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A Brief Introduction to Cardiac Structure and 
Function



Coronary heart disease (CHD) is the leading global 
cause of death

CHD is the leading cause 
of death in both 
developed and developing 
countries.

Lancet, 2018



The heart’s primary function is as a pump

1. The heart must deliver 
oxygenated blood throughout 
the circulatory system

2. Blood supplies tissues with 
oxygen for ATP production, 
delivers and receives signaling 
molecules, and removes waste

3. The heart pumps ~5L of blood 
per minute, which can expand to 
20-35L per minute during 
exercise

4. The rhythmic function of the 
heart results in >2 billion heart 
beats in a typical lifetime



The structure of the heart

4 chambers: RA, RV, LA, LV
4 valves: TV, PV, MR, AV
2 circulations in series: 
pulmonary and systemic



The Cardiac Cycle:  Synchronized Electrical and 
Mechanical Activation

1. The Wiggers 
diagram aligns 
mechanical and 
electrical events 
(and heart sounds)

2. The heart alternates 
between periods of 
relaxation and filling 
(diastole) and 
periods of 
contraction and 
ejection of blood 
(systole)



Visualizing the Heart in Motion



Diseases of the heart are organized into 
abnormalities of contractile function, coronary 
blood supply, circulatory flow, or heart rhythm

Abnormality Disease Names Presentation Treatment
Contractile function Heart failure Shortness of 

breath, fluid 
buildup in legs

medications, ventricular 
assist device, transplant

Coronary blood 
supply

Coronary artery 
disease, myocardial 

infarction

Chest pain, 
shortness of breath

angioplasty/stenting; 
coronary artery bypass 

grafting

Circulatory flow Aortic stenosis/
regurgitation, mitral 

stenosis/regurgitation,

Light 
headedness, 
shortness of 

breath, fainting

valve replacement, valve 
repair

Heart rhythm Atrial fibrillation/
flutter, ventricular 

tachycardia, sick sinus 
syndrome

palpitations, 
fainting, cardiac 

arrest

ablation, implantable 
defibrillator, pacemaker



The heart is a complex multicellular organ

1. The cardiomyocyte is the 
primary excitable and 
contractile cell in the heart

2. But … only 31% of cells in the 
heart are cardiomyocytes

3. Cardiac function and disease 
arises from the interplay of a 
broad group of cells

4. Other cell types:  endothelial, 
fibroblast, leukocytes Pinto et al, Circ Res, 2016



Cardiac Imaging in Medical Decision Making



Cardiac imaging plays a critical role in diagnosis 
(and definitions of disease)

Modality Cost Approach Diagnostic Utility
Electrocardiogram 

(ECG)
$ Voltage 

differences
Myocardial infarction

Echocardiography $$-$$$ Ultrasound 
(sound waves); 
Doppler shift

Quantitation of cardiac 
structure and function, 
heart failure, valvular 
disease, pulmonary 

hypertension
MRI $$$$ Magnetic 

resonance 
(volumetric 

reconstruction)

Quantitation of cardiac 
structure and function, 
heart failure, valvular 

disease
Angiography 

(Fluoroscopy and 
Computed 

Tomography)

$$$$ X-ray 
(volumetric 

reconstruction for 
CT)

Epicardial coronary 
artery disease

SPECT/PET $$$$ Radionuclide 
tracer

Coronary artery 
disease (inferred); 

microvascular disease
Intracardiac 
pressure 

transducers

$$$ Pressure 
transducer

Heart failure, valvular 
disease, pulmonary 

hypertension

Many cardiac diseases are defined (for better or worse) as 
departures from normal anatomic/physiologic values



Cardiac decisions are often (but not always) guided 
by inputs from imaging

Disease Decision Inputs
Heart failure Decision to implant a 

defibrillator to prevent 
sudden death

Symptoms + 
ejection fraction of 

the heart <35%

Coronary artery 
disease

Angioplasty and 
stenting of a coronary 

artery

Symptoms + 
stenosis > 70% 

Aortic stenosis Valve replacement Symptoms + 
valve area + 

enlargement of the 
heart

Atrial fibrillation Decision to start 
anticoagulation to 

prevent stroke

Age, sex, other 
diagnoses

Myocardial 
infarction

Decision to start 
aspirin and a statin to 
prevent a future heart 

attack

A risk model 
based on age, sex, 
lab values, blood 

pressure, diabetes

1. Information content of 
imaging can be very high … 
but decisions are based on 
historical patient populations 
followed through time with 
the relevant disease

2. Risk model and decision 
analysis is dictated by what 
data are available for these 
historical populations

3. Imaging is available for 
patient populations for 
which it is a part of the 
accepted management plan 
… but is unlikely to be found 
for other diseases given cost



Imaging Modalities and Data



How Medical Imaging Data Are Stored

1. DICOM (Digital Imaging and Communications Standard) is 
the international standard to transmit, store, retrieve, print, 
process, and display imaging information

2. Image/video files are stored in DICOM format, and combine 
a compressed image with a DICOM “header” which includes 
characteristics of the image

3. Open access libraries like GDCM, pydicom facilitate 
compressing/uncompressing; reading and editing header

4. Osirix Lite provides a free DICOM viewer



Where can I get access to data?

1. Most imaging data is housed in data archives (increasingly 
“vendor neutral”) 

2. Access is often highly limited:  
1. Some images have burned in pixels with patient names, dates 

of birth
2. Scalable solutions for download and de-identification are 

not always available (these would facilitate changing vendors)
3. Some systems have monetized their imaging data

3. Labels (e.g. diagnoses, measurements) are often stored 
separately in the electronic health record

4. Scale of data (at BWH) - clearly relates to cost of the study as 
well as perceived utility:
1. Electrocardiograms:  30 million ECGs
2. Echocardiography:  300,000-500,000 studies
3. Cardiac PET:  8000 studies



Example of a DICOM header

Unfortunately, there can be some instrument to instrument 
variability in how some fields are represented.



