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Need	2	scribes	for	today’s	lecture



The	Problem

• Cost	of	health	care	expenditures	in	the	US	are	
over	$3	trillion,	and	rising

• Despite	having	some	of	the	best	clinicians	in	
the	world,	chronic	conditions	are
– Often	diagnosed	late
– Often	inappropriately	managed

• Medical	errors	are	pervasive



Outline	for	today’s	class

1. Brief	history	of	AI	and	ML	in	healthcare
2. Why	now?
3. Examples	of	how	ML	will	transform	

healthcare
4. What	is	unique about	ML	in	healthcare?
5. Overview	of	class	syllabus



1970’s:	MYCIN	expert	system
• 1970’s	(Stanford):	MYCIN	expert	

system	for	identifying	bacteria	
causing	severe	infections

• Proposed	a	good	therapy	in	
~69%	of	cases.	Better	than	
infectious	disease	experts	4 The Context of the MYCIN Experiments
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FIGURE 1-1 Major parts of an expert system. Arrows indicate
information flow.

to help build a knowledge base, to explain a line of reasoning, and so forth.
The knowledge base is the program’s store of facts and associations it

"knows" about a subject area such as medicine. A critical design decision
is how such knowledge is to be represented within the program. There are
many choices, in general. For MYCIN, we chose to represent knowledge
mostly as conditional statements, or rules, of the following form:

IF: There is evidence that A and B are true,

THEN: Conclude there is evidence that C is true.

This form is often abbreviated to one of the following:

If A and B, then C

A& B--*C

We refer to the antecedent of a rule as the premise or left-hand side (LHS)
and to the consequent as the action or right-hand side (RHS).

The inference mechanism can take many forms. We often speak of
the control structure or control of inference to reflect the [’act that there
are different controlling strategies for the system. For example, a set of
rules may be chained together, as in this example:

If A, then B (Rule 1)

If B, then C (Rule 2)

A (Data)

.’.C (Conclusion)
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I am ready
** THIS IS A 26 YEAR OLD MALE PATIENT
My understanding is:
The age of the patient is 26
The sex of the patient is male
** FIVE DAYS AGO, HE HAD RESPIRATORY-TRACT SYMPTOMS
What is his name?
** JO
My understanding is:
The name of the patient is Jo
Respiratory-tract is one of the symptoms that the patient had
** A COUPLE OF DAYS BEFORE THE ADMISSION, HE HAD A MALAISE
Please give me the date of admission
** MARCH 12, 1979
My understanding is:
The patient was admitted at the hospital 3 days ago
Malaise is one of the symptoms that the patient had 5 days ago

FIGURE 33-1 Short sample dialogue. The physician’s inputs
appear in capital letters after the double asterisks.

some of the frames might rule out others, thus enabling the space of
possible inferences to be pruned. This isstie has also been raised by Char-
niak (1978). Embodying world knowledge in frames (Minsky, 1975) 
scripts (Abelson, 1973; Schank and Abelson, 1975) led to the development
of" programs that achieved a reasonably deep level of understanding, for
example, GUS (Bobrow et al., 1977), NUDGE (Goldstein and Roberts,
1977), FRUMP (DeJong, 1977) and SAM (Cullingford, 1977).

BAOBAB and the other programs mentioned so far have a common
feature: they do not interpret sentences in isolation. Rather, they interpret
in the context of an ongoing discourse and, hence, use discourse structure.
BAOBAB also explores issues of (a) what constitutes a model for structured
texts and (b) how and when topic shifts occur. However, BAOBAB is in-
terested neither in inferring implicit facts that might have occurred tem-
porally between facts explicitly described in a text nor in explaining inten-
tions of characters in stories (main emphases of works using scripts or
plans). Our program focuses instead on coherence of texts, which is mainly
a task of detecting anomalies, asking the user to clarify vague pieces of
information or disappointed expectations, and suggesting omissions. The
domain of application is patient medical summaries, a kind of text for
which language-processing research has mainly consisted of filling in for-
matted grids without demanding any interactive behavior (Sager, 1978).
BAOBAB’s objectives are to understand a summary typed in "natural med-

