

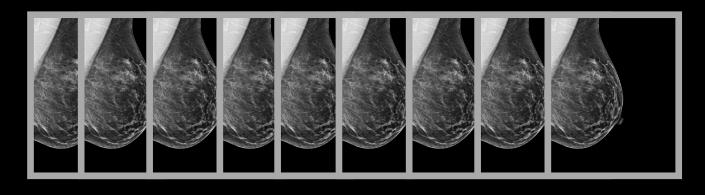


### Interpreting Mammograms

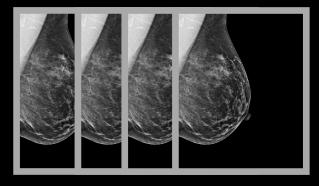
- Cancer Detection and Triage
- Assessing Breast Cancer Risk
- How to Mess up
- How to Deploy

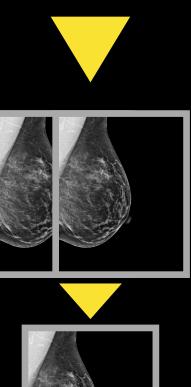
### Agenda

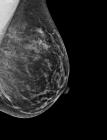


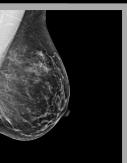












- **1. Routine Screening** 
  - **1000** Patients

2. Called back for Additional Imaging 100 Patients

**3.** Biopsy

**20** Patients

4. Diagnosis

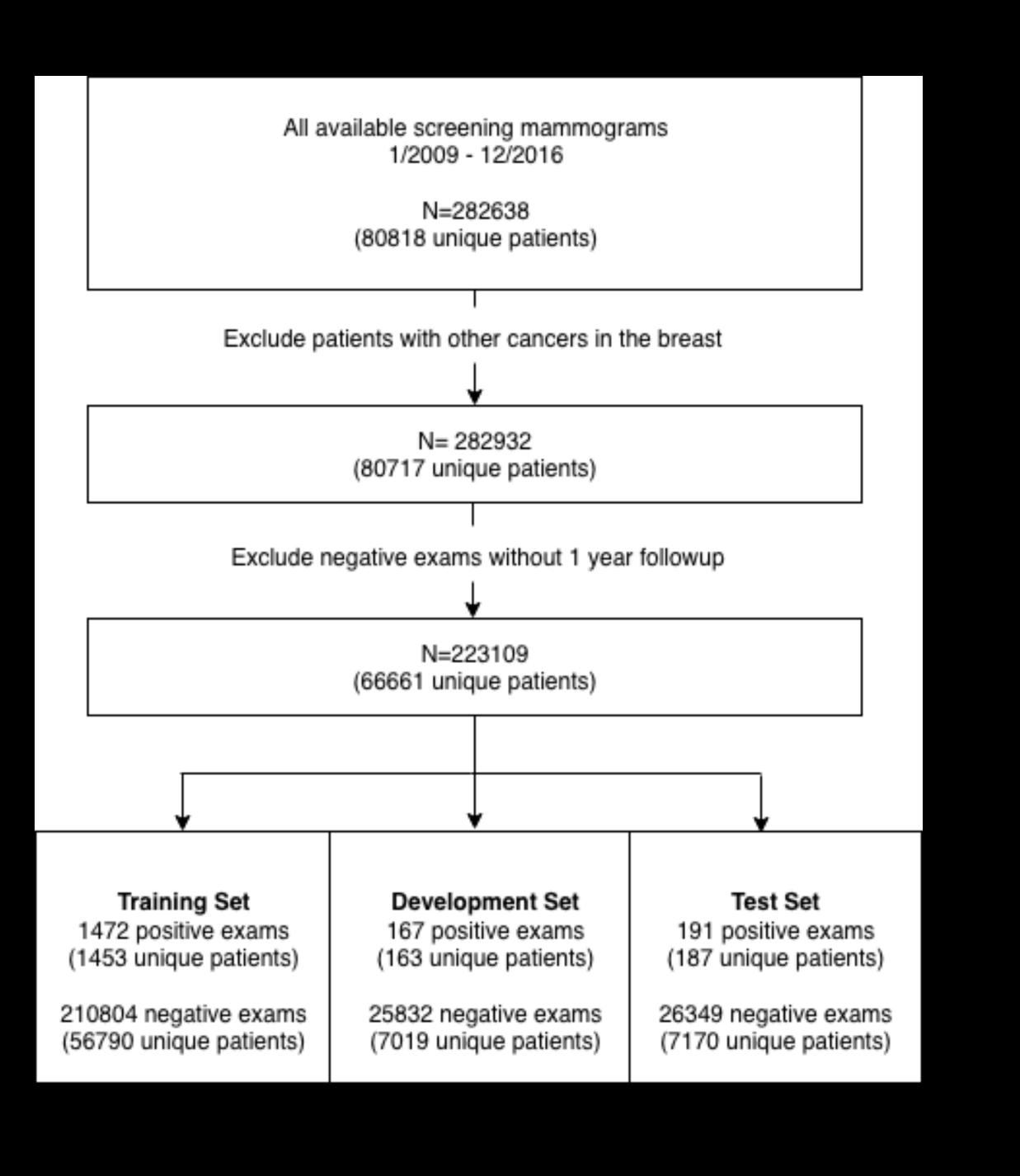
6 Patients

- >99% of patients are cancer-free
- Can we use a cancer model to automatically triage patients as cancer-free?
  - Reduce False positives, improve efficiency.
- **Overall Idea:** 
  - Train a cancer detection model and pick a cancer-free threshold
    - chosen by min probability of a caught-cancer on the dev set
  - Radiologists can skip reading mammograms bellow threshold

- The plan
  - Dataset Collection
  - Modeling
  - Analysis

### Dataset Collection

- Consecutive Screening Mammograms
  - 2009-2016
- Outcomes from Radiology EHR, and Partners
- 5 Hospital Registry
- No exclusions based on race, implants etc.
- Split into Train/Dev/Test by Patient



- The plan
  - Dataset Collection
  - Modeling
    - General challenges in working with Mammograms
    - Specific methods for this project
  - Analysis

g with Mammograms

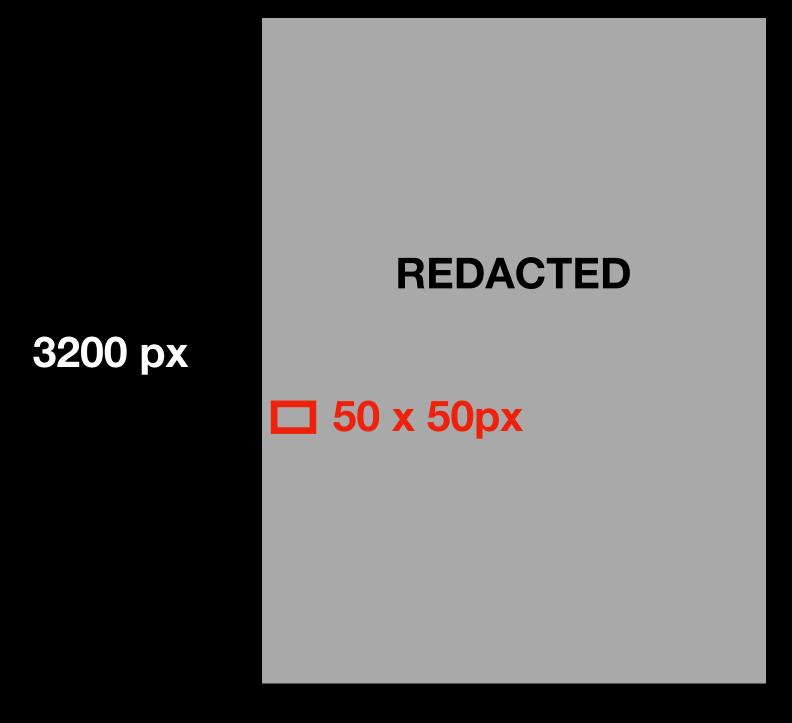




### REDACTED



Many shared lessons, but important differences in-size and nature of signal.

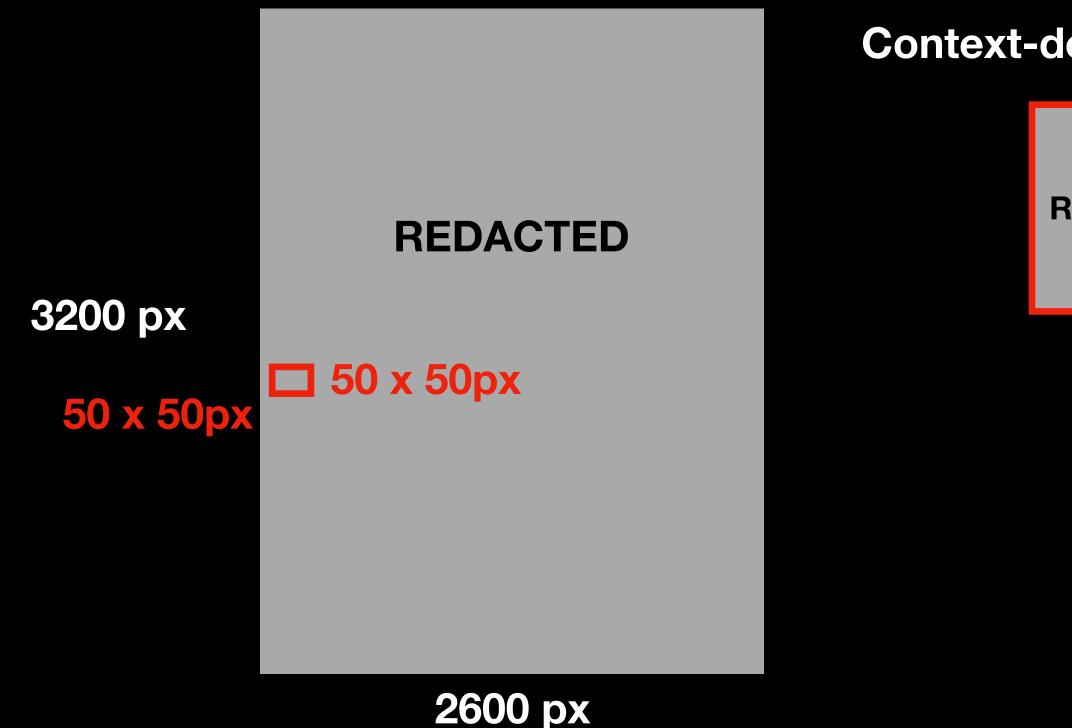


2600 рх

256 px 256 x 200px

256 px

Many shared lessons, but important differences insize and nature of signal.