Characteristics of Cardiac Imaging Data

1. Compression: lossy vs. lossless
2. Spatial resolution: number of 

pixels; pixel dimensions
3. Sampling frequency (temporal 

resolution):  very high for 
various ultrasound modalities 
and coronary angiography, 
moderate for CT scanners

4. Coronary artery velocity is 
10-65 mm/seconds

5. “Gating”:  electrocardiogram 
information can be coupled 
with imaging information to 
average images across 
corresponding portions of the 
cycle

Modality Spatial Resolution Temporal 
resolution

Echocardiography 2-3 mm 1-5 ms for 
some modes; 

typically 20-30ms 
for 2D

MRI 0.1mm 30-100 ms

Angiography 
(Fluoroscopy)

0.1mm 1-10 ms

Computed 
Tomography

0.5mm in x,y; 
0.5-0.625mm in z

65-175 ms

SPECT/PET 8-10 mm for 
SPECT; 3-5 mm for 

PET

minutes



Relevant Topics in Computer Vision



Machine learning in cardiac disease - what 
physician practices can we mimic?

1. All current measurements (cardiac 
chamber areas, ventricular 
thickness) are performed manually
1. Severity of a stenosis of the 

coronary artery 
2. Left ventricular cardiac 

volumes (and by comparison 
across the cardiac cycle, 
ejection fraction)

2. Some disease diagnoses involve 
classification of images/videos

We’ll come back to whether these contributions would be seen as 
valuable



Many priorities in computer vision are of great 
interest to cardiac imaging

1. Image (and video) classification: assigning a label to 
an image/video

2. Semantic segmentation:  associating each pixel in an 
image with a class label 

3. Image registration: mapping different sets of images 
onto one coordinate system



Image classification:  an obvious task to mimic

1. Many simple disease recognition tasks exist in medicine - and can be 
carried out by an experienced radiologist in 2 minutes or less
1. e.g. lung cancer or not
2. pneumonia or not
3. breast cancer or not
4. fluid around the heart or not

2. Many of the first successes in medical image classification have 
involved situations with very large data sets, already labeled in the 
context of routine clinical care
1. Chest x-rays
2. Mammograms

3. Barriers to data export and sharing have limited the size of many 
other data sets



Image classification:  convolutional neural 
networks have rekindled an interest in automated 
medical image classification

raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)
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LeCun, Bengio and Hinton, Nature, 2015

1. Representation learning
2. No need for hand-engineering of features
3. Transfer learning: important in training data poor scenarios



Image classification:  will anyone use it?

1. If a radiologist takes 2 minutes to read a study, how much 
benefit is there to automate the process

2. Liability is an enormous reason why we don’t task-shift image 
interpretation to less-skilled personnel - radiologists are among 
the most sued physicians

3. So it is unlikely we will see the benefits of other disciplines 
where a machine will be permitted to independently read a 
study BUT:
1. If there are 1000 X-rays to (over)read or if the hospital is in 

off-hours (overnight, weekend), a machine can pre-read and 
decide what’s most urgent to look at

2. An independent read should catch some missed diagnoses
4. The calculus may change in resource poor settings



Image classification:  explaining the diagnosis

1. All imaging-based medical decisions have typically required a 
corresponding human confirmation of a visual finding

2. In some cases, the need is unambiguous: you can’t take a biopsy of a 
tumor you can’t localize; nor can you submit a report that doesn’t 
localize the abnormality

3. Increasingly patients and providers share in decisions:  requiring both 
to be convinced of the validity of the conclusion

4. CNNs raise some concerns as to whether a simple explanation can 
always be given

Murdoch et al, arXiv, 2019



Image classification:  explaining the diagnosis

1. Different strategies
1. Find input images that maximally activate 

a given class score and compare them 
according to some interpretable property

2. Visualize how the network responds to a 
specific input image

2. Saliency map (Simonyan, Vedaldi, Zisserman, 
2014):
1. Class model visualization: generate an 

image that maximizes the (regularized) 
class score

2. Image-specific class-specific saliency map: 
plots the derivative of the score function 
for a given class with respect to each pixel



Published as a conference paper at ICLR 2017

Figure 9: Visualization of the support for the correct classification ”HIV”, using the Prediction Differ-
ence method and Logistic Regression Weights. For an HIV sample, we show the results with the prediction
difference (first row), and using the weights of the logistic regression classifier (second row), for slices 29 and 40
(along the first axis). Red are positive values, and blue negative. For each slice, the left image shows the original
image, overlaid with the relevance values. The right image shows the original image with reversed colors and
the relevance values. Relevance values are shown only for voxels with (absolute) relevance value above 15% of
the (absolute) maximum value.

Figure 10: Prediction difference visualization for different samples. The first four samples are of the class
”healthy”; the last four of the class ”HIV”. All images show slice 39 (along the first axis). All samples are
correctly classified, and the results show evidence for (red) and against (blue) this decision. Prediction differences
are shown only for voxels with (absolute) relevance value above 15% of the (absolute) maximum value.

Figure 11: Visualization results across different slices of the MRI image, using the same input image as
shown in 9. Prediction differences are shown only for voxels with (absolute) relevance value above 15% of the
(absolute) maximum value.

Figure 12: How the patch size influences the visualization. For the input image (HIV sample, slice 39 along
the first axis) we show the visualization with different patch sizes (k in alg. 1). Prediction differences are shown
only for voxels with (absolute) relevance value above 15% of the (absolute) maximum (for k = 2 it is 10%).
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Figure 2: Simple illustration of the sampling procedure in algorithm 1. Given the input image x, we select
every possible patch xw (in a sliding window fashion) of size k ⇥ k and place a larger patch x̂w of size l ⇥ l
around it. We can then conditionally sample xw by conditioning on the surrounding patch x̂w.