Dialogue	interface



1980’s:	INTERNIST-1/QMR	model
• 1980’s	(Univ.	of	Pittsburgh):	

INTERNIST-1/Quick	Medical	
Reference

• Diagnosis	for	internal	medicine

Diseases

Symptoms

flu diabetespneumonia

fatigue chest
pain

cough high
A1C

Probabilistic	model	relating:

570	binary	disease	variables
4,075	binary	symptom	variables	
45,470	directed	edges

Elicited	from	doctors:
15	person-years	of	work

Led	to	advances	in	ML	&	AI	
(Bayesian	networks,	approximate	
inference)

[Miller	et	al.,	‘86,	Shweet	al.,	‘91]

Problems: 1. Clinicians	entered	symptoms	manually
2. Difficult	to	maintain,	difficult	to	generalize



1980’s:	automating	medical	discovery

Discovers	that	prednisone	
elevates	cholesterol
(Annals	of	Internal	Medicine,	‘86)

[Robert	Blum,	“Discovery,	Confirmation	and	Incorporation	of	Causal	Relationships	
from	a	Large	Time-Oriented	Clinical	Data	Base:	The	RX	Project”.	Dept.	of	Computer	
Science,	Stanford.	1981]



1990’s:	neural	networks	in	medicine

• Neural	networks	with	
clinical	data	took	off	in	
1990,	with	88	new	studies	
that	year

• Small	number	of	features	
(inputs)

• Data	often	collected	by	
chart	review
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where w,o is a bias weight. The ith neuron responds
to this activity by sending a signal

This type of neuron, called a perceptron, is illus-
trated in figure 1. The standard choice for the func-
tion F is the nonlinear logistic or sigmoid function

which restricts the output to be between 0 and 1. If
the incoming weighted activity is larger than the
(negative) bias weight, the activation is positive. Pos-
itive activations cause node outputs that tendj to 1.

Negative activations cause outputs that tend to 0.

Thus, the bias weight acts as a threshold above
which the node is active. For small activation levels,
the sigmoidal function is approximately linear.

Perceptrons are the basic processing element in
most neural network models. A feed-forward neural

network, called the multilayer perceptron (MLP), is
illustrated in figure 2. The network consists of sen-
sory units that make up the input layer, one or more
hidden layers of processing units (perceptrons), and
one output layer of processing units (perceptrons).
Every unit is connected to every unit in the layer
below. The input signal propagates through the net-
work a layer at a time. Because MLPs are trained
with an algorithm called error back-propagation,
they are also known as &dquo;backprop&dquo; networks.
There are many other types of networks, varying

in node models and patterns of connectivity,34 3’,‘~’4
but the MLP is the network used in nearly all med-

ical applications. Our discussion is therefore re-

stricted to MLPs.

Overall, the MLP performs a functional mapping
from the input space to the output space. The input
and output spaces are multidimensional, with one
dimension per input and output variable. The

input-output mapping is determined by the struc-
ture of the network and the values of its weights.
Changing the structure or the weights changes the
function implemented.
An MLP with a single hidden layer having H hid-

den units and a single output, y, implements map-
pings of the form

FIGURE 2. A multilayer perceptron. This is a two-layer percep-
tron with four inputs, four hidden units, and one output unit.

[Penny	&	Frost,	Neural	Networks	in	Clinical	Medicine.	Med	Decis Making,	1996]

Problems: 1. Did	not	fit	well	into	clinical	workflow
2. Hard	to	get	enough	training	data
3. Poor	generalization	to	new	places
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Table 1 9 25 Neural Network Studies in Medical Decision Making*

*For reference citations, see the reference list
tP = pnor probability of most prevalent category.
$D = ratio of tramng examples to weights per output
§A single integer in the accuracy column denotes percentage overall classification rate and a single real number between 0 and 1 indicates the

AUROCC value Neural = accuracy of neural net, Other = accuracy of best other method

differential identification of fatty liver and two

types of hepatitis on the basis of laboratory tests. 65
CART required that the ratio of two inputs be entered
explicitly as a third input. Without this extra in-
put, CART would not classify as accurately as a neural
net.

