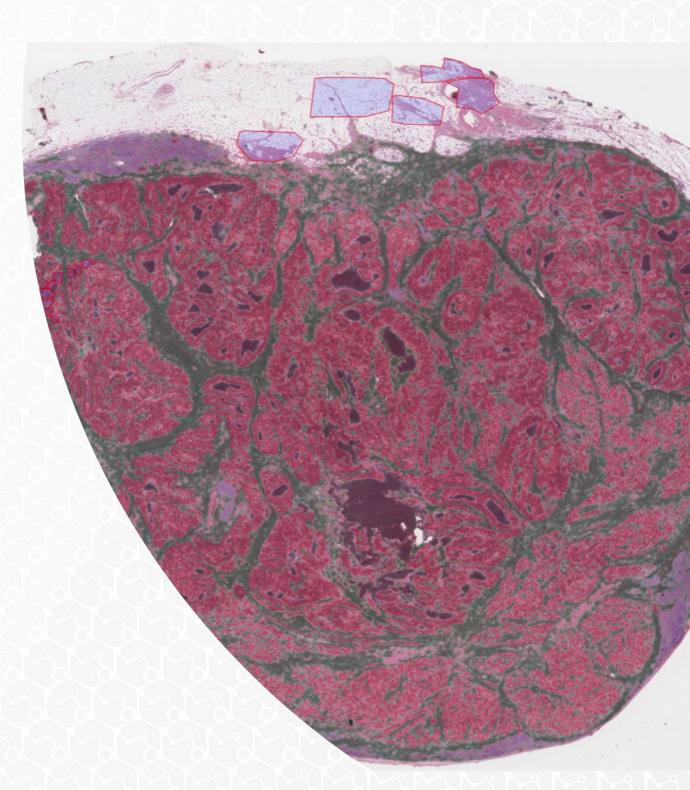
Machine learning for Pathology

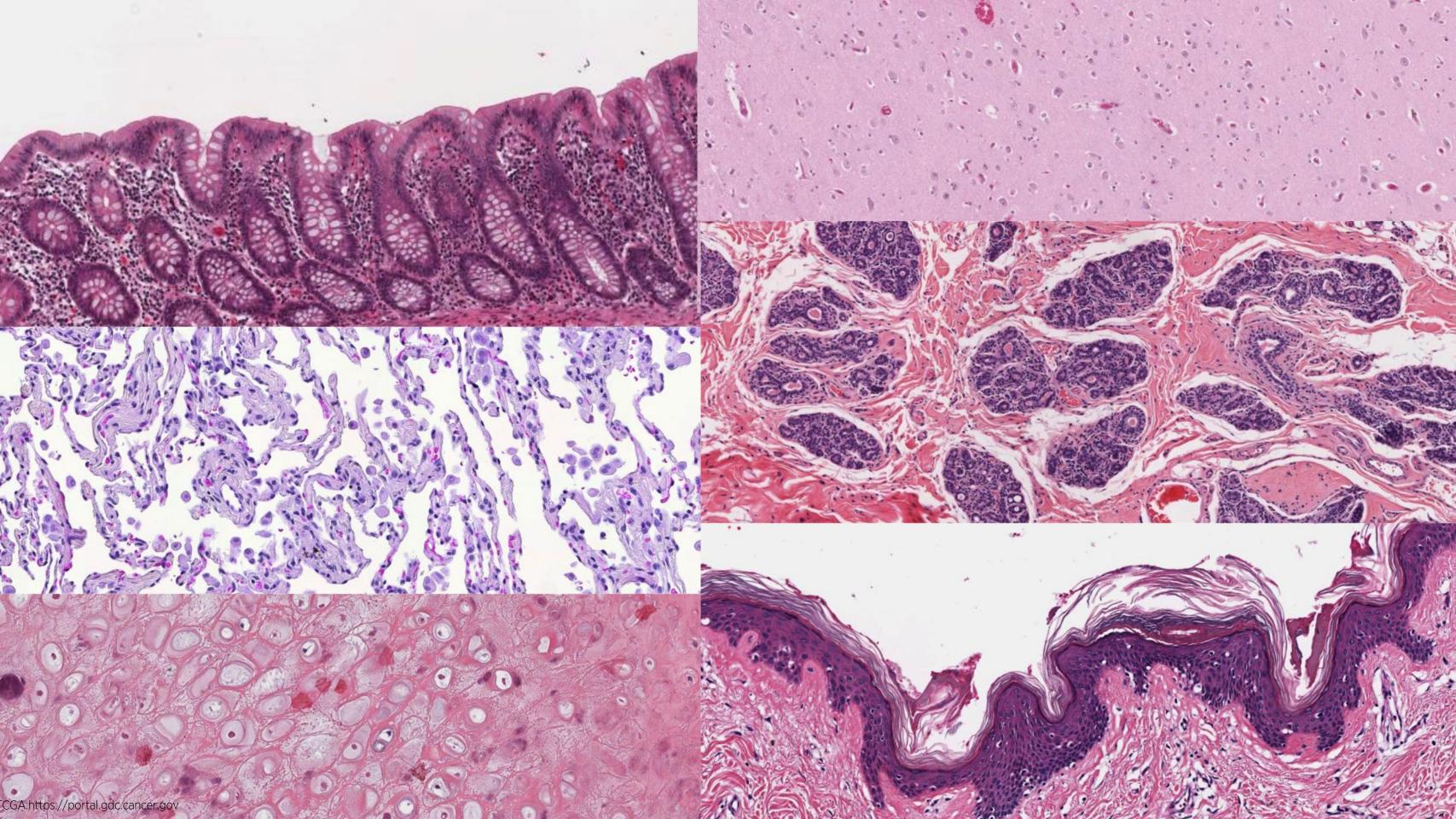
Andrew H Beck MD PhD CEO @ PathAl

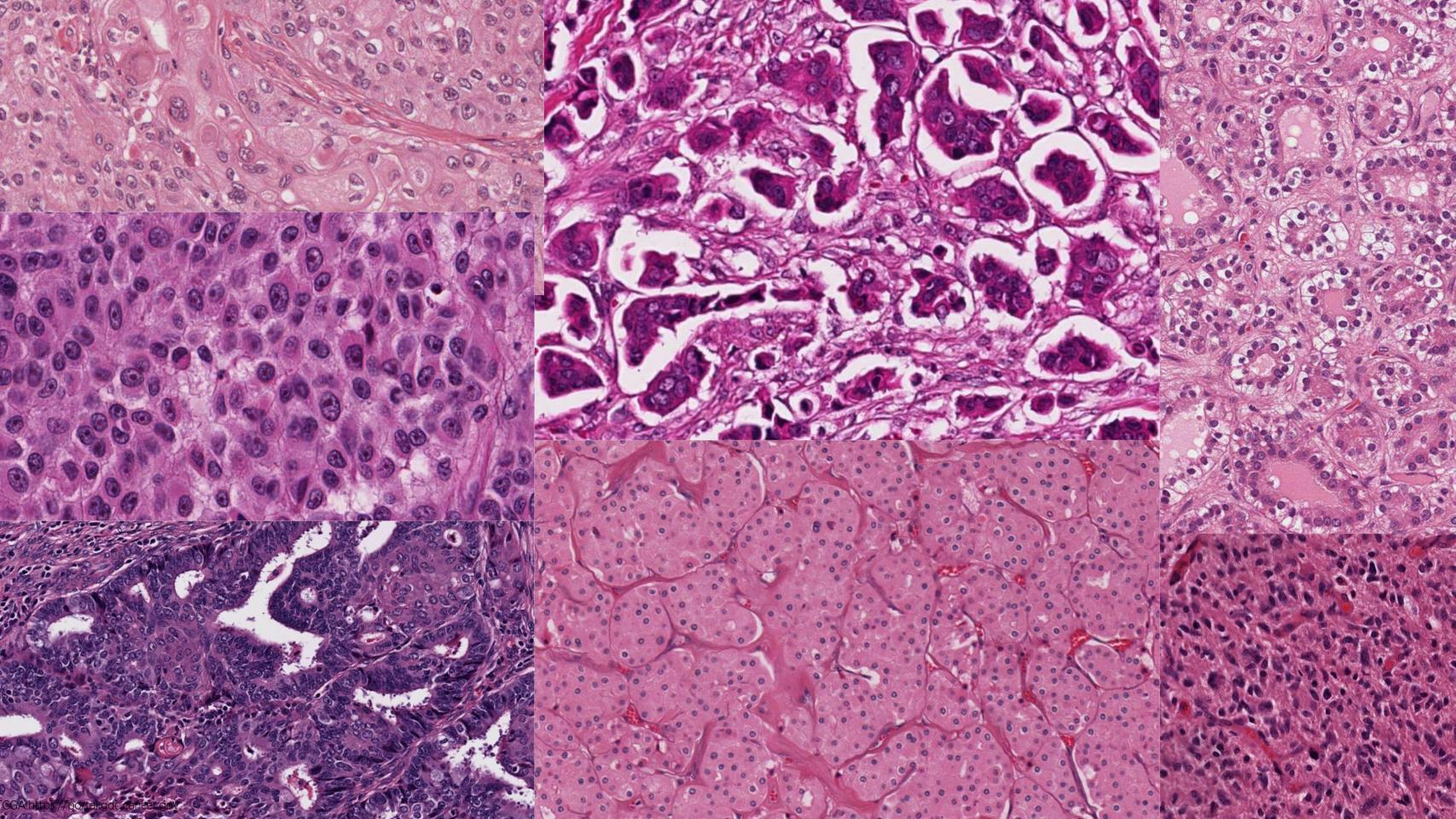
6.S897/HST.956: Machine Learning for Healthcare. MIT. March 19, 2019

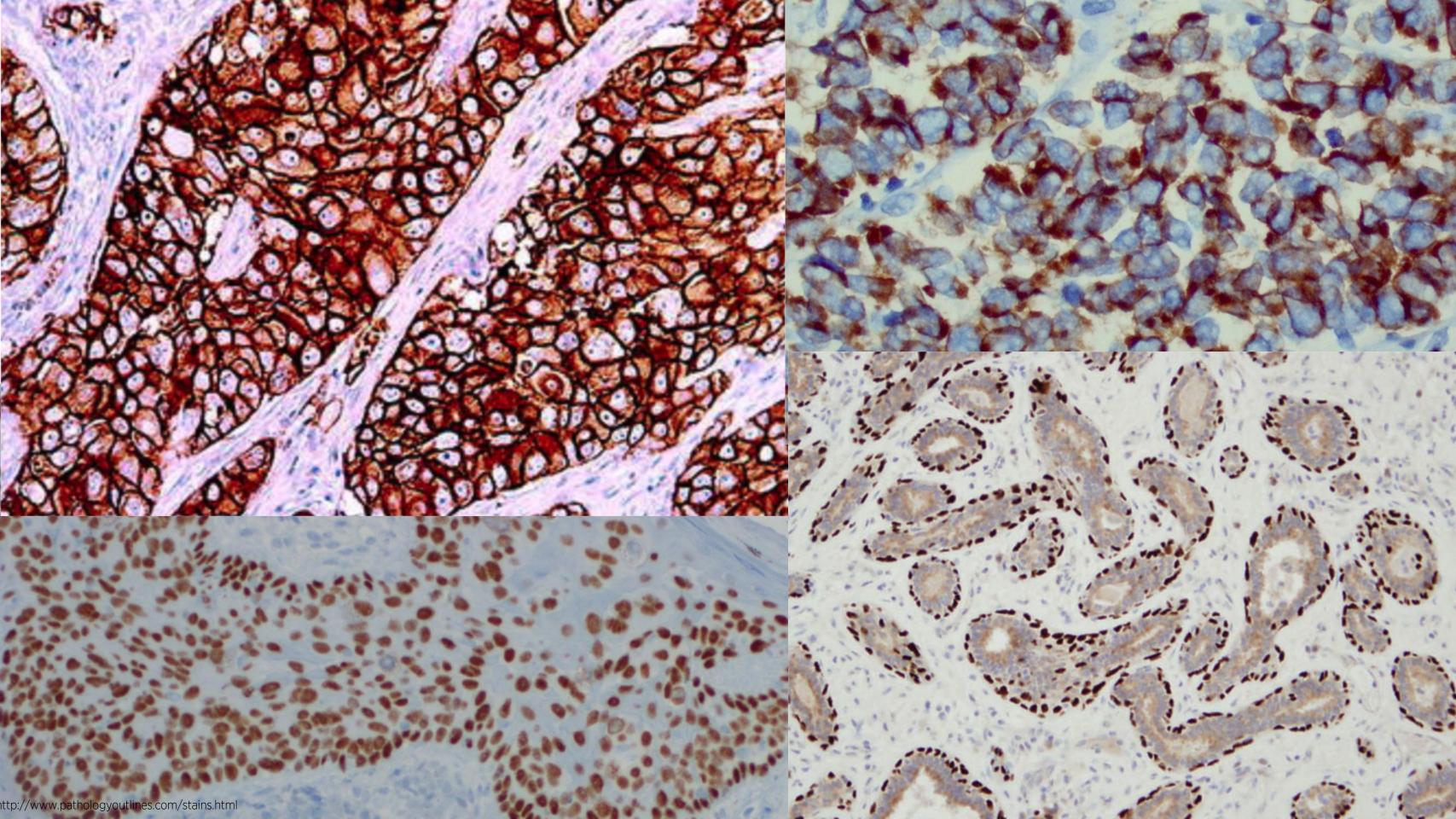


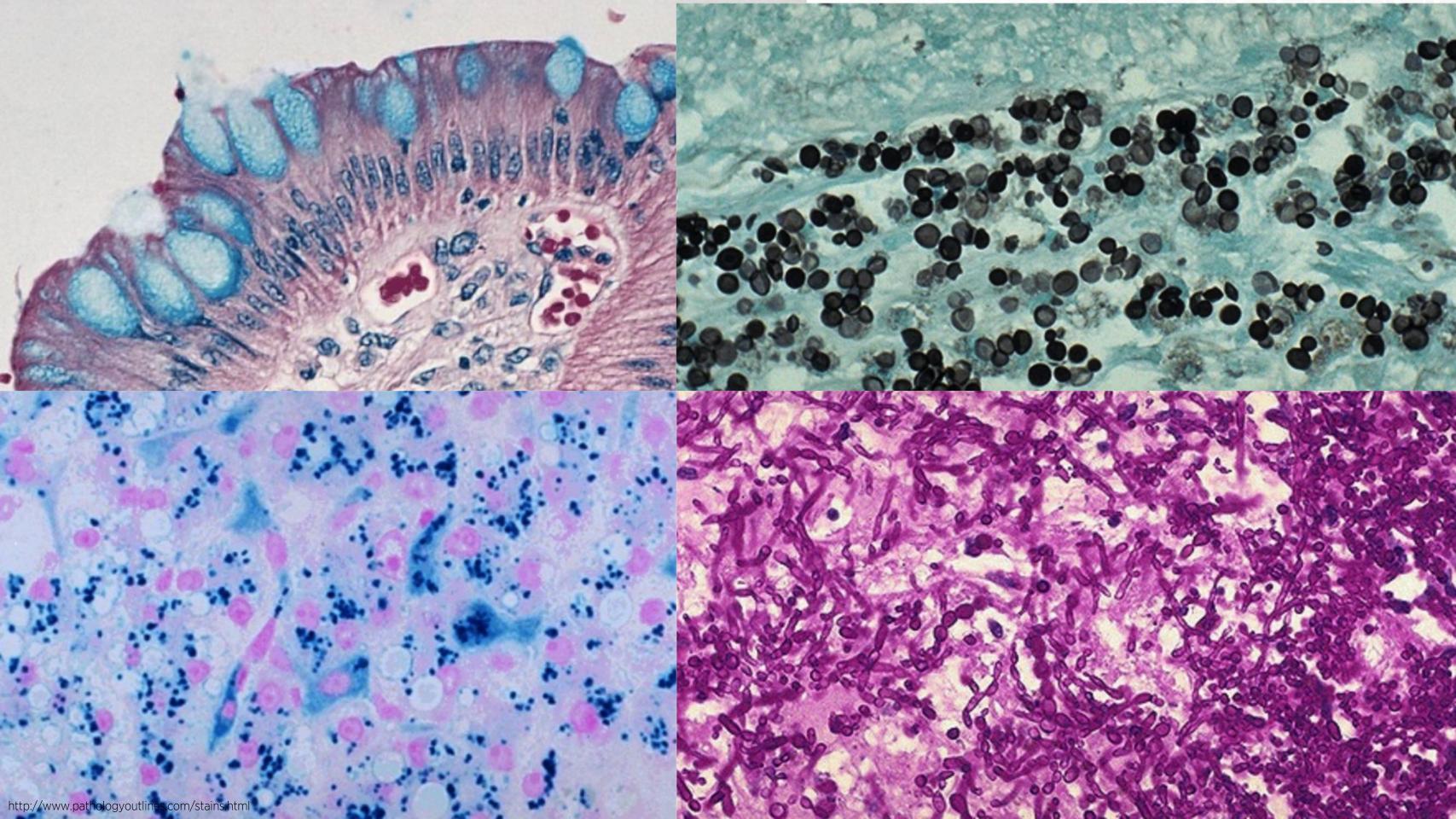
Pathology

Pathologic diagnosis is a central determinant of therapeutic decisions.