Algorithm 1 Evaluating the prediction difference using conditional and multivariate sampling
Input: classifier with outputs p(c|x), input image x of size n⇥ n, inner patch size k, outer patch
size l > k, class of interest c, probabilistic model over patches of size l ⇥ l, number of samples S
Initialization: WE = zeros(n*n), counts = zeros(n*n)
for every patch xw of size k ⇥ k in x do

x0 = copy(x)
sumw = 0
define patch x̂w of size l ⇥ l that contains xw

for s = 1 to S do
x0
w  xw sampled from p(xw|x̂w\xw)

sumw += p(c|x0) . evaluate classifier
end for
p(c|x\xw) := sumw/S

WE[coordinates of xw] += log2(odds(c|x))� log2(odds(c|x\xw))
counts[coordinates of xw] += 1

end for
Output: WE / counts . point-wise division

where odds(c|x) = p(c|x)/(1 � p(c|x)). To avoid problems with zero probabilities, Laplace
correction p (pN + 1)/(N +K) is used, where N is the number of training instances and K the
number of classes.

The method produces a relevance vector (WEi)i=1...m (m being the number of features) of the same
size as the input, which reflects the relative importance of all features. A large prediction difference
means that the feature contributed substantially to the classification, whereas a small difference
indicates that the feature was not important for the decision. A positive value WEi means that the
feature has contributed evidence for the class of interest: removing it would decrease the confidence
of the classifier in the given class. A negative value on the other hand indicates that the feature
displays evidence against the class: removing it also removes potentially conflicting or irritating
information and the classifier becomes more certain in the investigated class.

3.1 CONDITIONAL SAMPLING

In equation (3), the conditional probability p(xi|x\i) of a feature xi is approximated using the
marginal distribution p(xi). This is a very crude approximation. In images for example, a pixel’s
value is highly dependent on other pixels. We propose a much more accurate approximation, based
on the following two observations: a pixel depends most strongly on a small neighborhood around it,
and the conditional of a pixel given its neighborhood does not depend on the position of the pixel in
the image. For a pixel xi, we can therefore find a patch x̂i of size l⇥ l that contains xi, and condition
on the remaining pixels in that patch:

p(xi|x\i) ⇡ p(xi|x̂\i) . (4)

This greatly improves the approximation while remaining completely tractable.

For a feature to become relevant when using conditional sampling, it now has to satisfy two conditions:
being relevant to predict the class of interest, and be hard to predict from the neighboring pixels.
Relative to the marginal method, we therefore downweight the pixels that can easily be predicted and
are thus redundant in this sense.
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Figure 3: Visualization of the effects of marginal versus conditional sampling using the GoogLeNet
classifier. The classifier makes correct predictions (ostrich and saxophone), and we show the evidence for (red)
and against (blue) this decision at the output layer. We can see that conditional sampling gives more targeted
explanations compared to marginal sampling. Also, marginal sampling assigns too much importance on pixels
that are easily predictable conditioned on their neighboring pixels.

Figure 4: Visualization of how different window sizes influence the visualization result. We used the
conditional sampling method and the AlexNet classifier with l = k + 4 and varying k. We can see that even
when removing single pixels (k = 1), this has a noticeable effect on the classifier and more important pixels get
a higher score. By increasing the window size we can get a more easily interpretable, smooth result until the
image gets blurry for very large window sizes.

We start this section by demonstrating our proposed improvements (sections 3.1 - 3.3).

Marginal vs Conditional Sampling

Figure 3 shows visualizations of the spatial support for the highest scoring class, using marginal
and conditional sampling (with k = 10 and l = 14). We can see that conditional sampling leads
to results that are more refined in the sense that they concentrate more around the object. We can
also see that marginal sampling leads to pixels being declared as important that are very easily
predictable conditioned on their neighboring pixels (like in the saxophone example). Throughout our
experiments, we have found that conditional sampling tends to give more specific and fine-grained
results than marginal sampling. For the rest of our experiments, we therefore show results using
conditional sampling only.

Multivariate Analysis

For ImageNet data, we have observed that setting k = 10 gives a good trade-off between sharp results
and a smooth appearance. Figure 4 shows how different window sizes influence the resolution of the
visualization. Surprisingly, removing only one pixel does have a measurable effect on the prediction,
and the largest effect comes from sensitive pixels. We expected that removing only one pixel does
not have any effect on the classification outcome, but apparently the classifier is sensitive even to
these small changes. However when using such a small window size, it is difficult to make sense of
the sign information in the visualization. If we want to get a good impression of which parts in the
image are evidence for/against a class, it is therefore better to use larger windows. If k is chosen too
large however, the results tend to get blurry. Note that these results are not just simple averages of
one another, but a multivariate approach is indeed necessary to observe the presented results.

Deep Visualization of Hidden Network Layers

Our third main contribution is the extension of the method to neural networks; to understand the role
of hidden layers in a DNN. Figure 5 shows how different feature maps in three different layers of the
GoogLeNet react to the input of a tabby cat (see figure 6, middle image). For each feature map in a
convolutional layer, we first compute the relevance of the input image for each hidden unit in that
map. To estimate what the feature map as a whole is doing, we show the average of the relevance
vectors over all units in that feature map. The first convolutional layer works with different types of
simple image filters (e.g., edge detectors), and what we see is which parts of the input image respond
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Figure 2: Simple illustration of the sampling procedure in algorithm 1. Given the input image x, we select
every possible patch xw (in a sliding window fashion) of size k ⇥ k and place a larger patch x̂w of size l ⇥ l
around it. We can then conditionally sample xw by conditioning on the surrounding patch x̂w.

Algorithm 1 Evaluating the prediction difference using conditional and multivariate sampling
Input: classifier with outputs p(c|x), input image x of size n⇥ n, inner patch size k, outer patch
size l > k, class of interest c, probabilistic model over patches of size l ⇥ l, number of samples S
Initialization: WE = zeros(n*n), counts = zeros(n*n)
for every patch xw of size k ⇥ k in x do

x0 = copy(x)
sumw = 0
define patch x̂w of size l ⇥ l that contains xw

for s = 1 to S do
x0
w  xw sampled from p(xw|x̂w\xw)

sumw += p(c|x0) . evaluate classifier
end for
p(c|x\xw) := sumw/S

WE[coordinates of xw] += log2(odds(c|x))� log2(odds(c|x\xw))
counts[coordinates of xw] += 1

end for
Output: WE / counts . point-wise division

where odds(c|x) = p(c|x)/(1 � p(c|x)). To avoid problems with zero probabilities, Laplace
correction p (pN + 1)/(N +K) is used, where N is the number of training instances and K the
number of classes.