Knowledge-based expert systems have been

widely used in the medical domain. The difficulty in
eliciting rules from experts and the inconsistency
and brittleness of resulting systems have been their
main drawbacks. Neural networks offer a more di-
rect approach but have the disadvantage that their
workings are not readily interpreted.

Curve-fitting methods such as generalized spline
fitting are similar to regression methods. A differ-
ence is that the data may be approximated by many
local functions, which are then combined to form a
single global nonlinear function.

Fuzzy-logic systems implement general nonlinear
functions, which are initialized by heuristic, expert
knowledge. They are based on readily understood
but vague linguistic rules, which are given precise
meaning via algebraic operators called &dquo;member-

ship functions.&dquo;
Curve-fittings’ and fuzzy-logic methods3° are sim-

ilar to a type of neural network called a &dquo;radial basis
function network.&dquo; This is a two-layer network with

Gaussian activation-output functions in the hidden
layer and linear functions in the output layer.
Considerable research effort is being devoted to

systems involving combinations of the above-men-
tioned methods and neural networks. A recent se-
lection of studies involving such &dquo;hybrid&dquo; systems
for medical reasoning is given by Cohen and Hud-
son. 15
Table 1 shows how accurate neural nets are in

comparison with other methods. Michie et aI.51
compare machine learning, neural nets, and statis-
tical classifiers on a variety of data sets, including
classifications of heart disease, head injury, and di-
abetes.

Conclusion

Certain issues must be addressed for neural net-
works to truly perform well in medical applications.
These include choosing input and output represen-
tations and performance measures that are suitable
for the low-prevalence categories and missing data
items often found in medical data sets. If the data
set is small, then the statistical techniques of folded
cross validation and bootstrapping allow a more ac-
curate assessment of the network’s performance.
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The	Opportunity:
Adoption	of	Electronic	Health	Records	
(EHR)	has	increased	9x	in	US	since	2008

[Henry	et	al.,	ONC	Data	Brief,	May	2016]



Large	datasets

Laboratory	 for	
Computational	
Physiology

De-identified	
health	data	from	
~40K	critical	care	
patients

Demographics,	
vital	signs,	
laboratory	tests,	
medications,	
notes,	…



Large	datasets

“Data	on	nearly	
230	million	
unique	patients	
since	1995”

$$$



President	Obama’s	initiative	to	create	a	1	million	
person	research	cohort

[Precision	Medicine	Initiative	(PMI)	working	Group	Report,	Sept.	17	2015]

Intensify efforts to apply precision medicine to cancer.

Knowledge to 
overcome drug 
resistance

Use of 
combination 
therapies

Innovative clinical trials 
of targeted drugs for 
adult, pediatric cancers

THE PRECISION MEDICINE INITIATIVE

NEAR TERM GOALS

WHAT IS IT?

WHY NOW?

Precision medicine is an emerging approach for disease 
prevention and treatment that takes into account people’s 
individual variations in genes, environment, and lifestyle.

The Precision Medicine Initiative will generate the scientific 
evidence needed to move the concept of precision 
medicine into clinical practice.

The time is right because of:

Sequencing 
of the human 
genome

Improved 
technologies for 
biomedical analysis

New tools  
for using large 
datasets

Follow the Initiative’s progress and consider 
volunteering for this landmark effort. 

www.nih.gov/precisionmedicine

Create a research cohort of > 1 million American volunteers who will 
share genetic data, biological samples, and diet/lifestyle information, all 
linked to their electronic health records if they choose.

LONGER TERM GOALS

001101010110100
10110010101100110
0010101101010010
0100010101111010

Pioneer a new model for doing science that emphasizes engaged 
participants, responsible data sharing, and privacy protection. 