**Context-dependent Cancer** 

REDACTED

**Context-independent Dog** 







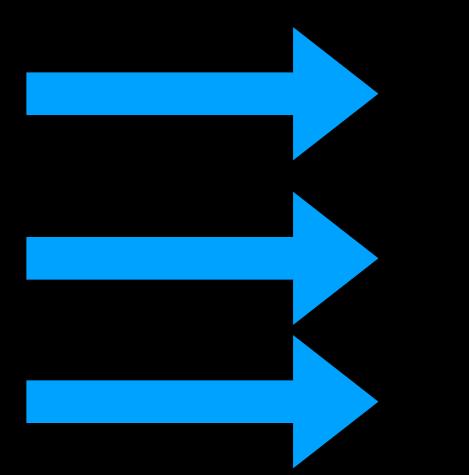


256 px

## Modeling: Challenges

- Size of Object / Size of Image:
  - Mammo: ~1%
- **Class Balance:** 
  - Mammo: 0.7% Positive
  - 220,000 Exams, <2,000 Cancers
- **Images per GPU:** 
  - 3 Images (< 1 Mammogram)
  - **128** ImageNet Images
- Dataset Size
  - 12+ TB





### The data is too small!

### The data is too big!

## Modeling: Key Choices

- How do we make the model actually learn?
  - Initialization
  - **Optimization / Architecture Choice**
- How to use the model?
  - Aggregation across images
  - Triage Threshold
  - Calibration



### Modeling: Actual Choices

- How do we make the model learn?
  - Initialization
    - ImageNet Init
  - Optimization
    - Batch size: 24
    - 2 steps on 4 GPUs for each optimizer step
    - Sample balanced batches
  - Architecture Choice
    - ResNet-18



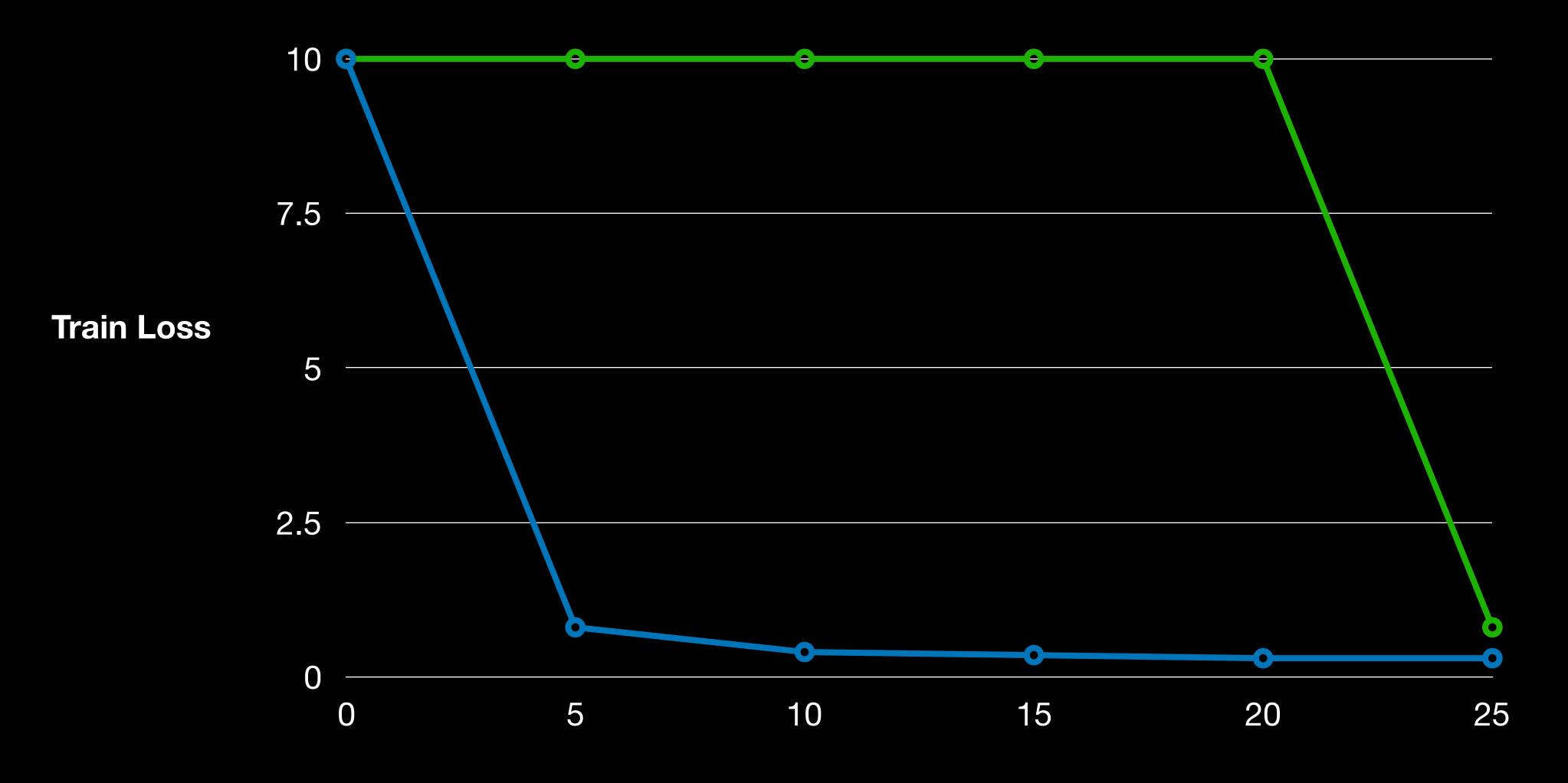
## Modeling: Key Choices

- How do we make the model actually learn?
  - Initialization
  - **Optimization / Architecture Choice**
- How to use the model?
  - Aggregation across images
  - Triage Threshold
  - Calibration



### Modeling: Initialization

ImageNet-Init **O** 



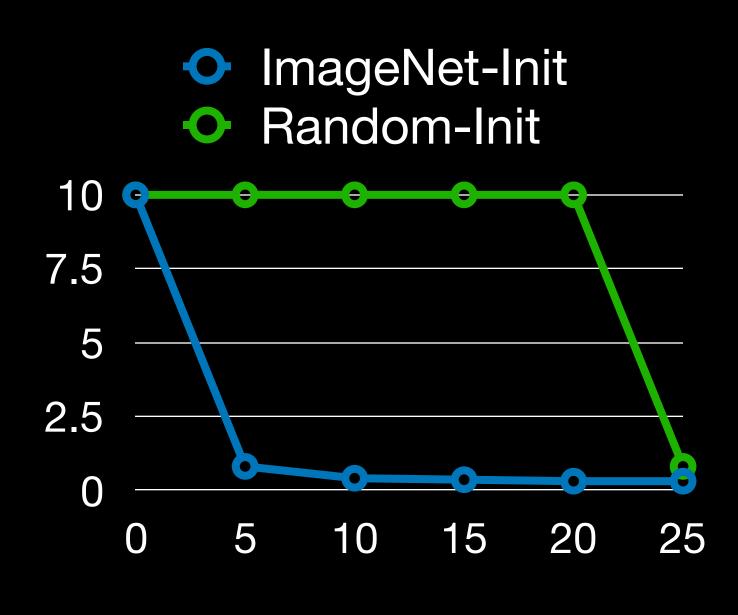


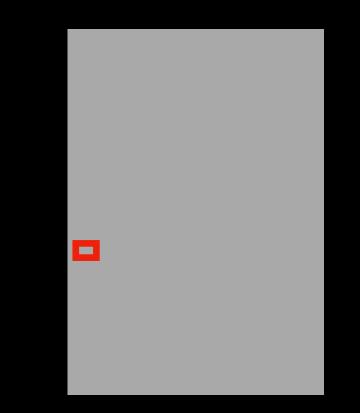
### Random-Init **O**

### Modeling: Initialization

**Empirical Observations** 

- ImageNet initialization learns immediately.
  - Transfer of particular filters?
    - Hard edges / shapes not shared
  - Transfer of BatchNorm Statistics
- Random initialization doesn't fit for many epochs until sudden cliff.
  - Unsteady BatchNorm statistics (3 per GPU)







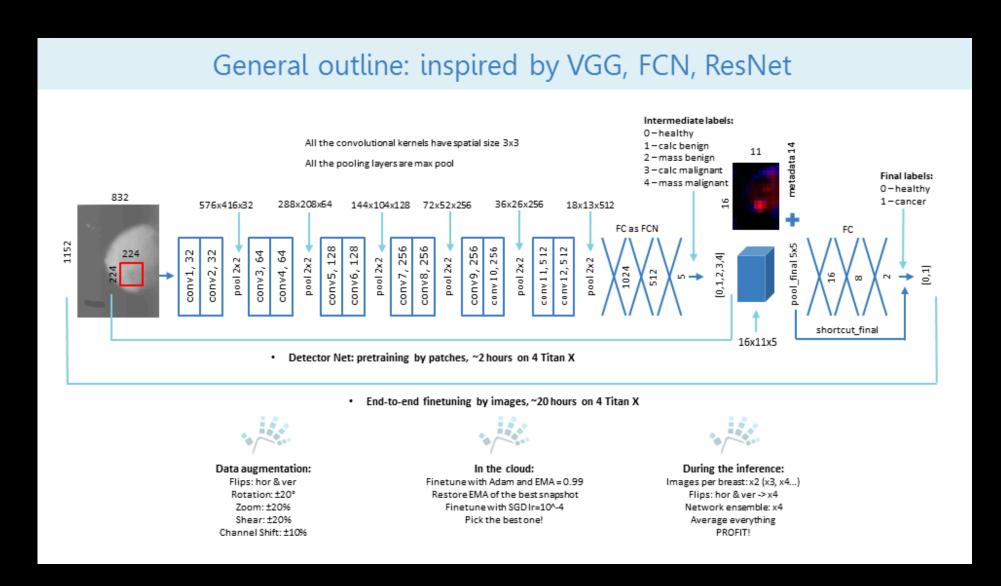
## Modeling: Key Choices

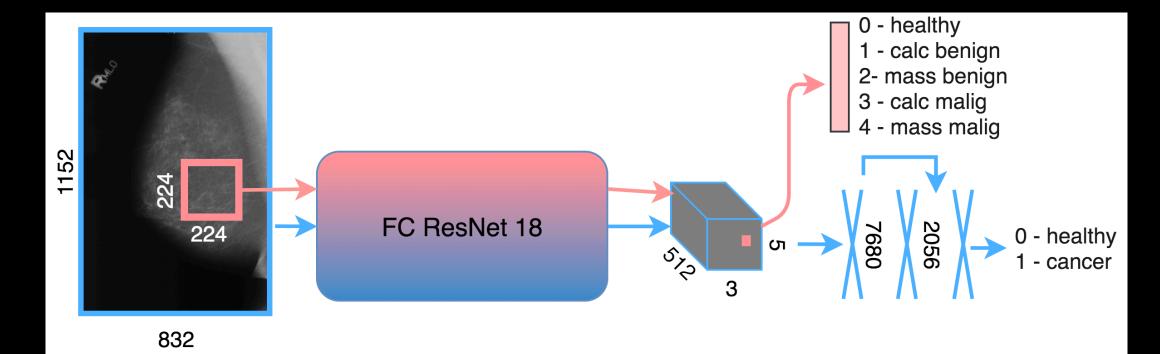
- How do we make the model actually learn?
  - Initialization
  - **Optimization / Architecture Choice**
- How to use the model?
  - Aggregation across images
  - Triage Threshold
  - Calibration



### Modeling: Common Approaches

- Core problem:
  - Low signal-to-noise ratio
- Common Approach:
  - Pre-Train at Patch level
    - High batch-size > 32
  - Fine-tune on full images
    - Low batch-size < 6





### Modeling: Base Architecture

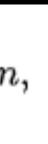
- Many valid options:
  - VGG, ResNet, Wide-ResNet, DenseNet...
- Fully convolutional variants (like ResNet) are the easiest to transfer across resolutions.
  - Use ResNet-18 as base for speed/performance trade-off.