The method produces a relevance vector (WEi)i=1...m (m being the number of features) of the same
size as the input, which reflects the relative importance of all features. A large prediction difference
means that the feature contributed substantially to the classification, whereas a small difference
indicates that the feature was not important for the decision. A positive value WEi means that the
feature has contributed evidence for the class of interest: removing it would decrease the confidence
of the classifier in the given class. A negative value on the other hand indicates that the feature
displays evidence against the class: removing it also removes potentially conflicting or irritating
information and the classifier becomes more certain in the investigated class.

3.1 CONDITIONAL SAMPLING

In equation (3), the conditional probability p(xi|x\i) of a feature xi is approximated using the
marginal distribution p(xi). This is a very crude approximation. In images for example, a pixel’s
value is highly dependent on other pixels. We propose a much more accurate approximation, based
on the following two observations: a pixel depends most strongly on a small neighborhood around it,
and the conditional of a pixel given its neighborhood does not depend on the position of the pixel in
the image. For a pixel xi, we can therefore find a patch x̂i of size l⇥ l that contains xi, and condition
on the remaining pixels in that patch:

p(xi|x\i) ⇡ p(xi|x̂\i) . (4)

This greatly improves the approximation while remaining completely tractable.

For a feature to become relevant when using conditional sampling, it now has to satisfy two conditions:
being relevant to predict the class of interest, and be hard to predict from the neighboring pixels.
Relative to the marginal method, we therefore downweight the pixels that can easily be predicted and
are thus redundant in this sense.
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Semantic segmentation:  localizing structures

1. Semantic segmentation:  assigning labels to 
individual pixels

2. Quantification of cardiac function involves 
estimating the heart’s volume at its upper 
and lower limits
1. This requires delineating the boundaries 

of the heart:  a segmentation task
3. A diagnosis (classification) may also require 

limiting the field of view to a given 
structure

4. Many radiology reports involve providing 
measurements (lengths, areas) for basic 
structures

Table 1 Recommendations for the echocardiographic assessment of LV size and function

Parameter and method Technique Advantages Limitations

Internal linear
dimensions.

Linear internal
measurements of the LV
should be acquired in the
parasternal long-axis
view carefully obtained
perpendicular to the LV
long axis, and measured
at the level of the mitral
valve leaflet tips.
Electronic calipers
should be positioned on
the interface between
myocardial wall and
cavity and the interface
between wall and
pericardium (orange
arrows).

M-mode tracing

2D-guided linear measurements

! Reproducible
! High temporal
resolution

! Wealth of published
data

! Facilitates orientation
perpendicular to the
ventricular long axis

! Beam orientation
frequently off axis

! Single dimension, i.e.,
representative only in
normally shaped
ventricles

! Lower frame rates
than M-mode

! Single dimension, i.e.,
representative only in
normally shaped
ventricles

Volumes.
Volume measurements
are usually based on
tracings of the blood-
tissue interface in the
apical four- and two-
chamber views. At the
mitral valve level, the
contour is closed by
connecting the two
opposite sections of the
mitral ring with a straight
line. LV length is defined
as the distance between
the middle of this line
and the most distant
point of the LV contour.

Biplane disk summation ! Corrects for shape
distortions

! Less geometrical
assumptions
compared with linear
dimensions

! Apex frequently
foreshortened

! Endocardial dropout
! Blind to shape distor-

tions not visualized in
the apical two- and
four-chamber planes

Area-length
! Partial correction for
shape distortion

! Apex frequently
foreshortened

! Heavily based on
geometrical
assumptions

! Limited published
data on normal
population

(Continued )
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long axis, and measured
at the level of the mitral
valve leaflet tips.
Electronic calipers
should be positioned on
the interface between
myocardial wall and
cavity and the interface
between wall and
pericardium (orange
arrows).

M-mode tracing

2D-guided linear measurements

! Reproducible
! High temporal
resolution

! Wealth of published
data

! Facilitates orientation
perpendicular to the
ventricular long axis

! Beam orientation
frequently off axis

! Single dimension, i.e.,
representative only in
normally shaped
ventricles

! Lower frame rates
than M-mode

! Single dimension, i.e.,
representative only in
normally shaped
ventricles

Volumes.
Volume measurements
are usually based on
tracings of the blood-
tissue interface in the
apical four- and two-
chamber views. At the
mitral valve level, the
contour is closed by
connecting the two
opposite sections of the
mitral ring with a straight
line. LV length is defined
as the distance between
the middle of this line
and the most distant
point of the LV contour.

Biplane disk summation ! Corrects for shape
distortions

! Less geometrical
assumptions
compared with linear
dimensions

! Apex frequently
foreshortened

! Endocardial dropout
! Blind to shape distor-

tions not visualized in
the apical two- and
four-chamber planes

Area-length
! Partial correction for
shape distortion

! Apex frequently
foreshortened

! Heavily based on
geometrical
assumptions

! Limited published
data on normal
population

(Continued )
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The U-Net Architecture for Semantic 
Segmentation

2

copy and crop

input
image

tile

output 
segmentation 
map

641

128

256

512

1024

max pool 2x2

up-conv 2x2

conv 3x3, ReLU

5
7
2

 x
 5

7
2

2
8
4
²

64

128

256

512

5
7

0
 x

 5
7
0

5
6
8
 x

 5
6
8

2
8

2
²

2
8
0

²
1

4
0

²

1
3

8
²

1
3

6
²

6
8
²

6
6

²

6
4

²
3

2
²

2
8
²

5
6
²

5
4
²

5
2

²

512

1
0
4

²

1
0

2
²

1
0

0
²

2
0
0
²

3
0
²

1
9

8
²

1
9
6
²

3
9
2

 x
 3

9
2

3
9

0
 x

 3
9
0

3
8

8
 x

 3
8

8

3
8
8
 x

 3
8
8

1024

512 256

256 128

64128 64 2

conv 1x1

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the di↵erent operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it
is quite slow because the network must be run separately for each patch, and
there is a lot of redundancy due to overlapping patches. Secondly, there is a
trade-o↵ between localization accuracy and the use of context. Larger patches
require more max-pooling layers that reduce the localization accuracy, while
small patches allow the network to see only little context. More recent approaches
[11,4] proposed a classifier output that takes into account the features from
multiple layers. Good localization and the use of context are possible at the
same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled

1. The contraction/
downsampling layer 
provides a 
representation of the 
context of the image

2. The expanding/
upsampling layer maps 
contextual features to 
the appropriate 
localization

3. Skip connections 
concatenate images from 
the downsampling layer 
to the upsampling one

Ronneberger et al, arXiv, 2014



Various architectures help incorporate global 
features and contextual interactions

Chen et al, arXiv, 2017



Image registration:  aligning different images

1. There is sometimes a need to merge 
images from different modalities or from 
different time points in the same study

2. In cardiac imaging this is relevant for 
merging a study with poor spatial 
resolution with one which is superior but 
may lack functional information:  PET + CT

3. The low temporal resolution of PET also 
requires averaging across many cardiac 
cycles (ECG-based gating) and there may 
be movement of the thorax (breathing) 
during this time



Image registration methods: pre- and post-CNNs

1. Classification

1. Intensity domain vs. frequency domain

2. Raw intensities vs. feature-based

3. Global (whole image) vs. local (region of 
interest)

4. Type of transformation used to relate 
one image to the other

5. Monomodal vs. multimodal

2. Additional choice of similarity metric as well 
as algorithms to search parameter space for 
geometric transformation

3. Conditional variational autoencoder have 
been explored to learn geometric 
transformations between pairs of images 
(Krebs … Mansi, arXiv:1812.07460, 2018) Oliveira and Tavares 2014



A Fully Automated Echocardiogram Interpretation 
Pipeline



The Failure of our Current Approach to 
Cardiovascular Disease

Time

Risk factors 
deviate from  

optimal values

• blood pressure 
• LDL/VLDL cholesterol 
• weight 
• blood sugar

Hemming and  
hawing regarding  
lifestyle changes

Death 
and  

disability

$$$Therapeutic 
Responsiveness

Treatment may be 
(grudgingly) 

initiated
• anti-hypertensives 
• cholesterol-lowering 
• anti-diabetics

Symptoms 
develop

• dyspnea 
• angina



What sort of solution are we looking for?

1. Low-cost quantitative metrics that are indicative of 

disease progression and reflect the onset of these tissue-

level changes

2. Should be specific to the disease process:

1. expressive:  capture complex underlying processes 

(molecular, cellular, imaging …)

2. multidimensional:   can’t readily be “gamed”

3. Should be ameliorated with therapy (c.f. genetic risk)



Simple cardiac ultrasound views provide a 
quantitative metric of early disease progression

Left atrial volume increases with 
disease

Left ventricular mass increases 
with disease

Left ventricular function 
diminishes with disease



A role for automated interpretation at the  
“low risk - high reward” portion of the spectrum

Skilled sonographer

Expert cardiologist interpretation

Late in disease course

High liability

Non-skilled acquisition
(primary care) 

Decision support regarding initiation 
or intensification of therapy

Automated interpretation

Early in disease course

Low liability

Difficult decisions regarding
 surgery 

Low cost handheld ultrasound Costly full ultrasound system

$$$$



Machine learning in cardiac disease - what should 
we be focusing on?

1. Enabling much greater volumes of data 
(tracking, clinical trial) by:
1. Reducing costs of acquisition
2. Augmenting interpretation of simply 

acquired data - i.e. diagnosing abnormalities 
of relaxation without Tissue Doppler

3. Automating interpretation to reduce costs
2. Surveillance within a hospital system:  patient 

identification for therapies
3. Triage: automated interpretation (lessons from 

ECGs in the ambulance/emergency room)
4. Can we go beyond what humans can see?  

1. Quantitative tracking of intermediate 
states of disease and assessing treatment 
response 

2. Recognizing meaningful subclasses of 
disease that differ in prognosis and 
treatment 



A role for rapid triage:  the electrocardiogram in 
myocardial infarction
1. The ST-elevation myocardial infarction pattern 

in the ECG arises from complete obstruction 
of blood flow to portions of the heart

2. In the early 2000’s it was recognized that any 
delay in angioplasty and stenting would result 
in irreversible damage to the heart

3. The previous approach - with a cardiologist 
reviewing the ECG before any action was 
taken was replaced with a rapid triage system 
by ambulance personnel or ED physicians

4. The cardiac catheterization team would be 
“activated” by non-cardiologists and needed 
to arrive to the hospital within 30 minutes

5. Some subsets of these activations were false 
positives



What is in an Echo Study?

1. Typically a collection of up to 70 videos of the heart taken over 

multiple cardiac cycles and focusing on different viewpoints 

(requiring ~45 min by a skilled sonographer)

2. Heart can be visualized from >10 different views - though not truly 

discrete classes as sonographer can zoom and angle the probe to 

focus on structures of interest. These are typically unlabeled.

3. Still images are typically included to enable manual measurements 

4. UCSF performs 12,000-15,000 echo studies per year; BWH 

performs 30,000-35,000 studies

5. There are >7,000,000 echos performed annually in the Medicare 

population alone

6. There are likely 100,000,000’s of archived echos



An Automated (low-cost!) Approach to Echo 
Interpretation

DICOM format
images

Echo Studies
(14035)

View
Classification

(277)
View Probability
Quality Score

Segmentation
for 5 views
(791*)

Cardiac Structure:
Mass and Volume

(8666)

Cardiac Function:
Ejection Fraction

(6407)
Longitudinal Strain

(526)

Disease Detection:
HCM (495/2244)
PAH (584/2487)
Amyloid (179/804)