Research based upon the cohort data will:

• Advance pharmacogenomics, the right drug for the right patient at the 
right dose

• Identify new targets for treatment and prevention

• Test whether mobile devices can encourage healthy behaviors

• Lay scientific foundation for precision medicine for many diseases

Large	datasets

Core	data	set:
• Baseline	health	exam
• Clinical	data	derived	

from	electronic	health	
records	(EHRs)

• Healthcare	claims
• Laboratory	data



Diversity	of	digital	health	data

genomics

imaging

phone

lab tests

vital signs

proteomics 

devices

social media



Standardization

• Diagnosis	codes:	ICD-9	and	
ICD-10	(International	
Classification	of	Diseases)

[https://blog.curemd.com/the-most-bizarre-
icd-10-codes-infographic/]

[https://en.wikipedia.org/wiki/Lis
t_of_ICD-9_codes]

…
…

…



Standardization

• Diagnosis	codes:	ICD-9	and	
ICD-10	(International	
Classification	of	Diseases)

• Laboratory	tests:	LOINC	
codes

• Pharmacy:	National	Drug	
Codes	(NDCs)

• Unified	Medical	Language	
System	(UMLS):	millions	of	
medical	concepts

[http://oplinc.com/newsletter/index_May08.htm]



Standardization



Standardization

OMOP
Common
Data
Model	v5.0



Breakthroughs	in	machine	learning

Why	now?
• Big	data	
• Algorithmic	advances
• Open-source	software



Breakthroughs	in	machine	learning

• Major	advances	in	ML	&	AI
– Learning	with	high-dimensional	features	(e.g.,	l1-
regularization)

– Semi-supervised	and	unsupervised	learning
–Modern	deep	learning	techniques	(e.g.	convnets,	
variants	of	SGD)	

• Democratization	of	machine	learning
– High	quality	open-source	software,	such	as	
Python’s	scikit-learn,	TensorFlow,	Torch,	Theano



Industry	interest	in	ML	&	healthcare
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Figure 1:  AI in Health Care Startups. From CB Insights (2016) [9]. 

1.1 Why Now?  
AI has been around for decades and its promise to revolutionize our lives has been frequently 
raised, with many of the promises remaining unfulfilled. Fueled by the growth of capabilities in 
computational hardware and associated algorithm development, as well as some degree of hype, 
AI research programs have ebbed and flowed. The JASON 2017 report [10] gives this history 
and also comments on the current AI revolution stating: 
 

 “Starting around 2010, the field of AI has been jolted by the broad and unforeseen 
successes of a specific, decades-old technology: multi-layer neural networks (NNs). This 
phase-change reenergizing of a particular area of AI is the result of two evolutionary 
developments that together crossed a qualitative threshold: (i) fast hardware Graphics 
Processor Units (GPUs) allowing the training of much larger—and especially deeper (i.e., 
more layers)—networks, and (ii) large labeled data sets (images, web queries, social 



Industry	interest	in	ML	&	healthcare

• Major	acquisitions	to	get	big	data	for	ML:
–Merge	($1	billion	purchase	by	IBM,	2015)
medical	imaging

– Truven Health	Analytics	($2.6	billion	purchase	by	
IBM,	2016)
health	insurance	claims

– Flatiron	Health	($1.9	billion	purchase	by	Roche,	
2018)
electronic	health	records	(oncology)
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Source	for	figure:
http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry

ML	will	transform	every	aspect	of	healthcare

The	stakeholders:



Emergency	Department:
• Limited	resources
• Time	sensitive
• Critical	decisions



What	will	the	ER	of	the	future	be	like?

Diseases

Symptoms

flu diabetespneumonia

fatigue chest
pain

cough high
A1C

Drives

Automatically	extracted	from	
electronic	health	record

• Better	triage
• Faster	diagnosis
• Early	detection	of	

adverse	events
• Prevent	medical	

errors

Behind-the-scenes	reasoning	about	the	patient’s	
conditions	(current	and	future)



What	will	the	ER	of	the	future	be	like?