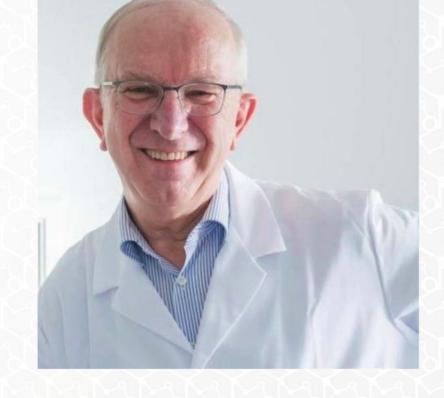


Emergence of early computational approaches in Pathology (1981)

MORPHOMETRY FOR PROGNOSIS PREDICTION IN BREAST CANCER

SIR,—Some workers have found a correlation between prognosis and microscopical features of the primary tumour in breast cancer¹⁻³ but in one large prospective study the significance of the nuclear and histological grade for prognosis was weak.⁴ Disagreement in grades assigned to the same tumours by different pathologists may range up to 40%,^{5,6} and this disagreement may be due to the subjective nature of histopathological assessment. In contrast, the advantages of morphometry are objectivity and high reproducibility.⁷

Method	Total (n = 78)	Learning set (n = 38)	Test set (n=40)
ANS	59	65	54
TNM	64	67	56
Morphometry	87	92	78



Artificial Neural Nets in Quantitative Pathology (1990)

Anal Quant Cytol Histol. 1990 Dec;12(6):379-93. Paperpile

Artificial neural networks and their use in quantitative pathology.

Dytch HE¹, Wied GL.

"It is concluded that artificial neural networks, used in conjunction with other nonalgorithmic artificial intelligence techniques and traditional algorithmic processing, may provide useful software engineering tools for the development of systems in quantitative pathology."

Emergence of Digital Pathology (2000)

International Journal of Surgical Pathology 8(4):261-263, 2000

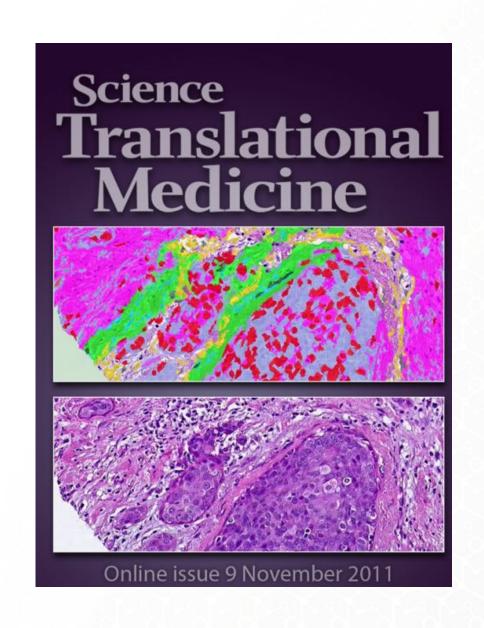
2

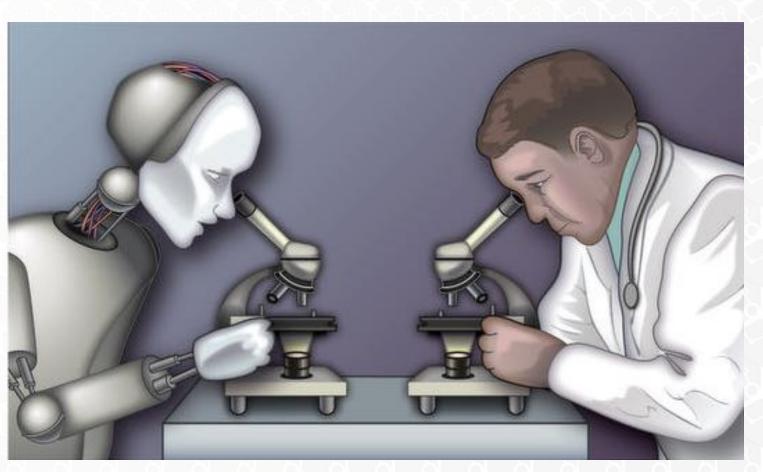
Digital Pathology: Science Fiction?

Mattia Barbareschi,* Francesca Demichelis,† Stefano Forti,† and Paolo Dalla Palma*

But what will come next? Is it possible to hypothesize that VC will completely substitute our traditional glass slides? Maybe yes, and let us describe the "science fiction" new millennium digital pathology laboratory, which we will call "DIGIPATH."

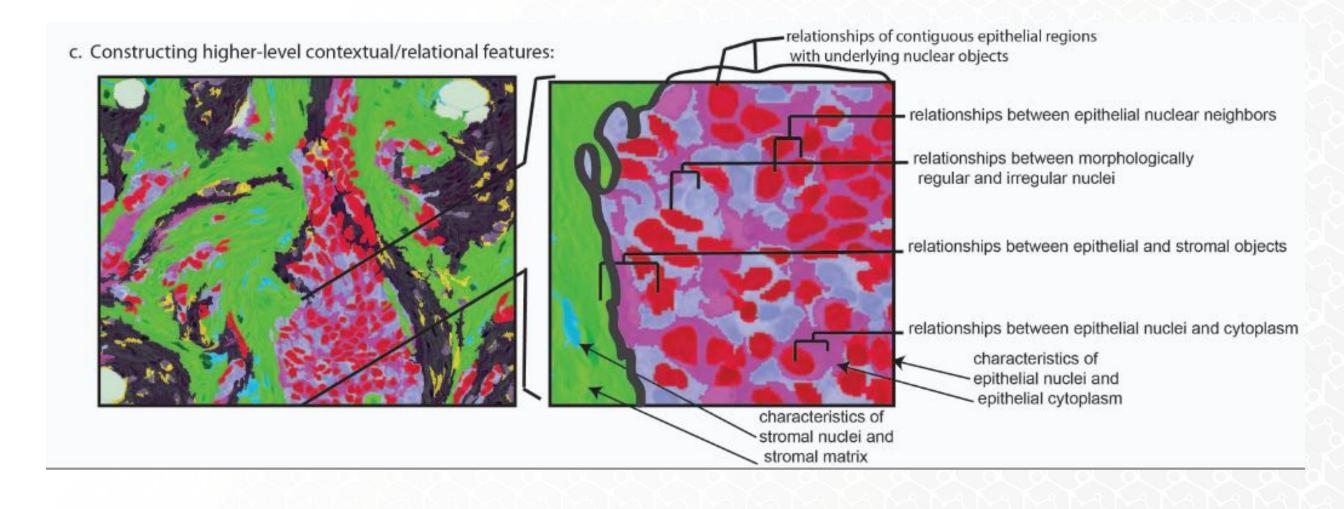
The emergence of machine learning-based approaches for cancer histopathology



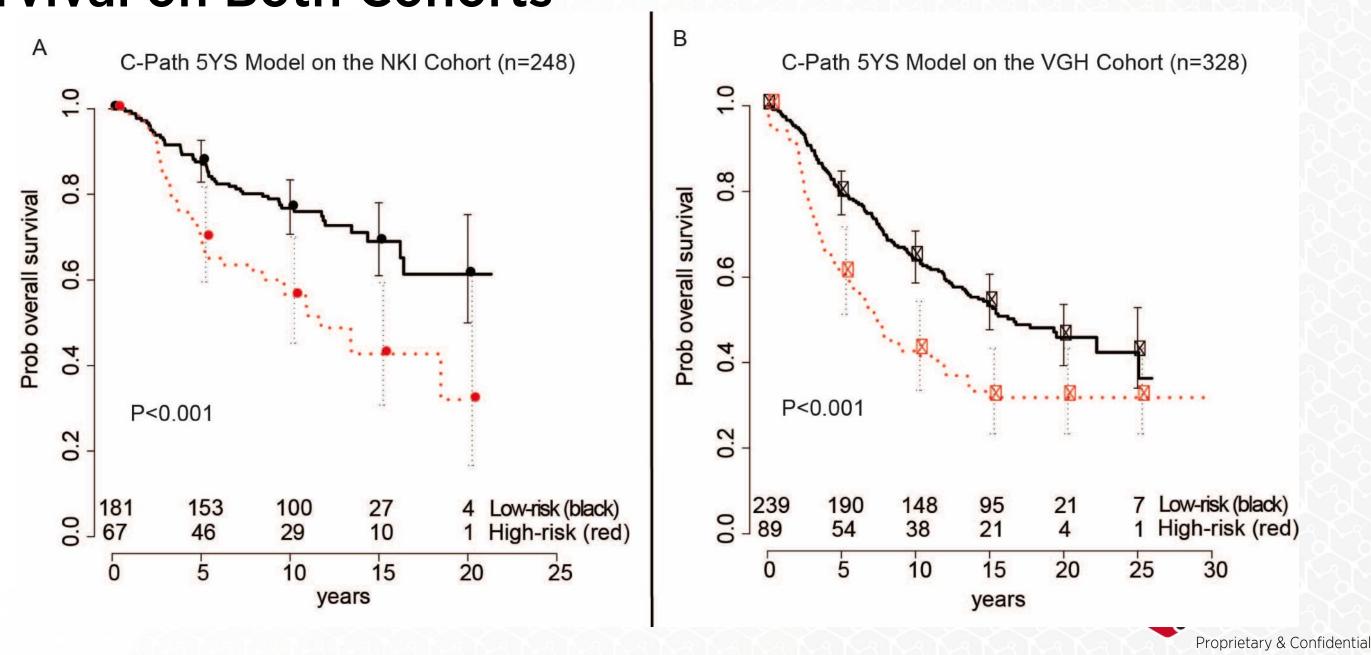


Beck ... Koller. Science Translational Medicine 2011

Extracting a rich quantitative feature set



C-Path 5YS Score Significantly Associated with Overall Survival on Both Cohorts



Beck ... Koller. Science Translational Medicine 2011

Even today, the anatomic path lab has been largely unchanged for routine diagnostics

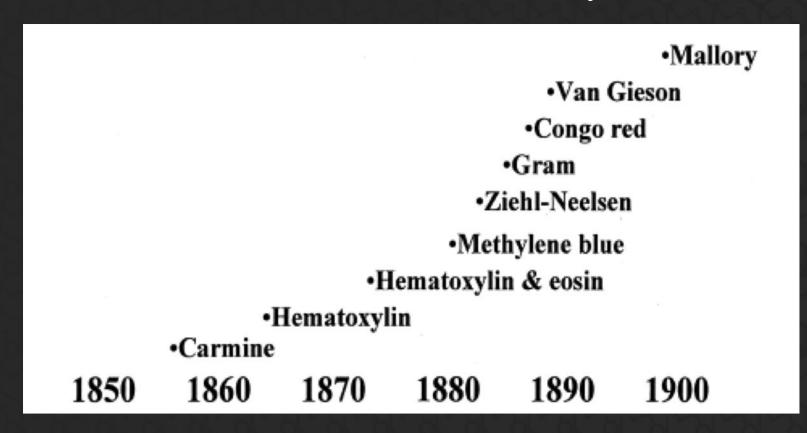
And core technology breakthroughs in routine use are from the 19th century

IN SEARCH OF THE ORIGINS OF MODERN SURGICAL PATHOLOGY

FIG. 5. (A) English brass microscope. Monocular compound microscope attributed to M. Phelps of London, England, circa 1860. (B) German brass microscope. Monocular compound microscope manufactured by E. Leitz of Wetzlar, Germany, circa 1900. (C) American microscope. Monocular compound microscope, manufactured by Bausch and Lomb, of Rochester, New York, circa 1915.

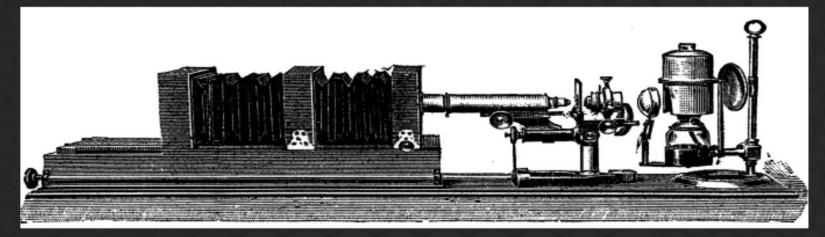
Histochemical Stains

Developed from combinations of analine and natural dyes in the later half of the 19th century

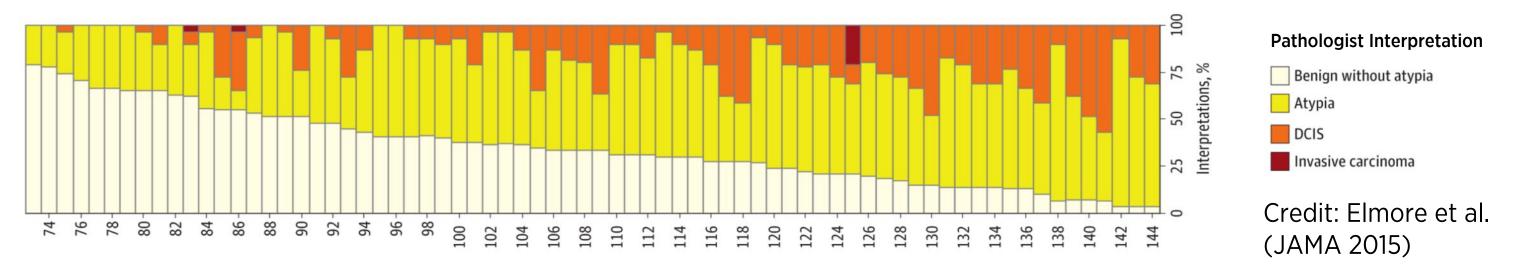


Photomicroscope

Horizontal apparatus with camera, microscope, and light source, 1895.



Discordance among pathologists is common in interpretation of breast biopsies



	Phase II Interpretation of Same Individual Pathologist					
Phase I Interpretation of Individual pathologist	Benign without atypia	Atypia	DCIS	Invasive	Total	Agreement rates of phase I and II interpretations, % (95% CIs)
Benign without atypia	947	137	41	5	1130	84 (81-86)
Atypia	157	303	109	2	571	53 (47-59)
Ductal Carcinoma in situ (DCIS)	43	94	792	14	943	84 (81-87)
Invasive Breast Cancer	8	4	11	273	296	92 (88-95)
Total	1155	538	953	294	2940	79 (77-81)

Pathologists in individual practice setting

Overall concordance rate of 75% on breast biopsies.

