unit	covariates	(features)
T:	treatment	assignment

We	assume:
(𝑌(, 𝑌+) ⫫ 𝑇	|	𝑥	

The	potential	outcomes	are	independent	of	treatment	
assignment,	conditioned	on	covariates	𝑥



Typical	assumption	– no	unmeasured	
confounders

𝑌(, 𝑌+:	potential	outcomes	for	control	and	treated
𝑥:	unit	covariates	(features)
T:	treatment	assignment

We	assume:
(𝑌(, 𝑌+) ⫫ 𝑇	|	𝑥	

Ignorability



covariates
(features)

treatment

Potential	outcomes

𝑻𝒙

𝒀𝟏𝒀𝟎

Ignorability

(𝑌(, 𝑌+) ⫫ 𝑇	|	𝑥	



𝑻𝒙

𝒀𝟏𝒀𝟎

anti-
hypertensive	
medication

blood	pressure
after	medication	
A

age,	gender,	
weight,	diet,	
heart	rate	at	
rest,…

blood	pressure
after		
medication	B

Ignorability

(𝑌(, 𝑌+) ⫫ 𝑇	|	𝑥	



𝒙

𝒀𝟏𝒀𝟎blood	pressure
after	medication	
A

age,	gender,	
weight,	diet,	
heart	rate	at	
rest,…

blood	pressure
after		
medication	B

𝒉

No	Ignorability

diabetic
𝑻

anti-
hypertensive	
medication

(𝑌(, 𝑌+) ⫫ 𝑇	|	𝑥	



Typical	assumption	– common	support

Y(, 𝑌+:	potential	outcomes	for	control	and	treated
𝑥:	unit	covariates	(features)
𝑇:	treatment	assignment

We	assume:
𝑝 𝑇 = 𝑡 𝑋 = 𝑥 > 0	∀𝑡, 𝑥



Framing	the	question

1. Where	could	we	go	to	for	data	to	answer	these	
questions?

2. What	should	X,	T,	and	Y	be	to	satisfy	ignorability?
3. What	is	the	specific	causal	inference	question	that	

we	are	interested	in?
4. Are	you	worried	about	common	support?



Outline	for	lecture

• How	to	recognize	a	causal	inference	problem
• Potential	outcomes	framework
– Average	treatment	effect	(ATE)
– Conditional	average	treatment	effect	(CATE)

• Algorithms	for	estimating	ATE	and	CATE



Average	Treatment	Effect

The	expected	causal	effect	of	𝑇 on	𝑌:	
ATE := E [Y1 � Y0]



Average	Treatment	Effect	–
the	adjustment	formula

• Assuming	ignorability,	we	will	derive	the	
adjustment	 formula (Hernán &	Robins	2010,	
Pearl	2009)

• The	adjustment	formula	is	extremely	useful	in	
causal	inference

• Also	called	G-formula



Average	Treatment	Effect

The	expected	causal	effect	of	𝑇 on	𝑌:	
ATE := E [Y1 � Y0]



Average	Treatment	Effect

The	expected	causal	effect	of	𝑇 on	𝑌:	
ATE := E [Y1 � Y0]

E [Y1] =

E
x⇠p(x)

⇥
E
Y1⇠p(Y1|x) [Y1|x]

⇤
=

E
x⇠p(x)

⇥
E
Y1⇠p(Y1|x) [Y1|x, T = 1]

⇤
=

E
x⇠p(x) [E [Y1|x, T = 1]]

law	of	total	
expectation



Average	Treatment	Effect

The	expected	causal	effect	of	𝑇 on	𝑌:	
ATE := E [Y1 � Y0]

E [Y1] =

E
x⇠p(x)

⇥
E
Y1⇠p(Y1|x) [Y1|x]

⇤
=

E
x⇠p(x)

⇥
E
Y1⇠p(Y1|x) [Y1|x, T = 1]

⇤
=

E
x⇠p(x) [E [Y1|x, T = 1]]

ignorability
(𝑌(, 𝑌+) ⫫ 𝑇	|	𝑥	



Average	Treatment	Effect

The	expected	causal	effect	of	𝑇 on	𝑌:	
ATE := E [Y1 � Y0]

E [Y1] =

E
x⇠p(x)

⇥
E
Y1⇠p(Y1|x) [Y1|x]

⇤
=

E
x⇠p(x)

⇥
E
Y1⇠p(Y1|x) [Y1|x, T = 1]