Zhang … Deo, Circulation, 2018
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View Classification -  
Someone Already Got To It Before Us
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a b s t r a c t 
This study extends the state of the art of deep learning convolutional neural network (CNN) to the classi- 
fication of video images of echocardiography, aiming at assisting clinicians in diagnosis of heart diseases. 
Specifically, the architecture of neural networks is established by embracing hand-crafted features within 
a data-driven learning framework, incorporating both spatial and temporal information sustained by the 
video images of the moving heart and giving rise to two strands of two-dimensional convolutional neural 
network (CNN). In particular, the acceleration measurement along the time direction at each point is cal- 
culated using dense optical flow technique to represent temporal motion information. Subsequently, the 
fusion of both networks is conducted via linear integrations of the vectors of class scores obtained from 
each of the two networks. As a result, this architecture maintains the best classification results for eight 
viewpoint categories of echo videos with 92.1% accuracy rate whereas 89.5% is achieved using only single 
spatial CNN network. When concerning only three primary locations, 98% of accuracy rate is realised. In 
addition, comparisons with a number of well-known hand-engineered approaches are also performed, in- 
cluding 2D KAZE, 2D KAZE with Optical Flow, 3D KAZA, Optical Flow, 2D SIFT and 3D SIFT, which delivers 
accuracy rate of 89.4%, 84.3%, 87.9%, 79.4%, 83.8% and 73.8% respectively. 

© 2016 Elsevier B.V. All rights reserved. 
1. Introduction 

Echocardiography remains an important diagnostic aid in car- 
diology for heart diseases and relies on the ultrasonic techniques 
to generate both single image and image sequences of the heart, 
providing insight on cardiac structures, movements and detailed 
anatomical and functional information of the heart. More impor- 
tantly, echocardiography (echo) can present the moving heart in 
real time, revealing the health status of the heart in vivo while 
sustaining as a non-invasive, painless, easy to operate and inexpen- 
sive imaging tool. In order to depict different anatomical sections 
of the three-dimensional (3D) heart over the time (1D), there are 
eight standard view positions whereby each specific section of the 
moving heart with distinguished characteristics can be captured. 
Otherwise no clear view of the heart can be observed from any 
other viewpoints. Therefore, in order to acquire any view section, 
physically, an ultrasound transducer is set to posit at three pri- 
mary positions on the surface of a person’s chest. At each posi- 
tion, while rotating angles of the transducer, more sections of the 

∗ Corresponding author. 
E-mail address: x.gao@mdx.ac.uk (X. Gao). 

heart can be brought out. Fig. 1 illustrates the exemplar images 
of all eight views of pictures that an echocardiography can reveal 
at these three primary locations. The first four images, i.e., Api- 
cal 2 Chambers (A2C), Apical 3 Chambers (A3C), Apical 4 Cham- 
bers (A4C), and Apical 5 Chambers (A5C), can be acquired from 
the same location (location 1) while the transducer changes posi- 
tioning angles, whereas at location 2, only one view of Parasternal 
Long Axis (PLA) can be obtained. At location 3, three sections of 
the heart can be captured, depicting Parasternal Short Axis (PSA) 
of Aorta (PSAA), PSA of Papillary (PSAP) and PSA of Mitral (PSAM). 
Usually, the acquisition of echo videos is performed by sonogra- 
phers who will then transfer the acquired data to clinicians for 
them to make diagnostic decisions upon. By doing so, clinically, 
once each viewpoint is determined, a number of major anatomi- 
cal structures, such as left ventricle, can then be manually delin- 
eated, measured and analysed in order to ascertain the status of 
the functioning heart. While in appearance, as presented in Fig. 1 , 
several images might appear similar, e.g. (g) and (h), especially 
when they are viewed in a video form presenting the moving heart 
that might border at two different viewpoints. These images in 
essence capture discriminative information from both spatial and 
temporal point of view. Hence, the determination and classifica- 
tion of the viewpoint upon which the video image under consider- 

http://dx.doi.org/10.1016/j.inffus.2016.11.007 
1566-2535/© 2016 Elsevier B.V. All rights reserved. 



View Classification - Our Take
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Segmentation using Convolutional Neural 
Networks

For all views, only 100-200 manually traced images were used for training

Ronneberger et al, 2015

We segment every frame of every video

Image CNNGround
Truth

Image CNNGround
Truth



Deriving “Real World” Measurements:  
Comparisons to Thousands of Studies from the 
UCSF Clinical Echo Laboratory

We can make all of the common measurements for B-mode echo.

Metric Number of Echo 
Studies Used for 

Comparison

Median Value (IQR) Absolute Deviation - % of Manual 
(Automated vs. Manual Measurement)

50 75 95

Left atrial volume 4800 52.6 (40.0-71.0) 16.1 29.3 66.2

Left ventricular diastolic volume 8457 92.1 (71.8-119.1) 17.2 30.5 68.0

Left ventricular systolic volume 8427 33.2 (24.1-46.8) 26 47 108

Left ventricular mass 5952 148.0 (117.3-159.9) 15.1 27.6 61

Left ventricular ejection fraction 6407 64.8 (58.3-59.41) 9.7 17.2 39.9

Global longitudinal strain 418 19.0 (17.0-21.0) 7.5 13.6 30.8

Global longitudinal strain (Johns 
Hopkins PKD study)

110 18.0 (16.0-20.0) 9.0 17.1 39.4



Deriving “Real World” Measurements
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Assessing Cardiac Function

N = 418
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Are clinicians really a gold standard?

1. A typical echocardiogram reader will manually trace the heart in 4-6 

“representative frames” and that will be the gold standard

2. There is wide variability in measurement values from physician to 

physician - up to 8-9% for the ejection fraction, which has a normal 

value of 60%

3. How do we show an improvement?

1. Compare to an average of multiple readers

2. Compare to a gold-standard imaging system (e.g. MRI)

3. Demonstrate utility in outcomes



Internal Measures of Consistency

Comparison N Correlation – 
Manual vs. 

Manual 
(p-value)

Correlation – 
Automated vs. 