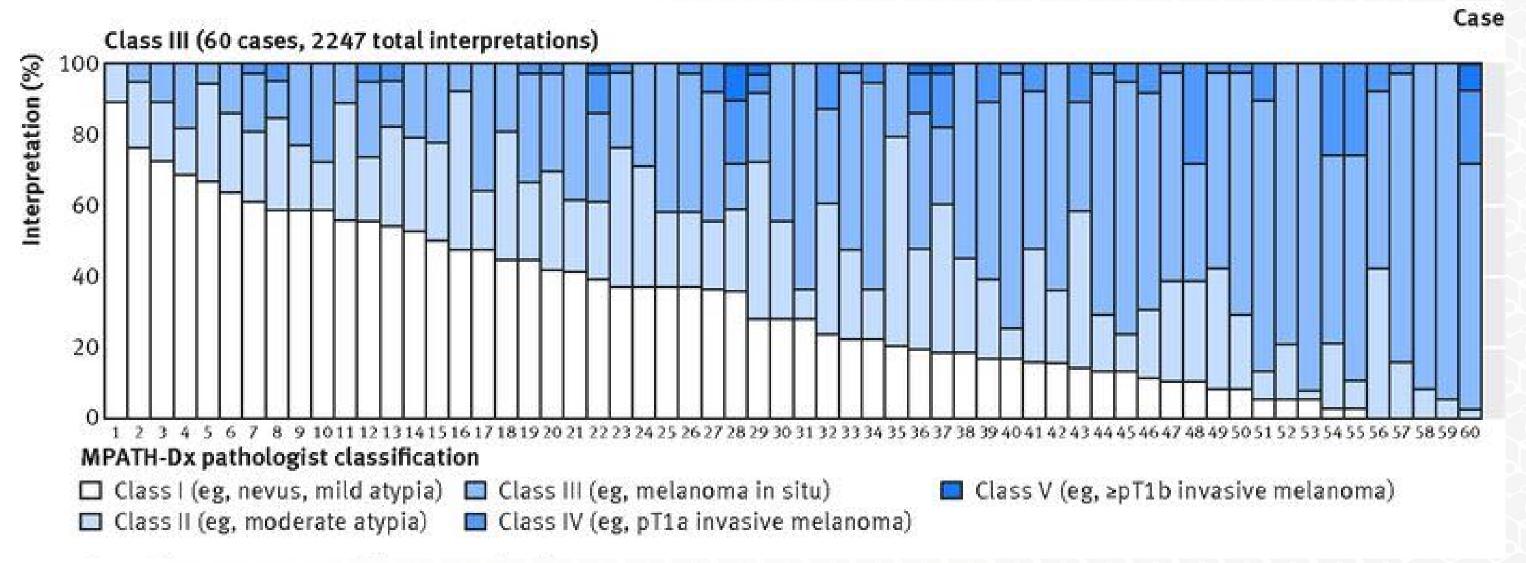
Inter-observer concordance rate of only 48% for a diagnosis of atypia.

Intra-observer concordance is only 79% overall and 53% for atypical lesions

Proprietary & Confidential

Ref: Jackson SL ... Elmore JG. Ann Surg Oncol. 2017 May;24(5):1234-1241.

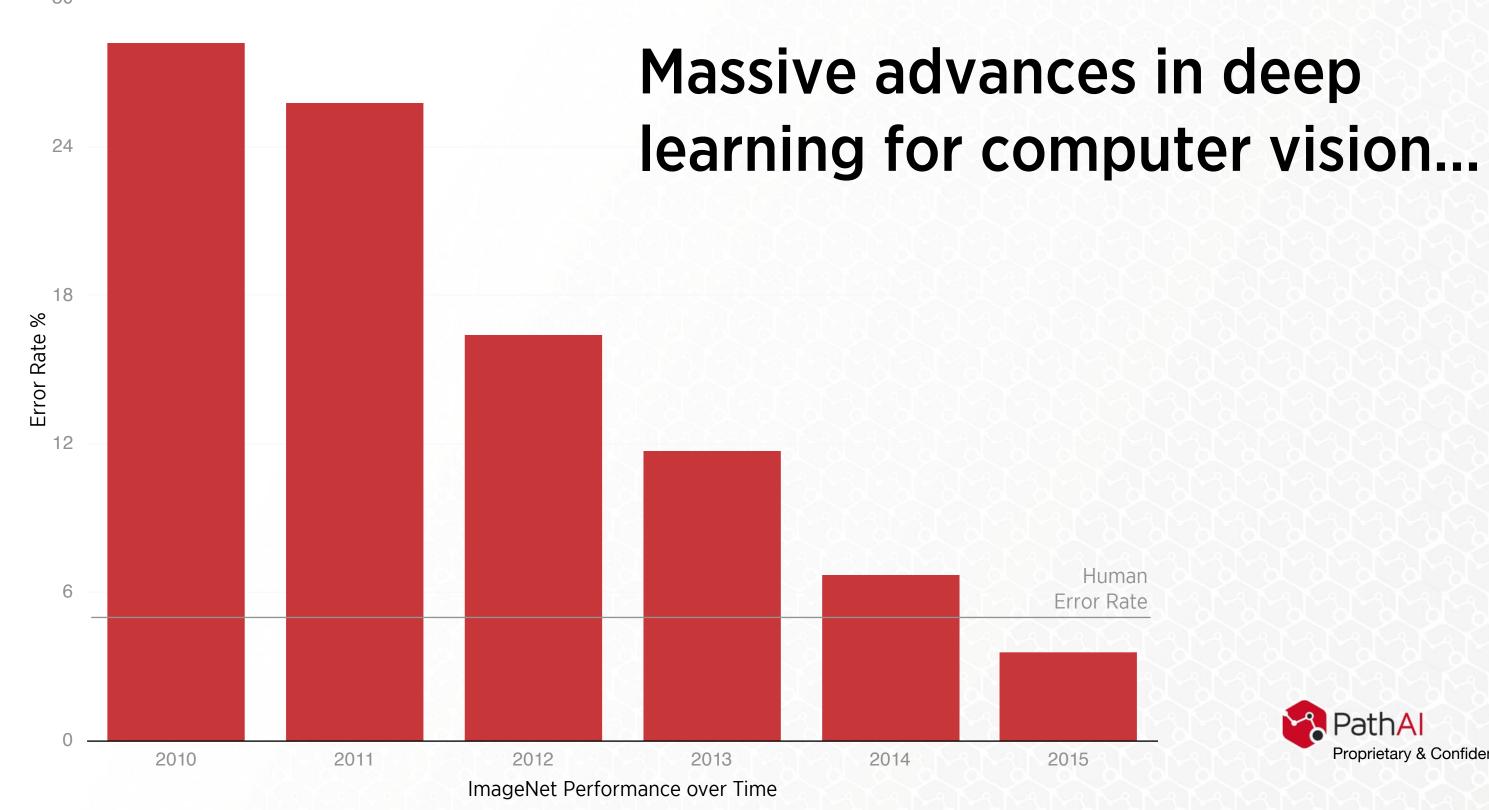
Discordance among pathologists is common in interpretation of melanocytic neoplasms on skin biopsies



- 187 pathologists interpreted skin lesion biopsies, resulting in an overall discordance of 45%
- 118 pathologists read the same samples 8 months apart, and had an intraobserver discordance of 33%

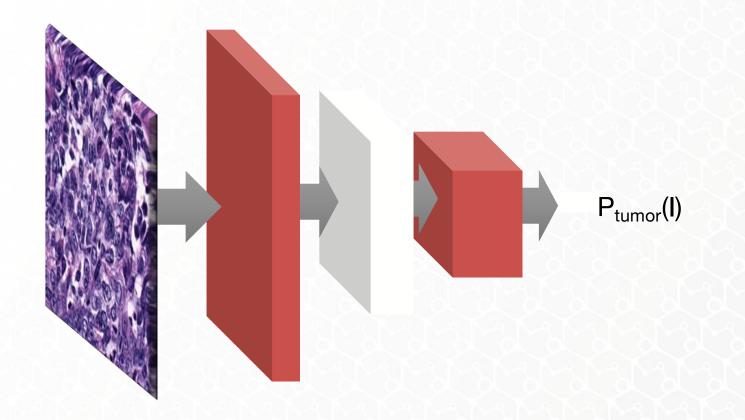
Discordance rates across a broad set of specimen types is fairly high with little improvement over past several decades

Table 3. Summary of Studies That Express a Discrepancy or Major Discrepancy Rate					
	Discre	epancy Rates, %	Major Discrepancy Rates, %		
Study Type	No. of Studies	Median (25th-75th Percentile)	No. of Studies	Median (25th-75th Percentile)	
All studies	116°	18.3 (7.5–34.5)	78 ^d	5.9 (2.1–10.5)	
Surgical pathology	84e	18.3 (7.5–37.4)	63 ^f	6.3 (1.9–10.6)	
Cytology	Lliab Error	24.8 (17.4–38.8)	11 ^h	4.3 (2.8–7.5)	
Both	High Error	9.1 (6.7–15.8)	11 ^j	5.9 (3.3-8.7)	
Multiorgan	Rates	9.1 (3.8–18.7)	421	3.9 (1.1-7.4)	
Single-organ ^a	73 ^m	25.2 (14.0-43.7)	36 ⁿ	8.0 (3.7-15.8)	
Internal ^b	35°	10.9 (3.8–17.6)	22 ^p	1.2 (0.30-3.1)	
External	79 9	23.0 (10.6-40.2)	56 ^r	7.4 (4.6–14.7)	



What does Al mean at PathAl?

- Models which learn how to make decisions and predictions by recognizing patterns in data.
- These can be <u>traditional machine learning models</u> or, more commonly, deep <u>convolutional neural networks</u>.



The human defines the data, the data defines the algorithm.

Traditionally, the human defines the algorithm

What can AI do for pathology?

A (somewhat) practical treatment

- Exhaustive the model is tireless and is not distracted
- Quantitative the model is reproducible and objective
- Efficient massive parallelization for speedy processing
- Exploratory learn relationships in a purely data-driven manner

What Al can't do for pathology

Replace pathologists!

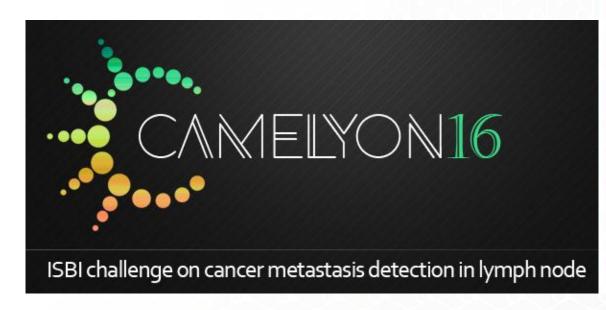
A diagnosis/detection example:

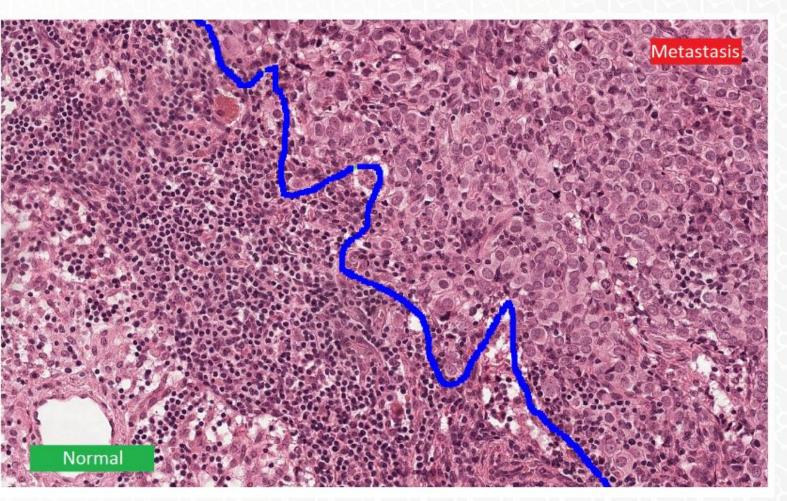
Breast cancer metastases

- After a primary mass discovered, lymph nodes are biopsied
- Pathologists check these for metastases
- Non-zero failure rate: a retrospective study found a 24% disagreement rate¹

The data - CAMELYON

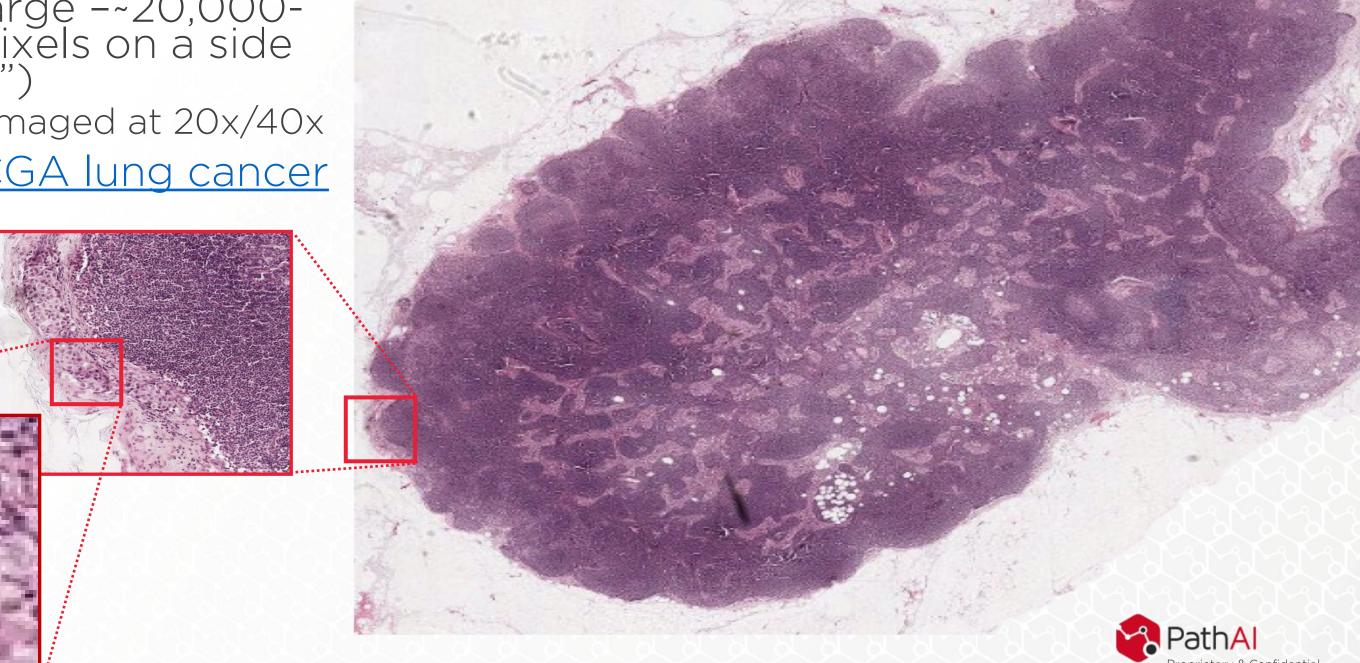
- H & E stained, Formalin-Fix
 Paraffin-Embedded (FFPE)
 - 270 training slides, 129 test
- Annotated by a panel