### Modeling: Building Batches

- **Build Balanced Batches:** 
  - Avoid model forgetting
- Bigger batches means less noisy stochastic gradients

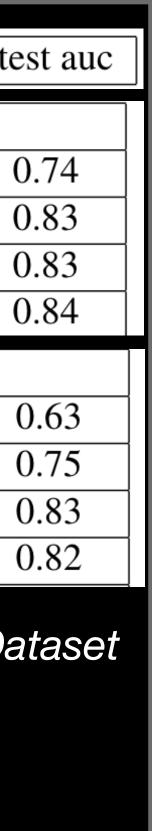
$$w:=w-\eta
abla Q(w)=w-\eta\sum_{i=1}^n
abla Q_i(w)/m$$

- Makes 2-stage training unnecessary.
- Trade-off: the bigger the batches, the slower the training



| bs                                       | tr acc | dev acc | dev auc | test acc | t |
|------------------------------------------|--------|---------|---------|----------|---|
| PACNN                                    |        |         |         |          |   |
| 2                                        | 73.98% | 72.32%  | 0.80    | 70.61%   |   |
| 4                                        | 85.84% | 81.19%  | 0.89    | 77.33%   |   |
| 10                                       | 85.25% | 80.64%  | 0.89    | 77.60%   |   |
| 16                                       | 84.79% | 79.72%  | 0.89    | 77.47%   |   |
| ResNet18 on image size $832 \times 1152$ |        |         |         |          |   |
| 2                                        | 65.09% | 67.60%  | 0.71    | 68.28%   |   |
| 4                                        | 77.74% | 74.62%  | 0.82    | 71.58%   |   |
| 10                                       | 85.34% | 79.29%  | 0.87    | 79.16%   |   |
| 16                                       | 82.44% | 79.53%  | 0.89    | 74.67%   |   |

Old Experiments on Film Mammography Dataset



## Modeling: Key Choices

- How do we make the model actually **learn**?
  - Initialization
  - **Optimization / Architecture Choice**
- How to use the model?
  - Aggregation across images
  - Triage Threshold
  - Calibration



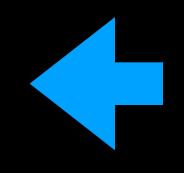
### Modeling: Actual Choices

- How do we make the model learn?
  - Initialization
    - ImageNet Init
  - Optimization
    - Batch size: 24
    - 2 steps on 4 GPUs for each optimizer step
    - Sample balanced batches with data augmentation
  - Architecture Choice
    - ResNet-18



### Modeling: Actual Choices (Continued)

- **Overall Setup:** 
  - Train Independently per Image
    - From each image, predict cancer in that breast
  - Get prediction for whole mammogram exam by taking max across Images
  - At each Dev Epoch, evaluate ability of model to Triage
  - Use the model that can do Triage best on the development set.



Not necessarily the highest AUC



### Modeling: How to actually Triage?

- Goal:
  - Don't miss a single cancer the radiologist would have caught.
- Solution:
  - Rank radiologist true positives by model-assigned probability
  - Return min probability of radiologist true positive in development set.

## Modeling: How to calibrate?

- Goal:
  - Want model assigned probabilities to correspond to real probability of cancer.
    - Why is this a problem?
- Solution:
  - Platt's Method:
    - development set.



### Model trained artificial incidence of 50% for optimization reasons.

Learn sigmoid to scale and shift probabilities to real incidence on the

- The plan
  - Dataset Collection
  - Modeling
  - Analysis

### Analysis: Objectives

- Is the model discriminative across all populations?
  - Subgroup Analysis by Race, Age, Density
- How does model relate to radiologist assessments?
- Simulate actual use of Triage on the Test Set

### Analysis: Model AUC

Overall AUC: 0.82 (95%CI .80, .85)

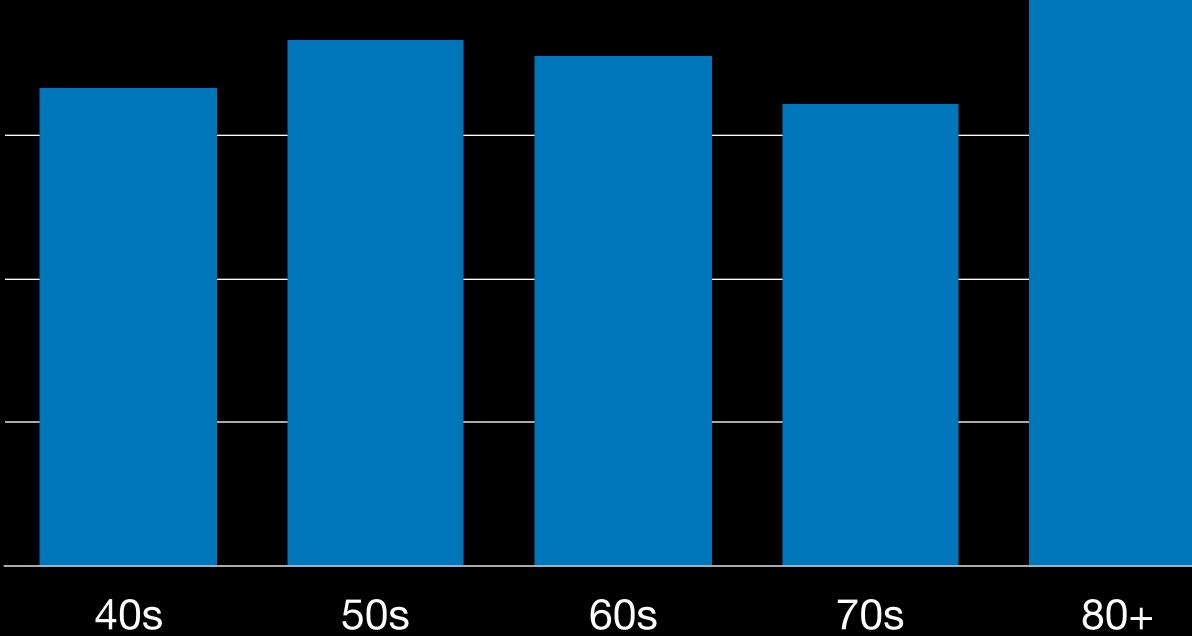
0.86

0.77

0.68

0.59

0.5



Analysis by Age

### Analysis: Model AUC

Overall AUC: 0.82 (95%CI .80, .85)