Propagating	best	practices	



What	will	the	ER	of	the	future	be	like?

Anticipating	the	clinicians’
needs



What	will	the	ER	of	the	future	be	like?CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays

with Deep Learning

Pranav Rajpurkar * 1 Jeremy Irvin * 1 Kaylie Zhu 1 Brandon Yang 1 Hershel Mehta 1

Tony Duan 1 Daisy Ding 1 Aarti Bagul 1 Curtis Langlotz 2 Katie Shpanskaya 2

Matthew P. Lungren 2 Andrew Y. Ng 1

Abstract

We develop an algorithm that can detect
pneumonia from chest X-rays at a level ex-
ceeding practicing radiologists. Our algo-
rithm, CheXNet, is a 121-layer convolutional
neural network trained on ChestX-ray14, cur-
rently the largest publicly available chest X-
ray dataset, containing over 100,000 frontal-
view X-ray images with 14 diseases. Four
practicing academic radiologists annotate a
test set, on which we compare the perfor-
mance of CheXNet to that of radiologists.
We find that CheXNet exceeds average radi-
ologist performance on pneumonia detection
on both sensitivity and specificity. We extend
CheXNet to detect all 14 diseases in ChestX-
ray14 and achieve state of the art results on
all 14 diseases.

1. Introduction

More than 1 million adults are hospitalized with pneu-
monia and around 50,000 die from the disease every
year in the US alone (CDC, 2017). Chest X-rays
are currently the best available method for diagnosing
pneumonia (WHO, 2001), playing a crucial role in clin-
ical care (Franquet, 2001) and epidemiological studies
(Cherian et al., 2005). However, detecting pneumo-
nia in chest X-rays is a challenging task that relies on
the availability of expert radiologists. In this work, we
present a model that can automatically detect pneu-
monia from chest X-rays at a level exceeding practicing
radiologists.

*Equal contribution 1Stanford University De-
partment of Computer Science 2Stanford University
School of Medicine. Correspondence to: Pranav Ra-
jpurkar <pranavsr@cs.stanford.edu>, Jeremy Irvin
<jirvin16@cs.stanford.edu>.

Project website at https://stanfordmlgroup.

github.io/projects/chexnet

Output
Pneumonia Positive (85%)

Input
Chest X-Ray Image

CheXNet
121-layer CNN

Figure 1. CheXNet is a 121-layer convolutional neural net-
work that takes a chest X-ray image as input, and outputs
the probability of a pathology. On this example, CheXnet
correctly detects pneumonia and also localizes areas in the
image most indicative of the pathology.

Our model, ChexNet (shown in Figure 1), is a 121-
layer convolutional neural network that inputs a chest
X-ray image and outputs the probability of pneumonia
along with a heatmap localizing the areas of the im-
age most indicative of pneumonia. We train CheXNet
on the recently released ChestX-ray14 dataset (Wang
et al., 2017), which contains 112,120 frontal-view chest
X-ray images individually labeled with up to 14 di↵er-
ent thoracic diseases, including pneumonia. We use

ar
X

iv
:1

71
1.

05
22

5v
2 

 [c
s.C

V
]  

25
 N

ov
 2

01
7

Reducing	the	need	for	specialist	consults

Arrhythmia?

Figure	sources:	Rajpurkar et	al.,	arXiv:1711.05225	’17
Rajpurkar et	al.,	arXiv:1707.01836,	'17



Table 1. Performance of the different negation detection algorithms on 200 test sentences.