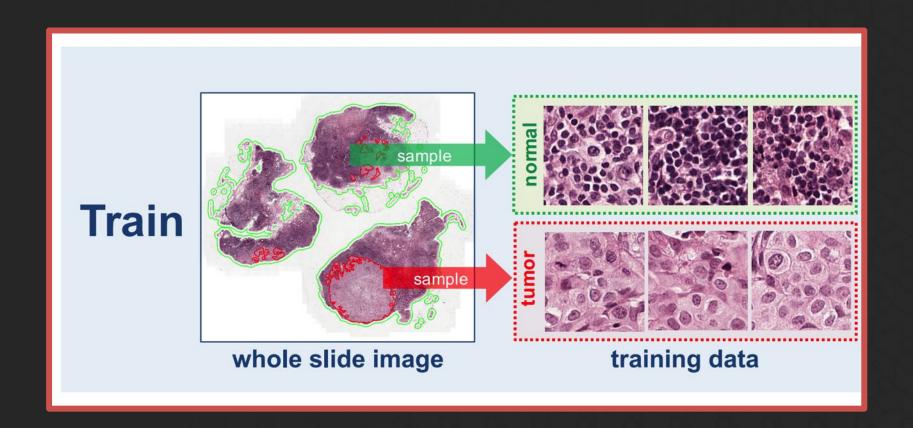
The data - Whole-Slide Images

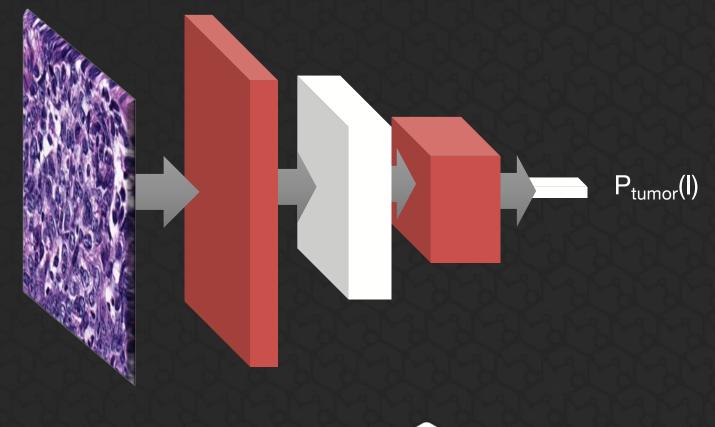
- WSIs are large -~20,000-200,000 pixels on a side ("gigapixel")
 - mm-cm imaged at 20x/40x
- Demo TCGA lung cancer



Approach

 Standard image classification approach needs a twist for WSIs: sampling



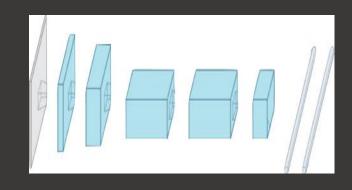


Successfully applied deep learning approach to pathology

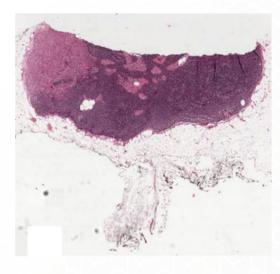
Our team won the Camelyon challenge in 2016, demonstrating outstanding initial performance in pathology

Whole Slide Image

Training Data



Deep Model



Whole Slide Image

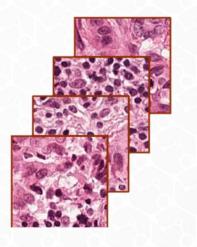
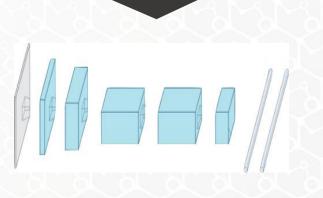
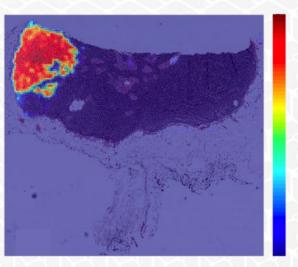


Image Patches



Deep Model from Training



Deep learning model outperforms human pathologists in the diagnosis of metastatic cancer

Error Rate (1-AUC) Pathologists in competition 3.5% Pathologists in clinical practice 13 - 26% Pathologists on micro-metastasis² 23 - 42% 0.65% Deep learning model

Caveats and considerations

 Real world data vs. competition data

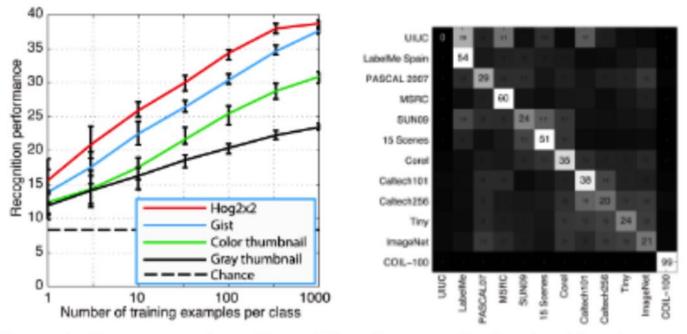
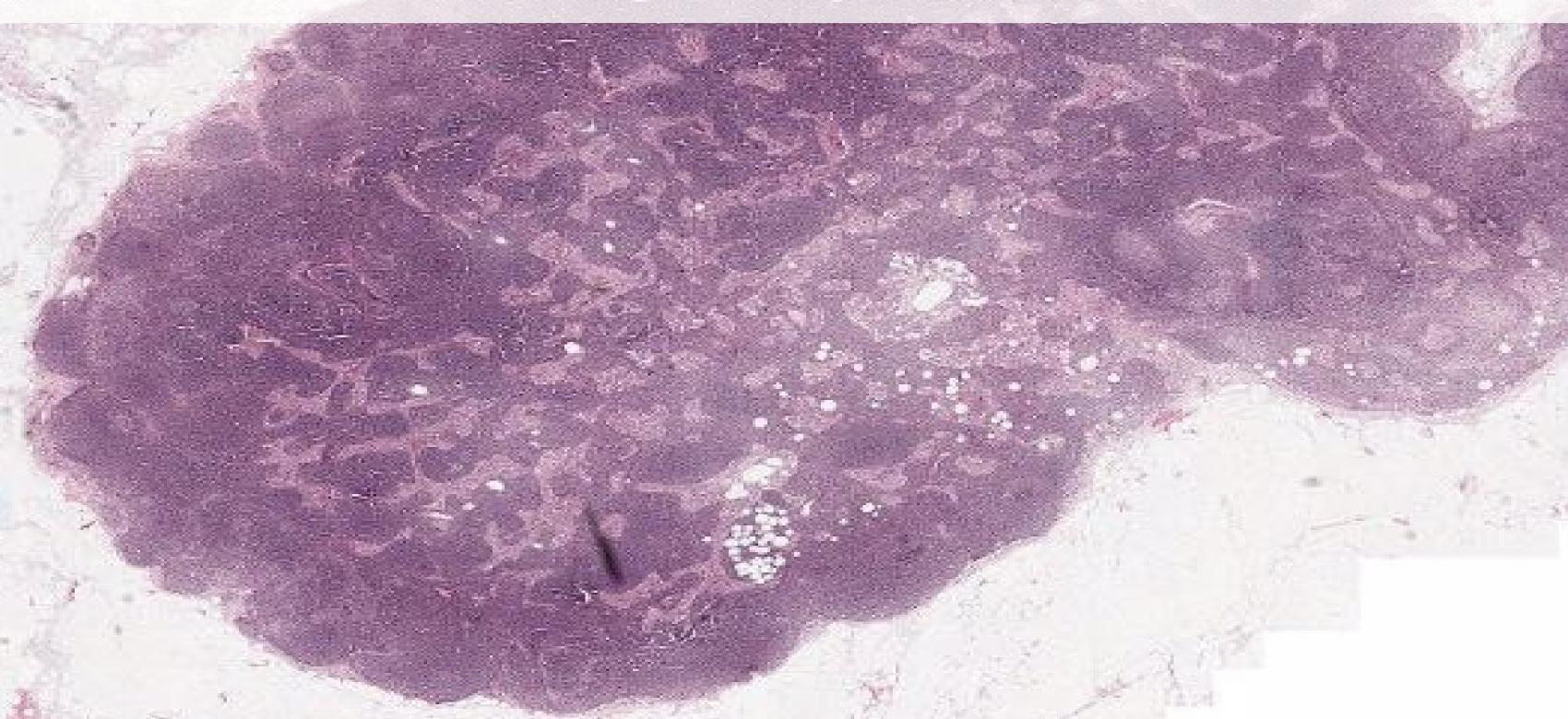
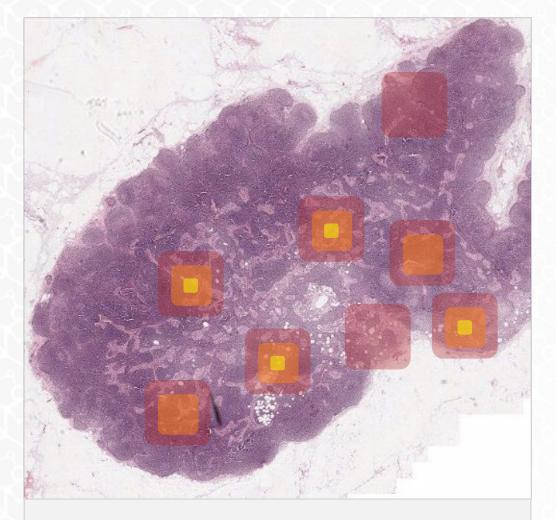


Figure 2. Computer plays Name That Dataset. Left: classification performance as a function of dataset size (log scale) for different descriptors (notice that performance does not appear to saturate). Right: confusion matrix.

Torralba & Effros, 2011





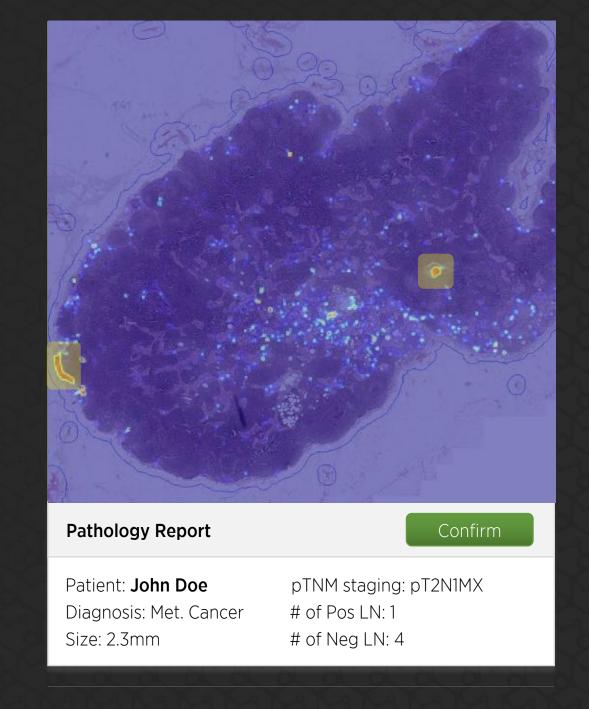


Pathology Report

Patient: **John Doe** pTNM staging:
Diagnosis: # of Pos LN:
Size: # of Neg LN:

Time per slide: 1 – 10 minutes

Accuracy: ~85% Reproducibility: Low

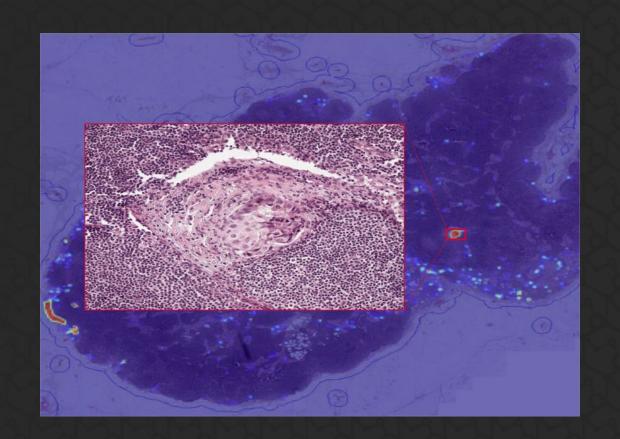


Time per slide: 10– 60 seconds Accuracy: >99.5%

Reproducibility: High

Why is this a good application for Al?

- Exhaustive analysis is beneficial
 - Large volume
- Local image data necessary and sufficient
- Interpretability: Heatmaps & simple models provide insight into how the patient-level prediction was made
- Required accuracy is high



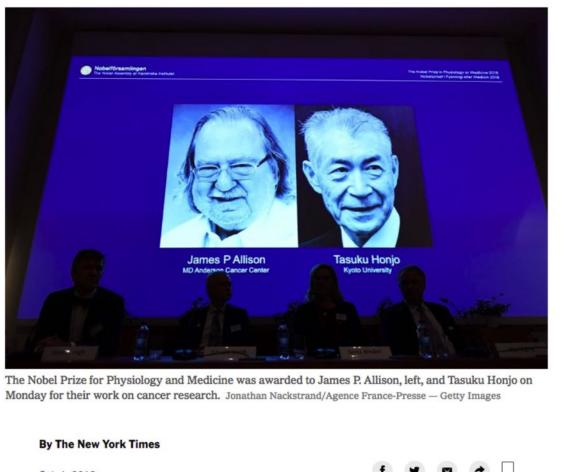
A predictive example:

Precision immunotherapy

 Some cancers express immuneinhibitory ligands, activating immune "checkpoints"

 "checkpoint inhibitors" mask these signals, unleashing the immune system

2018 Nobel Prize in Medicine Awarded to 2 Cancer Immunotherapy Researchers

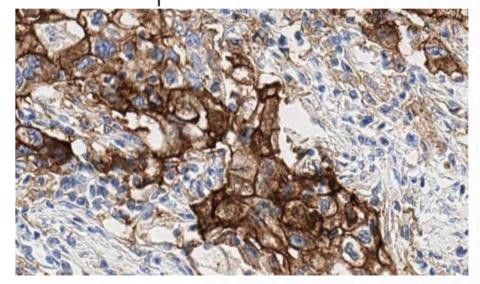


Oct. 1, 2018

A predictive example:

Precision immunotherapy

- Response rate is low, but some fraction of patients are essentially "cured"
- PD-L1 expression is somewhat indicative of response



The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JUNE 28, 2012

VOL. 366 NO. 26

Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer

Suzanne L. Topalian, M.D., F. Stephen Hodi, M.D., Julie R. Brahmer, M.D., Scott N. Gettinger, M.D.,
David C. Smith, M.D., David F. McDermott, M.D., John D. Powderly, M.D., Richard D. Carvajal, M.D.,
Jeffrey A. Sosman, M.D., Michael B. Atkins, M.D., Philip D. Leming, M.D., David R. Spigel, M.D.,
Scott J. Antonia, M.D., Ph.D., Leora Horn, M.D., Charles G. Drake, M.D., Ph.D., Drew M. Pardoll, M.D., Ph.D.,
Lieping Chen, M.D., Ph.D., William H. Sharfman, M.D., Robert A. Anders, M.D., Ph.D., Janis M. Taube, M.D.,
Tracee L. McMiller, M.S., Haiying Xu, B.A., Alan J. Korman, Ph.D., Maria Jure-Kunkel, Ph.D., Shruti Agrawal, Ph.D.,
Daniel McDonald, M.B.A., Georgia D. Kollia, Ph.D., Ashok Gupta, M.D., Ph.D., Jon M. Wigginton, M.D.,

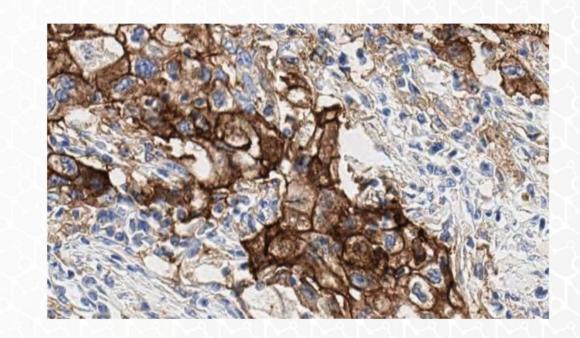
Patient with Melanoma

CONCLUSIONS

Anti-PD-1 antibody produced objective responses in approximately one in four to one in five patients with non-small-cell lung cancer, melanoma, or renal-cell cancer; the adverse-event profile does not appear to preclude its use. Preliminary data suggest a relationship between PD-L1 expression on tumor cells and objective response. (Funded by Bristol-Myers Squibb and others; ClinicalTrials.gov number, NCT00730639.)