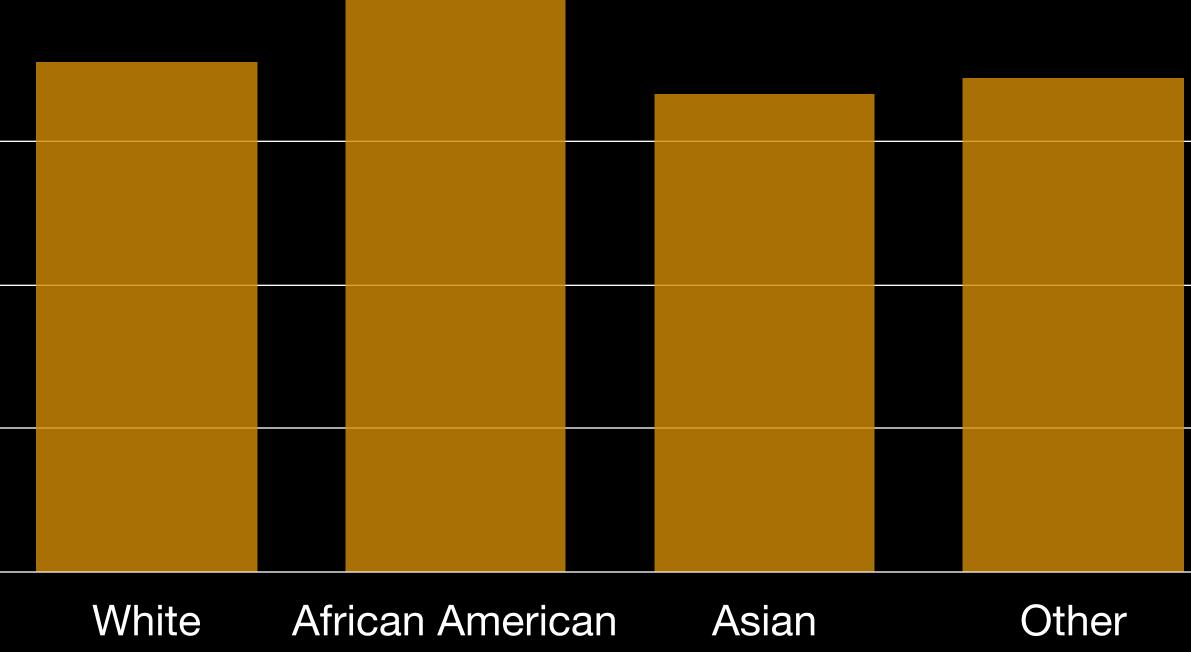
0.86

0.77

0.68

0.59

0.5



### Analysis by Race

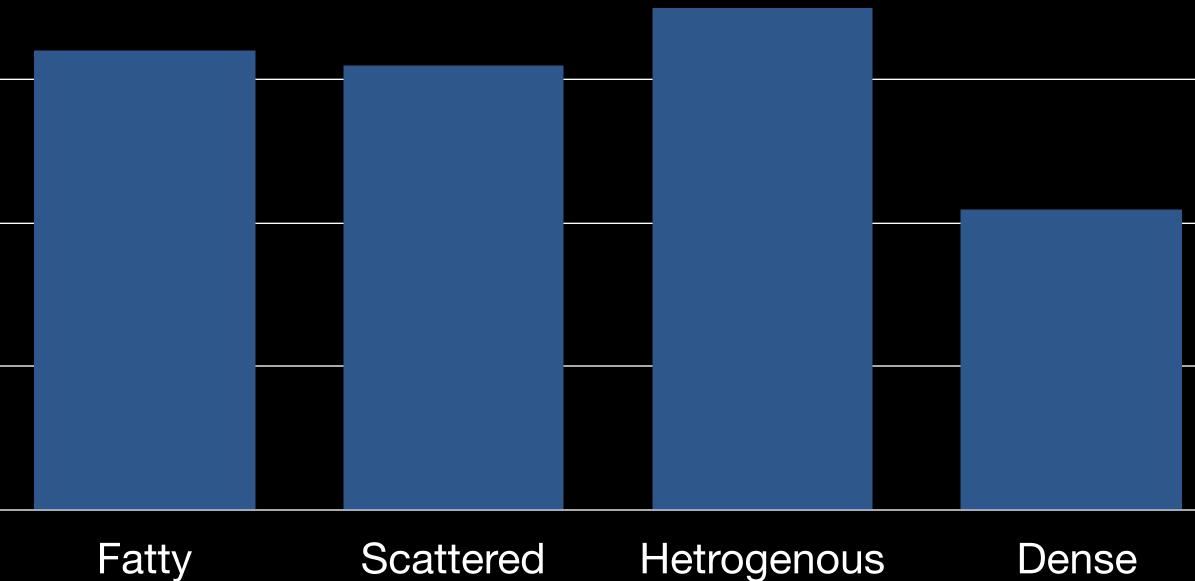
### Analysis: Model AUC

Overall AUC: 0.82 (95%CI .80, .85)

0.9

- 0.8 -
- 0.7 -
- 0.6

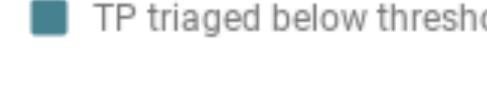
0.5



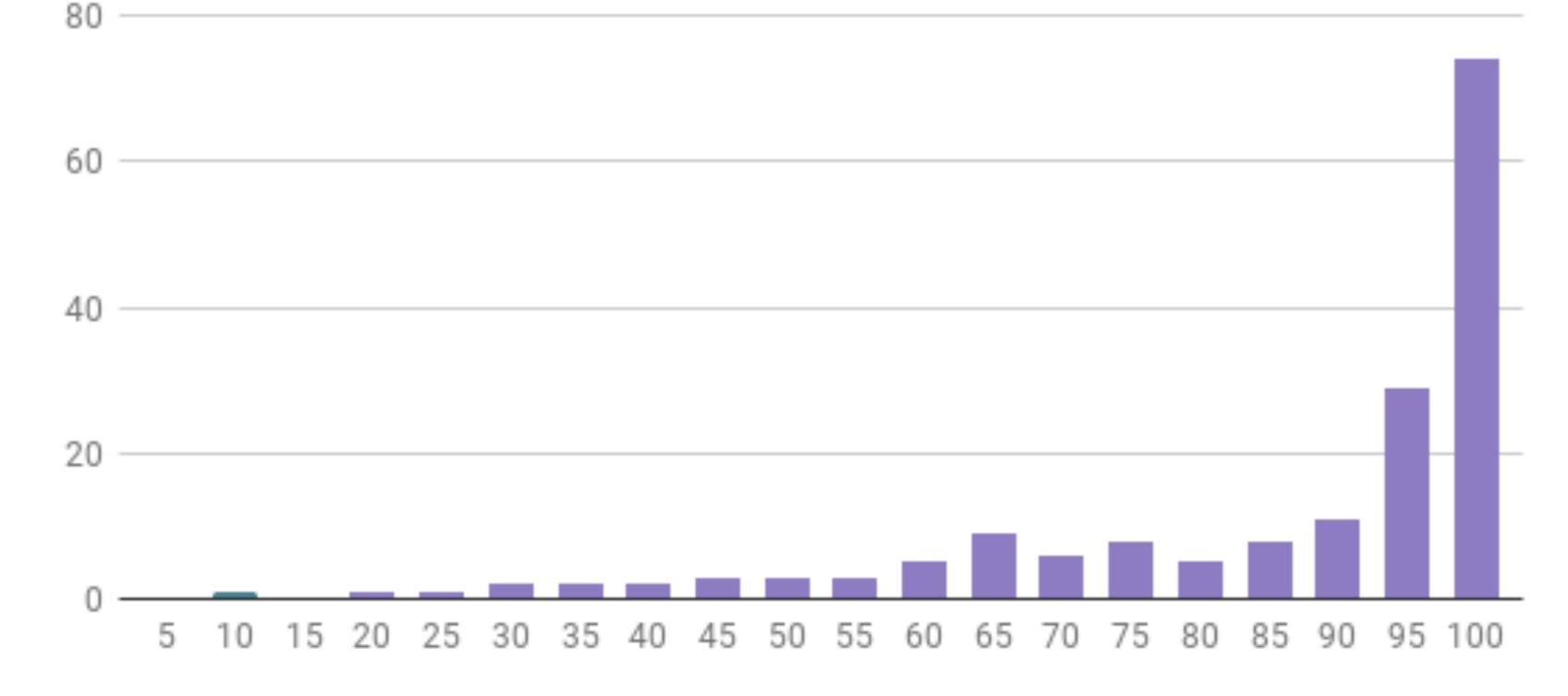
Analysis by Density

### Analysis: Comparison to radioligists

### Radiologist True Positive Assessments by Risk Percentile



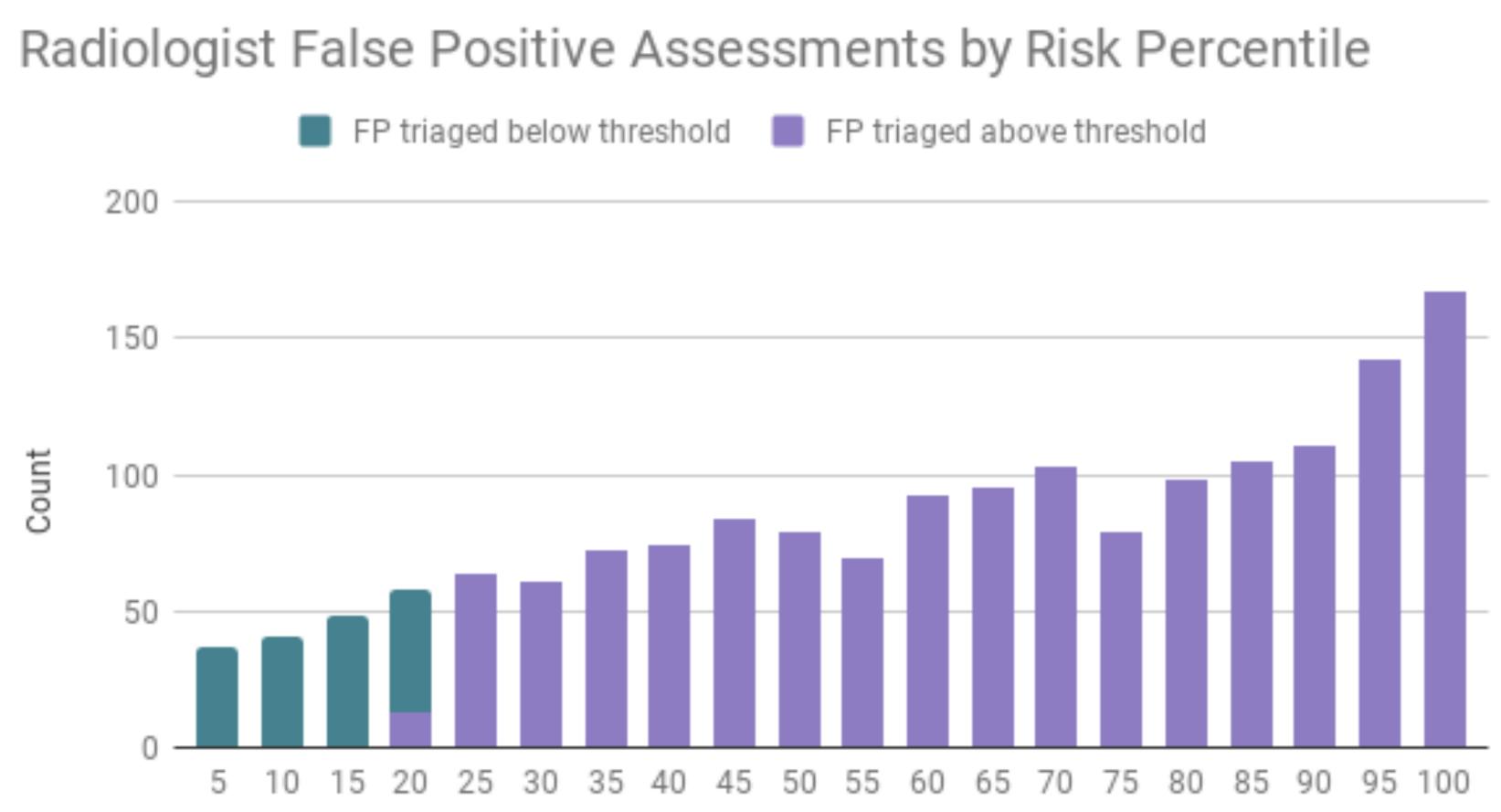




TP triaged below threshold 🛛 🗧 TP triaged above threshold

Risk Percentile

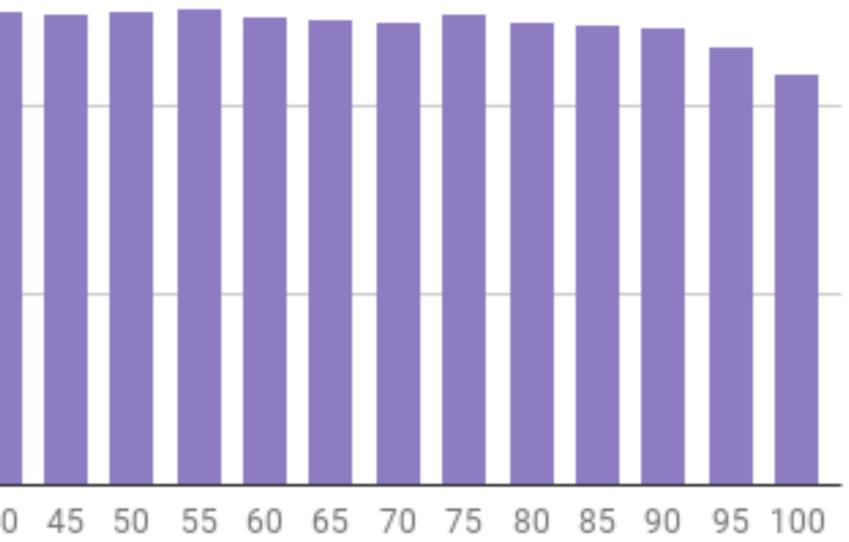
### Analysis: Comparison to radioligists