NegEx Added rules Perceptron

Precision 0.699 0.833 0.901

Recall 0.875 0.982 0.925

F1 0.777 0.901 0.913

Table 2. Performance of the linear SVMs on chief complaint prediction, without and with negation detection.  The 

Best-n accuracy measures how often the list of n most likely predicted labels actually contained all of the true chief 
complaints, and DCG stands for the Discounted Cumulative Gain, which measures the quality of the whole ranking.

many-to-one Multiclass SVM

Negation detection none perceptron none perceptron

Best-5 0.496 0.511 0.753 0.757

Best-10 0.615 0.620 0.819 0.825

DCG 0.381 0.393 0.601 0.613

Figure 1.  Screenshots  of  the  system now running at  BIDMC hospital  on  note:  69  y/o M patient  with severe  
intermittent RUQ pain. Began soon after eating bucket of ice cream and cupcake. Also is a heavy drinker. Left: the 

system correctly proposes both ‘RUQ abdominal pain’ and ‘Allergic reaction’ as possible chief complaints. Right: 
If the nurse does not see the label they want, they can start typing and see a list of suggested auto-completes. Again, 

the four most likely labels describe ‘RUQ abdominal pain’ and ‘Allergic reaction’.
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Predicted	
chief	
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complete

What	will	the	ER	of	the	future	be	like?

Automated	documentation	and	billing



Source	for	figure:
http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry

ML	will	transform	every	aspect	of	healthcare

The	stakeholders:



What	is	the	future	of	how	we	treat	
chronic	disease?

• Predicting	a	patient’s	future	disease	progression

Figure	credit:	https://www.cdc.gov/kidneydisease/prevention-risk.html

Time

Time

Disease burden

Undiagnosed
condition



What	is	the	future	of	how	we	treat	
chronic	disease?

• Predicting	a	patient’s	future	disease	progression

• Precision	medicine
Choosing	first	line	therapy	in	multiple	myeloma
A) KRd: carfilzomib-lenalidomide-dexamethasone,	B)	VRd: bortezomib-lenalidomide-dexamethasone

Treatment A

Treatment B
Patient w.

condition X

Response to treatment A

Response to treatment B

Diagnosis and first-line treatment

Progression on VRd

Time

Progression on KRd



What	is	the	future	of	how	we	treat	
chronic	disease?

• Early	diagnosis,	e.g.	of	diabetes,	Alzheimer's,	
cancer

Liquid	biopsy

Figure	sources:	NIH,	
https://www.roche.com/research_and_development/what_we_are_working_on/oncology
/liquid-biopsy.htm



What	is	the	future	of	how	we	treat	
chronic	disease?

• Continuous	monitoring	and	coaching,	e.g.	for	the	
elderly,	diabetes,	psychiatric	disease

Figure	source	(left):	http://www.emeraldforhome.com/



What	is	the	future	of	how	we	treat	
chronic	disease?

• Discovery	of	new	disease	subtypes;	design	of	
new	drugs;	better	targeted	clinical	trials

Figure	sources:	Haldar et	al.,	Am	J	Respir Crit Care	Med,	2008	
http://news.mit.edu/2018/automating-molecule-design-speed-drug-development-0706
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What	makes	healthcare	different?
• Life	or	death	decisions

– Need	robust algorithms
– Checks	and	balances	built	into	ML	deployment
– (Also	arises	in	other	applications	of	AI	such	as	autonomous	
driving)

– Need	fair and	accountable	algorithms
• Many	questions	are	about	unsupervised	 learning

– Discovering	disease	subtypes,	or	answering	question	such	
as	“characterize	the	types	of	people	that	are	highly	likely	to	
be	readmitted	to	the	hospital”?

• Many	of	the	questions	we	want	to	answer	are	causal
– Naïve	use	of	supervised	machine	learning	is	insufficient



What	makes	healthcare	different?

• Very	little	labeled	data
Recent	breakthroughs	in	AI

depended	on	lots of	labeled	data!



What	makes	healthcare	different?

• Very	little	labeled	data
–Motivates	semi-supervised	learning	algorithms

• Sometimes	small	numbers	of	samples	(e.g.,	a	
rare	disease)
– Learn	as	much	as	possible	from	other	data	(e.g.	
healthy	patients)

–Model	the	problem	carefully
• Lots	of	missing	data,	varying	time	intervals,	
censored	labels



What	makes	healthcare	different?