N ENGL J MED 366;26 NEJM.ORG JUNE 28, 2012

Manual interpretation of PD-L1 IHC is highly variable



PDL1 manual IHC scores on immune cells are unreliable

Table 2. ICC for the Pathologist Scores and Concordance Statistics

	Antibody, ICC (95% CI)	Antibody, ICC (95% CI)					
Cells ^a	22c3	28-8	SP142	E1L3N	Summary, Mean (SD)		
Tumor cells	0.882 (0.873-0.891)	0.832 (0.820-0.844)	0.869 (0.859-0.879)	0.859 (0.849-0.869)	0.86 (0.02)		
Immune cells	0.207 (0.190-0.226)	0.172 (0.156-0.189)	0.185 (0.169-0.203)	0.229 (0.211-0.248)	0.19 (0.03)		

Abbreviation: ICC, intraclass correlation coefficient.

 $^{^{}a}$ N = 90.

Manual scoring of PD-L1 is variable ...and not always predictive

RESULTS

The median overall survival was 9.2 months (95% confidence interval [CI], 7.3 to 13.3) with nivolumab versus 6.0 months (95% CI, 5.1 to 7.3) with docetaxel. The risk of death was 41% lower with nivolumab than with docetaxel (hazard ratio, 0.59; 95% CI, 0.44 to 0.79; P<0.001). At 1 year, the overall survival rate was 42% (95% CI, 34 to 50) with nivolumab versus 24% (95% CI, 17 to 31) with docetaxel. The response rate was 20% with nivolumab versus 9% with docetaxel (P=0.008).

0.47 to 0.81; P<0.001). The expression of the PD-1 ligand (PD-L1) was neither prognostic nor predictive of benefit. Treatment-related adverse events of grade 3

prognostic nor predictive of benefit. Treatment-related adverse events of grade 3 or 4 were reported in 7% of the patients in the nivolumab group as compared with 55% of those in the docetaxel group.

ORIGINAL ARTICLE

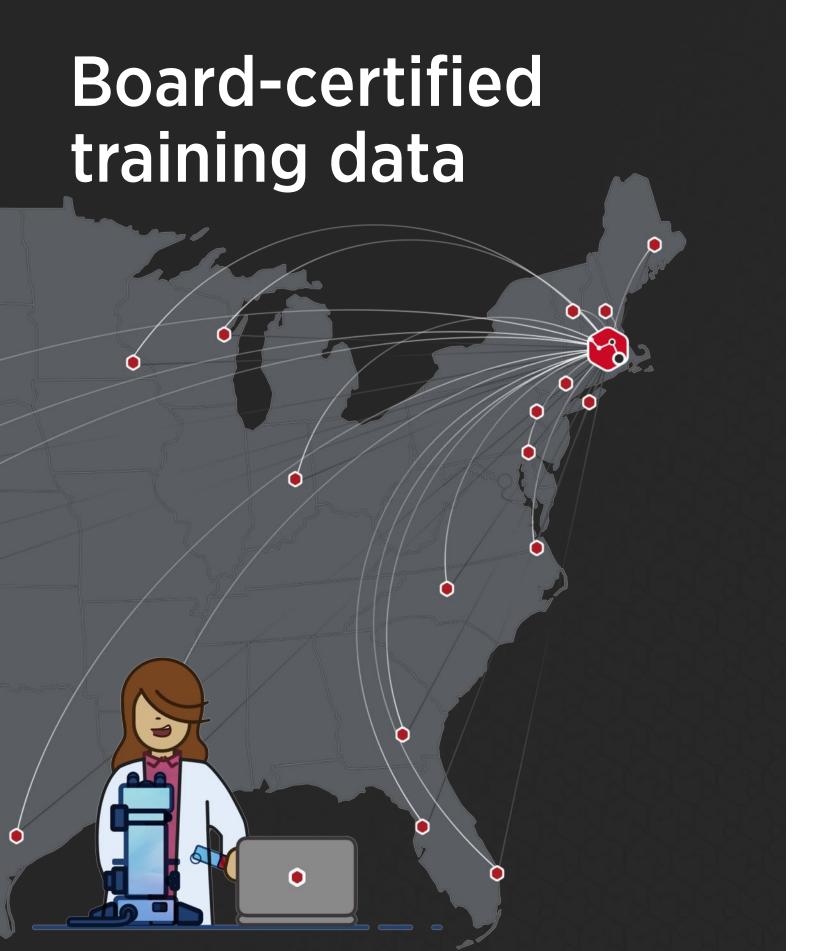
Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer

Julie Brahmer, M.D., Karen L. Reckamp, M.D., Paul Baas, M.D.,
Lucio Crinò, M.D., Wilfried E.E. Eberhardt, M.D., Elena Poddubskaya, M.D.,
Scott Antonia, M.D., Ph.D., Adam Pluzanski, M.D., Ph.D., Everett E. Vokes, M.D.,
Esther Holgado, M.D., Ph.D., David Waterhouse, M.D., Neal Ready, M.D.,
Justin Gainor, M.D., Osvaldo Arén Frontera, M.D., Libor Havel, M.D.,
Martin Steins, M.D., Marina C. Garassino, M.D., Joachim G. Aerts, M.D.,
Manuel Domine, M.D., Luis Paz-Ares, M.D., Martin Reck, M.D.,
Christine Baudelet, Ph.D., Christopher T. Harbison, Ph.D.,
Brian Lestini, M.D., Ph.D., and David R. Spigel, M.D.

Can we do better?

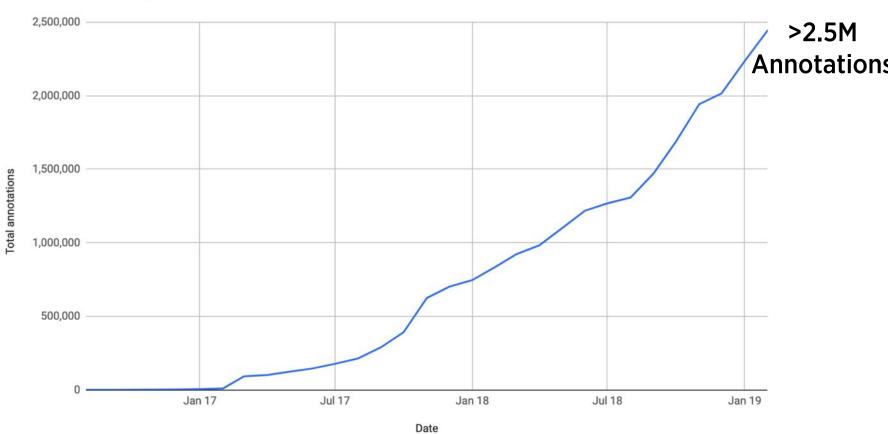
- Deep learning is data hungry
 - Need 10s of thousands of precise cell annotations

First, we need the data



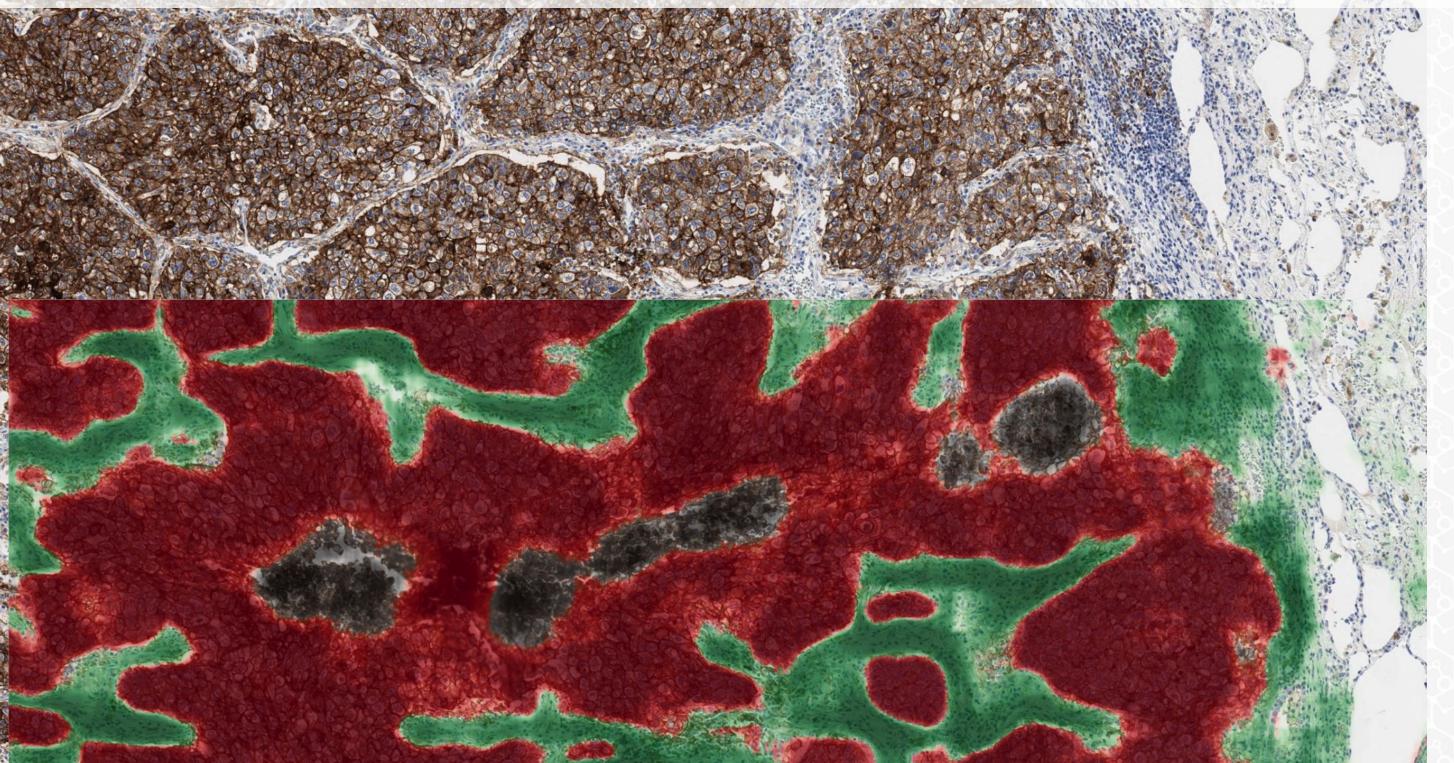
Working with pathologists around the country to generate high-quality annotations

Total annotations, 2017 - 2019



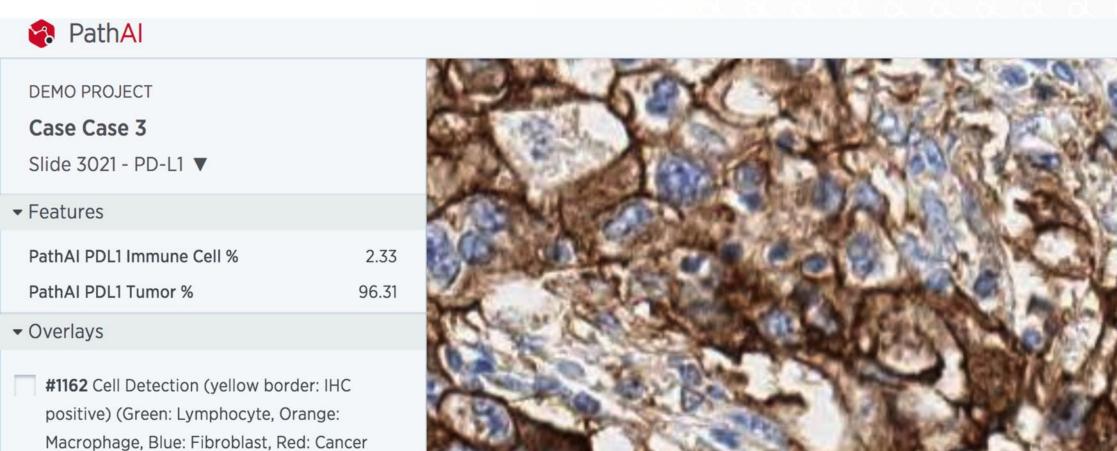
Automatic and exhaustive regions of interest

tumor and relevant stroma



IHC expression difficult to detect

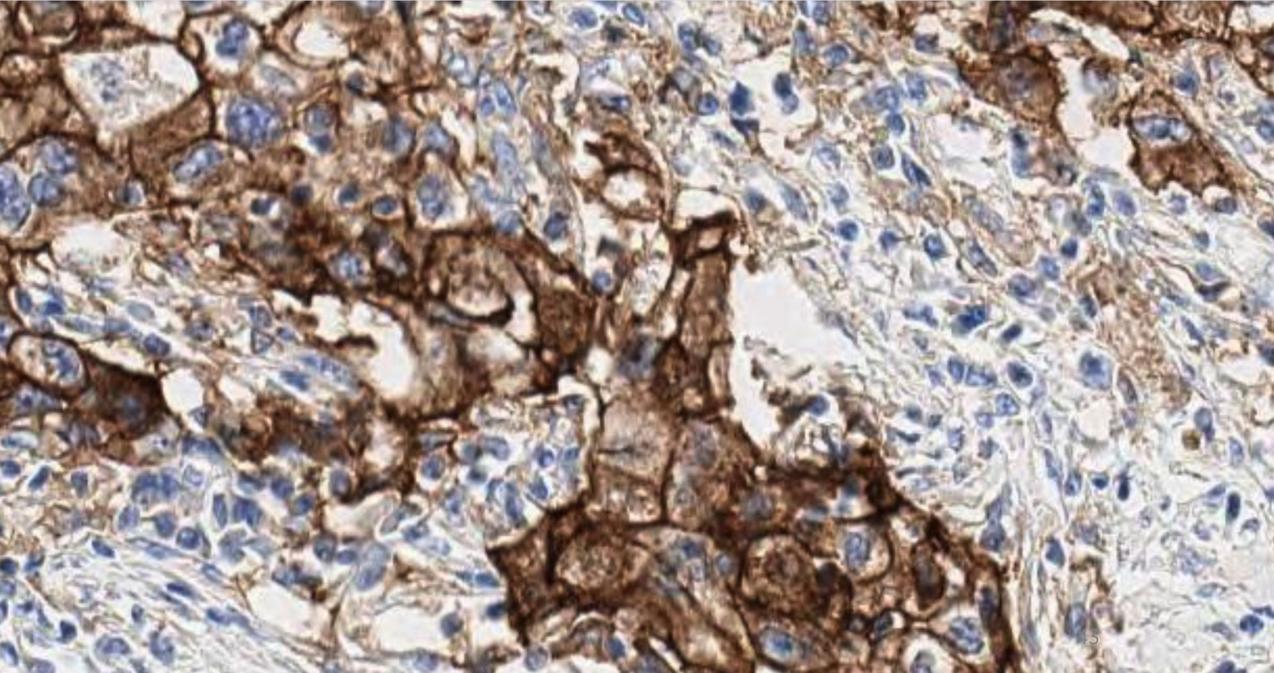
on immune and tumor cells



#1160 Tissue map (Green: Stroma, Red: Cancer anithalium Dlade Nagracia)