Automated 
(p-value)

Left atrial volume vs. left ventricular mass 4012 0.54 (<2e-16) 0.56 (<2e-16)

Left ventricular mass vs. left ventricular diastolic volume 5874 0.62 (<2e-16) 0.61 (<2e-16)

Left ventricular mass vs. left ventricular systolic volume 5856 0.58 (<2e-16) 0.55 (<2e-16)

Left atrial volume vs. left ventricular diastolic volume 4748 0.48 (<2e-16) 0.56 (<2e-16)

Left atrial volume vs. left ventricular systolic volume 4738 0.49 (<2e-16) 0.46 (<2e-16)

Left atrial volume vs. left ejection fraction 4720 -0.22 (<2e-16) -0.23 (<2e-16)

Left ventricular mass vs. global longitudinal strain 243 -0.16 (0.01) -0.27 (<2e-16)

Left ventricular mass vs. left ejection fraction 5123 -0.28 (<2e-16) -0.28 (<2e-16)

Left ventricular diastolic volume vs. global longitudinal strain 326 -0.15 (0.006) -0.17 (0.002)

Left ventricular systolic volume vs. global longitudinal strain 326 -0.29 (<2e-16) -0.27 (<2e-16)

Left ventricular ejection fraction vs. global longitudinal strain 251 0.37 (<2e-16) 0.32 (<2e-16)



Longitudinal Strain in Longitudinal Studies 
Tracking Patients on Herception Chemotherapy

A vision of low cost serial monitoring of patients at risk of cardiac 
dysfunction:  hypertension, obesity, diabetes



Automated Disease Detection - What’s the Point?

1. Several rare diseases would benefit from referral to a 

cardiologist or specialty center

2. These diagnoses tend to be missed at centers that see them 

infrequently

3. We hypothesized that we could implement “disease detection 

modules” based on these same simple views

4. This would again be themed as “decision support” - not 

definitive diagnoses



A Model for Hypertrophic Cardiomyopathy

1:500 individuals

• Leading cause of sudden death in 

young athletes

• Inherited in families

• Can result in unstable heart rhythms, 

heart failure, and stroke

• Management involves behavioral 

changes, medication, and preventive 

implantation of a defibrillator
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Figure 8. CNNs enable detection of abnormal myocardial diseases. Receiver operating characteristic curves for hypertrophic cardiomy-
opathy (A) and cardiac amyloid (B) detection. In each case, separate CNN models were trained using hundreds of pairs of PLAX and
A4c-view images for affected and unaffected individuals. A pair consisted of one image at end-systole and one at end-diastole, where
phasing was performed using estimates of the left ventricular area. Performance was assessed by cross-validation. 4-independent cross
validation runs were performed and the test results averaged for each image-pair, and then a median taken across the entire study. Finally,
the A4c and PLAX probabilities were averaged. (C, D) Within cases, CNN probabilities of disease were correlated with known features of
the disease process (Figure 4C,D). (C) Relationship between probability (logit-transformed) of HCM and left atrial volume with Spearman
correlation coefficient indicated. (D) Relationship of probability of amyloid with left ventricular mass. Blue line indicates linear regression
fit with 95% confidence interval indicated by grey shaded area

fibrosis [23]. It can be associated with syncope, atrial and ventricular arrhythmias, heart failure, and sudden cardiac death.164

Once physicians recognize HCM, they can implement preventive measures, including avoidance of high intensity exercise165

and implantation of a cardiac defibrillator. Moreover, given that the first presentation of the disease can be sudden cardiac166

death, including in young athletes, early diagnosis can motivate physicians to screen relatives. Using a cohort of HCM167

patients (with varying patterns of left ventricular thickening) and technically matched controls, we trained a multi-layer CNN168

model to detect HCM using PLAX- and A4c-view videos. Because the heart changes appearance at different stages of the169

cardiac cycle, we first phased images using the results of cardiac segmentation, and selected a pair of images, one at end-170

diastole and one at end-systole, when the left ventricle is at its peak and minimum area, respectively. The resulting model171

could detect HCM with a C-statistic (Area Under the Receiving Operating Characteristic Curve or AUROC) of 0.93. To172

explore possible features being recognized by the model, we plotted the (logit-transformed) probabilities of disease in cases173

against left atrial volume and left ventricular mass, two features associated with the disease process (Figure 4C,4D). Cases174

with higher predicted probability of disease had larger left atria (⇢ = 0.41, Spearman correlation coefficient) and larger left175

ventricular mass (⇢ = 0.38).176

11

Left atrial volumes Left ventricular mass



A Model for Cardiac Amyloidosis

• “Senile amyloidosis” is a common cause of 

heart failure in the elderly … but often 

missed

• Can be inherited in families

• Can result in unstable heart rhythms, heart 

failure, and stroke

• Management involves medication, and 

preventive implantation of a pacemaker/

defibrillator
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A Model for Mitral Valve Prolapse

• A disease characterized by abnormal 

myxomatous thickening of the valve 

leaflets

• Seen in 1% of the population

• Can progress to severe valve disease 

and is sometimes seen with arrhythmia 

and sudden death
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What Next - Clinical Deployment!!!

1. UCSF has filed provisional patent for our system

2. Code and weights are freely available for academic/nonprofit 

use on Bitbucket:  https://bitbucket.org/rahuldeo/echocv

3. We don’t have FDA approval as a diagnostic - but proof-of-

concept studies are needed to test the value of integrating 

automation into the clinical workflow

4. Enabling National and Global Clinical Deployment 

1. Brandon Fornwalt:  Geisinger Health System

2. Patrick Gladding:  The University of Auckland, NZ

https://bitbucket.org/rahuldeo/echocv


Musings about the future



Some predictions for the future of cardiac imaging: 
following the path of ECG interpretation

1. Routine measurements will be made in an automated way - 
with a visual check of segmentation quality

2. Some automated diagnoses may happen at point-of-care:  
assessment of heart function, dangerous accumulation of 
fluid around the heart

3. Until image acquisition is facilitated, the benefits of 
automated interpretation will be muted



Where there is greater uncertainty …

1. Ideally, we should be using automated interpretation to elevate 
medicine beyond the current practice - but that requires much 
larger data sets and imaging more often (i.e. time course) than 
what is currently performed (and reimbursed)

2. Pharmaceutical companies have motivation to perform high 
frequency serial imaging to assess whether there are any benefits 
to medications in a shortened Phase II trial - accurate scalable 
quantification will be needed

3. Surveillance of daily studies may be useful to enable identification 
of individuals who may be eligible for clinical trials or newly 
approved therapies (e.g. cardiac amyloidosis)



Subclassification, risk models, … and the challenge 
of demonstrating utility

1. There is no question most disease classifications are crude … 
and finer distinctions can be made between disease states

2. There is also no question that survival models are crude, and 
better predictive models should be possible with imaging data 
and emerging algorithms

3. Unfortunately, physicians are only interested in classifications 
or risk models that will change practice … and require 
evidence to justify this

4. So until we have more data, we are left with the status quo 
and a bunch of research manuscripts



What about the biology?