Risk Percentile

### Analysis: Comparison to radioligists

### Radiologist True Negative Assessments by Risk Percentile TN triaged below threshold TN triaged above threshold Count



Risk Percentile

### Analysis: Simulating Impact

Setting

Sensitivity (95% CI)

**Original Interpreting** Radiologist

Original Interpreting Radiologist + Triage



**Specificity (95% CI)** 

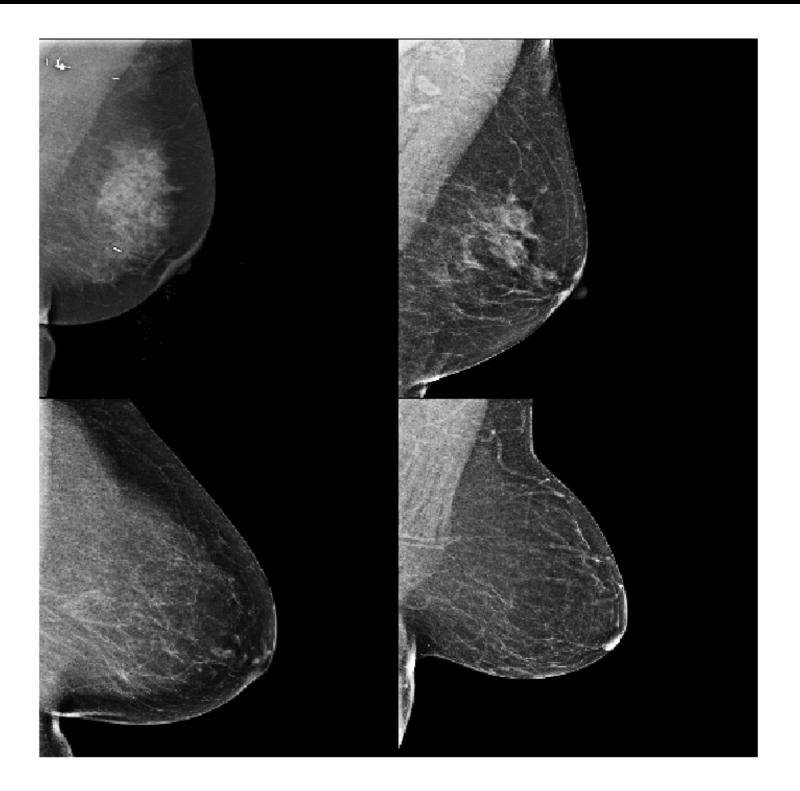
% Mammograms Read (95% CI)

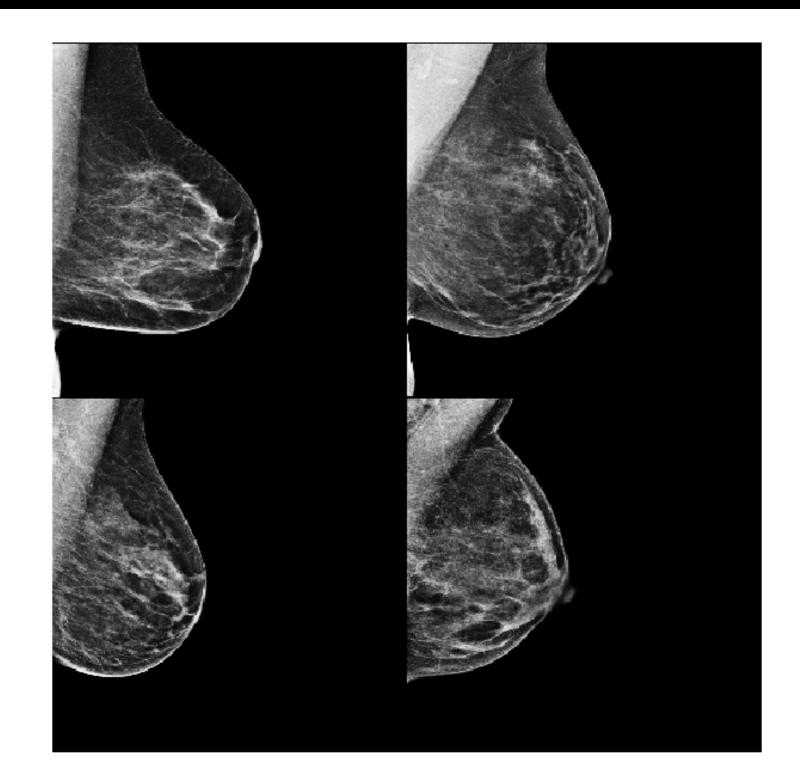
90.6% (86.7, 94.8) 93.0% (92.7, 93.3) 100% (100, 100)

90.1% (86.1, 94.5) 93.7% (93.0, 94.4) 80.7% (80.0, 81.5)

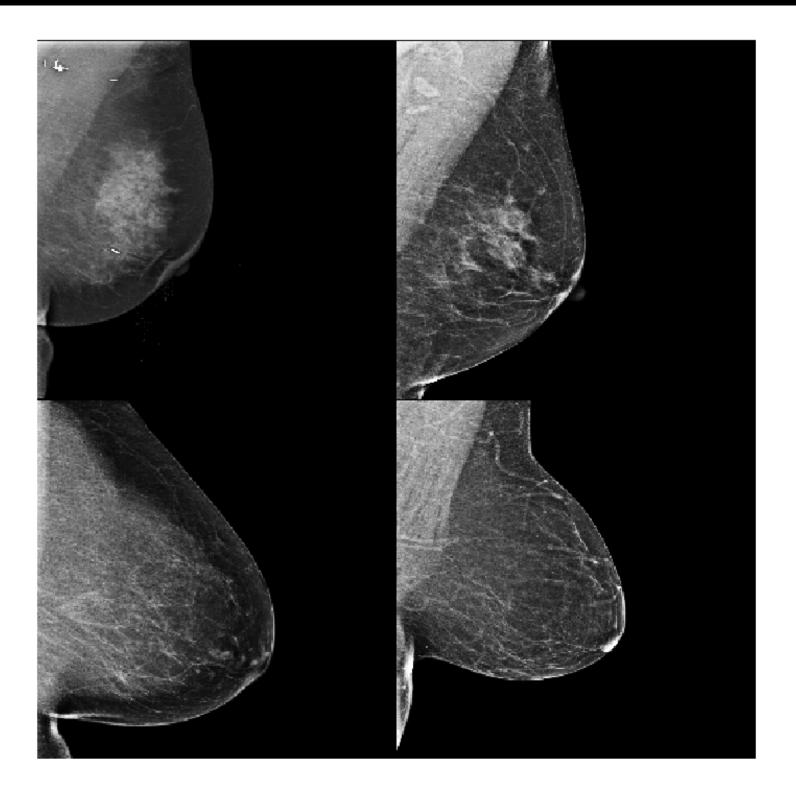


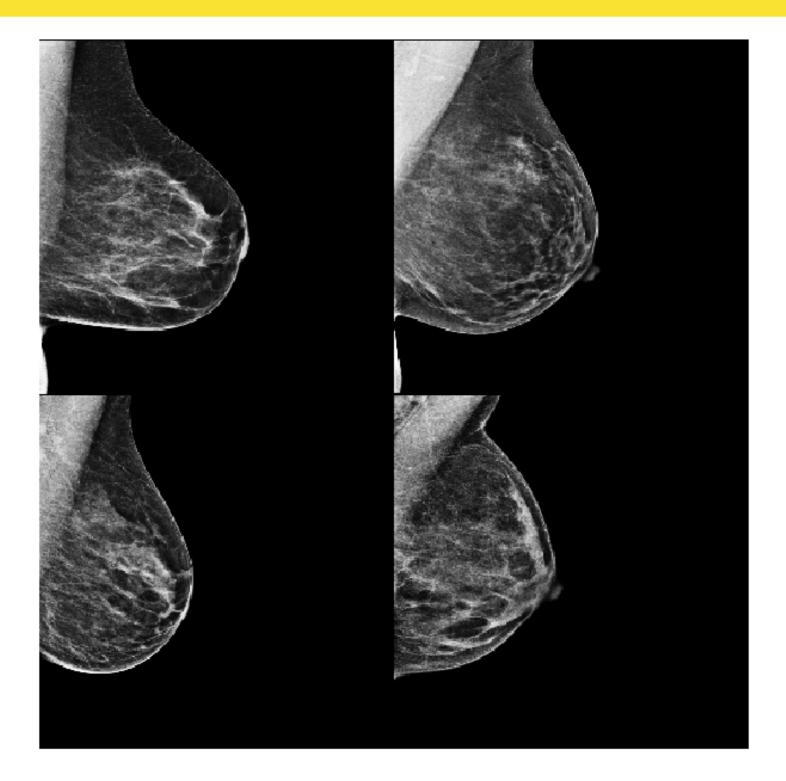
### Example: Which were triaged?





# **Example:** Which were triaged as cancer-free?





### Next Step: Clinical Implementation





- Interpreting Mammograms
  - Cancer Detection and Triage
- Assessing Breast Cancer Risk
- How to Mess up
- How to Deploy

### Agenda

### Classical Risk Models: BCSC

Age -Family History -Prior Breast Procedure Breast Density -

J Natl Cancer Inst. 2006 Sep 6;98(17):1204-14.

Prospective breast cancer risk prediction mammography.

Barlow WE<sup>1</sup>, White E, Ballard-Barbash R, Vacek PM, Titus-Ernstoff L, Carney PA, Tice JA, Buist DS, Geller BM, Rosenberg R, Yankaskas BC, Kerlikowske K.