⇤
=

E
x⇠p(x) [E [Y1|x, T = 1]] shorter	notation



Average	Treatment	Effect

The	expected	causal	effect	of	𝑇 on	𝑌:	
ATE := E [Y1 � Y0]

E [Y0] =

E
x⇠p(x)

⇥
E
Y0⇠p(Y0|x) [Y0|x]

⇤
=

E
x⇠p(x)

⇥
E
Y0⇠p(Y0|x) [Y0|x, T = 1]

⇤
=

E
x⇠p(x) [E [Y0|x, T = 0]]



Quantities	we	
can	estimate	

from	data

The	adjustment	formula
(

E[Y1|x,T=1]

E[Y0|x,T=0](
E [Y1|x, T = 1]

E [Y0|x, T = 0]

ATE = E [Y1 � Y0] =

E
x⇠p(x)[ E [Y1|x, T = 1]�E [Y0|x, T = 0] ]

Under	the	assumption	of	ignorability,	we	have	
that:



Quantities	we	
cannot	directly

estimate	from	data

The	adjustment	formula
(

E[Y1|x,T=1]

E[Y0|x,T=0]
ATE = E [Y1 � Y0] =

E
x⇠p(x)[ E [Y1|x, T = 1]�E [Y0|x, T = 0] ]

Under	the	assumption	of	ignorability,	we	have	
that:

E [Y0|x, T = 1]

E [Y1|x, T = 0]

E [Y0|x]
E [Y1|x]



Quantities	we	
can	estimate	

from	data

The	adjustment	formula
(

E[Y1|x,T=1]

E[Y0|x,T=0](
E [Y1|x, T = 1]

E [Y0|x, T = 0]

ATE = E [Y1 � Y0] =

E
x⇠p(x)[ E [Y1|x, T = 1]�E [Y0|x, T = 0] ]

Empirically	we	have	samples	from	𝑝(𝑥|𝑇 = 1) or	𝑝 𝑥 𝑇 = 0 .	
Extrapolate to 𝑝(𝑥)

Under	the	assumption	of	ignorability,	we	have	
that:



Many	methods!

Covariate	adjustment	
Propensity	score re-weighting
Doubly	robust	estimators
Matching
…



Covariate	adjustment

• Explicitly	model	the	relationship	between	
treatment,	confounders,	and	outcome

• Also	called	“Response	Surface	Modeling”
• Used	for	both	ITE	and	ATE
• A	regression	problem



𝑥+

𝑥\

𝑥]

𝑇

… 𝑓(𝑥, 𝑇)

𝑦

Regression	
model

OutcomeCovariates
(Features)



𝑥+

𝑥\

𝑥]

𝑇

…

𝑦

Nuisance	
Parameters

Regression	
model

Outcome

Parameter	of	
interest

𝑓(𝑥, 𝑇)



Covariate	adjustment	
(parametric	g-formula)

• Explicitly	model	the	relationship	between	
treatment,	confounders,	and	outcome

• Under	ignorability,	the	expected	causal	effect	
of	𝑇 on	𝑌:
𝔼7~5 7 	𝔼 𝑌+ 𝑇 = 1, 𝑥 − 𝔼 𝑌( 𝑇 = 0, 𝑥

• Fit	a	model	𝑓 𝑥, 𝑡 ≈ 𝔼 𝑌 𝑇 = 𝑡, 𝑥

𝐴𝑇𝐸a =
1
𝑛
c𝑓 𝑥', 1 − 𝑓(𝑥', 0)
d

'e+



Covariate	adjustment	
(parametric	g-formula)

• Explicitly	model	the	relationship	between	
treatment,	confounders,	and	outcome

• Under	ignorability,	the	expected	causal	effect	
of	𝑇 on	𝑌:
𝔼7~5 7 	𝔼 𝑌+ 𝑇 = 1, 𝑥 − 𝔼 𝑌( 𝑇 = 0, 𝑥

• Fit	a	model	𝑓 𝑥, 𝑡 ≈ 𝔼 𝑌 𝑇 = 𝑡, 𝑥

𝐶𝐴𝑇𝐸a 𝑥' = 𝑓 𝑥', 1 − 𝑓(𝑥', 0)



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌+ 𝑥

𝑌( 𝑥

Covariate	adjustment

Treated

Control



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌+ 𝑥

𝑌( 𝑥

Covariate	adjustment

Treated

Control

Counterfactual	treated

Counterfactual	control

𝒇



Example	of	how	covariate	adjustment	
fails	when	there	is	no	overlap

TreatedTreated

Control 𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌+ 𝑥

𝑌( 𝑥