▼ Navigation

epithelial cell)



Exhaustive automated classification

Cell type and cellular IHC positivity classification

DEMO PROJECT

Case Case 3

Slide 3021 - PD-L1 ▼

▼ Features

PathAl PDL1 Immune Cell %

96.31

2.33

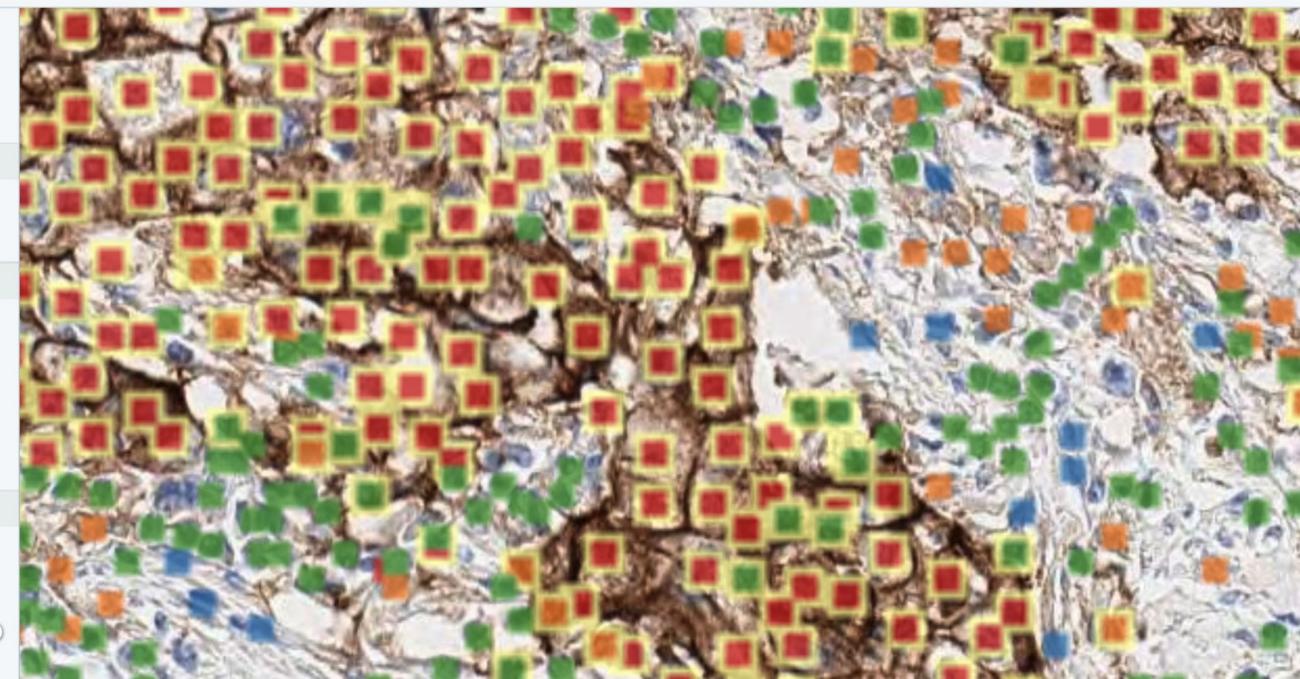
PathAl PDL1 Tumor %

▼ Overlays

#1162 Cell Detection (yellow border: IHC positive) (Green: Lymphocyte, Orange: Macrophage, Blue: Fibroblast, Red: Cancer epithelial cell)

₩1160 Tissue man (Green: Stroma Ped: Cancer

Navigation

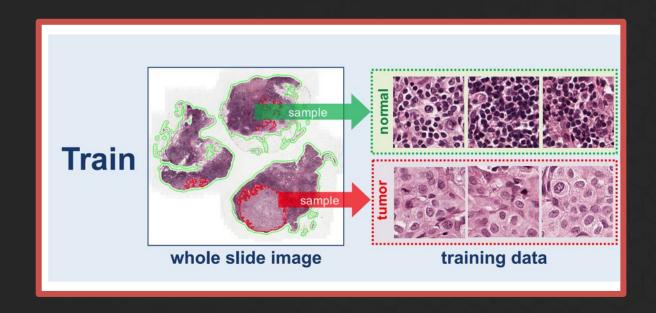


Quantitative and reproducible PD-L1 scoring

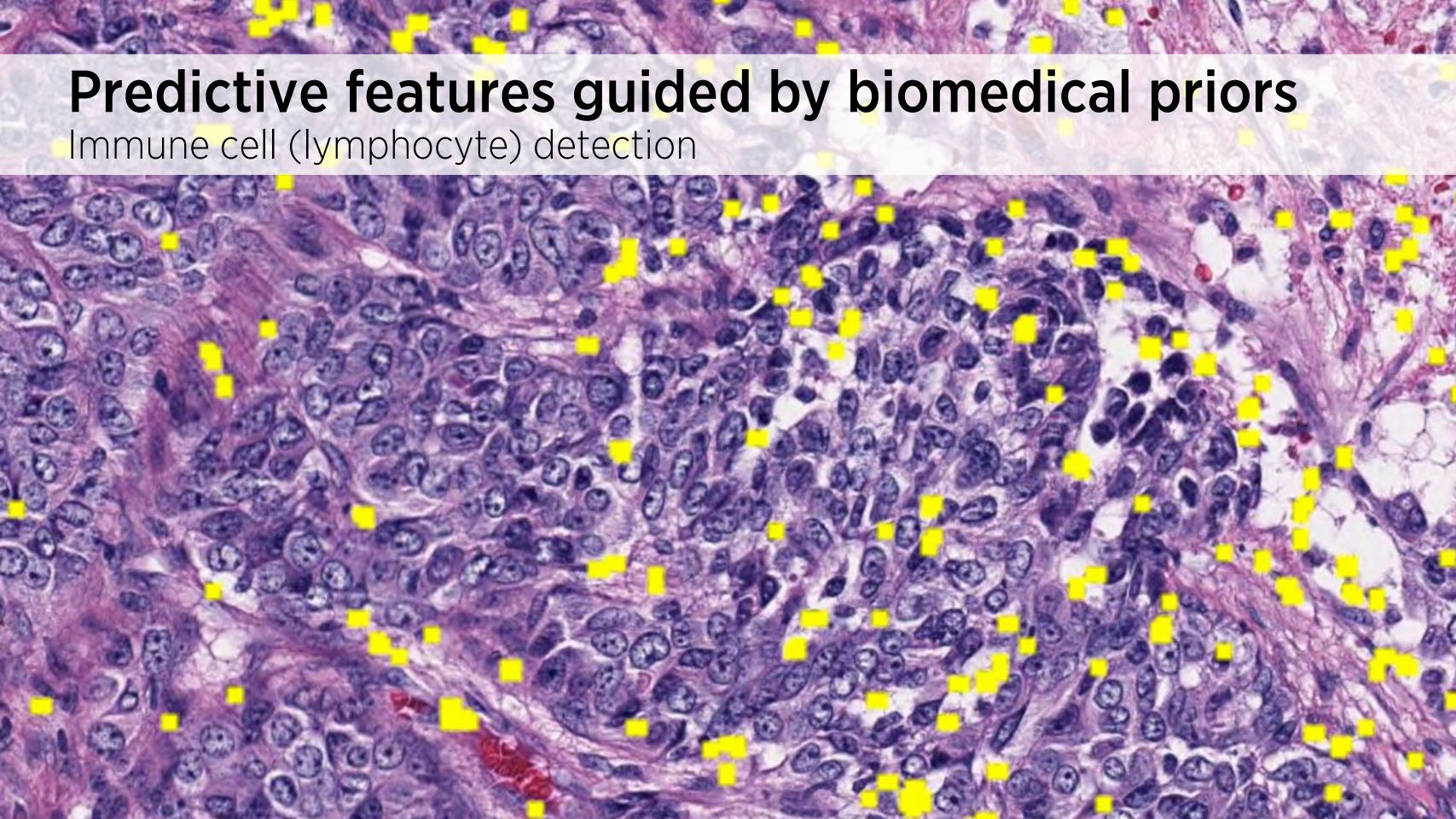
- Manual review: few hundred cells over a few arbitrary high-power fields of view
- Automated analysis: exhaustive classification of 10k-1million cells

Taking it further From quantitative assay to patient prediction

- PD-L1 scoring alone reduces billions of pixels to 1-2 numbers.
- Can we identify additional relevant information?
 - Using data from randomized controlled clinical trials
- However: Millions of patches, hundreds of patients



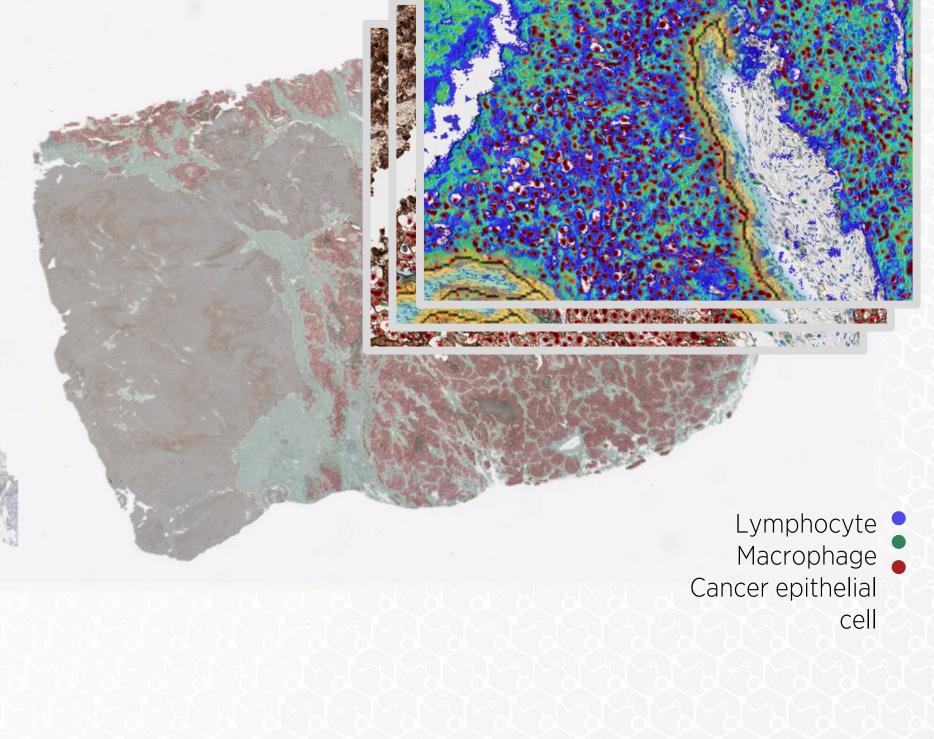
Predictive features guided by biomedical priors H & E slide matching PD-L1 slide



Predictive features guided by biomedical priors Cancer epithelium (red) and stroma (green) segmentation

Predictive features guided by biomedical priors Epithelial-stromal interface definition

Cell-type specific, tissue context-aware IHC-quantification



Data-driven identification of pathological phenotypes associated with drug response

Total number of macrophages in epithelial/stroma interface (80um)

Total number of macrophages in epithelial/stroma interface (120um)

Total number of macrophages in invasive margin (250um)

Total number of lymphocytes in epithelial/stromal interface on H&E stain

Total number of plasma cells in epithelium on H&E stain

Total number of plasma cells in stroma on H&E stain

Tumor (epithelium + stroma) area on H&E stain

Total number of plasma cells in epithelial/stroma interface (40um)

Total number of plasma cells in epithelial/stroma interface (80um)

Area (mm²) of epithelial/stroma interface (80um) target positive cancer cells on target stain

Area (mm²) of epithelial PDL-1 positive macrophages on target stain

Necrosis area on target stain

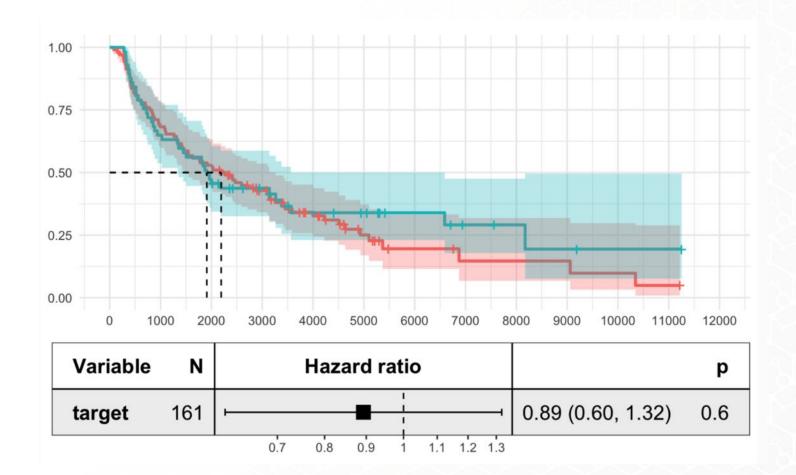
Proportion of tumor infiltrating lymphocytes engaged by target positive macrophages

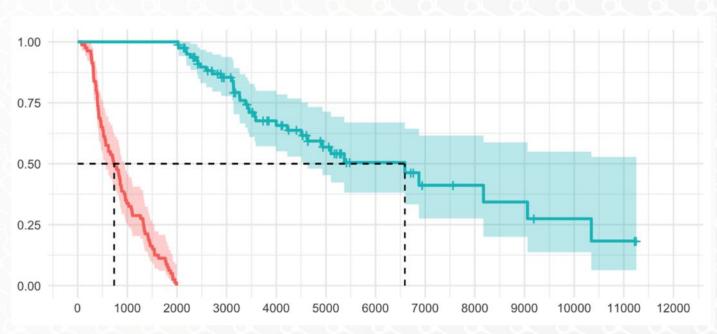
Stroma area on target stain

Tissue area on target stain

Multivariate models predictive of IO response

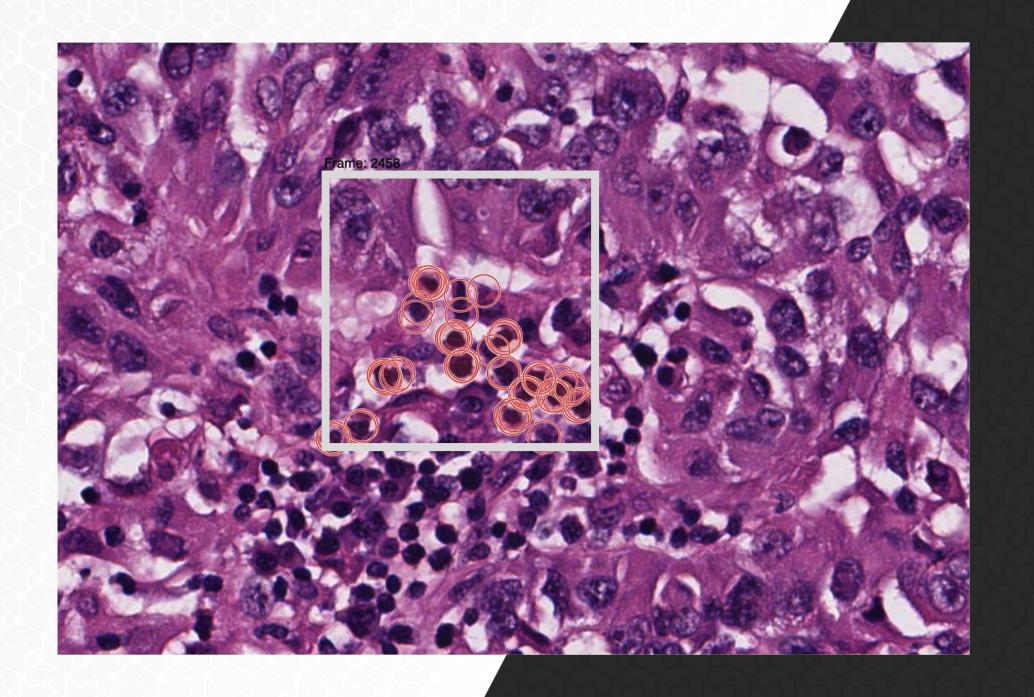
- Low *n*, interpretability and measures of uncertainty valuable:
 - No deep learning (gasp!)
- Feature importance/selection in these models can provide disease insight
 - Now we're doing things pathologists can't rather than automating / improving what they already can