#### **Risk**

### AUC: 0.631 AUC: 0.607 without Density

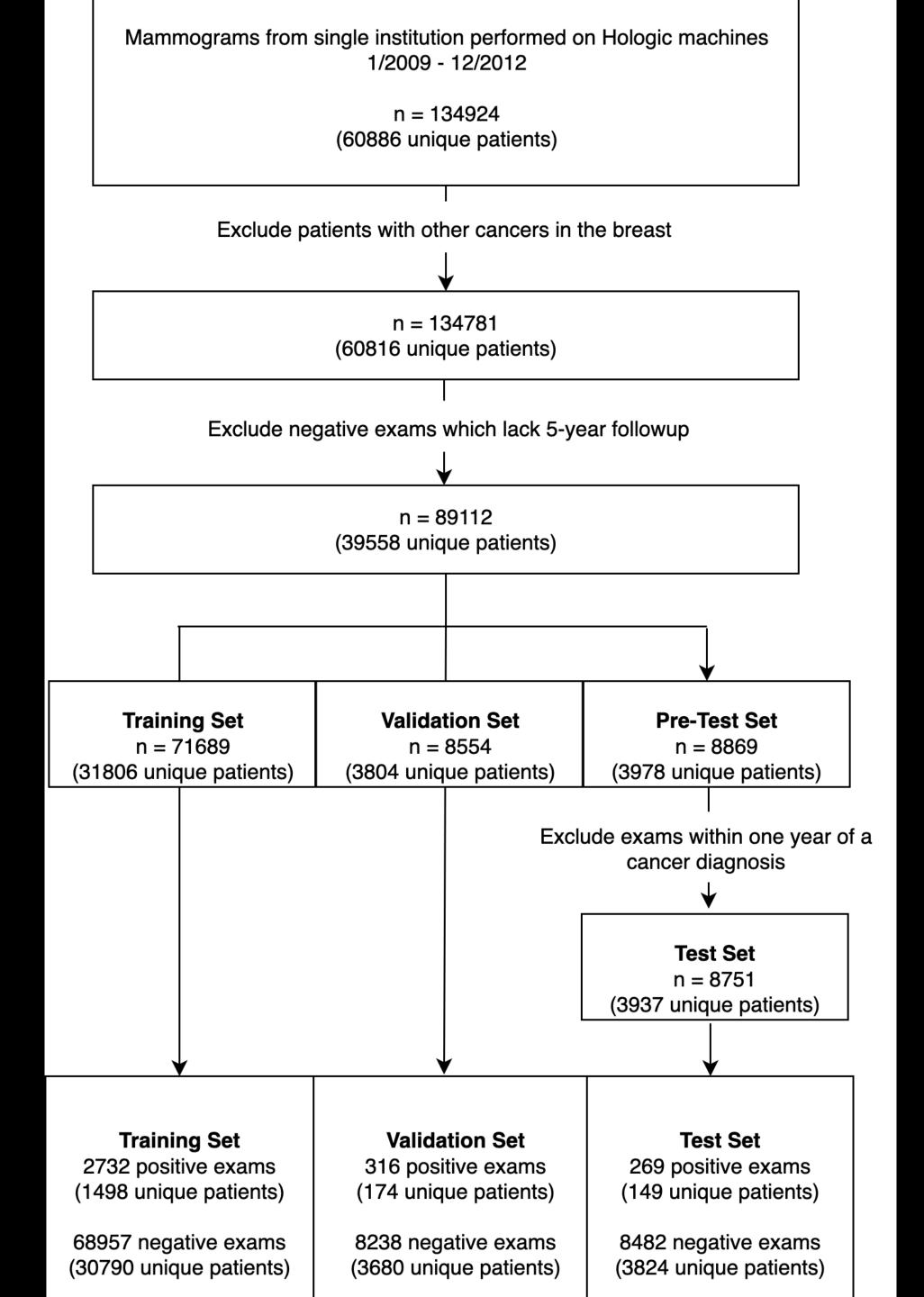
#### Prospective breast cancer risk prediction model for women undergoing screening

# Assessing Breast Cancer Risk

- The plan
  - Dataset Collection
  - Modeling
  - Analysis

## Dataset Collection

- Consecutive Screening Mammograms
  - 2009-2012
- Outcomes from Radiology EHR, and Partners
- 5 Hospital Registry
- No exclusions based on race, implants etc.
- Exclude for followup for negatives
- Split into Train/Dev/Test by Patient

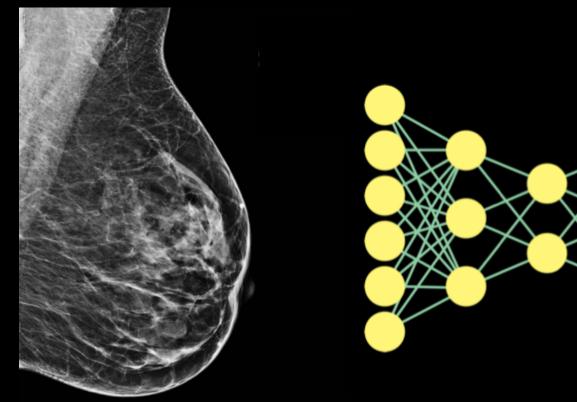


# Modeling

- ImageOnly: Same model setup as for Triage
- Image+RF: ImageOnly + traditional Risk Factors at last layer trained jointly

# Analysis: Objectives

- Is the model discriminative across all populations?
  - Subgroup Analysis by Race, Menopause Status, **Family History**
- How does this relate to classical approaches?