• Difficulty	of	de-identifying	data
– Need	for	data	sharing	agreements	and	sensitivity

• Difficulty	of	deploying	ML
– Commercial	electronic	health	record	software	is	
difficult	to	modify

– Data	is	often	in	silos;	everyone	recognizes	need	for	
interoperability,	but	slow	progress

– Careful	testing	and	iteration	is	needed



Goals	for	the	semester

• Intuition	for	working	with	healthcare	data
• How	to	set	up	as	machine	learning	problems
• Understand	which	learning	algorithms	are	
likely	to	be	useful	and	when

• Appreciate	subtleties	in	safely	&	robustly	
applying	ML	in	healthcare

• Set	the	research	agenda	for	the	next	decade
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1. Brief	history	of	AI	and	ML	in	healthcare
2. Why	now?
3. Examples	of	how	ML	will	transform	

healthcare
4. What	is	unique about	ML	in	healthcare?
5. Overview	of	class	syllabus



Course	staff

• David	Sontag	(instructor)
– Associate	professor	in	EECS,	joint	IMES	&	
CSAIL

– PhD	MIT,	then	5.5	years	as	professor	at	NYU
– Leads	clinical	machine	learning	group

• Peter	Szolovits (instructor)
– Professor	in	EECS,	associate	faculty	in	IMES
– Researching	AI	in	medicine	since	1975	(!)
– Leads	clinical	decision	making	group	in	CSAIL



Course	staff

• Willie	Boag (teaching	assistant)
– PhD	student	with	Pete	Szolovits
– Research	in	clinical	NLP
– Master’s	thesis	on	quantifying	racial	disparities	in	
end-of-life	care

• Irene	Chen	(teaching	assistant)
– PhD	student	with	David	Sontag
– Research	in	fairness	in	ML,	and	modeling	disease	
progression

– Before	PhD,	worked	for	2	years	at	Dropbox

• Office	hours	Monday	1pm,	32-G	9th	floor	lobby



Prerequisites	&	Enrollment
• Must	submit	pre-req quiz	(on	course	website)	by	11:59PM	

EST	today

• We	assume	previous	undergraduate-level	ML,	and	comfort	
with:
– Machine	learning	methodology	(e.g.	generalization,	cross-
validation)

– Supervised	machine	learning	techniques	(e.g.	support	vector	
machines,	neural	networks)

– Optimization	for	ML	(e.g.	stochastic	gradient	descent)
– Statistical	modeling	(e.g.	Gaussian	mixture	models)
– Python

• Because	of	space	limitations,	no	listeners	or	auditors	will	
be	permitted



Logistics
• Course	website:	
https://mlhc19mit.github.io/

• All	announcements	made	via	Piazza	– make	sure	you	are	
signed	up	for	it!

• Recitation	(optional):	Fridays,	starting	next	week	(details	
TBD)

• Grading:
– 40%	homework	(6	problem	sets)
– 40%	course	project
– 20%	participation	(scribing,	MLHC	community	consulting,	
reading	responses,	and	in-class	discussion)



Homework	(tentative)
• PS0	(due	Monday):	human	subjects	training	&	data	use	

agreements
• PS1:	Predicting	mortality	in	ICUs	using	labs	and	clinical	text
• PS2:	Risk	stratification	using	health	insurance	claims
• PS3:	Clinical	natural	language	processing
• PS4:	Physiological	time-series
• PS5:	Causal	inference	(theory)
• PS6:	Inferring	the	effect	opioid	prescription	on	addiction



6.S897/HST.956	vs 6.874

• Our	class	will	focus	on	clinical	data and	its	use	
to	improve	health	care

• For	reasons	of	time	&	scope,	we	will	not	go	
deep	into	applications	in	the	life	sciences
– For	this,	we	recommend	taking	6.874	
Computational	Systems	Biology:	Deep	Learning	
in	the	Life	Sciences
https://mit6874.github.io/