What is missing in medicine?

1. Low-cost quantitative metrics that are indicative of 

disease progression and reflect the onset of these tissue-

level changes

2. Should be specific to the disease process:

1. expressive:  capture complex underlying biological 

processes

2. multidimensional:   can’t readily be “gamed”

3. Should be ameliorated with therapy (c.f. genetic risk)



Immediate challenges

1. Inaccessible biology: the tissue of interest in CHD is 

not accessible … how then to build biological assays 

2. Expensive:  most detailed biological measurements are 

costly (c.f. imaging, proteomics, DNA sequencing)

3. Problematic to train: 

• sample size:  models that quantify complex biological 
processes will need to be high-dimensional … but 
these will require very large sample size to train and 
validate

• time:  CHD develops slowly over time but a new 
biological assay requires prospective enrollment



Expanding phenotypic space

1. Current clinical data sets lack the scale and expressivity needed to 

reflect underlying biological processes

2. Discoveries from UK Biobank, Partners Biobank,  Vanderbilt, Geisinger, 

etc., are all limited by the underlying low dimensionality of phenotypic 

information - and that will not be solved by sample size (more of the 

same)

3. But these studies were exorbitant and have taken decades to accrue 

the current sample size… how do we improve on this?

4. We need a data type that has the dimensionality to capture biological 

heterogeneity and complexity and yet can still be collected in a very 

scaleable manner (cf. representation learning needs)

5. It became very clear we need to stay clear of sequencing technologies 

and costly medical imaging



A focus on individual circulating blood 
cells

1. Causally implicated in CHD pathogenesis

1. Involvement of neutrophils, monocytes, and lymphocytes in disease 

pathogenesis (plaque pathology; plaque pathology); genetic models in mice

2. CANTOS trial

3. Accelerated atherosclerosis in autoimmune disorders

4. Association of clonal hematopoeisis and early myocardial infarction

2. Accessible:  accessible in a blood draw

3. Precedence for utility:  Existing predictive models exist for CAD using WBC/RBC 

characteristics

4. Express many of the proteins implicated by genetic analysis in atherosclerosis:  e.g. 

LDLR, LPL, FADS1/2

5. Reflect many pathways found in diverse cell types:  autophagy, phagocytosis, free 

radical dissipation



Cell morphology rather than genomics

1. Takes advantage of computer vision advances in 

characterizing subtle distinctions between cell types 

and states at low cost

2. Can analyze tens of thousands of individuals cells 

per participant

3. Fluorescent dyes permit characterization of 

organelles (mitochondria, ER, Golgi), cytoskeleton 

(actin), nucleic acid (DNA, RNA)

4. Can be connected to gene expression to clarify 

underlying functional abnormalities



Readily amenable to perturbations

1. Expressivity can be augmented by adding 

perturbational reagents to whole blood and 

repeating the cell staining protocol

2. Examples:  LPS, cholesterol crystals, saturated fatty 

acids

3. Whole blood environment permits cross talk 

between cells: e.g. vital netosis triggered by LPS-

platelet interaction

4. Final readout — high content imaging — is 

inexpensive and directly comparable to baseline 

state



Recruitment workflow – 1000-1200 patients 
per month (12,000-15,000 per year)

Cardiology clinic General medicine Primary care

Primary assays:  low cost, 
reproducible, expressive, rapid, 
responsive to therapy, interpretable

Secondary assays:  costly, less 
robust, limited expressivity, non-
responsive, non-biological

Somatic sequencing
(CHIP)

GWAS (GRS)

Single cell RNA-Seq

Novel Devices PET

WGS

ECG



Scaling up to incorporate longitudinal 
data: tapping into the pathology lab

1. Data has been collected since 
2015

2. >3.5 million data records with 
1800 added a day

3. We connect cellular data to full 
medical data via API

4. Digitized slides from 100,000 
patients - 13 million images

5. Prospectively doing this for all 
acute MI patients

Sysmex

3.5M FCS files from the XE-5000

740K raw files from the XN-9000
+ 1800/day

CellaVision

13M images 
18% Lymphocytes (in active DB)

100K smears + 135/day

Siemens Advia

65K+ FCS files

7.7M raw files

Abbot Sapphire

170K+ FCS files

160K+ WBC TYP files

Accumulated
Database

CellaVision
Server

database
snapshot

Aggregation
ServerFile Share

~13M images

~100K smears

575 GB

Custom Python 
script copies new 
MimerSQL rows to 
MySQL

~9hrs per backup

database
snapshot

new
data

1K+ nightly 
snapshots from 
11/2015 to present

~8 TB

Currently a single 
server/database 
supporting three 
CellaVision 
instruments



Summary of our approach
1. A permissive recruitment scheme to enable rapid 

accrual of tens of thousands of patients per year all 

with expressive phenotyping and full medical records

2. Use of cell morphology/cell counter data to massively 

expand phenotypic space at low cost using 

perturbations and diverse readouts

3. Overlapping of multiple phenotypic scales in different 

cohorts to convert costly, tissue-localized phenotypes 

(e.g. PET, CHIP sequencing) into lower cost (TTE, cell 

imaging) models

4. API-based cohort identification to allow rapid 

identification of patients of interest

5. Automated curation of the medical record into a 

vehicle for machine learning and causal inference

Time
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Taqueti and DiCarli, 2018

The macro- and microcirculation
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