Training Set: Patients: 30,790 Exams: 71,689

**No Exclusions** 

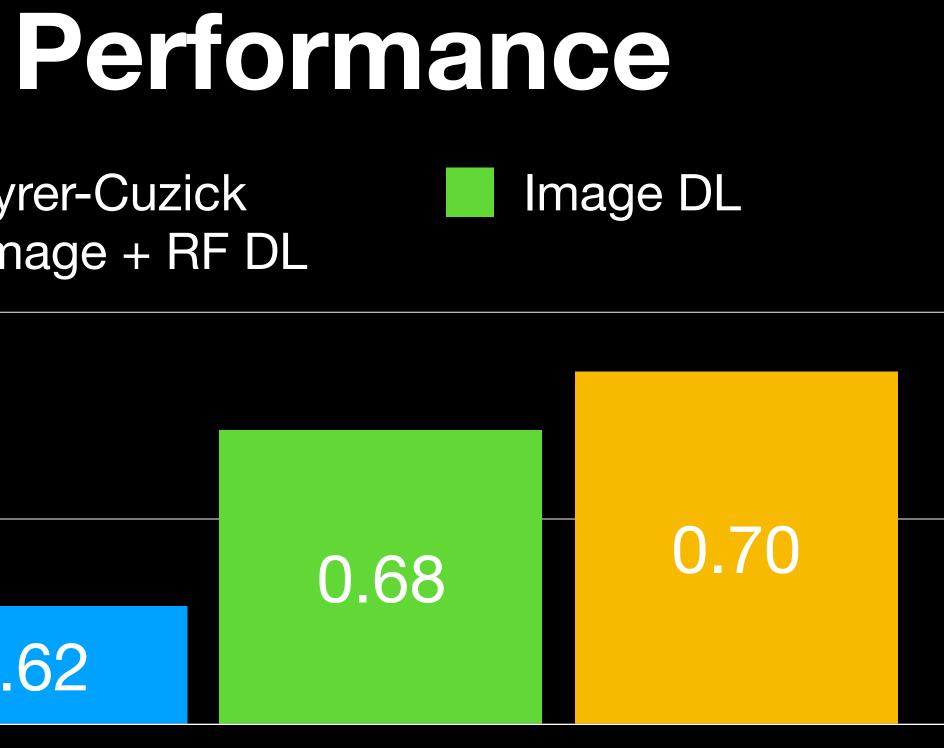


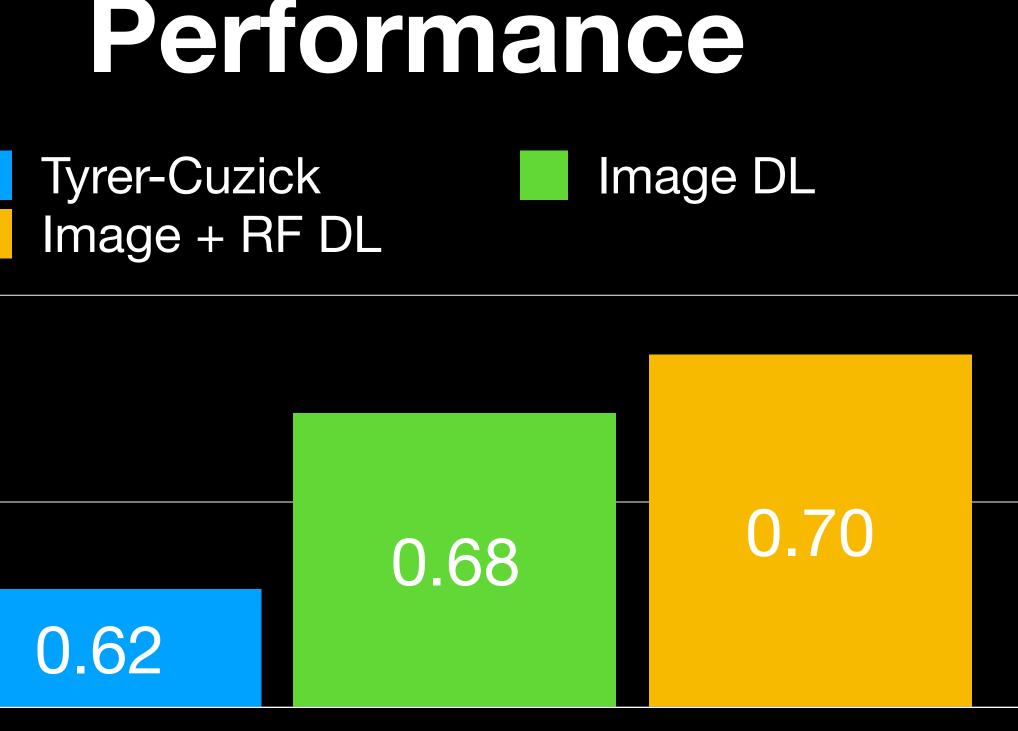
#### **5 Year Breast Cancer Risk**

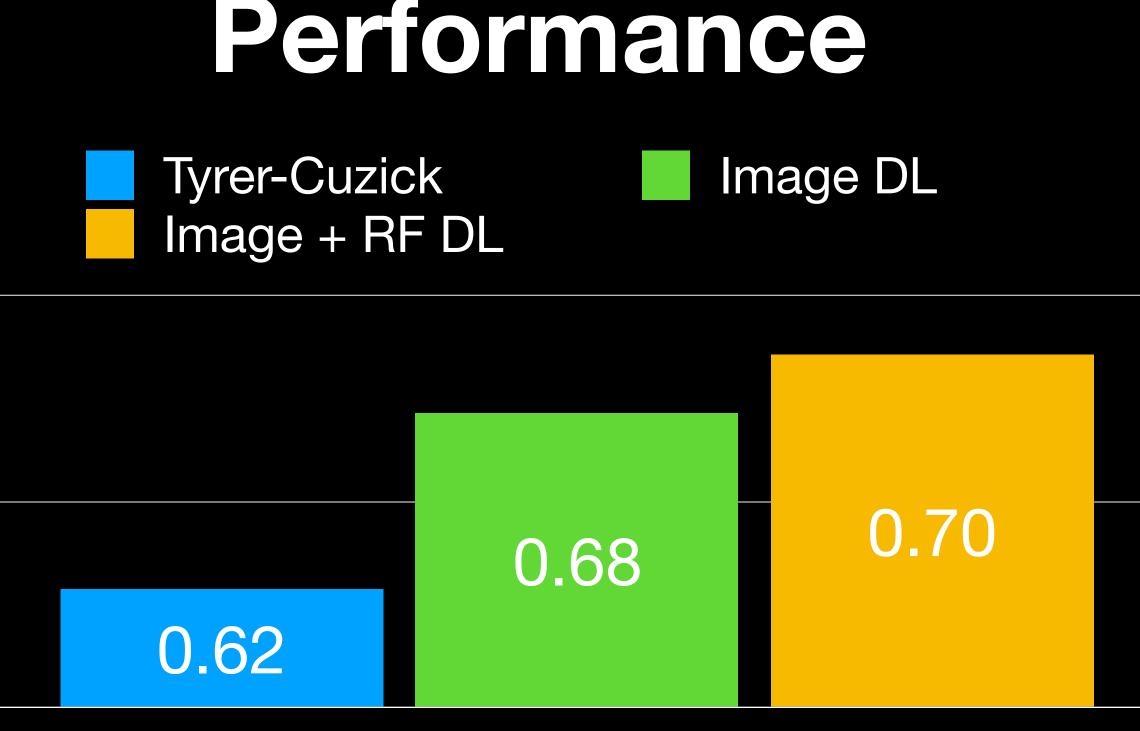
#### **Testing Set:**

Patients: 3,937 Exams: 8,751

Exclude Cancers within 1 Year of mammogram

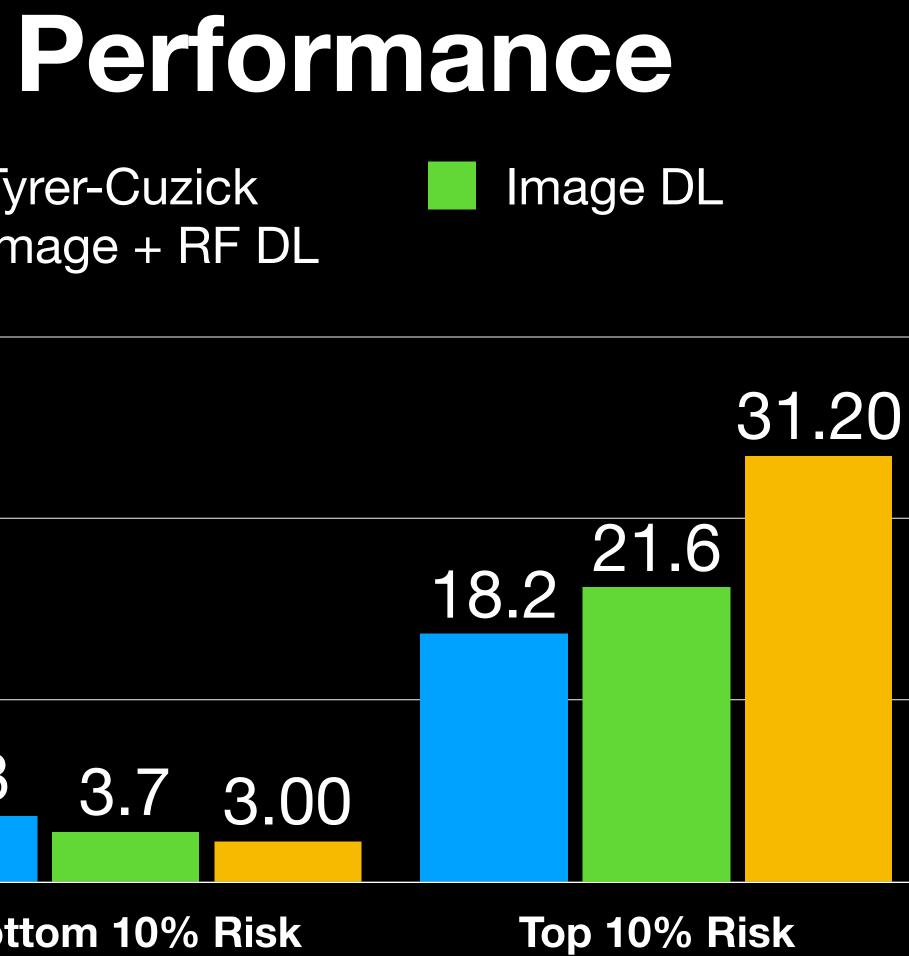








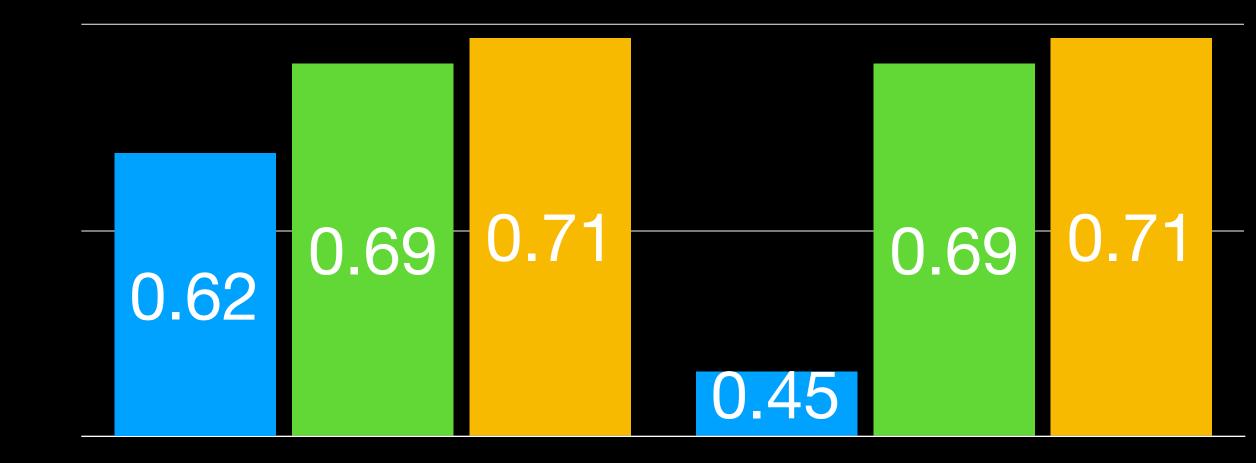
**Full Test Set** 





Cancers of all ‰

Tyrer-Cuzick Image + RF DL



White Women

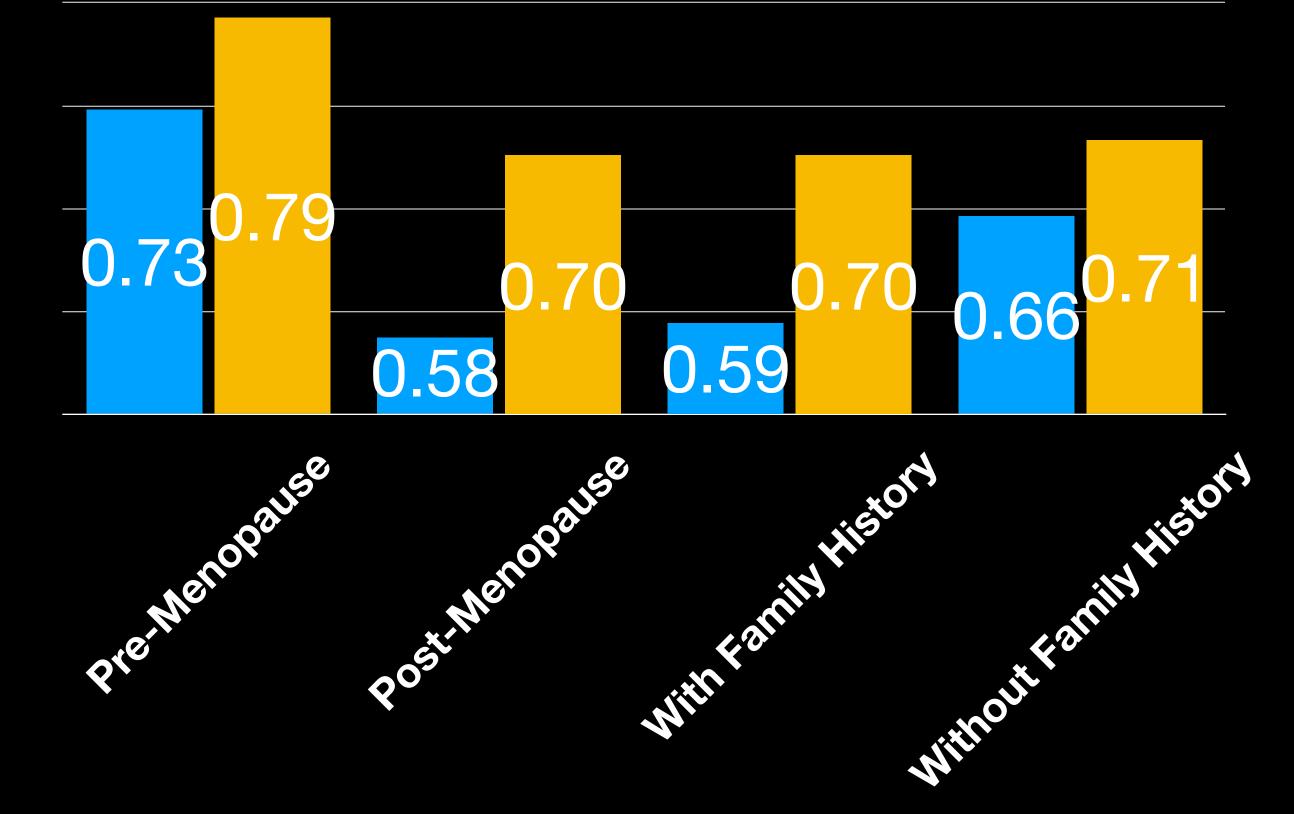
AUC

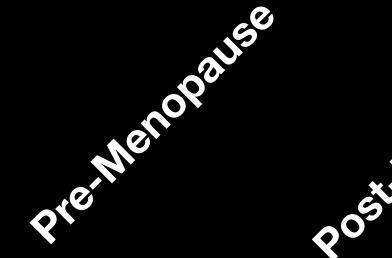




**African American Women** 





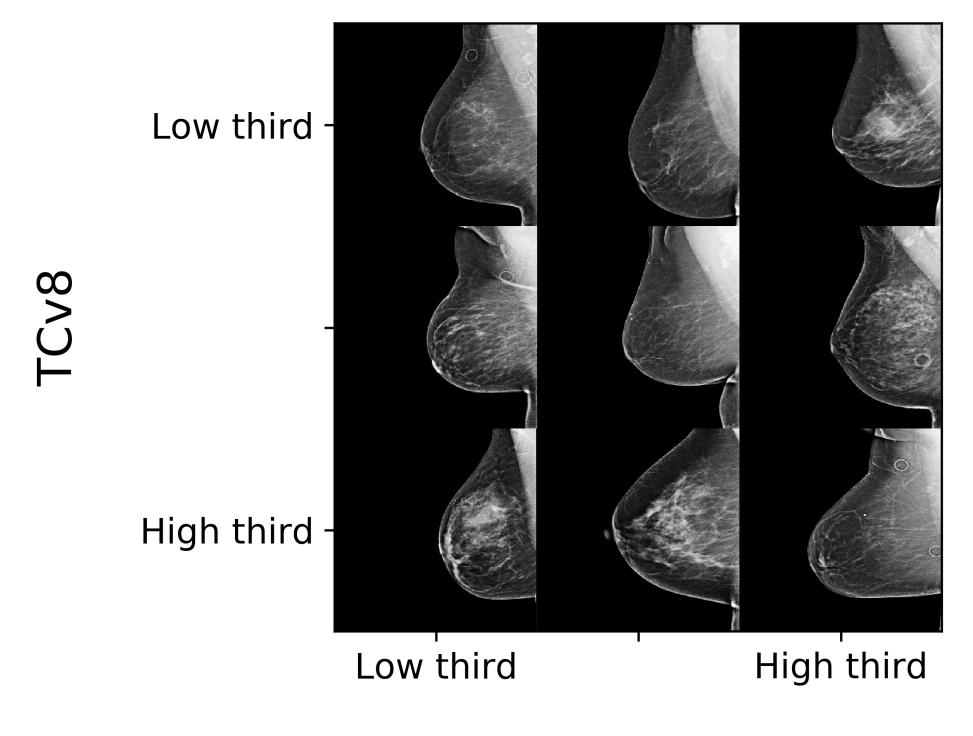


AUC

### Performance

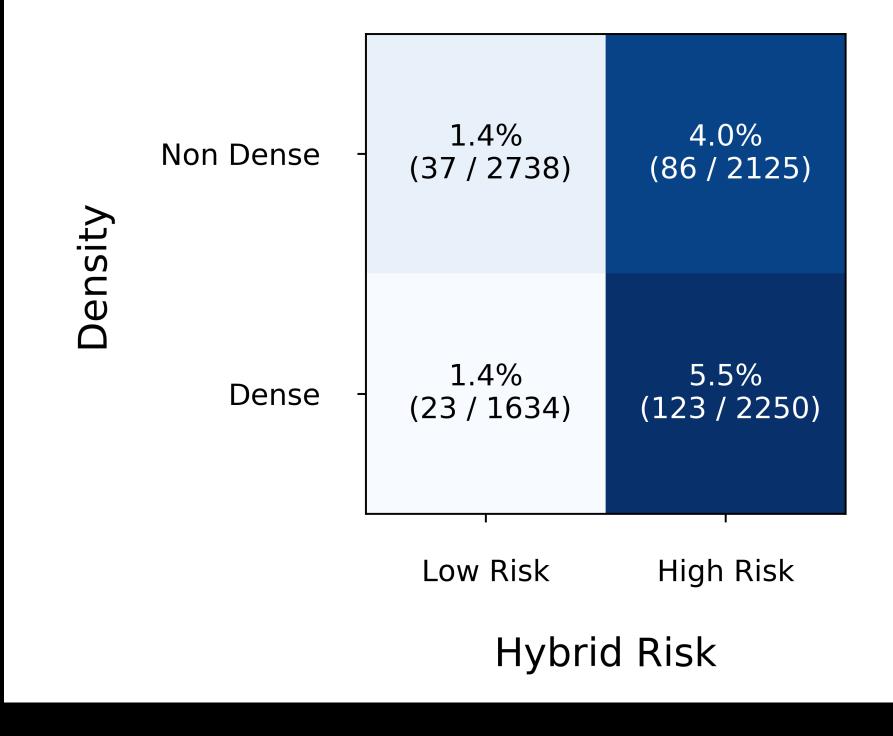
|      | Low third  | 1.1%<br>(16 / 1466) | 1.8%<br>(17 / 930)  | 3.7%<br>(18 / 492)  |
|------|------------|---------------------|---------------------|---------------------|
| TCv8 | _          | 1.5%<br>(14 / 906)  | 2.4%<br>(25 / 1050) | 6.1%<br>(57 / 931)  |
|      | High third | 1.6%<br>(8 / 516)   | 2.3%<br>(21 / 907)  | 6.0%<br>(93 / 1553) |
|      |            | Low third           | I                   | '<br>High third     |

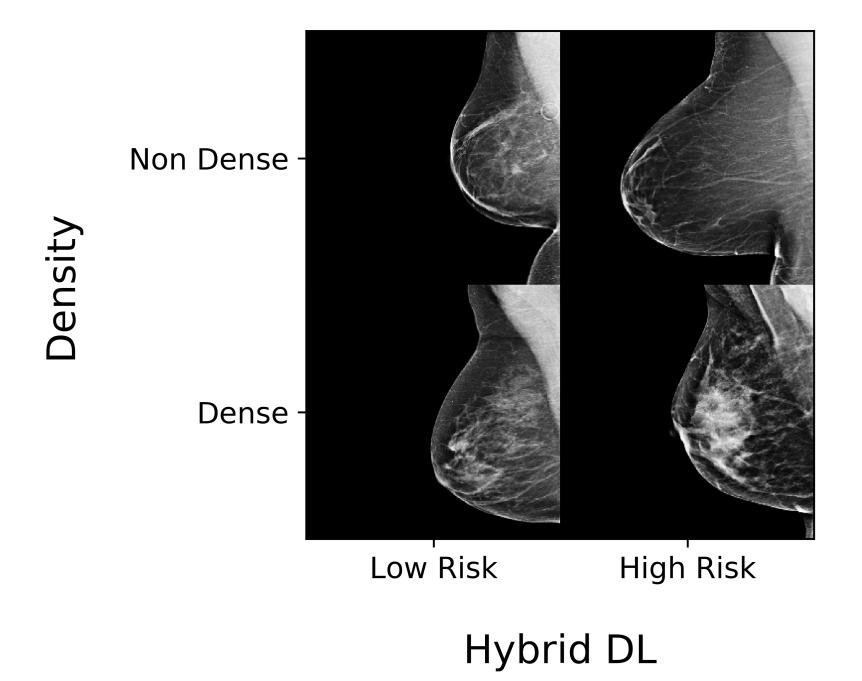
#### Hybrid DL



#### Hybrid DL

### Performance





### Next Step: Clinical Implementation





- Interpreting Mammograms