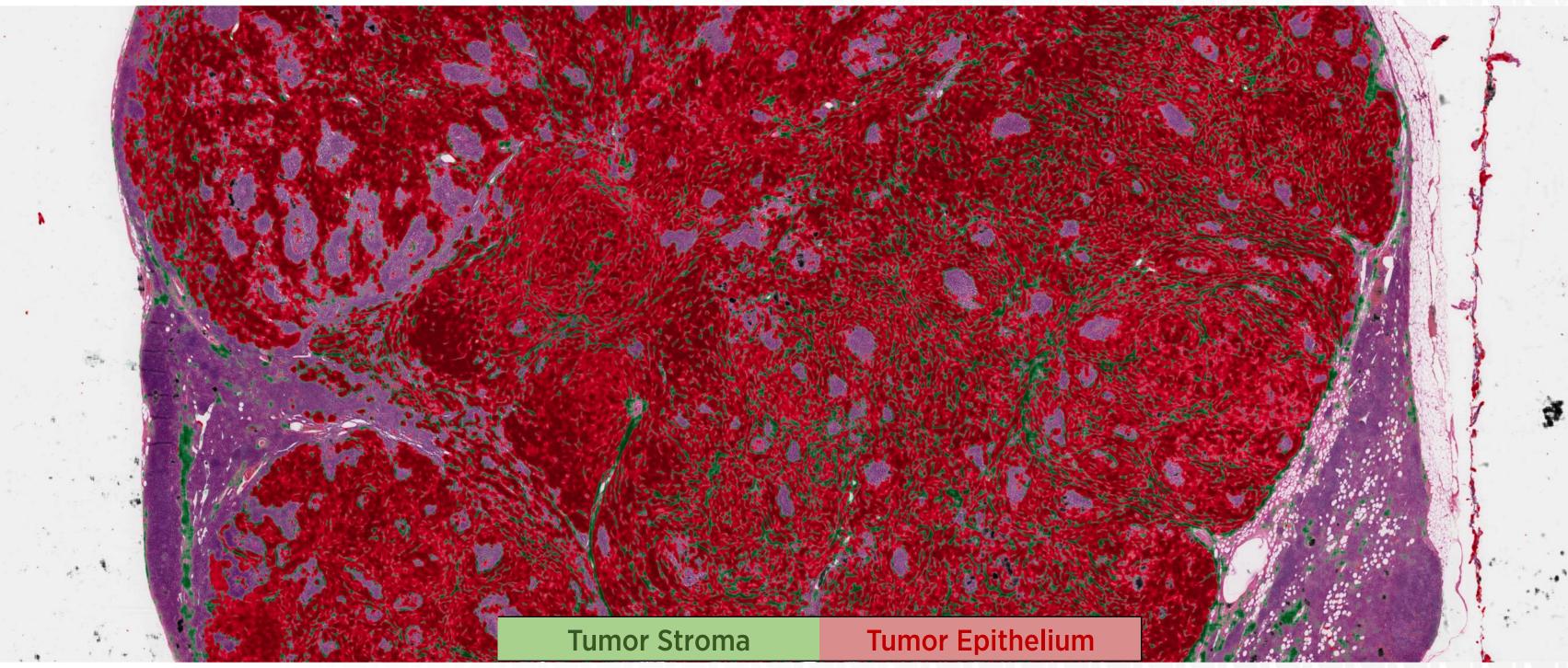
Note: KM curves for illustration only

How do we know these features are correct?

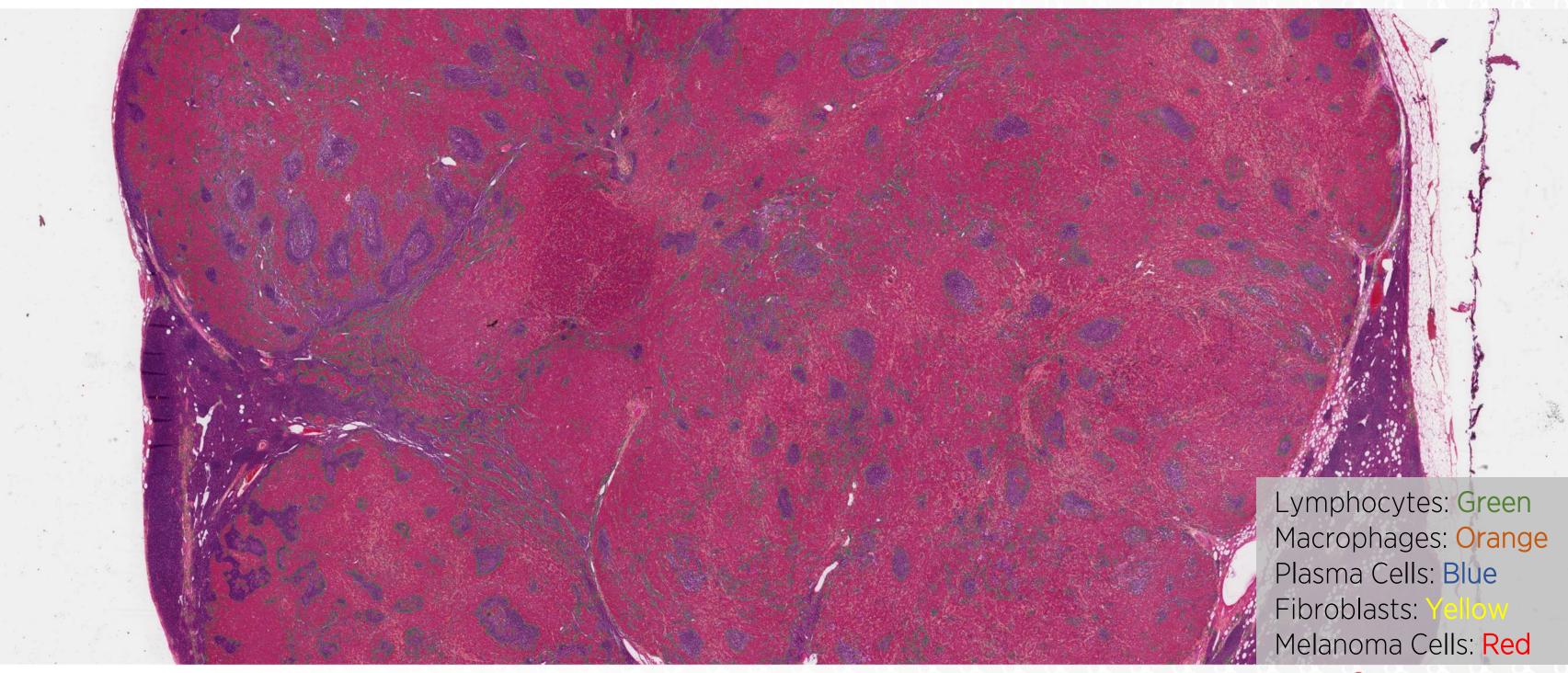


Frames
Validation by
exhaustive
consensus

Melanoma Tissue Map

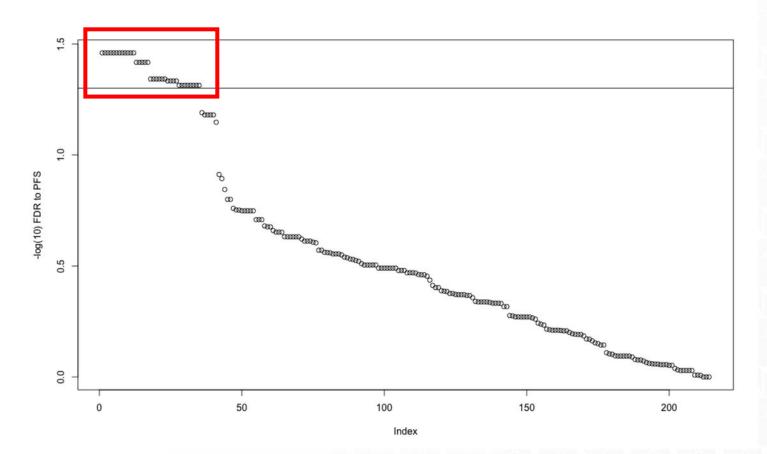


Melanoma Cell Map

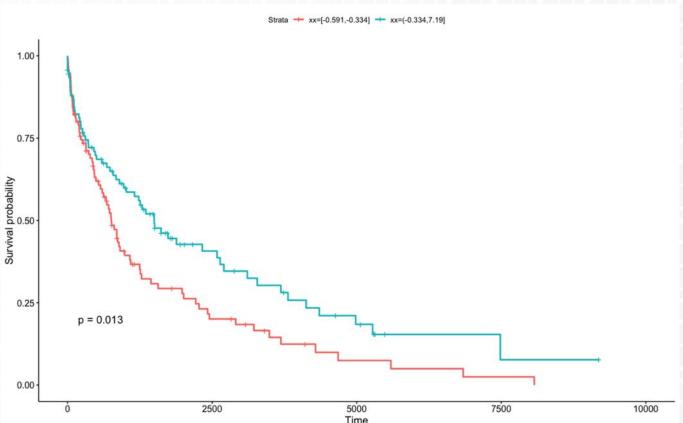


Exhaustive analysis of cellular features in TCGA to enable data-driven identification of pathological predictors of survival in malignant melanoma

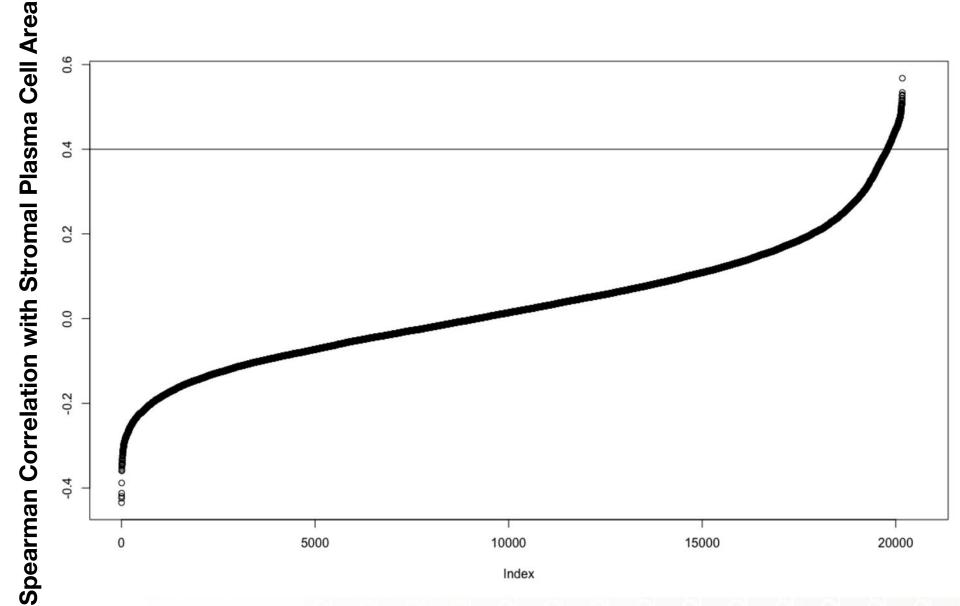
Pathological phenotypes with FDR < 5% for association with Progression Free Survival



Increased area of stromal plasma cells associated with improved survival in melanoma



Data-driven identification of transcriptional signature underlying stromal area of plasma cells in melanoma



Top-ranking transcripts associated with stromal area of plasma cells

Gene	Correlation
REC8	0.57
GPR174	0.53
CD38	0.53
LAX1	0.53
TOX	0.53
AKAP5	0.53
C8orf80	0.52
JSRP1	0.52
IGJ	0.52
TNFRSF17	0.51
EAF2	0.51

Transcript Ranking

Stromal plasma cell area RNA signature strongly enriched for immune genes

Gene Set Name	Description	FDR q- value
REACTOME_IMMUNE_SYSTEM	Genes involved in Immune System	7.62E-57
REACTOME_ADAPTIVE_IMMUNE_SYSTEM	Genes involved in Adaptive Immune System	6.02E-42
PID_TCR_PATHWAY	TCR signaling in naive CD4+ T cells	4.24E-30
REACTOME_IMMUNOREGULATORY_INTERACTIONS_BETWEEN_A_LYMPHOID_AND_A_NON_LYMPHOID_CELL	Genes involved in Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell	6.07E-26
KEGG_PRIMARY_IMMUNODEFICIENCY	Primary immunodeficiency	7.98E-24
PID_IL12_2PATHWAY	IL12-mediated signaling events	9.27E-24
PID_CD8_TCR_PATHWAY	TCR signaling in naive CD8+ T cells	9.27E-24
KEGG_CELL_ADHESION_MOLECULES_CAMS	Cell adhesion molecules (CAMs)	3.00E-22
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION	Cytokine-cytokine receptor interaction	6.38E-22
KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION	Intestinal immune network for IgA production	3.37E-21
REACTOME_TCR_SIGNALING	Genes involved in TCR signaling	3.24E-20
REACTOME_PD1_SIGNALING	Genes involved in PD-1 signaling	3.44E-19
REACTOME_COSTIMULATION_BY_THE_CD28_FAMILY	Genes involved in Costimulation by the CD28 family	5.48E-19

Another Al plus: scalability

- Same pipeline for any solid tumor type
 - Contrast to traditional approach: hand-crafted algorithms.

PathAI for Immuno-oncology

PathAI platform has been applied to:

- Non-small cell lung cancer (Adenocarcinoma)
- Non-small cell lung cancer (Squamous Cell Carcinoma)
- Small cell carcinoma of the lung
- Urothelial carcinoma of the bladder
- Head and neck squamous cell carcinoma
- Melanoma
- Breast cancer
- Prostate cancer
- Colon cancer

>30 IO-IHC biomarkers studied

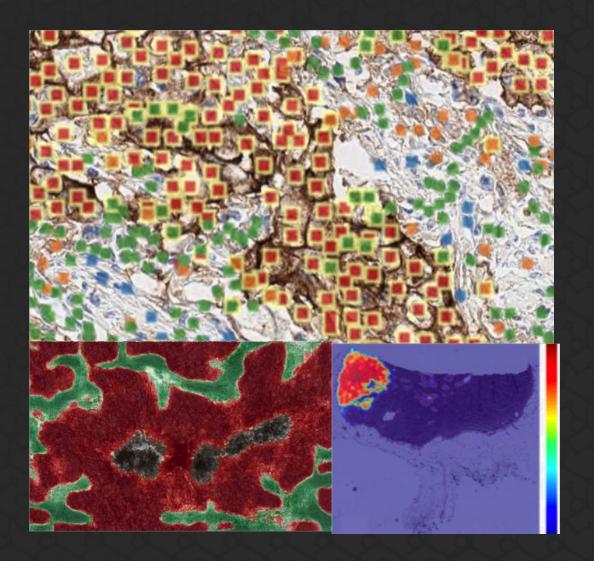
IHC images processed

10,000+

Number of Annotations 2.5 Million+

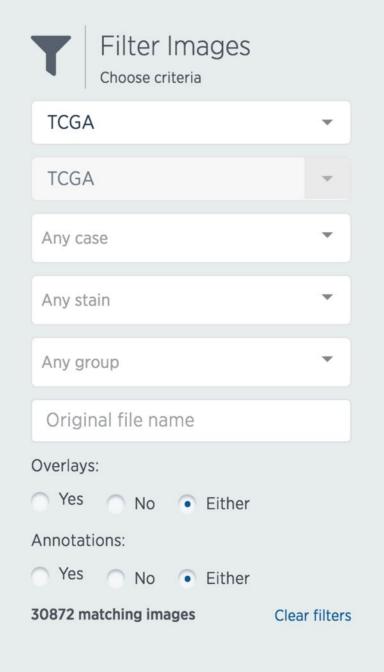
PDL1 IHC cells classified 1 Billion+

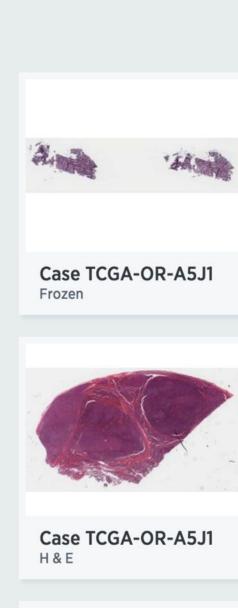
In 2018, PathAI classified ~15x the number of cells that all US pathologists could perform in a year

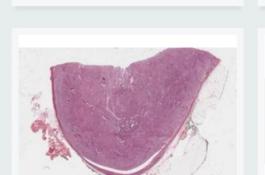


Extensive Slide Search & Data Standardization

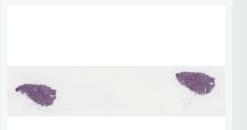
Slides Search







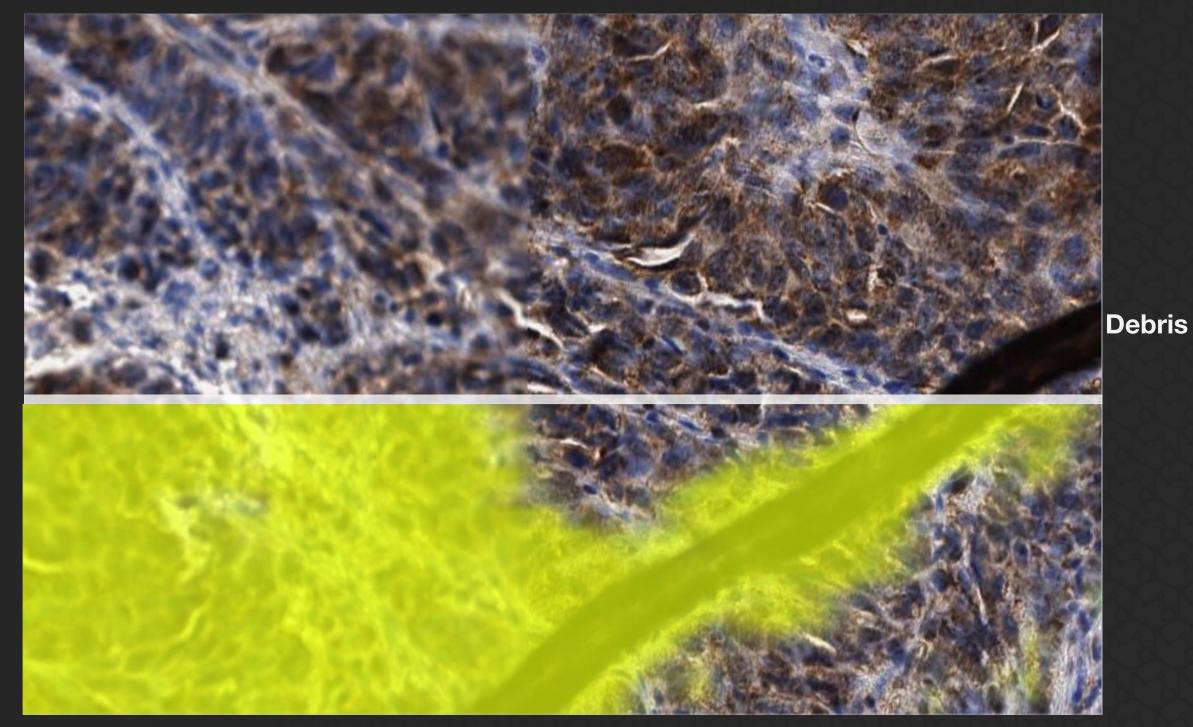
H&E



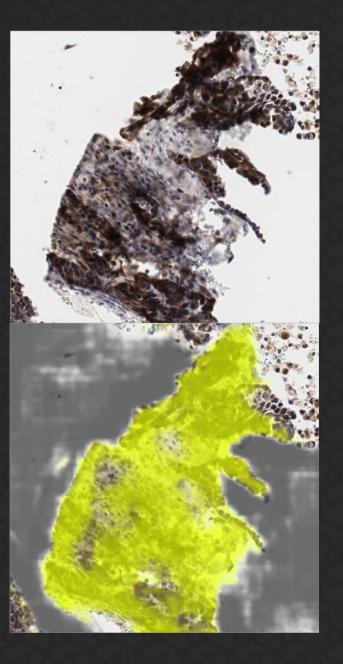
Case TCGA-OR-A5J1

Automated quality control

Blurred areas

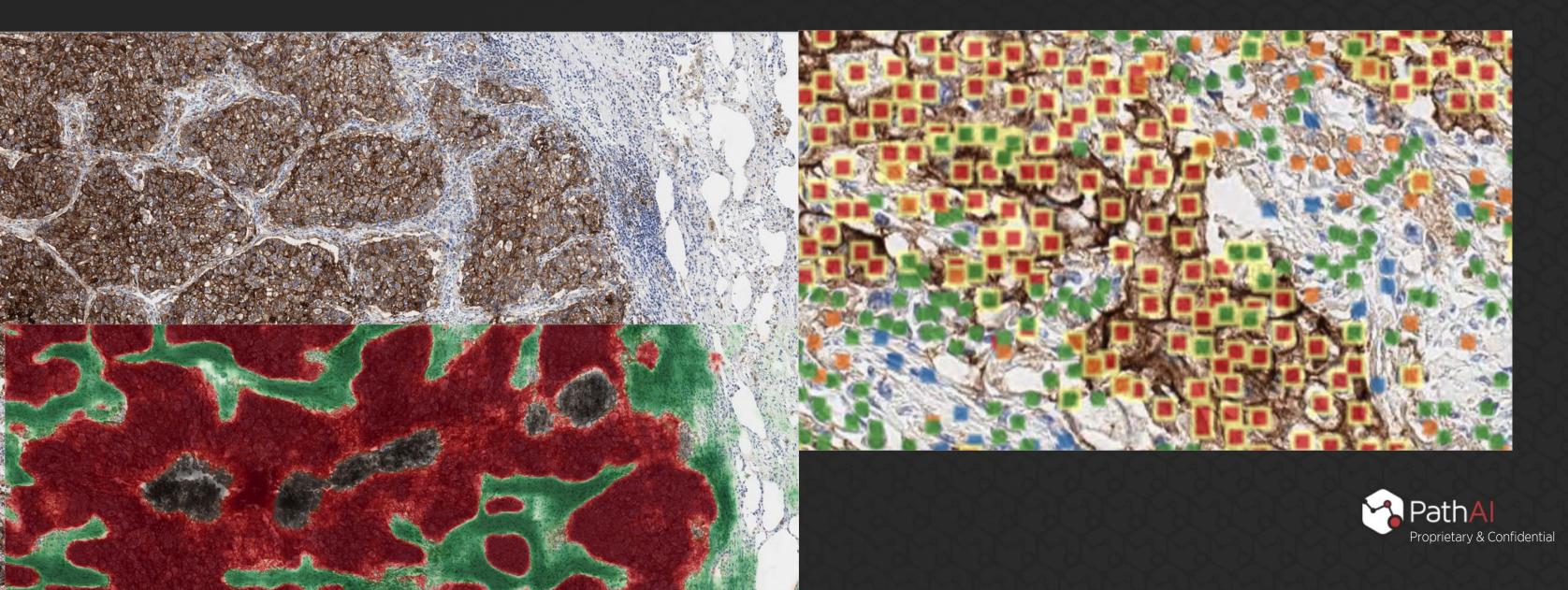


Folded / damaged tissue



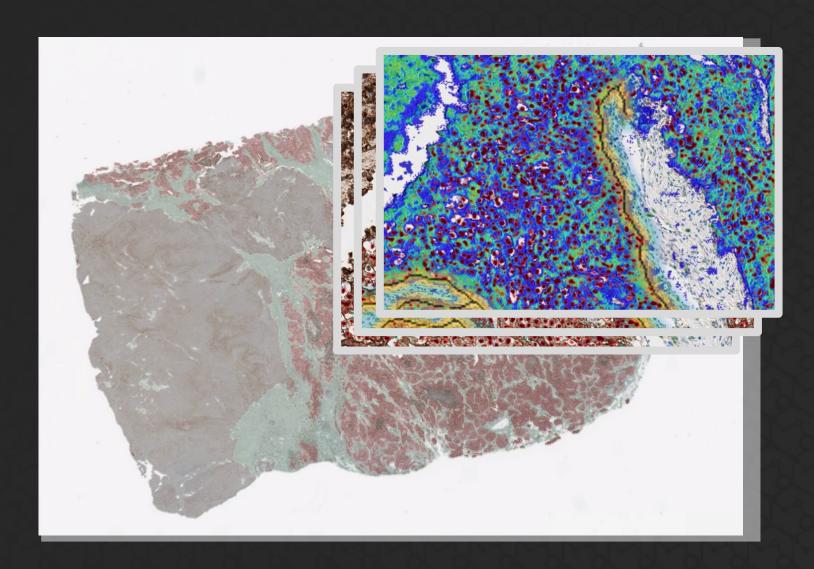
Annotate, train and deploy task-specific models

Determined by partner needs

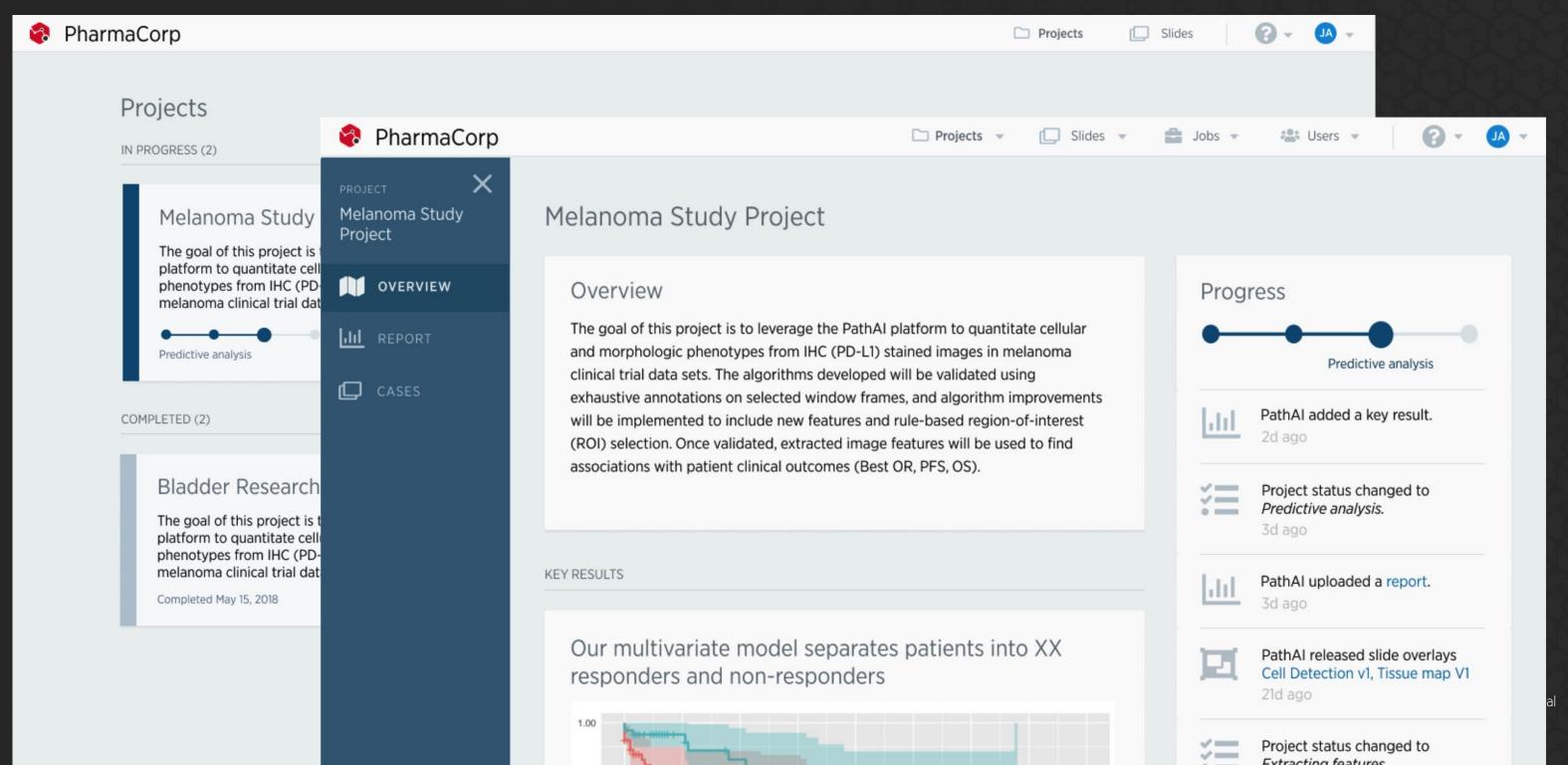


Interpretable feature extraction

Hypothesis& datadriven



Interactive Reports & Live Project Progress



The PathAl Deep Learning Process

Whole-Slide Images + Data

Transmit training data securely to the PathAl cloud

Annotations

Network of boardcertified pathologists to provide ground truth consensus

Deep Learning Analysis

Cell detection, tissue & region classification

Deep Learning Feature Analysis

Over 200 relevant features extracted, measured and analyzed

Assay Validated

Identified features of significance reduced to practice

Assay Deployed

Analyze samples, quantified & visual results delivered

We can execute process in 4 – 8 weeks for new assays

Al in medicine Some closing thoughts

- ML in the real world:
 - Building the right dataset is75% of the challenge
- Modern ML: engineering and empirical science
 - Rigorous validation is key
- Ideas and algorithms vs. teams and infrastructure

Core challenges and road ahead

Technology

Regulatory

Financial

Workflow transformation

Key Takeaways

- Researchers have been working on AI for pathology for ~30 years
- In the past 5 years, advances in:
 - Availability of digital data
 - Access to large-scale computing resources
 - Major algorithmic advances (e.g., Deep CNNs)
- Al works extremely well when these 3 factors are all available and fails when they are not

Key Takeaways

- AI-powered pathology is broadly applicable across all imagebased tasks in pathology and enables integration with other structured data types (e.g., 'Omics)
- As AI and digital pathology are incorporated into clinical workflow, they will offer significant operational and efficiency advantages
- Al will drive improvements in the accuracy and predictiveness of pathology leading to research advances and improved care for patients

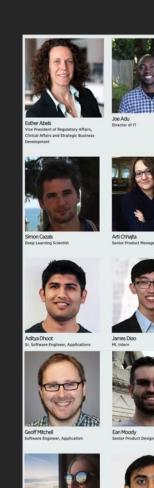
"In the Future..." (1987)

• "Integrated information systems, patient care management by exception, decision support tools, and, in the future, "artificial intelligence" assists can all be expected to become staples of pathology practice, especially impacting those pathologists who choose to be responsive to the new practice milieu of medical information science."

Director, Machine Learning Research

pathai.com **Opportunities for ML** engineers/scientists, software engineers, pathologists,...

Thank you!



73