  - Cancer Detection and Triage
  - Assessing Breast Density
- Assessing Breast Cancer Risk
- How to Mess up
- How to Deploy

### Agenda

## How to Mess Up

- The many ways this can go wrong:
  - **Dataset Collection**
  - Modeling
  - Analysis

## How to Mess Up: Dataset Collection

- Enriched Datasets contain nasty biases
  - Story: Emotional Rollercoaster in Shanghai
    - Dataset with all Cancers collected first.
    - Negatives collected consecutively from 2009-2016
- Use old images (Film mammography) or datasets with huge tumors.
- Use a dataset without tumor registry linking.
- Is your dataset reflective of your actual use-case?

# How to Mess Up: Modeling

- Assume the model will be Mammography Machine invariant
  - Now exploring conditional-adversarial training...

# How to Mess Up: Analysis

- - will transfer.
- Assume *reader study = clinical implementation*

### Only Test your model on White women and exclude inconvenient cases

### • Common standard in classical risk models; can't assume model

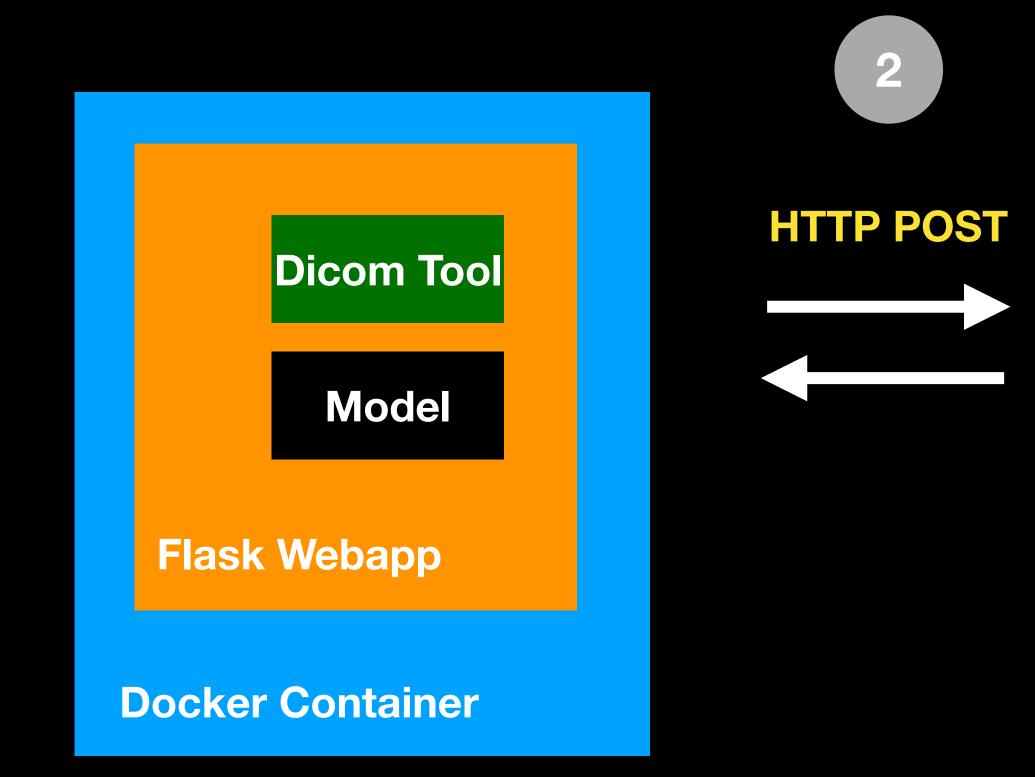




- Interpreting Mammograms
  - Cancer Detection and Triage
  - Assessing Breast Density
- Assessing Breast Cancer Risk
- How to Mess up
- How to Deploy

### Agenda

# How to Deploy?



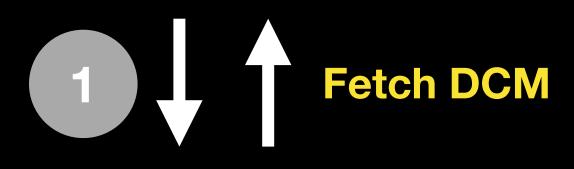


### IT Application









PACs